

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Parabola

1. Find the equation of the parabola whose focus is(1, 1) and tangent at the vertex is

Watch Video Solution

2. Find the equation of the parabola whose axis is parallel to X-axis and which passes through the point (0,4),(1,9) and (-2,6) . Also, find its latusrectum.

3. Find vertex, focus, directrix and latus rectum

of the parabola $y^2 + 4x + 4y - 3 = 0$.

Watch Video Solution

4. Prove that on the axis of any parabola there is a certain point 'k' which has the property that, if a chord PQ of parabola be drawn through it then $\frac{1}{(PK)^2} + \frac{1}{(QK)^2}$ is the

same for all positions of the chord.

5. The number of integral values of a for which the point (-2a,a+1) will be interior point of the smaller region bounded by the circle $x^2 + y^2 = 4$ and the parabola $y^2 = 4x$ is:

Watch Video Solution

6. Show that the tangents at the extremities of

any focal chord of a parabola intersect at right

angles at the directrix.

7. The Circumcircle of the triangle formed by any three tangents to a parabola passes through

Watch Video Solution

8. Three normals are drawn from the point (c,0) to the curve $y^2 = x$. Show that c must be greater than $\frac{1}{2}$. One normal is always the X-

axis. Find c for which the other two normals

are perpendicular to each other.

9. Let (x_r, y_r) , r=1,2,3,4 ne the points of intersection the parabola "y^2=4ax" and the circle"x^2+y^2+2gx+2fy+c=0"prove that

 $y_1 + y_2 + y_3 + y_4 = 0$

10. find the common tangents of the circle $x^2 + y^2 = 2a^2$ and the parabola $y^2 = 8ax$

Watch Video Solution

11. A parabola is drawn to pass through A and B, the ends of a diameter of a given circle of radius a, and to have as directrix a tangent to a concentric circle of radius the axes of reference being AB and a perpendicular

diameter, prove that the locus of the focus of

parabola
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2-a^2} = 1$$

Watch Video Solution

12. The locus of the middle points of normal

chords of the parabola $y^2=4ax$ is-

Watch Video Solution

13. Show that the locus of a point that divides

a chord of slope 2 of the parabola $y^2=4x$

internally in the ratio 1:2 is parabola. Find the

vertex of this parabola.

14. A variable chord PQ of the parabola $y = 4x^2$ subtends a right angle at the vertex. Then the locus of points of intersection of the tangents at P and Q is

15. Find the locus of the foot of the perpendicular drawn from a fixed point to any tangent to a parabola.

16. The locus of the poles of tangents to the parabola $y^2 = 4ax$ with respect to the parabola $y^2 = 4ax$ is

17. The general eqaution to a system of parallel chords of the parabola $y^2=rac{25}{7}xis4x-y+k=0.$ What is the

equation to the corresponding diameter?

18. A ray of light is coming along the line y = bfrom the positive direction of x-axis and striks a concave mirror whose intersection with xyplane is a parabola $y^2 = 4ax$. Find the equation of the reflected ray and show that it passes through the focus of the parabola.

Both a and b are positive.

19. A parabola is drawn touching the axis of x at the origin and having its vertex at a given distance k form this axis Prove that the axis of the parabola is a tangent to the parabola $x^2 = -8k(y - 2k).$

1. Find the equation of the parabola, if the focus is at (-6, -6) and the vertex is at (-2, 2)

its vertex and the equation of the double

ordinate through the focus.

4. If $(a^2, a - 2)$ be a point interior to the region of the parabola $y^2 = 2x$ bounded by the chord joining the points (2, 2) and (8, -4), then the set of all possible real values of a is

Watch Video Solution

5. Show that the tangents at the extremities of any focal chord of a parabola intersect at right

angles at the directrix.

7. Tangents are drawn from any point on the line x + 4a = 0 to the parabola $y^2 = 4ax$. Then find the angle subtended by the chord of contact at the vertex. 8. Prove that the area of triangle formed by the tangents to the parabola $y^2 = 4ax$ from the point (x_1, y_1) and the chord of contact is $rac{1}{2a} ig(y_1^2 - 4ax_1ig)^{3/2}$ sq. units.

Watch Video Solution

9. Points A, B, C lie on the parabola $y^2 = 4ax$ The tangents to the parabola at A, B and C, taken in pair, intersect at points P, Q and R. Determine the ratio of the areas of the

riangle ABC and riangle PQR

10. If P, Q, R are three points on a parabola $y^2 = 4ax$ whose ordinates are in geometrical progression, then the tangents at P and R meet on :

11. Prove that any three tangents to a parabola whose slopes are in harmonic progression

enclose a triangle of constant area.

12. Two straight lines are perpendicular to each other. One of them touches the parabola $y^2 = 4a(x + a)$ and the other touches $y^2 = 4b(x + b)$. Their point of intersection lies on the line. x - a + b = 0 (b)

Watch Video Solution

14. Prove that the normal chord to a parabola at the point whose ordinate is equal to the

abscissa subtends a right angle at the focus.

16. P & Q are the points of contact of the tangents drawn from the point T to the parabola $y^2 = 4ax$. If PQ be the normal to the

parabola at P, prove that TP is bisected by the

directrix.

17. For what values of 'a' will the tangents drawn to the parabola $y^2 = 4ax$ from a point, not on the y-axis, will be normal to the parabola $x^2 = 4y$.

18. Find the centre and radius of the smaller of the two circles that touch the parabola $75y^2 = 65(5x-3)$ at $\left(\frac{6}{5}, \frac{8}{5}\right)$ and the X axis.

Watch Video Solution

19. Prove that the length of the intercept on the normal at the point $Pig(at^2,2atig)$ of the parabola $y^2=4ax$ made by the circle

described on the line joining the focus and P

as diameter is $a\sqrt{1+t^2}$.

Watch Video Solution

20. Prove that the locus of the middle pointsof chords of the parabola $y^2 = 4ax$ through the vertex is also a parabola.Find focus and latus rectum of the locus.

21. Prove that the locus of a point, which moves so that its distance from a fixed line is equal to the length of the tangent drawn from it to a given circle, is a parabola.

Watch Video Solution

22. 5. The locus of point of intersection of two tangents to the parabola $y^2 = 4x$ such that their chord of contact subtends a right angle at the vertex is

23. Find the locus of the intersection of normals to the parabola $y^2 = 4ax$ at the extremities of a focal chord.

Watch Video Solution

24. Find the locus of the point of intersection of those normals to the parabola $x^2 = 8y$ which are at right angles to each other.

25. Find the locus of point of intersection of tangent to the parabola $y^2 = 4ax$ (i)which are inclined at an angle θ to each other. (ii) which intercept constant length c on the tangent at the vertex (iii) such that the area of ΔABC is constant c; where A and B are the points of intersection of tangents with the y-axis and R is a point of intersections of tangents.

26. Find the locus of the middle points of the chords of the parabola $y^2 = 4ax$ which subtend a right angle at the vertex of the parabola.

27. Show that the locus of points such that
two of the three normals drawn from them to
the parabola
$$y^2 = 4ax$$
 coincide is
 $27ay^2 = 4(x - 2a)^3$.

28. Prove that the locus of the point of intersection of the normals at the ends of a system of parallel chords of a parabola is a straight line which is a normal to the curve.

Watch Video Solution

29. Find the locus of the middle points of the chords of the parabola $y^2 = 4ax$ which

subtend a right angle at the vertex of the parabola.

Watch Video Solution

30. If two tangents to the parabola $y^2 = 4ax$ from a point P make angles θ_1 and θ_2 with the axis of the parabola, then find the locus of P in each of the following cases. $\tan^2 \theta_1 + \tan^2 \theta_2 = \lambda$ (a constant)

31. Locus of the feet of the perpendiculars drawn from vertex of the parabola $y^2 = 4ax$ upon all such chords of the parabola which subtend a right angle at the vertex is

Watch Video Solution

32. If the focus =(2,3)and directrix is x+y=1 then

the equation of the parabola is ____.

33. The line x+y+1=Otouches the parabola

$$y^2 = kx$$
 if k=____

Watch Video Solution

34. If the normals to the parabola $y^2 = 4ax$ at the ends of the latus rectum meet the parabola at QandQ', then \mathbb{Q}' is 10a (b) 4a(c) 20c (d) 12a

35. Write the length of het chord of the parabola $y^2 = 4ax$ which passes through the vertex and in inclined to the axis at $\frac{\pi}{4}$.

Watch Video Solution

37. The point of intersection of the tangents at

the ends of the latus rectum of the parabola

$$y^2=4x$$
 is_____

Watch Video Solution

38. Find the angle between the tangents drawn from (1, 3) to the parabola $y^2 = 4x$.

39. Find the equation of the circle described on the line segment joining the foci of the parabolas $x^2 - 4ay$ and $y^2 = 4a(x - a)$ as diameter.

Watch Video Solution

40. A double ordinate of the parabola $y^2 = 8px$ is of length 16p. The angle subtended by it at the vertex of the parabola .

is

D. d)none of these

Answer:

41. The equation of parabola whose vertex and

focus lie on the axis of x at distances a and a_1

from the origin respectively, is

A. a)
$$y^2=4(a\,{}^\prime-a)(x-a)$$

B. b)
$$y^2=4(a\,{}^\prime-a)(x-a\,{}^\prime)$$

C. c)
$$x^2=4(a\,{}^\prime-a)(y-a)$$

D. d)
$$y^2 = 4(a-a')(x-a)$$

Answer:

Watch Video Solution

42. f the normal at the point $P(at_1, 2at_1)$ meets the parabola $y^2 = 4ax$ again at $(at_2, 2at_2)$, then

A. a)
$$t_1 = -t_2 - rac{2}{t_2}$$

B. b) $rac{t_1 + t_2}{2} = rac{1}{t_1}$
C. c) $t_2 = -t_1 - rac{2}{t_1}$
D. d) $rac{t_1 + t_2}{2} = rac{1}{t_2}$

Answer:

Watch Video Solution

43. If the tangents to the parabola $y^2 = 4ax$ at the points (x_1, y_1) and $((x_2, y_2)$ meet at the point (x_3, y_3) then

A.
$$y_3=\sqrt{y_1y_2}$$

B.
$$2y_3 = y_1 + y_2$$

C. $rac{2}{y_3} = = rac{1}{y_1} + rac{1}{y_2}$

D. none of these

Answer: B

44. Find the condition that the line $x\coslpha+y\sinlpha=p$ touches the parabola $y^2 = 4ax.$

A. a)
$$p\coslpha+a\sin^2lpha=0$$

B. b)
$$p\sinlpha+a\cos^2lpha=0$$

C. c)
$$a\coslpha+p\sin^2lpha=0$$

D. d) $a\sinlpha+p\cos^2lpha=0$

Answer:

45. The angle between the tangents drawn from the origin to the parabola
$$y^2 = 4a(x-a)$$
 is

A. a) 90°

B. b) 30°

- C. c) $\tan^{-1}(1/2)$
- D. d) 45°

Answer:

Watch Video Solution

46. The equation of a tangent to the parabola $y^2 = 8xisy = x+2$. The point on this line

from which the other tangent to the parabola

is perpendicular to the given tangent is (1) (-1,1) (2) (0,2) (3) (2,4) (4) (-2,0)

A. a)(2,4)

B.b)(-2,0)

C. c)(-1,1)

D. d)none of these

Answer:

47. If ' t_1 'and ' t_2 'be the ends of a focal chord of the parabola $y^2 = 4ax$ then t_1t_2 is equal to

A. 1

B. -1

C. 2

D. none of these

Answer: B

48. The general equation to a system of parallel chords of the parabola $y^2 = 4x$ is y=2x+k.The equation of the corresponding diameter is .

Watch Video Solution

49. P is a point on the parabola $y^2 = 4ax$ and PQ is its focal chord. If PT is tangent at P and QN is normal at Q, the angle α , between PT and QN, distance between PT and QN is 'd' then

A. a)
$$0^\circ\,$$

B. b)
$$lpha=0^\circ$$

D. d)
$$rac{aig(1+t^2ig)^{3/2}}{t^2}$$

Answer:

Watch Video Solution

50. The radius of the circle whose centre is (-4,0) and which cuts the parabola $y^2=8x$ at

A and B such that the common chord AB subtends a right angle at the vertex of the parabola is equal to

Watch Video Solution

51. Let C_1 and C_2 be parabolas $x^2 = y - 1$ and $y^2 = x - 1$ respectively. Let P be any point on C_1 and Q be any point C_2 . Let P_1 and Q_1 be the reflection of P and Q, respectively w.r.t the line y = x then prove that P_1 lies on C_2 and Q_1 lies on C_1 and $PQ \ge [PP_1, QQ_1]$. Hence or otherwise , determine points P_0 and Q_0 on the parabolas C_1 and C_2 respectively such that $P_0Q_0 \leq PQ$ for all pairs of points (P,Q) with P on C_1 and Q on C_2