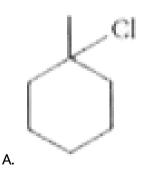
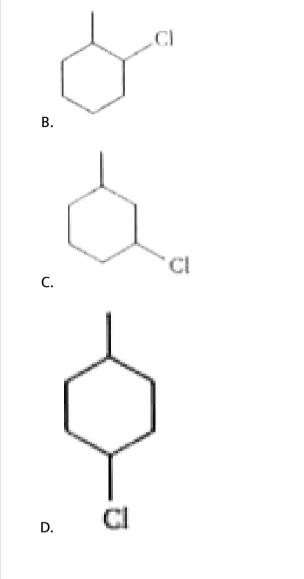
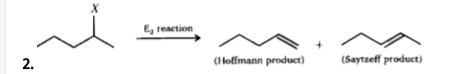


CHEMISTRY

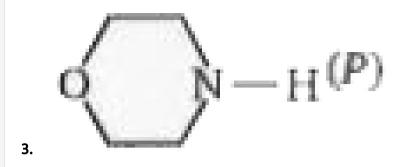

BOOKS - MS CHOUHAN


ALKYL HALIDES (ELIMINATION REACTION)

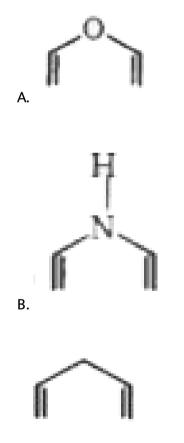

1. Which of the following alkyl halide gives only one product (excluding stereoisomer) when undergo E_2 reaction ?

 $(E_2$ = elimination bi - molecular)

Answer: D

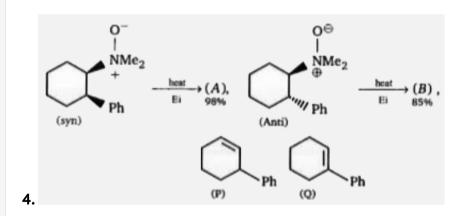


In the above reaction, maximum Saytzeffproduct will obtained when:


In the above reaction Hoffmann product is major when X is :

- A. $X=\ -I$, -F
- $\mathsf{B.}\, X=\, -\, Cl\text{, -}\mathsf{Cl}$
- C. $X=\,-\,Br$, -Br
- $\mathsf{D}.\,X=\,-\,F,\mathsf{-F}$

Answer: A


when (P) undergoes Hoffmann exhaustive methylation (twice) then the product obtained will be :

Answer: A

Product (A) & (B) of the above reaction is


A. A=P,B=P

B. A=Q,B=Q

C. A=P,B=Q

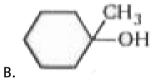
D. A=Q,B=P

Answer: C

Β.

A.

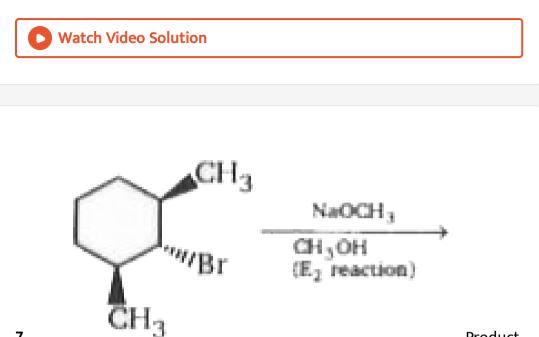
C.


D.


Answer: B

Watch Video Solution

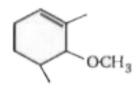
6. Which of these dehydrates most easily?


A.
$$CH_3-CH_2-CH_2=OH$$

$$\mathsf{D}.\,CH_3 - \overset{CH_3}{\overset{|}{\underset{CH_3}{C}}} - CH_2 - OH$$

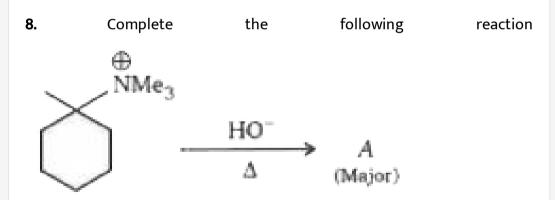
Answer: B

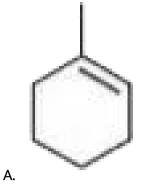
7.

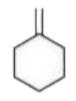

Product,

Product of the reaction is :

A.

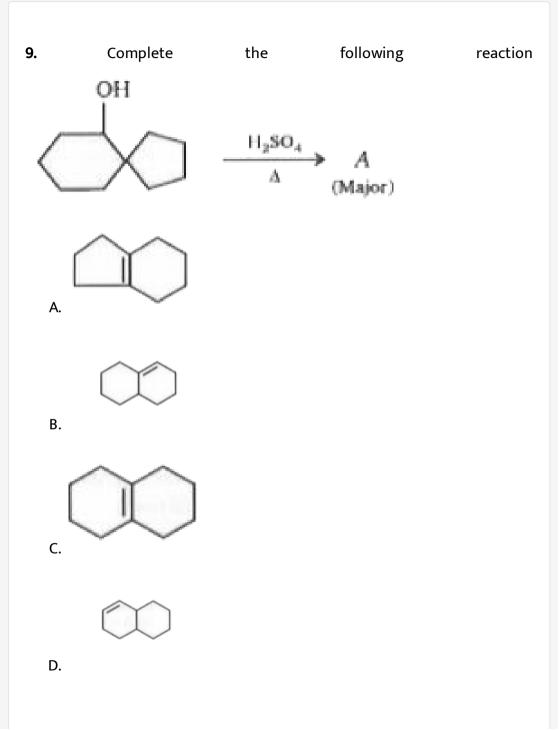



C.


D. No reaction

Answer: D

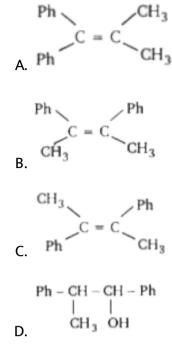
Β.


C.

D.

Answer: B

Answer: C



10. In which of the following reaction Saytzeffalkene is major product?

$$\begin{array}{l} \mathsf{A}.\,CH_{3}-CH_{2}-\overset{CH_{3}}{\overset{|}{C}}-\overset{\oplus}{NMe_{3}}\frac{HO^{-}}{\Delta}\\ \mathsf{B}.\,CH_{3}-CH_{2}-CH_{2}CH-CH_{3}\frac{EtO^{-}}{\Delta}\\ \overset{|}{F}\\ \mathsf{C}.\,CH_{3}-CH_{2}-\overset{|}{\overset{CH_{3}}{C}}-CH_{3}\frac{t-BuOK}{\Delta}\\ \overset{Br}{\overset{Br}{Br}}\\ \mathsf{D}.\,CH_{3}-CH_{2}-CH_{2}-\overset{Br}{\overset{|}{C}}_{CH_{3}}-CH_{3}\frac{CH_{3}OK}{\Delta} \end{array}$$

Answer: D

11.
$$\xrightarrow[(K_2 \text{reaction})]{}$$
 Major product of the reaction is

Answer: C

View Text Solution

12. The conversion of 2, 3-dibromobutane to 2-butene with Zn is

A. Redox reaction

B. α - Elimination

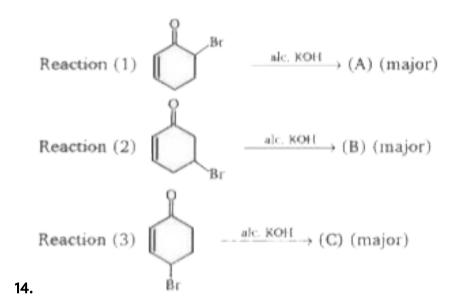
C. β - Elimination

D. Both α - elimination and redox reaciton

Answer: C

Watch Video Solution

13. 1, 3-Dibromopropane is heated with zinc dust in ether. The product formed is :

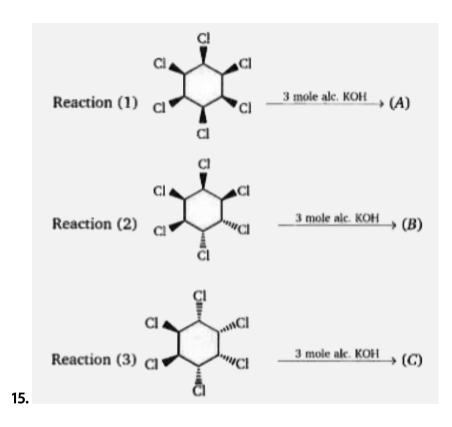

A. propene

B. propane

C. cyclopropane

D. 3-bromopropane

Answer: D



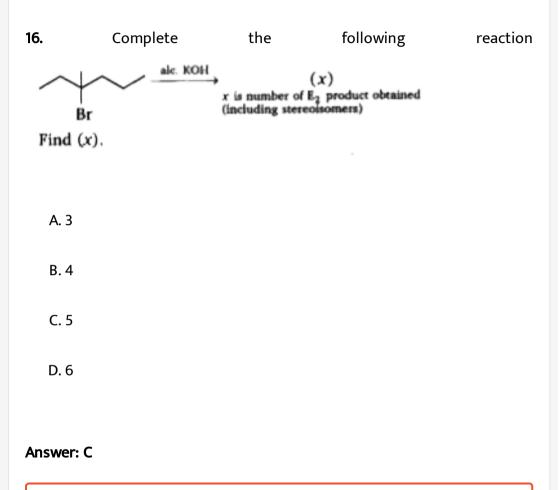
Product obtained in above reactions (1),(2) & (3) is :

- A. A = B but C is different
- B. A = C, but B is different
- C. B = C, but A is different
- D. A = B = C all product are identical

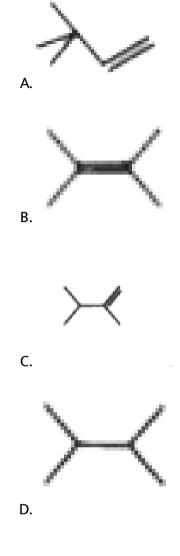
Answer: D

Product obtained in above reactions (1),(2) & (3)

A. A = B, C is different


B. A = C, B is different

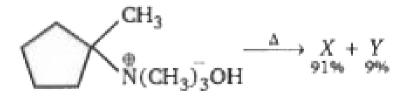
C. B = C, A is different


D. A = B = C is same

Answer: D

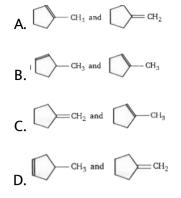
$$\begin{array}{c} \overset{CH_{3}}{\vdash} \\ \textbf{17.} \ CH_{3} - \overset{|}{\overset{C}{\underset{CH_{3}}{}}} - \overset{-}{\underset{Br}{\overset{H}{\underset{Br}{}}}} CH_{3} - \overset{\text{EtoH}}{\overset{}{\underset{\Delta}{}}} (A) \\ \overset{|}{\underset{CH_{3}}{}} \overset{Br}{\underset{Br}{}} \end{array}$$

Answer: B

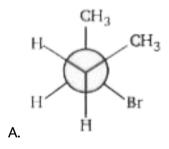

18. Which one of the following compound will be least susceptible to elimination of hydrogen bromide?

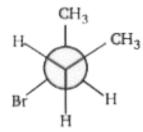
A.
$$Br-CH_2-CH_2-NO_2$$

B. $Br-CH_2-CH_2-CH_3$
C. $Br-CH_2-CH_2-CN$
D. $Br-CH_2-CH_2-CO_2Et$

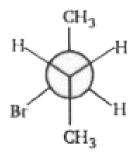

Answer: B

19. Two alkenes, X(91% yield) and Y(9% yield) are formed when the following compound is heated.

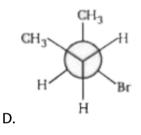

The structures of X and Y, respectively are :



Answer: C



20. In the dehydrohalogenation of2-bromobutane, which conformation leads to the formation ofcis-2-butene ?



Β.

C.

Answer: A

$$(A) \xrightarrow{(Ei)} (B) + CH_3CO_2H$$

$$(A) \xrightarrow{(Ei)} (B) + CH_3CO_2H$$

$$(A) \xrightarrow{(Ei)} (B) + CH_3CO_2H$$

Product (B) of given reaction is :

A.

Β.

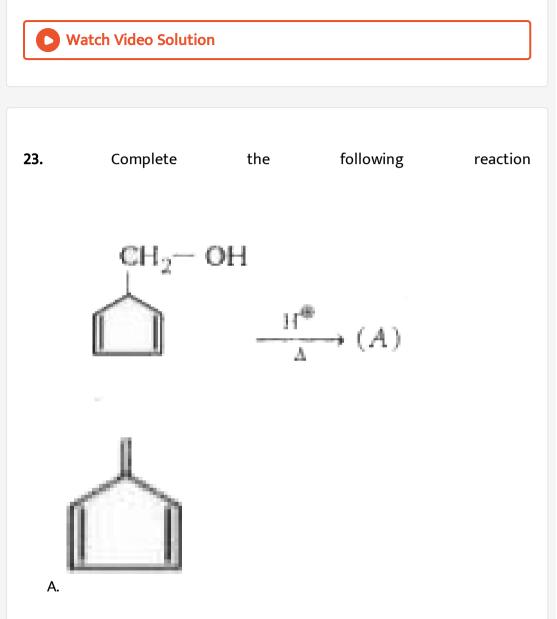
C.

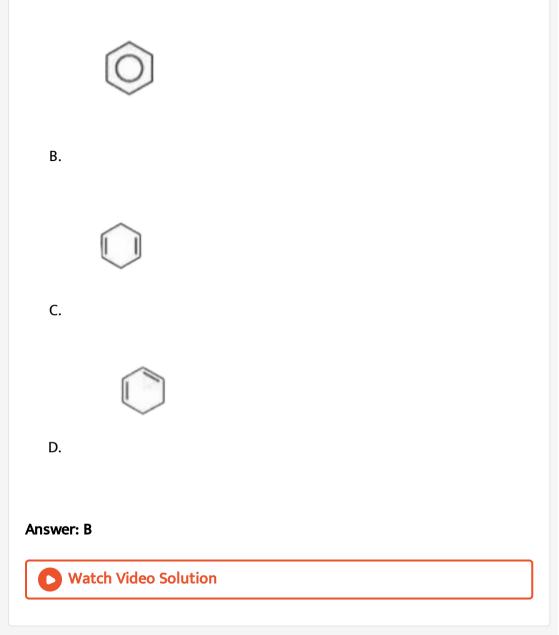
Answer: B

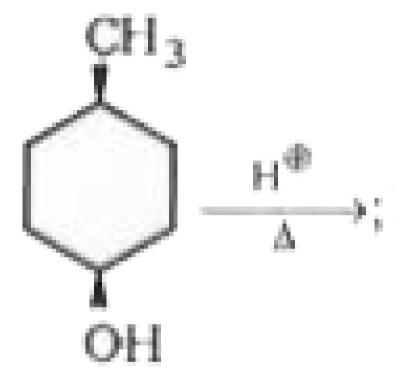
22. What produict will be formed from Hoffmann exhaustive methylation

of following compound ?

 $Me_2CHCH_2NHCH_2CH_2Me \xrightarrow{(i) CH_3 - 1(excess)}_{(ii) Ag_2O} Product$


A.
$$Me - CH = CH_2$$


 $\mathsf{B}.\,H_2C=CH_2$


$$\mathsf{C}.\,CH_3-\operatornamewithlimits{C}_{\substack{|\\\\CH_3}}=CH_2$$

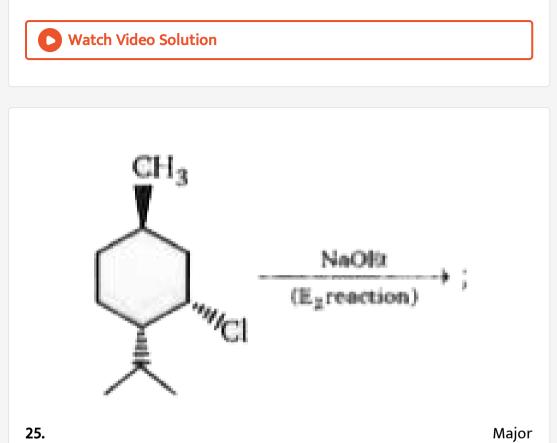
D.
$$CH_3 - \mathop{C}\limits_{\substack{\mid\\ Me}} H - CH = CH_2$$

Answer: A

24.

, Products

obtained are :


A. Racenic

B. Diastereomers

C. G.I

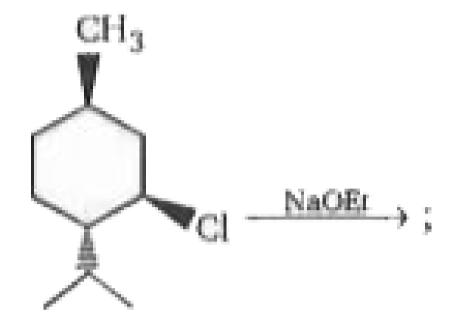
D. Positional isomers

Answer: A

product of the reaction is :

A.

B.

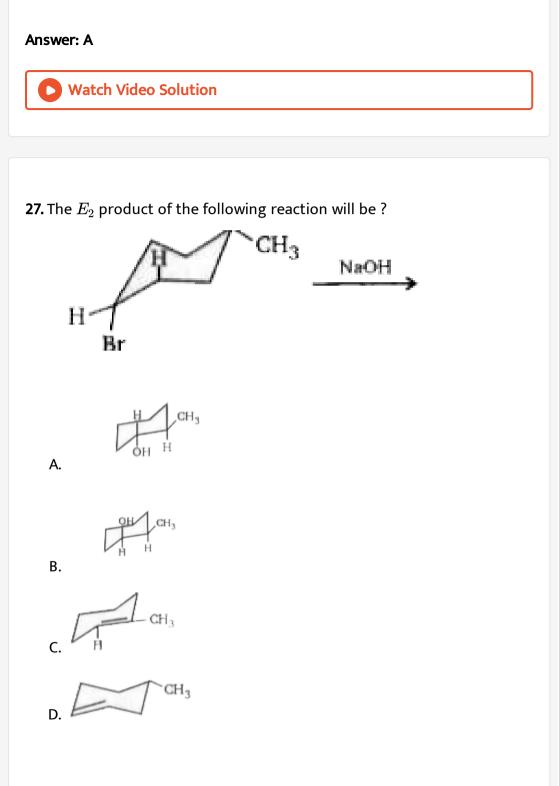

C.

D.

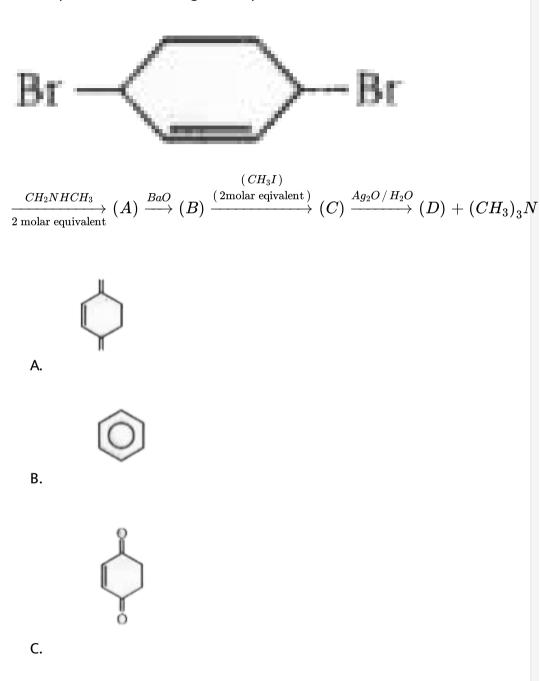
Answer: B

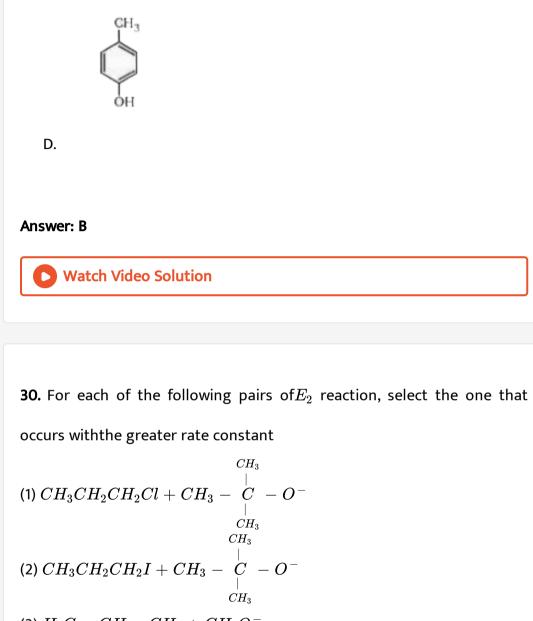
Major

26.


product of the reaction is :

Answer: D




28. An halide $C_5H_{11}Br$ on treatment with alc. KOH give 2-pentene only. The halide will be :

A.
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - Br$$

B. $CH_3 - CH_3 - CH_2 - CH_2 - CH_3$
 $|_{Br}$
C. $CH_3 - CH_2 - CH_3 - CH_2 - CH_3$
 $|_{Br}$
D. $CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $|_{Br}$

Answer: C

29. End product CD) in the given sequence is:

(3)
$$H_3C - CH - CH_3 + CH_3O$$

 $|B_r$
(4) $H_3C - CH - CH_3 + CH_3S^-$

A. 2,4,6

B. 1,3,5

C. 2,3,5

D. 2,4,5

Answer: C

Watch Video Solution

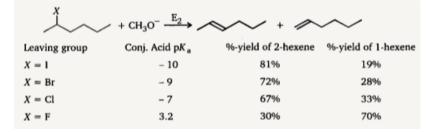
31.

$$CH_3 - egin{array}{c} Br & Br \ howedge - CH_3 & howedge \ D & howed \ D & howedge \ D &$$

x and y mole consumed .

Value of x + y =

A. 5


B. 6

C. 7

Answer: D

32. The following bimolecular elimination reaction (E_2) is carried out with different halogen leaving groups. The per cent yield of the two products (2-hexene and I-hexene) for each leaving group is listed below.

Which of the following statement is (are) true concerning this series of E_2 reactions?

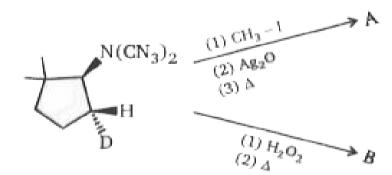
A. Based on the pK_s 's of the conjugate acid , I^- is the best leaving

group and F^{-} is the pooreset leaving group

B. When $I^{-B}r^{-\text{and}}Cl^{-}$ are used as leaving groups, Zaitsev's rule is

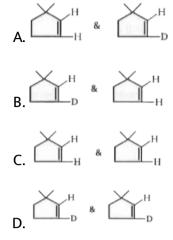
followed.

C. F^{-} is the stronger base (and therefore the poorest leaving group)

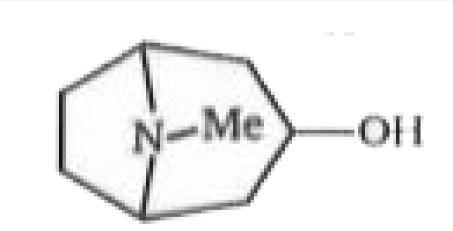

and the transition statefor reactionwithfluoride as

theleavinggrouphas theleastdoublebondcharacter

D. a,b,c are true


Answer: D

Watch Video Solution


33.

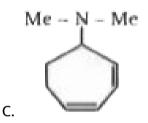
Product (A) & (B) respectively are :

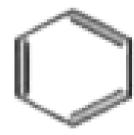
Answer: A

Watch Video Solution

34.

[Math


Processing Error]


Product in above reaction is :

Β.

D.

Answer: A

35. Major product obtained in the reaction of I-phenyl-2-bromobutane with NaOMe is

A. (E)-l-phenylbut-l-ene

B. (E)-1-phenylbut-2-ene

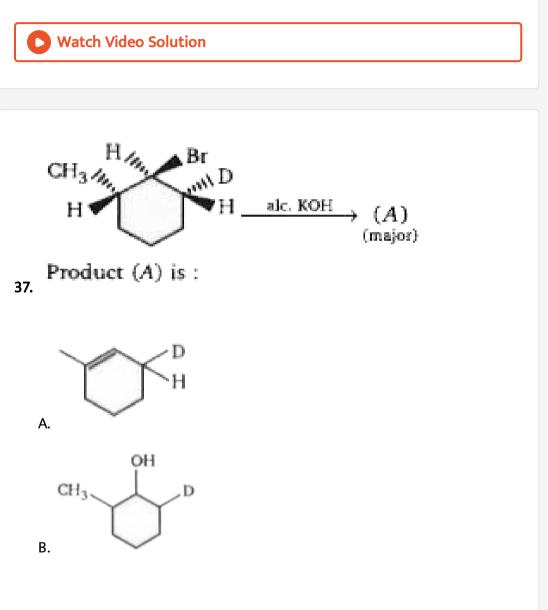
C. I-phenyl-2-ethoxybutane

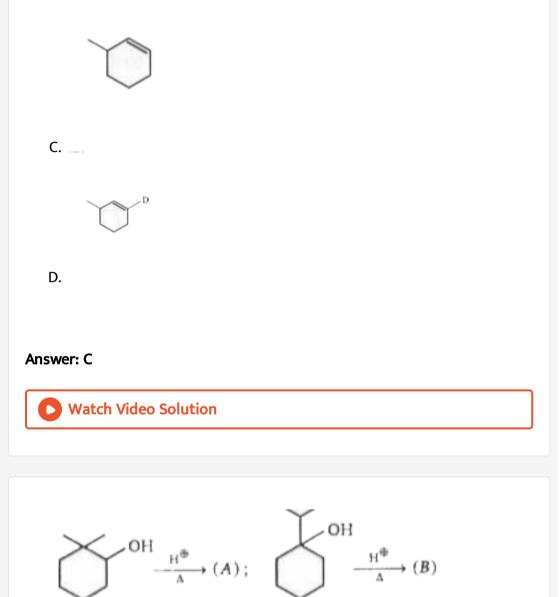
D. (Z)-1-phenylbut-2-ene

Answer: A

Watch Video Solution

36. Which of the following alkyl halides give most complex mixture of alkene in an E_2 reaction ?


A.
$$CH_3 - CH_2 - CH_2 - CH_2 - Br$$


B.
$$CH_3-CH_2-CH_2-CH_2-CH_3$$

 $\mathsf{C}.\,CH_3-CH_2-CH_2-CH_2-CH_3\\|\\Br$

$$\mathsf{D}.\,CH_3 - egin{array}{c} CH_3 \ dots \ CH_3 - CH_2 - CH_2 \ dots \ Br \ Br \end{array}$$

Answer: B

38.

Sum of number of α - hydrogen present is compound A + B is :

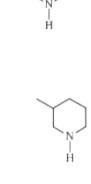
A. 18

B. 19

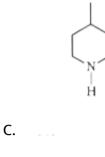
C. 20

D. 21

Answer: C



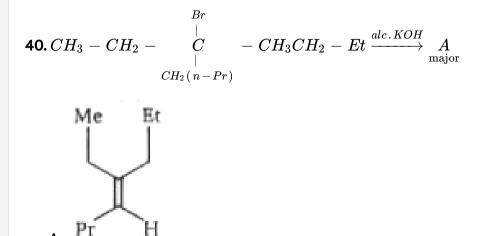
39.

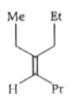

$$\begin{array}{c} (i) \, excess CH_3I \, / \, K_2 CO_3 \\ \hline (1) \, (excess CH_3I \, / \, K_2 CO_3) \\ \hline (2) \, Ag_2 \emptyset \, / \, H_2 O \\ \hline (3) \, \Delta \end{array} (B) \begin{array}{c} (ii) \, Ag_2 O \\ \hline (iii) \, \Delta \end{array} H_2 C = CH - \begin{array}{c} C \ H - CH = \\ | \\ CH_3 \end{array}$$

j

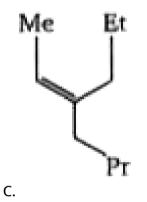
Identify A :

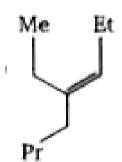
A.

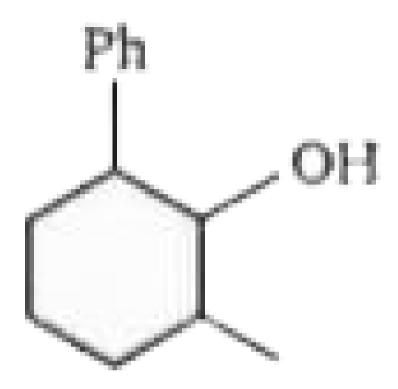




Answer: C

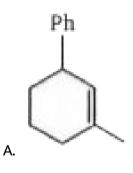

A.

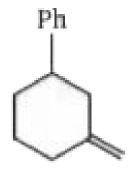



Β.

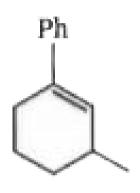
D.

Answer: C

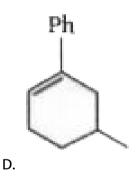


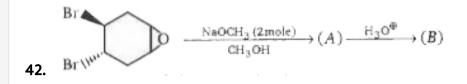

 H_3PO_4

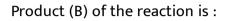
Δ

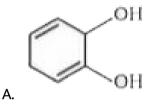

41.

Major product obtained by dehydration of given alcohol is :




Β.




C.



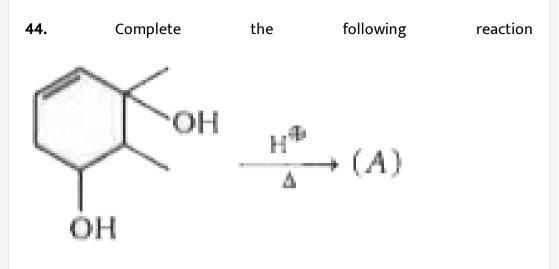
Answer: C

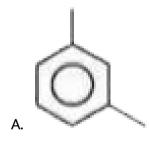
C.

Answer: B

43.
$$Ph - CH - CH_2 - CH_2 \xrightarrow[Br]{Zn-cu}{A} Product$$

Product of the above reaction is :

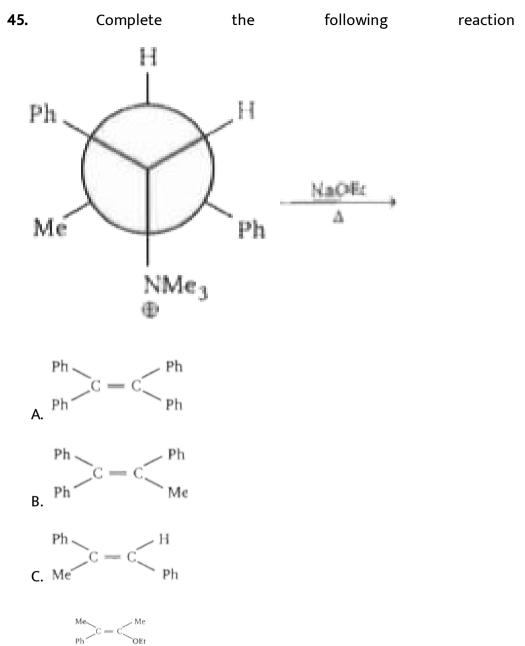

A.
$$Ph - CH = CH - CH_2 - Br$$



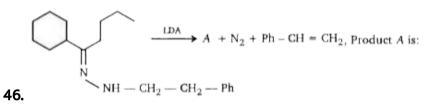
C.
$$PH-CHBr-CH=CH_2$$

$$\mathsf{D}.\,Ph-C=C-CH_3$$

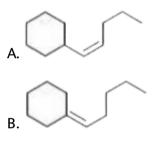
Answer: B

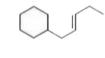


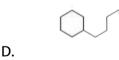
Β.


C.

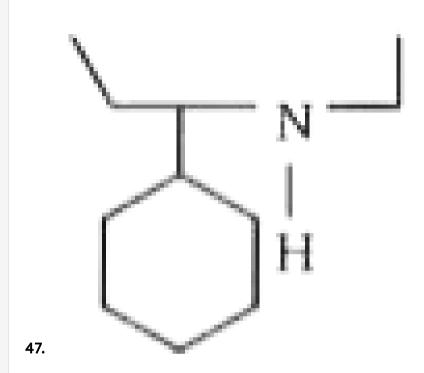
Answer: B

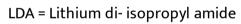



Answer: C



is:



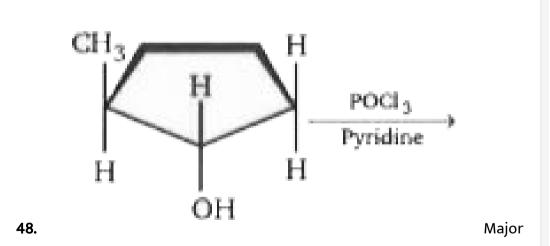


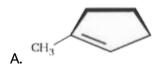
Answer: A

C.

Product A

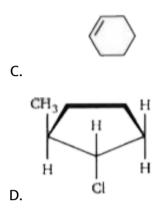
A.



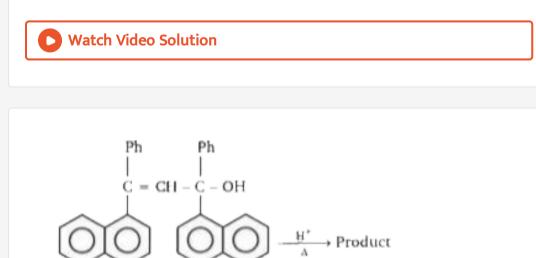

D. $H_2C = CH_2$

Answer: D

O Watch Video Solution



product of the reactiono is :



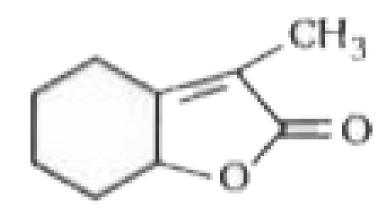
Β.

Answer: D

49.

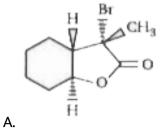
Stereochemistry of the product is :

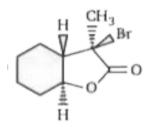
A. Meso compound

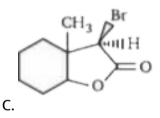

B. Racemic mixture

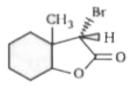
C. Diastereomer

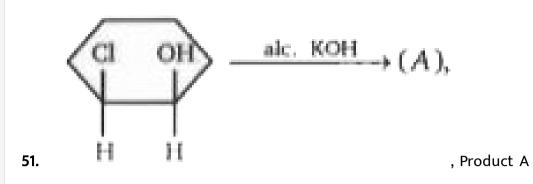
D. Optically pure enantiomers


Answer: B


Watch Video Solution

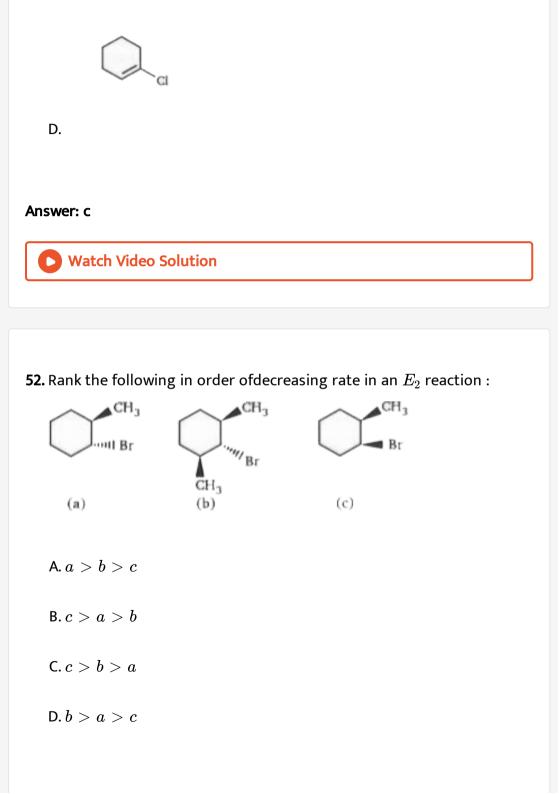

50.

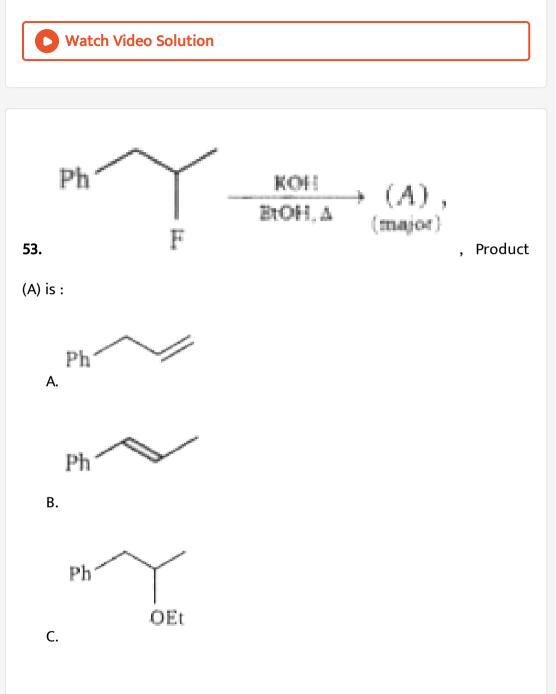

Which of the following reactantis used to obtain bove compound (A). CAssume that ErO^{-} is used in all the reaction)

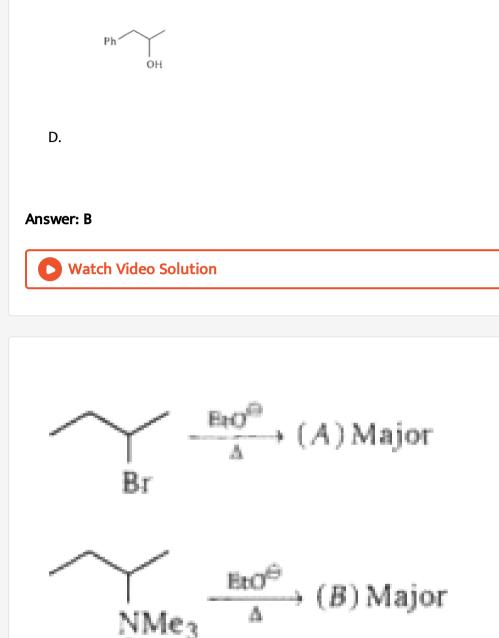

Β.

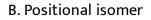
D.

Answer: A


is:




Β.


Answer: B

54.

Relation between (A) and (B) is :

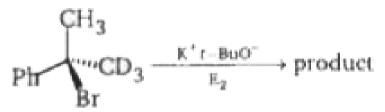
C. Enantiomer


D. Chain isomer

Answer: B

The product is :

$$\mathsf{B}.\,HC = C - (CH_2)_3Ona$$

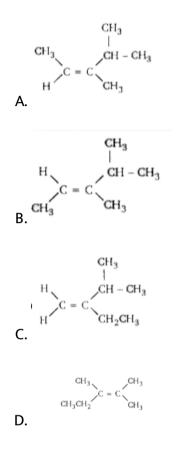

 $\mathsf{C.}\, NaC = C - (CH_2)_3ONa$

 $\mathsf{D}.\,H-C=C-(CH_2)_3OH$

Answer: C

56. Which best describes the product of the following reaction?

A. Absolute configuration has been inverted

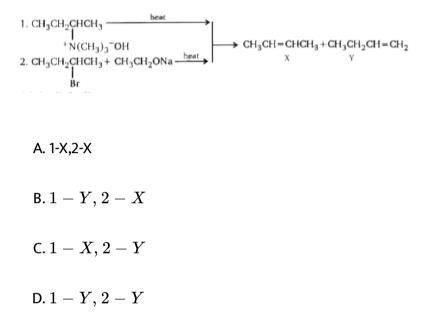

B. Absolute configuration has been retained

C. Racemization (loss of absolute configuration) has occurred

D. Loss ofchirality has occurred Cthe product is achiral)

Answer: D

57. What is the major product of the following reaction?



Answer: D



58. What will be the major product of each of the two reaction shown

below?

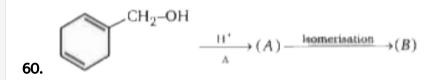
Answer: B

+ $CH_{3}I$ (excess) \longrightarrow product;

59.

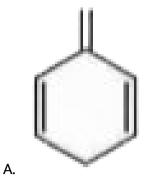
product is :

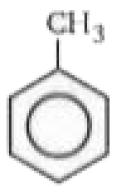
A. a primary amine


B. a tertiary amine

C. a secondary amine

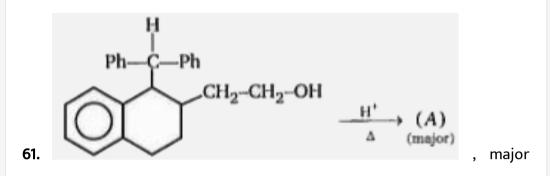
D. a quaternary ammonium salt


Answer: D

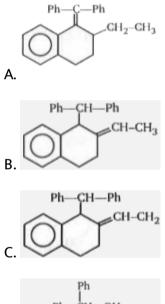

Watch Video Solution

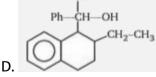
(A) on heating isomerizes to (B). What is the structure of (B) ?

The

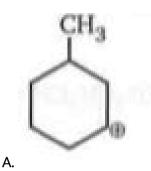


C.



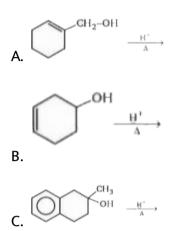

D.

Answer: B



product (A) is :

62. Which of the following carbocation will undergo rearrngement ?



Β.

C.
$$CH_3 - \mathop{C}_{CH_3} H - \mathop{C}_{C}^{\oplus} = O$$

D. $CH_3 - NH - \mathop{C}_{CH_3}^{\oplus} H - \mathop{C}_{H_3} H - CH_3$

Answer: B

63. Which of the following compound is not resonance stabilized ?

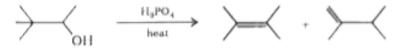
D. All of these

Answer: D

64. In which offollowing reaction rearrangement take place with change in carbon skeleton

A.
$$CH_3 - egin{pmatrix} CH_3 \ dots \ CH_3 - egin{pmatrix} CH_3 \ dots \ CH_2 \ dots \ CH_3 \ CH_3 \ \end{pmatrix}$$

B.
$$CH_3 - CH_2CH_2^{\oplus}$$


$$\mathsf{C}.\,CH_3 - \mathop{C}_{|}_{CH_3} H - CH_2 - \mathop{C}\limits^\oplus_{CH_2} H_2$$

D.
$$CH_3 - CH^{\oplus} - CH_3$$

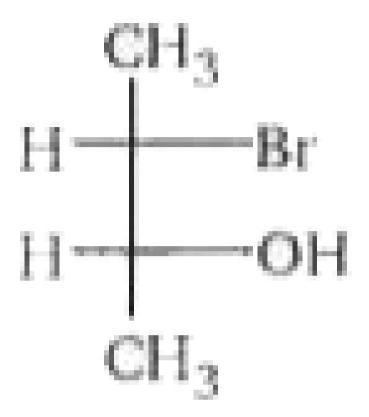
Answer: A

Watch Video Solution

65. Consider the following reaction:

Which response contains all the correct statement about this process?

- (1) Dehydration
- (2) E_2 mechanism
- (3) Carbon skeleton migration
- (4) Most stable alkene will form
- (5) Single -step reaction


A. 1,3

B. 1,2,3

C. 1,2,5

D. 1,3,4

Answer: D

66.

 $\stackrel{HBr}{\longrightarrow}(X)\stackrel{Nal}{\stackrel{}{\underset{\mathrm{acetone}}{\longrightarrow}}}(Y)$ (Major), Product (Y) is :

A. cis-2-butene

B. trans - 2- butene

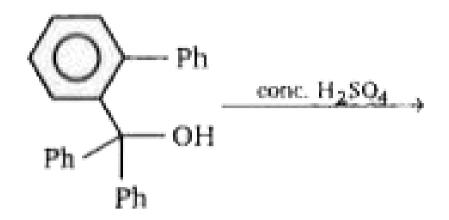
C. 1-butene

D. Iso-butene

Answer: B

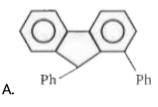
$$\overset{Br}{\stackrel{|}{\stackrel{}}}_{C}H_{2}-CH=CH-\overset{Br}{\stackrel{|}{\stackrel{}}}_{C}H_{2}\overset{Zn\,(\,dust\,)}{\longrightarrow}(A)$$

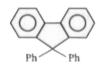
Above reaction is an example of 1,4-elimination. Predict the product.


A.
$$CH_3 - CH = C = CH_2$$

$$\mathsf{B}.\,CH_3-C=C-CH_3$$

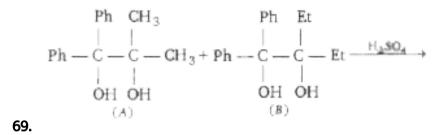
C.
$$CH_3 - CH_2 - C = CH$$


$$\mathsf{D}.\,H_2C=CH-CH=CH_2$$


Answer: D

Major product of the reaction is :

Β.



C.

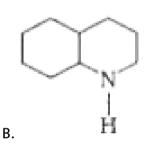
D. None of these

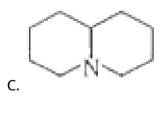
Answer: B

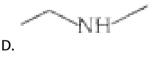
When (A) and (B) rects with H_2SO_4 products obtained are

A. p,q,r,s

B. p,q

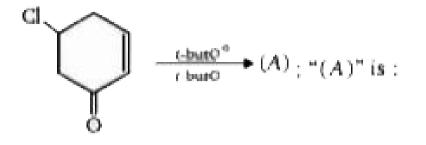

C. p,q,r


D. p,q,s

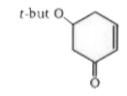

Answer: B

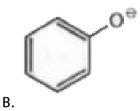
70. Which of the following compound gives even number of Hoffmann's exhaustive methylation

A.



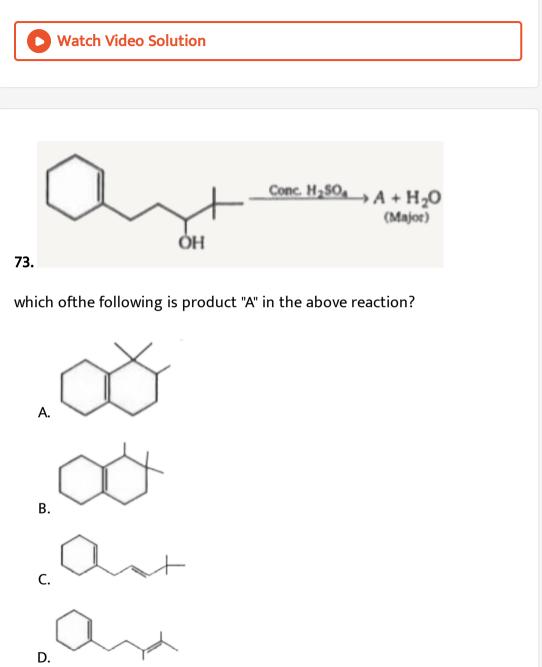
Answer: A::B


- A. 2
- B. 4
- C. 6
- D. 8


Answer: B

72.

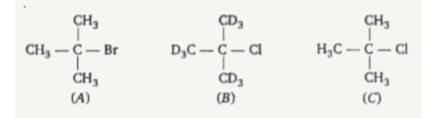
A.



C.

D.

Answer: B

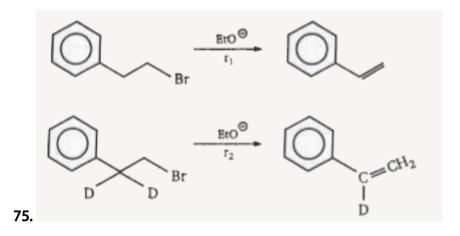


Answer: A

74. Which of the following is true regarding increasing reactivity in the E_2

reaction with
$$Na^+C_2H_5O^-$$
 ?

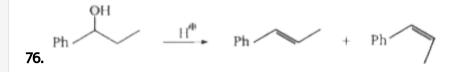
A. A is more reactive than B


B. B is more reactive thanA

C. A is more reactive than C

D. B is less reactive than C

Answer: A::C::D



Compare of the Reaction .

A. $r_1>r_2$ B. $r_1=r_2$ C. $r_2>r_1$ D. $r_1=rac{r_2}{2}$

Answer: A

Which statement is not true for above reaction ?

A. It is dehydration reaction.

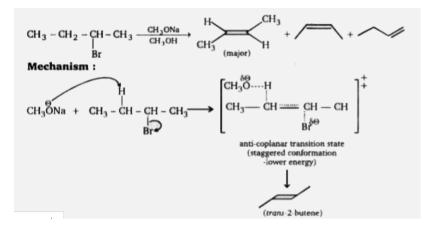
B. The mechanism followed by reaction is E_1

C. The reaction is stereo selective.

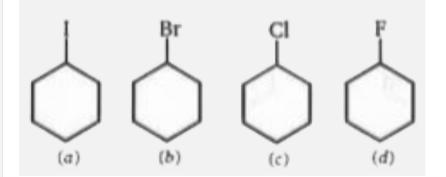
D. The major product is Z-alkene.

Answer: D

Watch Video Solution


Level 2

1. Comprehension


 E_2 raction ightarrow Elimination bimolecular

In the general mechanism of the E_2 reaction a strong base abstract a

proton on a carbon atom adjacent to the one of the leaving group. As the abstracts a proton , a double bond forms and the leaving group leaves.

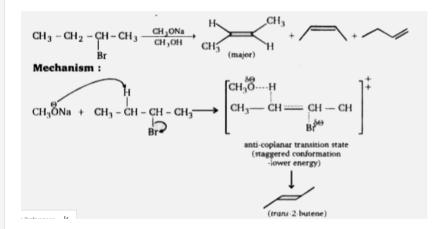
Identify the rate of reaction of given compounds in E_2 reaction:

A. a > b > c > d

 $\mathsf{B.}\, a > c > b > d$

 $\mathsf{C}.\, b > a > c > d$

 $\mathsf{D}.\, b > d > a > c$


Answer:

2. Comprehension

 E_2 raction ightarrow Elimination bimolecular

In the general mechanism of the E_2 reaction a strong base abstract a proton on a carbon atom adjacent to the one of the leaving group. As the abstracts a proton , a double bond forms and the leaving group leaves.

In given pairs, which compound is more reactive toward E_2 reaction

$(Q)CH_3- egin{array}{ccc} H-CH_3 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$CH_3- egin{array}{cc} C & H-CD_3 \ ert \end{array}$
Br	Br
(III)	(IV)

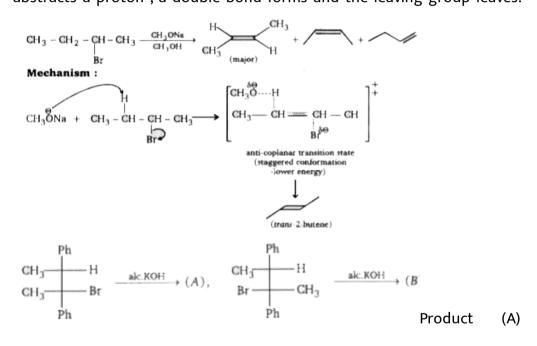
(S)
$$Ph - CH_3 - CH_2Br$$
 $Ph - CH_3 - CH_3$

A. P-II,Q-III,R-VI,S-VII

B. P-II,Q-III,R-VI,S-VI

C. P-I,Q-III,R-VI,S-VII

D. P-I,Q-II,R-V,S-VIII


Answer:

3. Comprehension

 E_2 raction ightarrow Elimination bimolecular

In the general mechanism of the E_2 reaction a strong base abstract a proton on a carbon atom adjacent to the one of the leaving group. As the abstracts a proton , a double bond forms and the leaving group leaves.

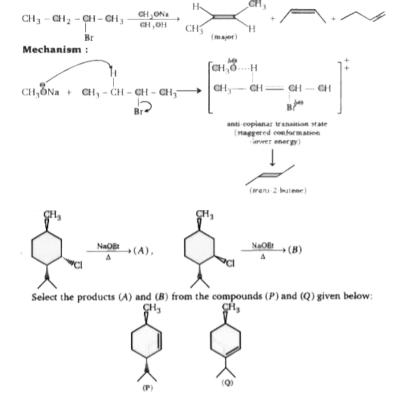
and (B) are :

A. A = cis, B = cis

B. A = trans, B= cis

C. A= trans, B = trans

D. A = cis, B= trans


Answer:

Watch Video Solution

4. Comprehension

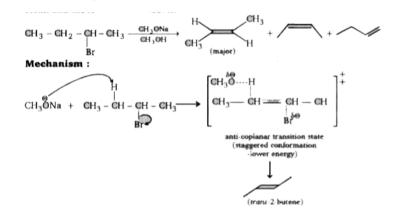
 E_2 raction ightarrow Elimination bimolecular

In the general mechanism of the E_2 reaction a strong base abstract a proton on a carbon atom adjacent to the one of the leaving group. As the abstracts a proton , a double bond forms and the leaving group leaves.

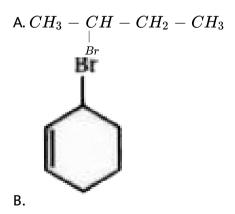
A. A = P,B=P

B. A=Q,B= Q

C. A = Q,B= P


D. A=Q,B=P

Answer:


5. Comprehension

 E_2 raction ightarrow Elimination bimolecular

In the general mechanism of the E_2 reaction a strong base abstract a proton on a carbon atom adjacent to the one of the leaving group. As the abstracts a proton , a double bond forms and the leaving group leaves.

Which of the following compound is inert toward E_2 reaction.

$${f C.} \, CH_3 = egin{array}{c} CH_3 & \ ert \ CH_3 & \ ert \ CH_3 & \ ect \ ect \ CH_3 & \ ect \ ect \ CH_3 & \ ect \ ect \ ect \ CH_3 & \ ect \ ect \ ect \ ect \ CH_3 & \ ect \ CH_3 & \ ect \ \ect \ ect \ ect$$

Answer:

Watch Video Solution

6. Match the column :

	Column (I)	ALL AND	Column (II)	
	<i>E</i> ₂ reaction (elimination bimolecular)	No. of possible products. (including stereoisomerism)		
(a)	$\xrightarrow{\text{Br}}_{\text{alc. KOH}}$	(p)	0	
(b)	$\xrightarrow{\text{alc. KOH}}$ $\xrightarrow{\text{alc. KOH}}$	(q)	1 00 F	
(c)	β Br $\xrightarrow{\text{alc. KOH}} \Delta$	(r)	2	
(d)	$Br \xrightarrow{\text{alc. KOH}} \Delta$	(s)	3	

	Column (I)	Ser.	Column (II)	
	Reaction	Product		
(a)	$HEM \rightarrow HEM $	(p)	$\mathrm{H_2C}=\mathrm{CH}-\mathrm{CH_2}-\mathrm{CH}=\mathrm{CH_2}$	
(b)	$\xrightarrow[H]{HEM} \xrightarrow{HEM}$	(q)	$\mathrm{H}_{2}\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$	
(c)	$\xrightarrow[Hem]{Hem}$ $\xrightarrow[Hem]{Hem}$	(r)	$\begin{array}{c} \mathrm{CH}_{3} \\ \mathrm{H}_{2}\mathrm{C} = \mathrm{CH} - \mathrm{CH}_{2} - \overset{\mathrm{C}}{\mathrm{C}} = \mathrm{CH}_{2} \end{array}$	
(d)	$\begin{array}{c} & & \\$	(s)	$\begin{array}{c} \mathrm{CH}_{3} \\ \mathrm{H}_{2}\mathrm{C} = \mathrm{CH} - \mathrm{CH} - \mathrm{CH} = \mathrm{CH}_{2} \end{array}$	

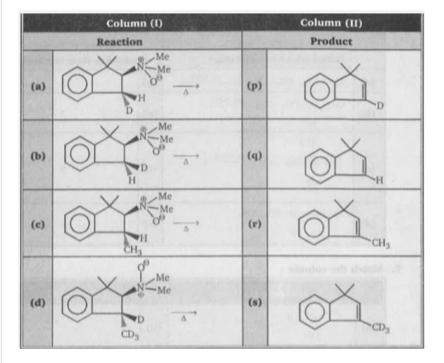
HEM = Hoffmann exhaustive methylation followed by elimination .

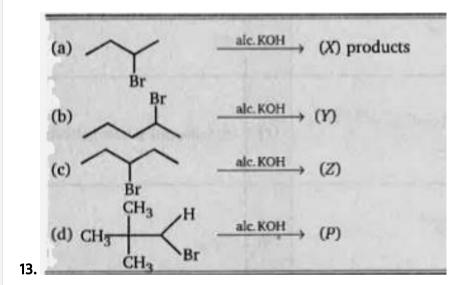
Watch Video Solution

8. Match the column :

Column (l)	Colu	ımn (II)
(a) $(H^{\oplus}) \to (H^{\oplus})$	(p) Product are	Diastereomers
(b) $\xrightarrow[Br]{alc, KOH} \xrightarrow{A}$	(q) Carbocation	n is intermediate
(c) $\bigvee_{OH} \xrightarrow{H^{\oplus}}$	(r) 2nd order r	eaction
(d) $\underset{Br}{\overset{alc. KOH}{\frown}}$	(s) Ist order re	action

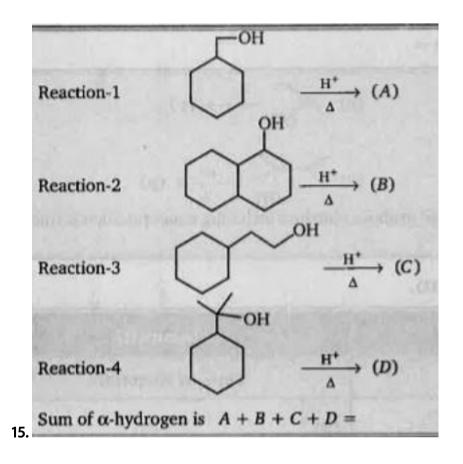
	Column (I)		Column (II)
(a)	$\bigcup_{Cl} \overset{Cl}{\underset{Cl}{\overset{alc. KOH}{\longrightarrow}}} \xrightarrow{alc. KOH}$	(p)	Optically active product
(b)	Cl alc. KOH	(q)	Optically inactive product
(c)	Cl ↓ H aq. KOH	(r)	2nd order reaction
(d)	Cl aq. KOH CH ₃	(s)	unimolecular reaction


	Column (I)		Column (II)
	E ₂ reactions (elimination bimolecular)	Number of products (including stereoisomerism	
(a)	$CH_3 - CH_2 - CH_2 - CH_2 - Br \xrightarrow{alc. KOH}$	(p)	1
(b)	$ \begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_3 & \xrightarrow{\operatorname{alc. KOH}} \\ & I \\ & \operatorname{Br} \end{array} $	(q)	2
(c)	$\begin{array}{c} CH_3 \\ I \\ CH_3 - C - CH_2 - CH_3 \xrightarrow{alc. KOH} \\ I \\ Br \end{array} \rightarrow$	(r)	3
(d)	Ph-CH ₂ -CH-CH ₂ -CH ₃ Br	(s)	104 m


Watch Video Solution

11. Match the column :

	Column (I)		Column (II)
(a)	$\overbrace{OH}^{H^{*}} \xrightarrow{H^{*}} (A)$	(p)	E ₁
(b)	\overbrace{Cl}^{NaNH_2}	(q)	E2
(c)	$CH_3 - C - CH_2 - CH - CH_3 \xrightarrow{EtONa}{\Delta}$	(r)	Ei (elimination intramolecular)
(d)	Me →	(s)	E _{1CB}

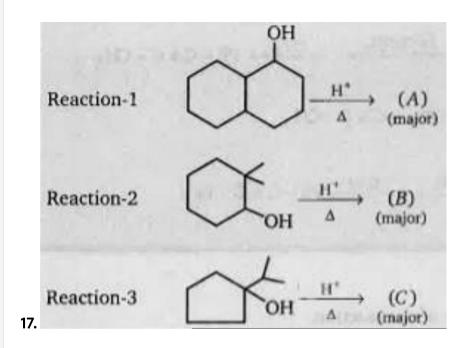


Sum of X + Y + Z + P =

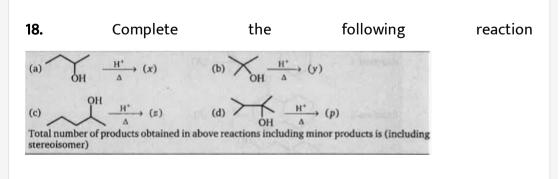
Watch Video Solution

	(Unitcell)				(no	(no of atoms per unitcell)				
	A) Simple cube				1)	1) 4				
	B)	fcc			2)	2) 2				
	C)	bec			3) 1					
	The	e cor	rect	match is						
		Α	В	С		А	В	С		
	1)	2	3	1	2)	2	1	3		
14.	3)	3	1	2	4)	1	2	3		

The correct match is



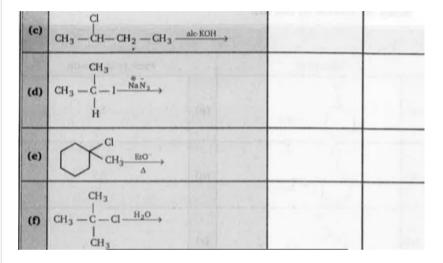
Watch Video Solution


Sum of α hydrogen is (A + B + C =)

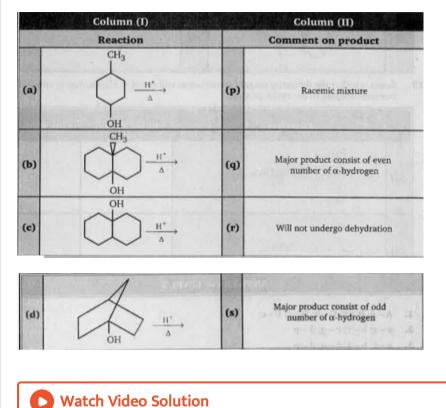
Sum of α -hydrogen (A + B +C)=

19. Match the column (I) and (II)

	Column (I)		Column (II)	
	Reaction	Type of Reaction		
(a)	R -2 -chlorobutane $\xrightarrow{\text{KSH}}_{\text{acctone}}$	(p)	S _{N1}	
(b)	$\begin{array}{c} R \cdot 2\text{- chlorobutane} & \xrightarrow[]{\text{BrO}^{-}} Na \\ & \xrightarrow[]{\text{BrOH}} \end{array} \end{array}$	(q)	S _{N²}	
(c)	2 - bromo- 2- methyl propane $\xrightarrow{H_2O}$	(r)	E1	
(d)	2- butanol $\xrightarrow{H_2SO_4} \Delta$	(s)	E2	

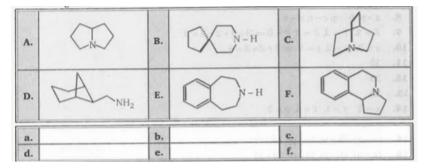

20. Match the column (I) and (II)

	Column (I)		Column (II)
	Reaction		Type of Reaction
(a)	Cl 	(p)	S _N 1
(b)	CI	(q)	S _{N²}
(c)		(r)	E1
(d)	$\overset{OH}{\longrightarrow}\overset{H^{*}}{\xrightarrow{H^{*}}}$	(s)	E2

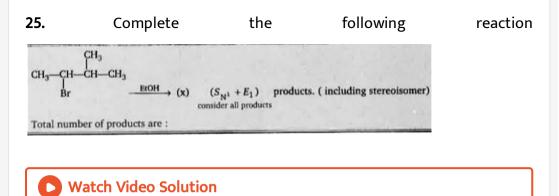

Watch Video Solution

21. Select whether the following reaent combination will result in elimination of substitution reactions leading of the major product.

	Reaction	Substitution	Elimination
(a)	$\begin{array}{c} CH_{3} \\ CH_{3} - \overset{ }{\underset{H}{C}} - CI \xrightarrow{K^{\oplus} OC(CH_{3})_{3}} \\ H \\ H \end{array} \xrightarrow{H_{2}O} H$	100	1
(b)	$\begin{array}{c} CH_{3} \\ H_{3} \rightarrow \begin{array}{c} I \\ CH_{3} \rightarrow \begin{array}{c} I \\ -C \\ I \\ CH_{3} \end{array} \rightarrow \begin{array}{c} H_{2}SO_{4} \\ A \end{array} \rightarrow \begin{array}{c} I \\ A \end{array}$		1



22. Match the column (I) and (II)



23. For each of the following amines (A through D), exhaustive methylation (treatment with excess methyl iodide), followed by Hoffmann elimination (heating with AgOH), repeated as necessaly, removes the nitrogen atom in the form oftrimethylamine. Indicate the numberof repetitive Hoffmann eliminations required to remove the nitrogen by a

number (1 to 4) in the designated answer sheet.

24.	Complete	the	following	reaction
	$\longrightarrow x \text{ is total number of } eliminations) to remove a line KOH \rightarrow y is total number of x$	nitrogen from given		
Sum of x	+y= ?			
	/atch Video Solutior	1		

