đず doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MS CHOUHAN

ALKYL HALIDES (SUBSTITUTION REACTIONS)

Level 1

1. Which of the following is not expected to be intermediate of the
following reaction ?

A.

B.

C.

D.

Answer: A

2.
the reaction is :

A.

C.

$$
\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

D.

Answer: B

- Watch Video Solution

3. The rate of $S N^{2}$ will be negligible in

A.

B.

C.

D.

Answer: C
4. What is the major product obtained in the following reaction?

A.

B.

C.

D.

Answer: A

5. The following is not an appropriate reaction for the preparation of t butyl ethyl ether.

(i) What would be the major product of this reaction ?
(ii) Write a suitable reaction for the preparation of t -butylethyl ether.

Answer: B

- Watch Video Solution

6. Which of the following expressions is representative of the rate law for a $S_{N^{2}}$ reaction ?
A. Rate $=\mathrm{k}$ [electrophile]
B. Rate $=\mathrm{k}$ [electrophile] [nucleophile]
C. Rate $=\mathrm{k}$ [nucleophile] ${ }^{2}$
D. Rate $=k[\text { electrophile }]^{2}$

Answer: B

- Watch Video Solution

7.

product of this reaction is :

A.

B.

C.

D.

Answer: B

(Watch Video Solution

8. Which of the following alkyl halide undergo rearrangement in $S_{N^{1}}$ reaction ?
A. $\mathrm{CH}_{3}-\underset{{ }_{C \mathrm{CH}_{3}}}{\substack{\mathrm{CH}_{3} \\ \mathrm{C}}}-\underset{\mathrm{I}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$

B.
C.

D. All of these

Answer: D

Watch Video Solution

9. Arrange the following three chlorides in decreasing order towards $S_{N^{1}}$ reactivity.
(1)

(2)

(3)

A. $1>2>3$
B. $2>3>1$
C. $2>1>3$
D. $3>2>1$

Answer: B

- Watch Video Solution

10. Which one of the following undergoes nucleophilic aromatic substitution at the fastest rate ?

A.

B.

D Watch Video Solution

11. Rank the following in order of decreasing rate of solvolysis with aqueous ethanol (fastest \rightarrow slowest)

(1)

(2)

(3)
A. $2>1>3$
B. $1>2>3$
C. $2>3>1$
D. $1>3>2$

Answer: C

- Watch Video Solution

12. The reaction of 4 -bromobenzyl chloride with sodium cyanide in ethanol leads to the formation of:
A. 4-bromobenzyl cyanide
B. 4-cyanobenzyl chloride
C. 4-cyanobenzyl cyanide
D. 4-bromo-2-cyanobenzyl chloride

Answer: A

- Watch Video Solution

13. Which of the following reactant will not favour nucleophilic substitution reaction ?

A.
B. $\mathrm{Ph}-\mathrm{Br}$

D. All the above

Answer: D

- Watch Video Solution

(I)

(II)
14.

Conversion of I to II:
A. takes place by S_{N}^{1}
B. takes place by S_{N}^{2}
C. takes place both by S_{N}^{1} and S_{N}^{2}
D. does not take place

D Watch Video Solution

15. Which is the correct reaction coordinate diagram for the following solvolysis reaction ?

A.

Reaction Coordinate

B.

Reaction Coordinate
B.

Answer: B

- Watch Video Solution

16.
product,

Product of this reaction is

A.
B.

C. both (a) and (b)
D. None of these

Answer: C

- Watch Video Solution

$\xrightarrow{\text { NBS }}(A) \xrightarrow{\mathrm{CH}_{3} \mathrm{SNa}}(B)$,
17.

Product (B)
is :
A.

B.
C.

D. None of these

Answer: A

Watch Video Solution

18. Which of the following represents the correct graph for $S_{N^{2}}$ reaction ?

c.
\log (rate)
D.

Answer: A

Watch Video Solution

19. Which of the following graph represents correct graph for $S_{N^{1}}$
reaction :
A.

B.

c.

D.

Answer: C

- Watch Video Solution

20. Which of the following is most reactive towards $S N^{1}$ reaction

A.

B.
C.

D.

Answer: D

21. Among the given pairs in which pair, first compound has higher boiling point than second ?

$$
\text { A. } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} \text { or } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{B r}{\mathrm{CH}}-\mathrm{CH}_{3}
$$

C.

D. $\mathrm{CH}_{3}-\underset{\mid}{\stackrel{\mathrm{CH}_{3}}{\mid}} \underset{\mathrm{Cr}}{\mathrm{C}}-\mathrm{CH}_{3}$ or $\mathrm{CH}_{3}-\underset{\mid}{\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}}-\mathrm{CH}_{3}$

Answer: B

(Watch Video Solution

22. What is the major product of the following reaction ?
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N} \xrightarrow[E t_{2} \mathrm{O}]{\mathrm{CH}_{3} \mathrm{MgI}} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\oplus}}$
A. $\mathrm{CH}_{3}-\stackrel{\stackrel{\mathrm{Br}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}}{2}-\mathrm{Br}$
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$
C. $\mathrm{CH}_{3}-\stackrel{\mathrm{Br}}{\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{H}}-\mathrm{CH}_{2}-\mathrm{OH}$
D. $\mathrm{CH}_{3}-\stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{OH}$

- Watch Video Solution

23. $S_{N^{1}}$ and $S_{N^{2}}$ products are same with (excluding stereoisomer):

A.

B.

C.
D. $\mathrm{Ph}-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{3}$

Answer: C

- Watch Video Solution

24. Consider the nucleophilic attacks given below. Select in each pair that shows the greater $S_{N^{2}}$ reaction rate.
(A)

(I)
(B) $\mathrm{H}_{3} \mathrm{C}-\mathrm{Br}+{ }^{-} \mathrm{SH}$

(V)
(D)

(VII)
$\begin{array}{ccc} & \text { A } & \text { B } \\ \text { (a) } & \text { (I) } ; & \text { (IV) } ;(\text { VI }) ; \\ \text { (VIII) } \\ \text { (c) } & \text { (I) } ; & \text { (III) } ;(\text { (V) } ;(\text { (VIII })\end{array}$

(II)

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{Br}+\mathrm{CH}_{3} \mathrm{SH}
$$

(VI)

(VIII)

A B C D
(b) (II) ; (III) ; (V) ; (VIII)
(d) (I) ; (III) ; (V) ; (VII)

- Watch Video Solution

25. Which of the two stereoisomers of 4-t-butylcyclohexyl iodide $\left({ }^{127} I^{-}\right)$ will undergo S_{N}^{2} substitution with ${ }^{128} I^{-}$faster, and why?

(A)

(B)
A. A will react faster because it is the more stable of the two isomers
B. A will react faster because it will yield a more stable product, and the transition state for both reactions is of the same energy
C. A will react faster because the approach of ${ }^{128} I^{-}$can depart unhindered.
D. B will react faster because it is less stable than A, and the transition state for both reactions is of the same energy

Answer: D

- Watch Video Solution

26. (Z)-2-Butene reacts with $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$. The resulting bromohydrin when treated with methoxide in methanol undergoes an intramolecular $S_{N^{2}}$ reaction. Taking into consideration the stereochemical consequences of the reaction mechanism involved, choose the final product(s) of these transformations.

(II)

(III)

A. (I) only
B. (II) only
C. (III) only
D. Equal amounts of (I) and (II)

Answer: D

- Watch Video Solution

27. Rank the following species in order of decreasing nucleophilicity in a polar protic solvent (most \rightarrow least nucleophilic):

(1)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}^{-}$
(2)

A. $3>1>2$
B. $2>3>1$
C. $1>3>2$
D. $2>1>3$

Answer: D

- Watch Video Solution

28. Identify products of the given reactions :

Reaction-1

Reaction-2

A.

B.

 single product is obtained in both the
reactions
D.
 single product obtained in both the reactions

Answer: A

- Watch Video Solution

29.

Which of the following is true about given graphs A and B ?
A. $A \rightarrow S_{N^{1}} \quad B \rightarrow S_{N^{2}}$
B. $A \rightarrow S_{N^{1}} \quad B \rightarrow S_{N^{2}}$
C. A and $B \rightarrow E_{1}$
D. A and $B \rightarrow E_{2}$

Answer: A

- Watch Video Solution

30. In each of the following groups, which is the strongest (best) nucleophile?
(I) (1) $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}^{-}$
(2) $\widehat{\mathrm{O}}^{-}$
(3) $\mathrm{H}_{3} \mathrm{C}-\mathrm{S}^{-}$in $\mathrm{CH}_{3} \mathrm{OH}$
(II) (1) OH^{-}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) NH_{2}^{-}in DMF
(III) (1)
(2)

(3) $\mathrm{CH}_{3} \mathrm{O}^{-}$in DMSO
A. I,3, II,3, III,2
B. I,2 , II,1, III,3
C. I,1,II,2 , III,1
D. I,3, II, 1, III,3

Answer: D

D Watch Video Solution

31.

A.

B.
C.

D. None of these

Answer: B

- Watch Video Solution

32. Which of the following reaction is an elimination reaction ?
B.

A.

- Watch Video Solution

33.

Which of the following products can be obtained from above reaction ?

A.

B.

C.
D. All of these

Answer: D
34. What is the principal product of the following reaction?

A.
CH_{3}

CH_{3}
B.

CH_{3}

CH_{3}
C.
CH_{3}

D.

Answer: C

- Watch Video Solution

35. What would be the effect of increasing solvent polarity on the rate of each of the following reactions ?
(A) $N u+R-L \rightarrow N u-R+L^{-}$
(B) $R-L^{\oplus} \rightarrow R^{\oplus}+L$
A. increases
B. decrease
C. constant
D. can not predict

Answer: A

- Watch Video Solution

36. Which one of the following is more reactive towards $S_{N} 2$ reaction?
A. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$
B. $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{Cl}$
c. $\mathrm{Me}-\mathrm{O}^{-\mathrm{Cl}}$
D. $\mathrm{Ph}-\underset{\mathrm{O}}{\mathrm{Cl}} \underset{\substack{\mathrm{C}}}{\mathrm{CH}}-\mathrm{Cl}$

Answer: D

Product (B) of the above reaction is :

A.
B.

C.

Answer: B

Watch Video Solution
38. In the given pairs of alkyl-halide, in which pair the first compound is more reactive than second compound toward $S_{N^{2}}$ reaction ?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}$ or $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
B. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$ or $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-1$
C. $\mathrm{Ph}-\mathrm{Br}$ or $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$ or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{Cl}$

Answer: D

- Watch Video Solution

39. In the given pair of compound, in which pair the second compoundis more reactive than first toward $S_{N^{2}}$ reaction

$$
\begin{aligned}
& \text { A. } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}^{-} \rightarrow \mathrm{Et}-\mathrm{O}-\mathrm{E} \quad \text { (or) } \\
& \qquad \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \rightarrow \mathrm{Et}-\mathrm{O}-\mathrm{Et}
\end{aligned}
$$

B. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{ErO}^{-} \rightarrow \mathrm{Et}-\mathrm{O}-\mathrm{Et} \quad$ (or)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{ErS}^{-} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{Et}$
C. $\underset{(1 m)}{\mathrm{Et}}-\mathrm{Cl}+\underset{(2 m)}{\mathrm{CH}_{3} \mathrm{O}^{-}} \rightarrow \mathrm{Et}-\mathrm{O}-\mathrm{CH}_{3} \quad$ (or) underset((2m))
(Et)-Cl+underset((1m))(CH_(3))O^(-)rarrEt-O-CH_(3)'
D. $E t-B r+P h_{3} P \rightarrow E t-\stackrel{\oplus}{P} P h_{3} \quad$ (or) "

$$
E t-\mathrm{Br}+\mathrm{P} h_{3} N \rightarrow E+-\stackrel{\oplus}{N} P h_{3}
$$

Answer: B

- Watch Video Solution

40. In which pair second ion is more stable than first?

(i)

(ii)

(iii)

(iv)
A. $\mathrm{Me}_{3} \mathrm{CCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Me}_{3} \mathrm{COH} \quad$ (or)
$\mathrm{MeCBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Me}_{3} \mathrm{COH}$
B.

$$
\mathrm{Me}_{3} \mathrm{CCl}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{Me}_{3} \mathrm{C}-\mathrm{OCH}_{3} \quad \text { (or) } \quad \mathrm{Me}^{3} \mathrm{C} \underset{\substack{\downarrow \\ M e_{3} C-O H}}{C l}+\mathrm{H}_{2}
$$

$\underset{(1 m)}{\text { C. } \mathrm{Me}_{3} \mathrm{CCl}}+\mathrm{H}_{2} \mathrm{O} \rightarrow \quad($ or $) \underset{(2 m)}{\mathrm{Me} \mathrm{CCl}}+\mathrm{H}_{2} \mathrm{O}$
D. All of these

Answer: D

- Watch Video Solution

41. Which is a true statement concerning the transition state of an $S_{N^{2}}$ reaction?
A. Closely resembles a carbocation intermediate
B. The electrophile is responsible for the reaction
C. Lower is energy than the starting materials
D. Involves both the nucleophile and electrophile

Answer: D

42. Increasing the concentration of a nucleophile in a typical $S_{N^{2}}$ reaction by a factor of 10 will cause the reaction rate to :
A. increase by a factor of 10
B. increase by a factor of 10^{2}
C. decrease by a factor of 10
D. remain about the same

Answer: A

- Watch Video Solution

43. Decreasing the concentration of an electrophile in a typical $S_{N^{2}}$ reaction by a factor of 3 will cause the reaction ratio to :
A. increase by a factor of 3
B. increase by a factor of 3^{2}
C. decrease by a factor of 3
D. remain about the same

Answer: C

- Watch Video Solution

44. Increasing the concentration of an electrophile in a typical $S_{N^{2}}$ reaction by a factor of 3 and the concentration of the nucleophile by a factor of 3 will change the reaction rate to :
A. increase by a factor of 6
B. increase by a factor of 9
C. decrease by a factor of 3
D. remain about the same

Answer: B

45. Consider the following reaction and select the best choice that represents the reaction.

C.

D.

Answer: C

46.

H
A.

SH
B.
$\mathrm{HS} \underset{\mathrm{Et} \stackrel{\mathrm{H}}{\mathrm{H}_{\mathrm{H}}} \mathrm{D}}{\mathrm{H}} \mathrm{Me}$
C.

H
D.

Answer: D

- Watch Video Solution

47. The reaction,

proceeds by
the. \qquad mechanism.
A. $S_{N^{i}}$
B. $S_{N^{2}}$
C. $S_{E^{2}}$
D. $S_{N^{1}}$

D Watch Video Solution

48. Consider the following anions.

(1)

(II)

(III)

(VI)

When attached to sp -hybridized carbon, their leaving group ability in nucleophilic substitution reaction decreases in the order :
A. I > III $>$ IV
B. I $>$ II $>$ IV $>$ III
C. IV $>$ I $>$ II $>$ III
D. IV $>$ III $>$ II $>$ I

Answer: B

49.

Principal
organic product of the reaction will be :

A.

B.

Ph

Ph
C.

D.

Answer: B

- Watch Video Solution

50. Reaction of R-2-butanol with p-toluenesulphonyl chloride in pyridine followed by reaction with LiBr gives:
A. R-2-butyl bromide
B. S-2-butyl tosylate
C. R-2-butyl tosylate
D. S-2-butyl bromide

Answer: D

51. The compound which undergoes SN _(1) reaction most rapidly is :
A.

B.

C.

D.

Answer: B

- Watch Video Solution

52. Addition of KI accelerates the hydrolysis of primary alkyl halides
A. KI is soluble in organic solvents
B. the iodide ion is a weak base and a poor leaving group
C. the iodide ion is a strong base
D. the iodide ion is a powerful nucleophile as well as a good leaving group

Answer: D

- Watch Video Solution

53. Which of the following phrases are not correctly associated with SN1 reaction?
(1) Rearrangement is possible
(2) Rate is affected by polarity of solvent
(3) The strength of the nucleophile is important in determining rate
(4) The reactivity series is tertiary > secondary > primary
(5) Proceeds with complete inversion of configuration
A. 3,5
B. 5 only
C. $2,3,5$
D. 3 only

Answer: A

- Watch Video Solution

B.

Answer: B

Progress of the reaction \longrightarrow
55.
A. $A \rightarrow B$
B. $B \rightarrow C$
C. $C \rightarrow D$
D. can not predict

Answer: A

- Watch Video Solution

56.

A.

B.

C.
D.

D Watch Video Solution

$\xrightarrow[\mathrm{S}_{\mathrm{N}^{2}} \text { conditions }]{\mathrm{L} \mathrm{iBr} / \mathrm{DMSO}}$ Major product (X)
57.

The product X is :

A.
B.

C.

D.

Answer: B

58. Relative rate of reaction of the following amine with methyl iodide is:

(A)

(B)

(C)
A. $A>B>C$
B. $A>C>B$
C. $\mathrm{B}>\mathrm{C}>\mathrm{A}$
D. $B>A>C$

Answer: C

- Watch Video Solution

59.
A.

B.

C.

D.

Answer: C

60.

HS

A. H

B.

D.

Answer: B

Watch Video Solution
61.

A.

B.

C.
D.

Answer: C

Watch Video Solution

62. The decreasing order of reactivity of the compounds given below towards solvolysis under identical conditions is:

(I)

(II)

(III)
A. II $>$ III $>$ I
B. I > II > III
C. III $>$ II $>$ I
D. II > I > III

- Watch Video Solution

63.

A.

B.

C.

D. None of these
64. (R)-2-octyl tosylate is solvolyzed in water under ideal SN1 conditions. The product(s) will be:
A. R-2-octanol and S-2-octanol in a 1:1 ratio
B. R-2-octanol and S-2-octanol in a 1.5:1 ratio
C. R-2-octanol only
D. S-2-octanol only

Answer: B

- Watch Video Solution

65. From each of the following pairs select the compound that will react faster with sodium iodide in acetone :

Pair-A: (1) 2-Chloropropane
(2) 2-Bromopropane

Pair-B: (3) 1 - Bromobutane
(4) 2- Bromobutane
A. 1,3
B. 1,4
C. 2,3
D. 2,4

Answer: C

- Watch Video Solution

66. Among the given halides, which one will give same product in both $S_{N^{2}}$ and $S_{N^{2}}$ reactions.
(I)

(II)

(III)

(iv) $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{Et}}}{\mathrm{Ct}-\mathrm{Br}}$
A. (III) only
B. (I) \& (II)
C. (III) \& (IV)
D. (I), (III) \& (IV)

Answer: D

- Watch Video Solution

67. Product(s) formed during this reaction is/are :

A.

B.

C.

D. both (a) and (b)

Answer: D

(Watch Video Solution

68. Anisole reflux with excess conc. HI to give Product
A.
$\bigcirc-\mathrm{I}+\mathrm{CH}_{3} \mathrm{I}$
B.

C.
(O)-OH $+\mathrm{CH}_{3} \mathrm{I}$
D. \bigcirc OH $+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$

Answer: C

- Watch Video Solution

69. Which of the following compounds would react faster with NaCN in an $S N^{2}$ reaction ?

OMe

A.

B.
C.

D.

Answer: D

- Watch Video Solution

70. $\mathrm{HC} \equiv \mathrm{CNa}+\mathrm{Cl}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I} \rightarrow(\mathrm{A})$ Major product
(A) is :
A. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$
B. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{I}$
C. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$

Answer: C

- Watch Video Solution

71. What is the major product obtained in the following reaction

A.

B.

C.

D.

Answer: C

- Watch Video Solution

72.

A.

B.
C. Both (a) and (b) are correct
D. None is correct

Answer: B

(Watch Video Solution

73. $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl} \xrightarrow[\mathrm{CaCO}_{3}]{\mathrm{H}_{2} \mathrm{O}}(\mathrm{X})$, Major product of the reaction is :
A. $\mathrm{Me}-\stackrel{\mathrm{OH}}{\stackrel{\mathrm{I}}{\mathrm{C}}} \underset{\substack{\mathrm{I} \\ \mathrm{Me}}}{ }-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$
B. $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
C. $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}-\underset{\text { OH }}{\mathrm{CH}} \underset{\mathrm{OH}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{OH}$
D.

Answer: D

74.

B.

Answer: B

75. Relative rate of reaction with $\mathrm{H}_{2} \mathrm{O}$.

(i)
$\left(-\mathrm{ONS}=-\mathrm{O}-\mathrm{S}_{\mathrm{O}}^{\mathrm{O}} \rightarrow \sim-\mathrm{NO}_{2}\right)$

A. (i) $>$. (ii) $>$ (iii)
B. (ii) $>$ (i) $>$ (iii)
C. (iii) $>$ (ii) $>$ (i)
D. (iii) $>$ (i) $>$ (ii)

Answer: C

- Watch Video Solution

76.

A.

B.

C.

D.

Answer: D

- Watch Video Solution

77. Which of the following statements is correct regarding the rate of hydrolysis of the compounds (A) and (B) by $S N^{1}$ reaction ?

A. A reacts faster than B
B. B reacts faster than A
C. Both A and B reacts at the same rate
D. Neither A nor B reacts

Answer: B

78. What are reactant X and product Y in the following sequence of reactions?

Reactant X

$$
\text { Product } Y
$$

(a)

(b)

(c)

(d)

- Watch Video Solution

79.

A.
B.

C.

D.

Answer: D

Watch Video Solution
80. $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{13} \mathrm{OH}+\mathrm{Br}^{-}$is an example of:
A. Nucleophilic addition
B. Nucleophilic substitution
C. Electrophilic addition
D. Electrophilic substitution

Free radical substitution

Answer: B

- Watch Video Solution

81. Transition state 2 is structurally most likely as:

A. intermediate 1
B. transition state 3
C. intermediate 2
D. product

Answer: C

- Watch Video Solution

82.

A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

83. What is the stereochemical result of S_{N}^{1} and S_{N}^{2} reactions?
A. Both stereospecific
B. Both stereoselective
C. Stereoselective and stereospecific respectively
D. Stereospecific and stereoselective respectively

Answer: B::C

- Watch Video Solution

84. Most reactive halide towards $S_{N^{1}}$ reaction is

A.

B.

C.

D.

Answer: D

85.
A.

B.

C.

D.
86. Following reaction is an example of :

A. $S_{N^{2}}$ Reaction
B. $S_{N^{1}}$ Reaction
C. Electrophilic Addition
D. $S_{N}-N G P$

Answer: A

- Watch Video Solution

87. The major product of the following reaction ::

A.

B.
c.

D.

Answer: C

88. Choose the suitable option for the correct mechanism for the following reactions.

A. $S_{N^{1}}, S_{N^{1}}$
B. $S_{N^{1}}, S_{N^{2}}$
C. $S_{N^{2}}, S_{N^{1}}$
D. $S_{N^{2}}, S_{N^{2}}$

Answer: C

Reaction 1

Reaction 2

89.

Type of mechanism followed by reaction 1 and 2 respectively .
A. $S_{N^{1}}, S_{N^{1}}$
B. $S_{N^{1}}, S_{N^{2}}$
C. $S_{N^{2}}, S_{N^{1}}$
D. $S_{N^{2}}, S_{N^{2}}$

Answer: C

- Watch Video Solution

A.

B.

C.

D.

Answer: B

- Watch Video Solution

Level 2

1. The order of the nucleophilicity of $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}$and I^{-}in protic solvents is
A. Statement- 1 is true, statement -2 is true and statement -2 is correct explanation for statementn-1
B. Statement- 1 is true, statement -2 is true and statement -2 is NOT the correct explanation statement-1.
C. Statement-1 is true, statement-2 is false.
D. Statement -1 is false, statement- 2 is true.

Answer: D

- Watch Video Solution

> 2.
> Statement
> $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{NaI}$ (Acetone) $\rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{I}+\mathrm{NaCl} \downarrow$

Statement- 2 : Acetone is polar-protic solvent and solubility order of
sodium halides decreases dramatically in order $\mathrm{Nal}>\mathrm{NaBr}>\mathrm{NaCl}$. The last being virtually insoluble in this solvent and a 1° and 2° chloro alkane in acetone is completely driven to the side of lodoalkane by the precipitation reaction.
A. Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for statement-1.
B. Statement-1 is true, Statement-2 is true and Statement-2 is Not the correct explanation for statement-1.
C. Statement-1 is true, Statement-2 is false.
D. Statement-1 is false, Statement-2 is true.

Answer: A:C

- Watch Video Solution

3. Encircle whichever of the following:
A. is the stronger nucleophile (aprotic solvent): F^{-}or I^{-}
B. is the stronger nucleophile (protic solvent): For I
C. is the stronger base : F^{-}or I^{-}
D. is the stronger nucleophile (protic solvent) : NH_{3}, or $\mathrm{NH}_{2} \mathrm{NH}_{2}$
(e) is the better leaving group : $\mathrm{CH}_{3} \mathrm{COO}^{-}$or $\mathrm{CH}_{3} \mathrm{SO}_{3}^{-}$

Answer:

D Watch Video Solution

4. Encircle whichever of the following:

undergoes	and	$S_{N}{ }^{2}$	reaction	more	rapidly,
$C H_{3}-\mathrm{Br}$	H_{3}	$r_{3}-$	$-\mathrm{CH}_{3}$		

- Watch Video Solution

5. Encircle whichever of the following:
$\mathrm{CH}_{3}-\mathrm{Br}$ or $\mathrm{CH}_{3}-\stackrel{\perp}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$

- Watch Video Solution

6. Encircle whichever of the following:
undergoes an E_{2} reaction to give (Z) - 1,2-diphenylpropene :

- Watch Video Solution

7. Encircle whichever of the following:
reacts with Nal to give (Z) - 1,2 diphenylpropene :

or $\mathrm{Br} \stackrel{+}{\mathrm{Ph}} \mathrm{O}-\mathrm{C}$

- Watch Video Solution

8. Encircle whichever of the following:
undergoes and $S_{N^{1}}$ reaction more rapidly,

- Watch Video Solution

9. Encircle whichever of the following :
undergoes and $S_{N^{2}}$ reaction more rapidly :

- Watch Video Solution

10. Encircle whichever of the following :
undergoes
an
$E_{1} \quad$ reaction
more rapidly

- Watch Video Solution

11. Encircle whichever of the following :
undergoes an $S_{N^{1}}$ reaction more rapidly :

or

- Watch Video Solution

12. Encircle whichever of the following :
undergoes an $S_{N^{2}}$ reaction more rapidly :

Or

13. Encircle whichever of the following : undergoes an E_{2} reaction more rapidly :

or

D Watch Video Solution

14. Match the column :

Alkyl halide			Relative rate $\left(S_{\mathbf{N}^{1}}\right)$		Relative rate $\left(\mathrm{S}_{\mathbf{N}^{2}}\right)$
(a)	$\mathrm{CH}_{3}-\mathrm{Br}$	(p)	1	(w)	1200
(b)	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$	(q)	1.05	(x)	40
(c)	$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{Br}$ CH_{3}	(r)	11	(y)	16
(d)	CH_{3} $\mathrm{CH}_{3}-\mathrm{C}-\mathrm{Br}$ $!$	(s)	1,200000	(z)	

15. Matrix :

- Watch Video Solution

16. Encircle whichever of the following :
undergoes an $S_{N^{2}}$ reaction more rapidly:

17. Encircle whichever of the following :
undergoes an $S_{N^{1}}$ reaction more rapidly :
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{Br}$ or $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$

- Watch Video Solution

18. Encircle whichever of the following :
undergoes an $S_{N^{1}}$ reaction more rapidly ,

Or

- Watch Video Solution

19. Reativity : Circle the reaction that reacts FASTER by $S_{N^{2}}$ in each pair,

- Watch Video Solution

20. Consider the potential energy diagram given below

(X) Name the positions A-D
(Y) Answer the following quesitons :
(i) Both reactiOn pathways are :
(ii) Which step is the determining step (RDS) ?
(iii) Which product is most stable?
(iv) In accordance with Hammonds postulate, exothermic reactions tend to have
A. early transition states that are reactant - like
B. late transition states that are reactant - like
C. early transition states that are product - like
D. late transition states that are product- like.

Answer: A::B::C::D

- Watch Video Solution

21. Select whether the following combinations of reactants will react by substitution $\quad\left(S_{N^{1}}\right.$ or $S_{N^{2}}$ mechanism) elimination $\quad\left(E_{1}\right.$ or E_{2}
mechanism)

Nal in acetone

$25^{\circ} \mathrm{C}$
A. $S_{N^{1}}$
B. $S_{N^{2}}$
C. E_{1}
D. E_{2}

Answer: A: B

- Watch Video Solution

22. Select whether the following combinations of reactants will react by substitution $\quad\left(S_{N^{1}}\right.$ or $S_{N^{2}}$ mechanism) elimination (E_{1} or E_{2}

A. $S_{N^{1}}$
B. $S_{N^{2}}$
C. E_{1}
D. E_{2}

Answer: B

- Watch Video Solution

23. Select whether the following combinations of reactants will react by substitution $\quad\left(S_{N^{1}}\right.$ or $S_{N^{2}}$ mechanism) elimination (E_{1} or E_{2}

NaOCH_{3} in methanol $25^{\circ} \mathrm{C}$

A. $S_{N^{1}}$
B. $S_{N^{2}}$
C. E_{1}
D. E_{2}

Answer: C::D

- Watch Video Solution

24. Select whether the following combinations of reactants will react by substitution $\quad\left(S_{N^{1}}\right.$ or $S_{N^{2}}$ mechanism) elimination $\quad\left(E_{1}\right.$ or E_{2}
mechanism)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH} \xrightarrow[25^{\circ} \mathrm{C}]{\xrightarrow{H \mathrm{Br}} 48 \% \text { in } \mathrm{H}_{2} \mathrm{O}}$
A. $S_{N^{1}}$
B. $S_{N^{2}}$
C. E_{1}
D. E_{2}

Answer: A::D

- Watch Video Solution

25. Select whether the following combinations of reactants will react by substitution $\quad\left(S_{N^{1}}\right.$ or $S_{N^{2}}$ mechanism) elimination (E_{1} or E_{2}
A. $S_{N^{1}}$
B. $S_{N^{2}}$
C. E_{1}
D. E_{2}

Answer: B

Watch Video Solution
26. Select whether the following combinations of reactants will react by substitution $\quad\left(S_{N^{1}}\right.$ or $S_{N^{2}}$ mechanism) elimination $\quad\left(E_{1}\right.$ or E_{2}
mechanism)

NaCN in ethano!
$25^{\circ} \mathrm{C}$
A. $S_{N^{1}}$
B. $S_{N^{2}}$
C. E_{1}
D. E_{2}

Answer: B

- Watch Video Solution

27. Select whether the following combinations of reactants will react by substitution $\quad\left(S_{N^{1}}\right.$ or $S_{N^{2}}$ mechanism) elimination (E_{1} or E_{2}

mechanism)

G. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
A. $S_{N^{1}}$
B. $S_{N^{2}}$
C. E_{1}
D. E_{2}

Answer: B

- Watch Video Solution

28. Examine the ten structural formulas shown in fig. \& select that satify each of the following conditions. Write one or more (a through J) in each answer box.

A. Which compounds give and $S_{N^{2}}$ substitution reaction on treatment with alcoholic NaSH ?
B. Which compounds give and E_{2} elimation reaction on treatment with alcoholic KOH ?
C. Which compounds do not react under either of the previous reaction conditions?

- Watch Video Solution

29. Select which reaction from the following reaction pairs will occur faster.

- Watch Video Solution

30. Select which reaction from the following reaction pairs will occur faster.
Reaction C

- Watch Video Solution

31. Select which reaction from the following reaction pairs will occur faster.

- Watch Video Solution

32. Select which reaction from the following reaction pairs will occur faster.

Reaction G	PaRT - 4
Reaction H	

- Watch Video Solution

33. Select which reaction from the following reaction pairs will occur faster.

- Watch Video Solution

34. Tick your answer in the given box.

Watch Video Solution
35. Match the column :

| (a) Column-1 | (p)It will uncergo Nucleophilic Substitution
 reaction | |
| :--- | :--- | :--- | :--- |
| (b) | (q) | It will undergo E_{2} reaction |
| (d) | (r) | It will undergo E_{1} reaction |

- View Text Solution

36.

(Watch Video Solution

Column (I)			Column (II)
(a)	$\mathrm{Ph}\left\lceil\mathrm{Cl} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}\right.$	(p)	$S_{N^{1}}$
(b)		(q)	$S_{N^{2}}$
(c)		(r)	Carbocation is intermediate
(d)	$\cdots \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Br}_{2}}$	(s)	Carbanion is intermediate

- Watch Video Solution

Column (1)			Column (II)
	(Reaction sequence)		(Reagent required)
(a)		(p)	Eto ${ }^{\ominus}$
(b)	$T^{D 1} \longrightarrow$	(q)	EtBr
(c)	$\geq \sum^{\mathrm{OEt}}$	(r)	$\mathrm{EtOH} / \mathrm{H}^{\oplus}$
(d)	$\mathrm{Et}-\mathrm{Cl} \longrightarrow$	(s)	$\mathrm{Et}-\mathrm{Cl} / \mathrm{Na}$ ether

38.

-
 Watch Video Solution

39. Choose the one compound within each set the meets the indicated criterion :

- Watch Video Solution

40. Comprehension

The first demonstration of the stereochemistry of the $S_{N^{2}}$ reaction was carried out in 1934 by Prof. E.D Hughes and his colleagues at the University of London. They allowed (R) -2- iodooctane to react with radioactive iodide ion (${ }^{*} I-$)

The rate of substitution (rate constant K_{5}) was determined by measuring the rate of incorporation of radioactivity into the alkyl halide. The rate of loss of optical acitivity from the alkyl halide (rate constant K_{0}) was also determined under the same conditions:

What ratio K_{0} / K_{s} is predicted for each of the following stereochemical

scenarios:

For inversion reaction :

A. $\frac{K_{O}}{K_{S}}=1$
B. $\frac{K_{O}}{K_{S}}<1$
C. $\frac{K_{O}}{K_{S}}>1$
D. can not be predicted

Answer:

- Watch Video Solution

41. Comprehension

The first demonstration of the stereochemistry of the $S_{N^{2}}$ reaction was carried out in 1934 by Prof. E.D Hughes and his colleagues at the University of London. They allowed (R) -2- iodooctane to react with radioactive iodide ion (${ }^{*} I-$)

The rate of substitution (rate constant K_{5}) was determined by measuring the rate of incorporation of radioactivity into the alkyl halide. The rate of loss of optical acitivity from the alkyl halide (rate constant K_{0}) was also determined under the same conditions:

What ratio K_{0} / K_{s} is predicted for each of the following stereochemical scenarios:

For equal amounts of both retention and inversion ?
A. $\frac{K_{O}}{K_{S}}=1$
B. $\frac{K_{O}}{K_{S}}<1$
C. $\frac{K_{O}}{K_{S}}>1$
D. can not be predicted

Answer:

D Watch Video Solution

