

CHEMISTRY

BOOKS - MS CHOUHAN

ALKYL HALIDES (SUBSTITUTION REACTIONS)

Level 1

1. Which of the following is not expected to be intermediate of the following reaction?

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& \\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\end{array}$$

$$\begin{array}{c}
& \\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\end{array}$$

$$\begin{array}{c}
& \\
\\
\end{array}$$

$$\begin{array}{c}
& \\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\\
\\
\\
\end{array}$$

$$\begin{array}{c}
\\
\\
\\
\\
\\
\\
\\
\end{array}$$

$$\begin{array}{c}$$

A.

В.

C.

D.

Answer: A

$$\begin{array}{c|c} & CH_3 \\ Br & H \\ H & CH_3 \end{array} + NaI \xrightarrow{Acetone} product; S_{N^2}$$

$$CH_2 - CH_3$$

2. product of

the reaction is:

A.

$$\begin{array}{c|c} & \text{CH}_3 \\ \text{I} & \text{CH}_3 \\ \text{H} & \text{CH}_3 \\ \text{CH}_2 - \text{CH}_3 \\ \text{C.} \end{array}$$

Answer: B

A.

3. The rate of SN^2 will be negligible in

В.

C.

D.

Answer: C

4. What is the major product obtained in the following reaction?

$$\begin{array}{c}
 & \xrightarrow{\text{CH}_2-\text{Br}} \\
 & \xrightarrow{\text{Br}} & \xrightarrow{\text{Product}}
\end{array}$$

В.

$$\text{CH}_2\text{-NH}_2\\ \text{NH}_2$$

C.

$$\text{CH}_2\text{-NH}_2$$

D.

Answer: A

5. The following is not an appropriate reaction for the preparation of t-butyl ethyl ether.

$$C_2H_5ONa+CH_3-\mathop{\mathrm{C}}_{l}^{CH_3}-Cl
ightarrow CH_3-\mathop{\mathrm{C}}_{l}^{CH_2}-CCl
ightarrow CH_3-\mathop{\mathrm{C}}_{l}^{CH_2}-CCl
ightarrow CH_3$$

- (i) What would be the major product of this reaction?
- (ii) Write a suitable reaction for the preparation of t-butylethyl ether.

A.
$$l-CH_2-CH_3$$
 CH_3 CH_4 CH_5 CH_7 CH_8 CH_8

Answer: B

6. Which of the following expressions is representative of the rate law for

a S_{N^2} reaction ?

A. Rate = k [electrophile]

B. Rate = k [electrophile] [nucleophile]

C. Rate = $k \left[\text{nucleophile} \right]^2$

D. Rate = $k[electrophile]^2$

Answer: B

7.

Watch Video Solution

$$H$$
Br
 F + NaI (1 mole) $\xrightarrow{Acetone}$ (A) ;
 $(major)$
Major

product of this reaction is:

$$H$$
 I
 F

В.

C.

D.

$$H$$
 Br
 H

Answer: B

Watch Video Solution

8. Which of the following alkyl halide undergo rearrangement in S_{N^1} reaction ?

A.
$$CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3$$

В.

D. All of these

Answer: D

Watch Video Solution

9. Arrange the following three chlorides in decreasing order towards S_{N^1} reactivity.

B.
$$2 > 3 > 1$$

Answer: B

Watch Video Solution

10. Which one of the following undergoes nucleophilic aromatic substitution at the fastest rate ?

Watch Video Solution

11. Rank the following in order of decreasing rate of solvolysis with aqueous ethanol (fastest \rightarrow slowest)

$$H_{2}C = C - Br$$

(1)

 $H_{3} = CH_{3} - CHCH_{2}CH(CH_{3})_{2}$

(2)

(3)

- A. 2 > 1 > 3
- B.1 > 2 > 3
- C.2 > 3 > 1
- D.1 > 3 > 2

Answer: C

- **12.** The reaction of 4-bromobenzyl chloride with sodium cyanide in ethanol leads to the formation of :
 - A. 4-bromobenzyl cyanide
 - B. 4-cyanobenzyl chloride
 - C. 4-cyanobenzyl cyanide
 - D. 4-bromo-2-cyanobenzyl chloride

Answer: A

13. Which of the following reactant will not favour nucleophilic substitution reaction ?

B. Ph-Br

C.
$$CH_3 \overset{CH_3}{\overset{|}{\underset{CH_3}{C}}} - CH_2 - Br$$

D. All the above

Answer: D

Watch Video Solution

14.

Conversion of I to II:

A. takes place by ${\cal S}_N^1$

B. takes place by ${\cal S}_N^2$

C. takes place both by ${\cal S}_N^1$ and ${\cal S}_N^2$

D. does not take place

Watch Video Solution

15. Which is the correct reaction coordinate diagram for the following solvolysis reaction ?

$$CH_3$$
 H_2O
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

A.

В.

C.

Answer: B

Watch Video Solution

16. product,

Product of this reaction is

C. both (a) and (b)

D. None of these

Answer: C

Watch Video Solution

$$CH_3$$
 $NBS \rightarrow (A) \xrightarrow{CH_3SNa} (B)$,

17. Product (B)

is:

В.

D. None of these

Answer: A

Watch Video Solution

18. Which of the following represents the correct graph for S_{N^2} reaction ?

A.

Answer: A

Watch Video Solution

19. Which of the following graph represents correct graph for S_{N^1} reaction :

Answer: C

Watch Video Solution

20. Which of the following is most reactive towards SN^{1} reaction

A.

В.

Answer: D

D.

Watch Video Solution

21. Among the given pairs in which pair, first compound has higher boiling point than second ?

A.
$$CH_3-CH_2-CH_2-CH_2-Br$$
 or $CH_3-CH_2 ext{-}CH-CH_3$ $\stackrel{\mid}{\underset{Br}{\mid}}$

B.
$$CH_3 - CH_2 - CH_2 - CH_3$$
 or $CH_3 - CH - CH - CH_3$

Br

or

 CH_3
 CH_3

 CH_3

 CH_3

Answer: B

22. What is the major product of the following reaction?
$$CH_2Mal H_2O^{\oplus}$$

$$CH_3-C\equiv N \stackrel{CH_3MgI}{\Longrightarrow} \stackrel{H_3O^\oplus}{\Longrightarrow}$$

A.
$$CH_3-CH-CH_2-Br$$

B.
$$H_2C=CH-CH_2-Br$$

C.
$$CH_3 - \overset{Br}{C}H - CH_2 - OH$$

D.
$$CH_3 - \stackrel{\cdot}{C}H - CH_2 - OH$$

Watch Video Solution

23. S_{N^1} and S_{N^2} products are same with (excluding stereoisomer):

A.

В.

C.

D.
$$Ph-\mathrm{CH}-\mathrm{CH}-CH_3$$

Answer: C

Watch Video Solution

24. Consider the nucleophilic attacks given below. Select in each pair that shows the greater S_{N^2} reaction rate.

(A)
$$Br + CN$$
 or (II) $CH_3 + CN$

(B) $H_3C - Br + SH$ or $H_3C - Br + CH_3SH$

(C) $Br + CI$ or $CH_3 + CH_3SH$

(VI) $Br + I^- \text{ in DMSO}$

(VII) $Br + I^- \text{ in methanol}$

(VIII) $A B C D$

(A) (I); (IV); (VI); (VIII)

(B) $A B C D$

(A) (B) $Br + CI^- D$

(VIII) $A B C D$

(B) (II); (III); (V); (VIII)

(C) (D); (III); (V); (VIII)

25. Which of the two stereoisomers of 4-t-butylcyclohexyl iodide $\binom{127}{I}^-$ will undergo S_N^2 substitution with $^{128}I^-$ faster, and why?

- A. A will react faster because it is the more stable of the two isomers
- B. A will react faster because it will yield a more stable product, and the transition state for both reactions is of the same energy
- C. A will react faster because the approach of $^{128}I^-$ can depart unhindered.
- D. B will react faster because it is less stable than A, and the transition state for both reactions is of the same energy

Answer: D

26. (Z)-2-Butene reacts with Br_2/H_2O . The resulting bromohydrin when treated with methoxide in methanol undergoes an intramolecular S_{N^2} reaction. Taking into consideration the stereochemical consequences of the reaction mechanism involved, choose the final product(s) of these transformations.

- A. (I) only
- B. (II) only
- C. (III) only
- D. Equal amounts of (I) and (II)

Answer: D

27. Rank the following species in order of decreasing nucleophilicity in a polar protic solvent (most \rightarrow least nucleophilic):

A.
$$3 > 1 > 2$$

D.
$$2 > 1 > 3$$

Answer: D

28. Identify products of the given reactions:

$$\begin{array}{c}
\text{OTS} \\
& \xrightarrow{\text{CH}_3\text{CO}_2\text{Na}} \\
\text{NMe}_2
\end{array}$$
Product

Reaction-2

$$\textbf{A.} \quad \overbrace{\bigvee_{NMe_2}^{\text{not}} \bigvee_{NMe_2}^{\text{CH}_3}}^{\text{CH}_3} : \overbrace{\bigvee_{NMe_2}^{\text{NM}_2}}^{\text{CH}_3} + \text{ enantiomer}$$

$$\textbf{B.} \overset{\text{CH}_3}{\longleftarrow} \underset{NMe_2}{\overset{\text{CH}_3}{\longleftarrow}} + \text{enantiomer} : \overset{\text{CH}_3}{\longleftarrow} \underset{NMe_2}{\overset{\text{CH}_3}{\longleftarrow}}$$

C. $\bigcirc_{NM_2}^{CH_3}$ single product is obtained in both the reactions single product is obtained in both the

reactions

D.

single product obtained in both the reactions

Answer: A

Which of the following is true about given graphs A and B?

A.
$$A o S_{N^1}$$
 $B o S_{N^2}$

B.
$$A o S_{N^1}$$
 $B o S_{N^2}$

C. A and
$$B \rightarrow E_1$$

D. A and
$$B \rightarrow E_2$$

Answer: A

30. In each of the following groups, which is the strongest (best)

nucleophile?

- (I) (1) H₃C O⁻ (II) (1) OH⁻
- (2) \bigcirc 0
- (3) $H_3 C S^-$ in CH_3OH
- (2) H₂O
 - (3) NH₂ in DMF
- (III) (1) (2
 - (2)
- (3) CH₃O⁻ in DMSO

- A. I,3, II,3, III,2
- B. I,2, II,1, III,3
- C. I,1, II,2, III,1
- D. I,3, II, 1, III,3

Answer: D

31.

A.
$$O = CH_2$$

D. None of these

Answer: B

Watch Video Solution

32. Which of the following reaction is an elimination reaction?

$$\begin{array}{c}
H \\
OH \\
\end{array}$$

$$\begin{array}{c}
H_2SO_4 \\
\end{array}$$

$$+ F$$

$$\begin{array}{c}
\stackrel{H}{\underset{Br}{\longleftarrow}} Br & \stackrel{KI}{\longrightarrow} \\
 & \stackrel{Br}{\longrightarrow} \\
 & \stackrel{Br}{\longrightarrow} \\
\end{array}$$

C.
$$\stackrel{H}{\longrightarrow}_{Br} \stackrel{\text{NaOCH}_3}{\longrightarrow} \stackrel{H}{\longrightarrow}_{OCH_3}$$

D. both (a) and (b)

Watch Video Solution

$$O \longrightarrow CH_2 - Cl \xrightarrow{CH_3ONa} Product$$

Which of the following products can be obtained from above reaction?

A.
$$CH_2 - OCH_3$$

D. All of these

Answer: D

Watch video Solution

34. What is the principal product of the following reaction?

A.

 $\begin{array}{c|c}
CH_3\\
N_3 & H\\
H & H\\
Cl & H\\
CH_3
\end{array}$

Answer: C

35. What would be the effect of increasing solvent polarity on the rate of each of the following reactions ?

(A)
$$Nu+R-L
ightarrow\stackrel{\oplus}{N}u-R+L^-$$

(B)
$$R-L^\oplus o R^\oplus+L$$

A. increases

B. decrease

C. constant

D. can not predict

Answer: A

Watch Video Solution

36. Which one of the following is more reactive towards $S_N 2$ reaction?

A.
$$CH_2 = CH - CH_2 - Cl$$

B.
$$Ph - CH_2 - Cl$$

D.
$$Ph-C-CH_2-Cl$$

Answer: D

37. 4-chloro-1-butanol + NaOH ightarrow (B)

Product (B) of the above reaction is:

A.

В.

C

$$CH_2-CH_3$$

Answer: B

38. In the given pairs of alkyl-halide, in which pair the first compound is more reactive than second compound toward S_{N^2} reaction ?

A.
$$(CH_3)_2CHBr$$
 or $CH_3-CH_2-CH_2-Br$

B.
$$CH_3 - CH_2 - CH_2 - Br$$
 or $CH_3 - CH_2 - CH_2 - CH_2 - 1$

C.
$$Ph - Br$$
 or $CH_3 - CH_2 - CH_2 - Br$

D.
$$CH_2 = CH - CH_2 - Cl$$
 or $H_2C = CH - Cl$

Answer: D

39. In the given pair of compound, in which pair the second compound s more reactive than first toward S_{N^2} reaction

A.
$$CH_3-CH_2-Cl+CH_3-CH_2-O^-
ightarrow Et-O-E$$
 (or)

$$CH_2-CH_2-Cl+CH_3-CH_2-OH o Et-O-Et$$

B.
$$CH_3 - CH_2 - Cl + ErO^- \rightarrow Et - O - Et$$
 (or)

$$CH_3-CH_2-Cl+ErS^-
ightarrow CH_3-CH_2-S-Et$$

C.
$$Et_{(1m)} - Cl + CH_3O^-
ightarrow Et - O - CH_3$$
 (or) underset((2m))

(Et)-Cl+underset((1m))(CH_(3))O^(-)rarrEt-O-CH_(3)`

D.
$$Et-Br+Ph_3P o Et-\overset{\oplus}{P}Ph_3$$
 (or) "

$$Et-Br+Ph_3N
ightarrow E+-\stackrel{\oplus}{N}Ph_3$$

Answer: B

Watch Video Solution

40. In which pair second ion is more stable than first?

A.
$$Me_3CCl + H_2O o Me_3COH$$
 (or)

$$MeCBr + H_2O \rightarrow Me_3COH$$

В.

$$Me_3CCl+CH_3OH
ightarrow Me_3C-OCH_3 ~~{
m (or)}~~Me^3~C-Cl~+H_2OM_{Me_3C-OH}$$

D. All of these

Answer: D

reaction?

41. Which is a true statement concerning the transition state of an S_{N^2}

B. The electrophile is responsible for the reaction

A. Closely resembles a carbocation intermediate

- C. Lower is energy than the starting materials
- D. Involves both the nucleophile and electrophile

Answer: D

42. Increasing the concentration of a nucleophile in a typical S_{N^2} reaction by a factor of 10 will cause the reaction rate to :

A. increase by a factor of 10

B. increase by a factor of 10^2

C. decrease by a factor of 10

D. remain about the same

Answer: A

Watch Video Solution

43. Decreasing the concentration of an electrophile in a typical S_{N^2} reaction by a factor of 3 will cause the reaction ratio to :

A. increase by a factor of 3

B. increase by a factor of 3^2

C. decrease by a factor of 3

D. remain about the same

Answer: C

Watch Video Solution

44. Increasing the concentration of an electrophile in a typical S_{N^2} reaction by a factor of 3 and the concentration of the nucleophile by a factor of 3 will change the reaction rate to :

A. increase by a factor of 6

B. increase by a factor of 9

C. decrease by a factor of 3

D. remain about the same

Answer: B

45. Consider the following reaction and select the best choice that represents the reaction.

$$\begin{array}{ccc}
 & CH_3 \\
 & & \\
 & & \\
 & Br &
\end{array}$$
Na^{\Phi - SCH_2CH_3} Product

D.
$$CH_3$$
 CH_3 $S - CH_2CH_3$

Answer: C

watch video Solution

A.

В.

C.

Answer: D

D.

Watch Video Solution

47. The reaction,

proceeds by

the..... mechanism.

A.
$$S_{N^i}$$

B.
$$S_{N^2}$$

C.
$$S_{E^2}$$

D.
$$S_{N^1}$$

Answer: A

Watch Video Solution

48. Consider the following anions.

$$CF_3 - S - O^ C_6H_5 - S - O^ C_6H_5 - S - O^-$$

(VI)

When attached to sp -hybridized carbon, their leaving group ability in nucleophilic substitution reaction decreases in the order:

- A.I > III > IV
- B. I > II > IV > III
- C. IV > I > II > III
- D. IV > III > II > I

Answer: B

organic product of the reaction will be:

A.

В.

49.

$$\begin{array}{c|c} Ph & Ph \\ \hline Ph & CH_3 \\ \hline H & Ph \\ \hline Cl & Ph \\ \hline C. \end{array}$$

Answer: B

Watch Video Solution

50. Reaction of R-2-butanol with p-toluenesulphonyl chloride in pyridine followed by reaction with LiBr gives:

A. R-2-butyl bromide

B. S-2-butyl tosylate

C. R-2-butyl tosylate

D. S-2-butyl bromide

Answer: D

51. The compound which undergoes SN_(1) reaction most rapidly is :

A.

$$Br$$
 Br
 $C.$
 Br
 Br

Answer: B

D.

Watch Video Solution

52. Addition of KI accelerates the hydrolysis of primary alkyl halides

because :

- A. KI is soluble in organic solvents
- B. the iodide ion is a weak base and a poor leaving group
- C. the iodide ion is a strong base
- D. the iodide ion is a powerful nucleophile as well as a good leaving group

Answer: D

- **53.** Which of the following phrases are not correctly associated with SN1 reaction?
- (1) Rearrangement is possible
- (2) Rate is affected by polarity of solvent
- (3) The strength of the nucleophile is important in determining rate
- (4) The reactivity series is tertiary > secondary > primary
- (5) Proceeds with complete inversion of configuration

- A. 3,5
- B. 5 only
- C. 2, 3, 5
- D. 3 only

Answer: A

В.

Answer: B

D.

55.

A.
$$A o B$$

$$\mathtt{B.}\,B\to C$$

$$\mathsf{C}.\,C\to D$$

D. can not predict

Answer: A

A O

В.

56.

C.

D.

Answer: A

57.

Watch Video Solution

$$Cl \xrightarrow{Cl} \xrightarrow{\text{LiBr/DMSO}} \text{Major product } (X)$$

The product X is:

$$C$$
 B_1

Answer: B

58. Relative rate of reaction of the following amine with methyl iodide is:

(A)

Answer: C

59.

A.

$$\begin{array}{c} H \\ \text{OCH}_2\text{Ph} \\ C \\ H \\ H \\ \text{OCH}_3 \end{array}$$

В.

C.

Answer: C

D.

A. H

В.

C.

D.

Answer: B

Watch Video Solution

$$CH_3$$
 CH_3 CH_3

$$_{\text{CH}_3}^{\text{CH}_3}$$
 $_{\text{C}}^{\text{14}}$ $=$ $_{\text{C}}^{\text{CH}_3}$

$${\rm CH_3}\!-\!{\rm CH_2}^{\rm Ph}_{\rm CH_3}^{\rm 14}\!=\!{\rm CH_2}$$

В.

$$CH_3$$
 $C = C$ CH_3

$$CH_3$$
 $C = C$
 CH_3
 CH_3
 CH_3

Answer: C

Watch Video Solution

62. The decreasing order of reactivity of the compounds given below towards solvolysis under identical conditions is :

$$CH_3 - C - CH_3$$
 $CH_3 - C - CH_3$

$$H_3C$$
(II)

$$CH_3 - C - CH_3$$

$$(III)$$

A. II > III > I

B.I > II > III

C. III > II > I

D. II > I > III

Watch Video Solution

63.

D. None of these

Answer: A

64. (R)-2-octyl tosylate is solvolyzed in water under ideal SN1 conditions.

The product(s) will be:

A. R-2-octanol and S-2-octanol in a 1:1 ratio

B. R-2-octanol and S-2-octanol in a 1.5:1 ratio

C. R-2-octanol only

D. S-2-octanol only

Answer: B

Watch Video Solution

65. From each of the following pairs select the compound that will react faster with sodium iodide in acetone:

Pair-A: (1) 2-Chloropropane

(2) 2- Bromopropane

Pair-B: (3) 1 - Bromobutane

(4) 2- Bromobutane

A. 1,3

B. 1,4

C. 2,3

D. 2,4

Answer: C

Watch Video Solution

66. Among the given halides, which one will give same product in both

 S_{N^2} and S_{N^2} reactions.

(I)
$$CH_3 - CH - CH_2 - CH - CH_3$$
Br

- A. (III) only
- B. (I) & (II)
- C. (III) & (IV)
- D. (I), (III) & (IV)

Answer: D

Watch Video Solution

67. Product(s) formed during this reaction is/are:

$$CH_2 - \overset{\star}{C}H_2 - OTs$$

$$\xrightarrow{AcON_2} Product ? [C^* = isotopic carbon]$$

D. both (a) and (b)

Answer: D

Watch Video Solution

68. Anisole reflux with excess conc. HI to give Product

A.
$$\leftarrow$$
 I + CH₃

D.
$$\leftarrow$$
 CH₃CH₂

Answer: C

69. Which of the following compounds would react faster with NaCN in an

 SN^2 reaction ?

D. OTS

Answer: D

Watch Video Solution

70. $HC \equiv CNa + Cl - CH_2 - CH_2 - CH_2 - I
ightarrow (A)$ Major product

(A) is:

A.
$$H-C \equiv C-CH_2-CH_2-CH_2-I$$

$$\mathsf{B.}\,CH_2=CH-CH_2-I$$

$$\mathsf{C}.\,H-C\equiv C-CH_2-CH_2-CH_2-Cl$$

D.
$$CH_2 = CH - CH_2 - Cl$$

Answer: C

Watch Video Solution

71. What is the major product obtained in the following reaction

A.

В.

C.

D.

Answer: C

Watch Video Solution

Br
$$CH_3 + OH^- \xrightarrow{S_{N^2}} A$$
; The product A is:

A. HO
$$CH_3$$

$$\begin{array}{c} \text{HO} \\ \text{HO} \\ \end{array}$$

C. Both (a) and (b) are correct

D. None is correct

Answer: B

Watch Video Solution

73.
$$Me_2C=CH-CH_2-CH_2-Cl \xrightarrow{H_2O}_{CaCO_3}$$
 (X), Major product of the reaction is :

A.
$$Me-\mathop{C}\limits_{He}^{OH}-CH_2-CH_2-CH_2$$

$$\operatorname{B.}Me_2C=CH-CH_2-CH_2-OH$$

C.
$$Me_2C=CH-\mathrm{CH}_{-}CH_2-OH_{OH}$$

$$CMe_2$$

Answer: D

$$OH$$
 and OH

В.

$$OH$$
 and OH OH

Answer: B

D.

75. Relative rate of reaction with H_2O .

- A. (i) >.(ii) > (iii)
- B. (ii) > (i) > (iii)
- C. (iii) > (ii)> (i)
- D. (iii) >(i) > (ii)

Answer: C

76.
$$\begin{array}{c}
O & O \\
& \xrightarrow{2 \text{ eq. KNH}_2} & \xrightarrow{n-C_4H_9-Br} & (P); \\
& & \text{then H}_3O^{\oplus}
\end{array}$$

A.

В.

C.

D.

Answer: D

Watch Video Solution

77. Which of the following statements is correct regarding the rate of hydrolysis of the compounds (A) and (B) by SN^1 reaction ?

- A. A reacts faster than B
- B. B reacts faster than A
- C. Both A and B reacts at the same rate
- D. Neither A nor B reacts

Answer: B

Watch Video Solution

78. What are reactant X and product Y in the following sequence of reactions?

Reactant X

Product Y

Reactant X

Product Y

$$H_3C$$
 H_3C
 H_3C

$$CH_2$$
—Br $R \cdot O^ S_{N_2}$ reaction CH_2 —O—R

79.

$$\begin{bmatrix} \delta \oplus \\ OR \\ H \\ Br \\ \delta \oplus \end{bmatrix}^{\ddagger}$$

A.

$$\begin{bmatrix} \delta^{(+)} \\ OR \\ OR \\ H \\ Br \\ \delta^{(+)} \end{bmatrix}^{\pm}$$

В.

$$\begin{bmatrix} \delta \oplus \\ OR \\ H \\ Br \\ \delta \ominus \end{bmatrix}$$

(

$$\begin{bmatrix} \delta(-) & \\ OR & \\ OR & \\ H & \\ \delta(-) \end{bmatrix}^{\ddagger}$$

D.

Answer: D

Watch Video Solution

80. $C_6H_{13}Br+OH^ightarrow C_6H_{13}OH+Br^-$ is an example of:

A. Nucleophilic addition

- B. Nucleophilic substitution
- C. Electrophilic addition
- D. Electrophilic substitution

Free radical substitution

Answer: B

Watch Video Solution

81. Transition state 2 is structurally most likely as :

A. intermediate 1

B. transition state 3

C. intermediate 2

D. product

Answer: C

Watch Video Solution

82.

A. 1

B. 2

C.	3
D.	4

Answer: B

Watch Video Solution

83. What is the stereochemical result of S_N^1 and S_N^2 reactions ?

- A. Both stereospecific
- B. Both stereoselective
- C. Stereoselective and stereospecific respectively
- D. Stereospecific and stereoselective respectively

Answer: B::C

84. Most reactive halide towards S_{N^1} reaction is

A

В.

011

Answer: D

D.

$$\begin{array}{c|c}
CH \\
C \\
C \\
C \\
C \\
C \\
CH_3 CH_2 (2eq.) \\
2 CH_3 CH_2 - I \\
3. CH_3 - I \\
4. H_2 / Pd - BaSO_4
\end{array}$$
Product (X) is

85.

C.
$$CH_3$$
 CH_2 $COCH_2CH_3$

Answer: B

D.

В.

86. Following reaction is an example of:

- A. S_{N^2} Reaction
- B. S_{N^1} Reaction
- C. Electrophilic Addition
- D. S_N NGP

Answer: A

87. The major product of the following reaction : :

Answer: C

88. Choose the suitable option for the correct mechanism for the following reactions.

- A. $S_{N^1},\,S_{N^1}$
- B. $S_{N^1},\,S_{N^2}$
- $\mathsf{C}.\,S_{N^2},\,S_{N^1}$
- D. $S_{N^2},\,S_{N^2}$

Answer: C

Type of mechanism followed by reaction 1 and 2 respectively.

A. $S_{N^1},\,S_{N^1}$

89.

- B. $S_{N^1},\,S_{N^2}$
- C. $S_{N^2},\,S_{N^1}$
- D. S_{N^2}, S_{N^2}

Answer: C

90.

В.

OTs SH

D.

Answer: B

1. The order of the nucleophilicity of F^-, Cl^-, Br^- and I^- in protic solvents is

A. Statement-1 is true, statement -2 is true and statement - 2 is correct explanation for statementn-1

B. Statement-1 is true, statement - 2 is true and statement -2 is NOT the correct explanation statement-1.

C. Statement-1 is true, statement-2 is false.

D. Statement-1 is false, statement- 2 is true.

Answer: D

2. Statement - 1

 $CH_3-CH_2-Cl+NaI({
m Acetone})
ightarrow CH_3-CH_2-I+NaCl\downarrow$

Statement- 2: Acetone is polar-protic solvent and solubility order of

sodium halides decreases dramatically in order Nal > NaBr > NaCl. The last being virtually insoluble in this solvent and a 1° and 2° chloro alkane in acetone is completely driven to the side of Iodoalkane by the precipitation reaction.

A. Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for statement-1.

B. Statement-1 is true, Statement-2 is true and Statement-2 is Not the correct explanation for statement-1.

C. Statement-1 is true, Statement-2 is false.

D. Statement-1 is false, Statement-2 is true.

Answer: A::C

Watch Video Solution

3. Encircle whichever of the following:

A. is the stronger nucleophile (aprotic solvent): F^- or I^-

B. is the stronger nucleophile (protic solvent): For I

C. is the stronger base : F^- or I^-

D. is the stronger nucleophile (protic solvent) : NH_3 , or NH_2 NH_2

(e) is the better leaving group : CH_3COO^- or $CH_3SO_2^-$

Answer:

Watch Video Solution

4. Encircle whichever of the following:

 $CH_3 - Br$ or CH_3 or $CH_3 - CH - CH_3$

undergoes and S_{N^2} reaction

more

rapidly,

Watch Video Solution

5. Encircle whichever of the following:

undergoes and S_{N^1} reaction rapidly, more

$$CH_3-Br ext{ or } CH_3-CH-CH_3$$

undergoes an E_2 reaction to give (Z) - 1,2 - diphenylpropene :

reacts with Nal to give (Z) - 1,2 diphenylpropene:

8. Encircle whichever of the following:

undergoes and S_{N^1} reaction more rapidly,

undergoes and S_{N^2} reaction more rapidly :

Watch Video Solution

10. Encircle whichever of the following:

undergoes an E_1 reaction more rapidly

undergoes an S_{N^1} reaction more rapidly :

Watch Video Solution

12. Encircle whichever of the following:

undergoes an S_{N^2} reaction more rapidly :

undergoes an E_2 reaction more rapidly :

Watch Video Solution

14. Match the column:

Alkyl halide			Relative ra	ate	Relative rate (S _{N²})
(a)	CH ₃ - Br	(p)	1	(w)	1200
(b)	CH ₃ - CH ₂ - Br	(g)	1.05	(x)	40
(c)	CH ₃ -CH - Br CH ₃	(r)	11	(y)	16
(d)	CH ₃ CH ₃ - C - Br CH ₃ - CH ₃	(s)	1,200000	(z)	Company A

15. Matrix:

Column (I) Compound			Column (II) Type of reaction		
(b)	(C)	(q)	S _{N²} reaction can take place		
(c)	Q d	(r)	S _N ¹ is not possible		
(d)	(C)	(s)	S _{N²} is not possible		

Watch Video Solution

16. Encircle whichever of the following :

undergoes an S_{N^2} reaction more rapidly :

$$\bigcirc$$
 or \bigcirc $\stackrel{\operatorname{Br}}{\bigcirc}$

undergoes an S_{N^1} reaction more rapidly :

$$(CH_3)_3C - Br$$
 or $(CH_3)_3C - I$

Watch Video Solution

18. Encircle whichever of the following:

undergoes an S_{N^1} reaction more rapidly

19. Reativity : Circle the reaction that reacts FASTER by S_{N^2} in each pair ,

20. Consider the potential energy diagram given below

Reaction Progress

- (X) Name the positions A-D
- (Y) Answer the following quesitons:
- (i) Both reactiOn pathways are:

- (ii) Which step is the determining step (RDS)?
- (iii) Which product is most stable?
- (iv) In accordance with Hammonds postulate, exothermic reactions tend to have
 - A. early transition states that are reactant like
 - B. late transition states that are reactant like
 - C. early transition states that are product like
 - D. late transition states that are product-like.

Answer: A::B::C::D

Watch Video Solution

21. Select whether the following combinations of reactants will react by substitution $(S_{N^1} ext{ or } S_{N^2} ext{ mechanism})$ elimination $(E_1 \text{ or } E_2)$

- A. S_{N^1}
- B. S_{N^2}
- $\mathsf{C}.\,E_1$
- D. E_2

Answer: A::B

Watch Video Solution

22. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2)$

- A. S_{N^1}
- B. S_{N^2}
- $\mathsf{C}.\,E_1$
- D. E_2

Answer: B

Watch Video Solution

23. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2 \text$

 $\xrightarrow{\begin{array}{c} \text{NaOGH}_3 \text{ in methanol} \\ \hline 25^{\circ}\text{C} \end{array}}$

- A. S_{N^1}
- B. S_{N^2}
- $\mathsf{C}.\,E_1$
- D. E_2

Answer: C::D

Watch Video Solution

24. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2 \text$

$$(CH_3)_3C - OH \xrightarrow{HBr 48\% \text{ in } H_2O}$$

- A. S_{N^1}
- B. S_{N^2}
- C. E_1
- D. E_2

Answer: A::D

25. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2)$

- A. S_{N^1}
- B. S_{N^2}
- $\mathsf{C}.\,E_1$
- D. E_2

Answer: B

Watch Video Solution

26. Select whether the following combinations of reactants will react by substitution $(S_{N^1} ext{ or } S_{N^2} ext{ mechanism})$ elimination $(E_1 ext{ or } E_2$

- A. S_{N^1}
- B. S_{N^2}
- $\mathsf{C}.\,E_1$
- D. E_2

Answer: B

Watch Video Solution

27. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2)$

G. $(CH_3)_2CHCH_2CH_2 - OH \xrightarrow{HBr 48\% \text{ in } H_2O} \longrightarrow 50^{\circ}C$

- A. S_{N^1}
- B. S_{N^2}
- $\mathsf{C}.\,E_1$
- D. E_2

Answer: B

Watch Video Solution

28. Examine the ten structural formulas shown in fig. & select that satisfy each of the following conditions. Write one or more (a through J) in each answer box.

(a)	Br	(b)	$\begin{array}{c} \text{CH}_3\\ \mid\\ \text{H}_3\text{C}-\text{C}-\text{Cl}\\ \mid\\ \text{CH}_3 \end{array}$	(c)	CH ₂ - Br
(d)	CH ₃ – I	(e)	CH ₂ - Br	(f)	CI
(g)	$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{H}_3\text{C} - \text{C} - \text{CH}_2 - \text{Cl} \\ \mid \\ \text{CH}_3 \end{array}$	(h)	$\begin{array}{c} \operatorname{H_2C} \operatorname{CH_2} - \operatorname{Cl} \\ \\ \operatorname{CH_3} \end{array}$	(i)	Br
(j)	O cl		Section 1		

A. Which compounds give and S_{N^2} substitution reaction on treatment with alcoholic NaSH ?

B. Which compounds give and E_2 elimation reaction on treatment with alcoholic KOH ?

C. Which compounds do not react under either of the previous reaction conditions ?

29. Select which reaction from the following reaction pairs will occur faster.

30. Select which reaction from the following reaction pairs will occur faster.

Watch Video Solution

31. Select which reaction from the following reaction pairs will occur faster.

32. Select which reaction from the following reaction pairs will occur faster.

$$\begin{array}{c|c} \textbf{PART - 4} \\ \hline \textbf{Reaction G} & \begin{array}{c} I \\ H \end{array} \begin{array}{c} N_{\text{N}3} \\ DMSO \end{array} \end{array} \begin{array}{c} N_3 \\ H \end{array}$$

Watch Video Solution

33. Select which reaction from the following reaction pairs will occur faster.

34. Tick your answer in the given box.

	Alkyl Halide	2-D Structure	Expect S _{N2} (at a reasonable rate)
(a)	1-Bromobutane	Br	Yes
(ь)	1- Chlorobutane	CI	Yes
(c)	2-Bromobutane	Br	Yes
(d)	2-Chlorobutane	CI	Yes No
(e)	2-Chloro-2-methyl propane	CI	Yes No

		Br	Yes
(f)	Bromocyclohexane	Q	No
(~)		Br	Yes
(g)	Bromobenzene	O	No
(h)	Benzyl bromide	CH ₂ -Br	Yes
	Delizyi biblindo	0	No
(i)	(i) 1-Bromo-2,2-dimethyl propane	Br	Yes
	1-biomo-2,2-amiculyi propano	-2,2-unnemyr propane	No
m		A	Yes
(1)	(j) Bicyclo compound	Br	No
(k) 1-bromotriptycene	Br	Yes	
		No	

35. Match the column:

	Column-I		Column-II
(a)	O C	(p)	It will undergo Nucleophilic Substitution reaction
(b)	€CH ₂ —CI	(q)	It will undergo E_2 reaction
(c)	CH ₃ C-Cl CH ₃	(r)	It will undergo E_1 reaction
(d)	P NO ₂	(s)	It will undergo S_{N^2} reaction
		(t)	It will undergo S_{N^1} reaction

View Text Solution

$$\begin{array}{c|c}
O & O - Et \\
O - Et
\end{array}$$

36.

	Column (I)		Column (II)	
(a)	$Ph \longrightarrow Cl \xrightarrow{H_2O}$	(p)	S_{N^1}	
(b)	Cl _ph—SNa →	(q)	S_{N^2}	
(c)	$\bigcap_{NO} F \xrightarrow{KOH} \Delta$	(r)	Carbocation is intermediate	
(d)	$\left\langle \begin{array}{c} Br_2 \\ CCl_4 \end{array} \right\rangle$	(s)	Carbanion is intermediate	

37.

	Column (I)		Column (II)
	(Reaction sequence)		(Reagent required)
(a)	\rightarrow $O^{\Theta} \rightarrow \rightarrow$ OEt	(p)	EtO [⊖]
(b)	\rightarrow Br \rightarrow	(g)	EtBr
(c)	>= → ✓ OEt	(r)	EtOH/H [⊕]
(d)	$Et-Cl \longrightarrow \bigwedge$	(s)	Et–Cl/Na ether

38.

39. Choose the one compound within each set the meets the indicated criterion :

Watch Video Solution

40. Comprehension

The first demonstration of the stereochemistry of the S_{N^2} reaction was carried out in 1934 by Prof. E.D Hughes and his colleagues at the University of London. They allowed (R) -2- iodooctane to react with radioactive iodide ion (*I-)

The rate of substitution (rate constant K_5) was determined by measuring the rate of incorporation of radioactivity into the alkyl halide. The rate of loss of optical acitivity from the alkyl halide (rate constant K_0) was also determined under the same conditions:

What ratio $K_0 \, / \, K_s$ is predicted for each of the following stereochemical

scenarios:

For inversion reaction:

A.
$$rac{K_O}{K_S}=1$$

B.
$$rac{K_O}{K_S} < 1$$

C.
$$rac{K_O}{K_S} > 1$$

D. can not be predicted

Answer:

Watch Video Solution

41. Comprehension

The first demonstration of the stereochemistry of the S_{N^2} reaction was carried out in 1934 by Prof. E.D Hughes and his colleagues at the University of London. They allowed (R) -2- iodooctane to react with radioactive iodide ion (*I-)

The rate of substitution (rate constant K_5) was determined by measuring the rate of incorporation of radioactivity into the alkyl halide. The rate of loss of optical acitivity from the alkyl halide (rate constant K_0) was also determined under the same conditions:

What ratio $K_0 \, / \, K_s$ is predicted for each of the following stereochemical scenarios :

For equal amounts of both retention and inversion?

A.
$$rac{K_O}{K_S}=1$$

B.
$$rac{K_O}{K_S} < 1$$

C.
$$\frac{K_O}{K_S} > 1$$

D. can not be predicted

Answer:

