©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS

(HINGLISH)

Parabola

Example

1. Find the equation of the parabola whose
focus is $(1,1)$ and tangent at the vertex is
$x+y=1$.

D Watch Video Solution

2. Find the equation of the parabola whose axis is parallel to X-axis and which passes
through the point $(0,4),(1,9)$ and $(-2,6)$. Also,
find its latusrectum.

D Watch Video Solution
3. Find vertex, focus, directrix and latus rectum of the parabola $y^{2}+4 x+4 y-3=0$.

D Watch Video Solution

4. Prove that on the axis of any parabola there is a certain point ' k ' which has the property
that, if a chord PQ of parabola be drawn through it then $\frac{1}{(P K)^{2}}+\frac{1}{(Q K)^{2}}$ is the same for all positions of the chord.
5. The number of integral values of a for which the point $(-2 a, a+1)$ will be interior point of the smaller region bounded by the circle $x^{2}+y^{2}=4$ and the parabola $y^{2}=4 x$ is:

- Watch Video Solution

6. Show that the tangents at the extremities of any focal chord of a parabola intersect at right angles at the directrix.
7. The Circumcircle of the triangle formed by any three tangents to a parabola passes through

D Watch Video Solution

8. Three normals are drawn from the point
$(\mathrm{c}, 0)$ to the curve $y^{2}=x$. Show that c must be greater than $\frac{1}{2}$. One normal is always the X -
axis. Find c for which the other two normals are perpendicular to each other.

D Watch Video Solution

9. Let $\left(x_{r}, y_{r}\right), r=1,2,3,4$ ne the points of intersection the parabola " $y^{\wedge} 2=4 a x$ " and the circle" $x^{\wedge} 2+y^{\wedge} 2+2 g x+2 f y+c=0$ "prove that
$y_{1}+y_{2}+y_{3}+y_{4}=0$

D Watch Video Solution

10. find the common tangents of the circle $x^{2}+y^{2}=2 a^{2}$ and the parabola $y^{2}=8 a x$

D Watch Video Solution

11. A parabola is drawn to pass through A and
B, the ends of a diameter of a given circle of radius a, and to have as directrix a tangent to
a concentric circle of radius the axes of reference being $A B$ and a perpendicular
diameter, prove that the locus of the focus of parabola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}-a^{2}}=1$

D Watch Video Solution

12. The locus of the middle points of normal chords of the parabola $y^{2}=4 a x$ is-

D Watch Video Solution

13. Show that the locus of a point that divides
a chord of slope 2 of the parabola $y^{2}=4 x$
internally in the ratio $1: 2$ is parabola. Find the vertex of this parabola.

D Watch Video Solution

14. A variable chord $P Q$ of the parabola $y=4 x^{2}$ subtends a right angle at the vertex.

Then the locus of points of intersection of the tangents at P and Q is
15. Find the locus of the foot of the perpendicular drawn from a fixed point to any tangent to a parabola.

D Watch Video Solution

16. The locus of the poles of tangents to the parabola $y^{2}=4 a x$ with respect to the parabola $y^{2}=4 a x$ is
17. The general eqaution to a system of parallel chords of the parabola
$y^{2}=\frac{25}{7} x i s 4 x-y+k=0$. What is the equation to the corresponding diameter?

D Watch Video Solution

18. A ray of light is coming along the line $y=b$
from the positive direction of x-axis and striks
a concave mirror whose intersection with $x y$ -
plane is a parabola $y^{2}=4 a x$. Find the equation of the reflected ray and show that it
passes through the focus of the parabola. Both a and b are positive.

D Watch Video Solution

19. A parabola is drawn touching the axis of x at the origin and having its vertex at a given distance k form this axis Prove that the axis of the parabola is a tangent to the parabola $x^{2}=-8 k(y-2 k)$.
20. Find the equation of the parabola, if the focus is at $(-6,-6)$ and the vertex is at $(-2,2)$

- Watch Video Solution

2. Prove that the equation
$y^{2}+2 a x+2 b y+c=0$
represents
a
parabola whose axis is parallel to x-axis. Find
its vertex and the equation of the double ordinate through the focus.

D Watch Video Solution

$$
\begin{aligned}
& \text { 3. Prove that the equation } \\
& y^{2}-2 y+8 x-23=0 \text { Oreprsents a parabola }
\end{aligned}
$$

and find its focus and directrix.

D Watch Video Solution
4. If $\left(a^{2}, a-2\right)$ be a point interior to the region of the parabola $y^{2}=2 x$ bounded by the chord joining
the
points
$(2,2)$ and $(8,-4)$, then the set of all possible real values of a is

- Watch Video Solution

5. Show that the tangents at the extremities of any focal chord of a parabola intersect at right angles at the directrix.
6. The orthocenter of a triangle formed by 3 tangents to a parabola $y^{2}=4 a x$ lies on

D Watch Video Solution

7. Tangents are drawn from any point on the line $x+4 a=0$ to the parabola $y^{2}=4 a x$.

Then find the angle subtended by the chord of contact at the vertex.
8. Prove that the area of triangle formed by the tangents to the parabola $y^{2}=4 a x$ from the point $\left(x_{1}, y_{1}\right)$ and the chord of contact is $\frac{1}{2 a}\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2}$ sq. units.

- Watch Video Solution

9. Points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ lie on the parabola $y^{2}=4 a x$

The tangents to the parabola at A, B and C , taken in pair, intersect at points P, Q and R .

Determine the ratio of the areas of the
$\triangle A B C$ and $\triangle P Q R$

D Watch Video Solution

10. If P, Q, R are three points on a parabola $y^{2}=4 a x$ whose ordinates are in geometrical progression, then the tangents at P and R meet on :
11. Prove that any three tangents to a parabola
whose slopes are in harmonic progression enclose a triangle of constant area.

D Watch Video Solution

12. Two straight lines are perpendicular to each other. One of them touches the parabola $y^{2}=4 a(x+a)$ and the other touches
$y^{2}=4 b(x+b)$. Their point of intersection
lies on the line. $x-a+b=0$
$x+a-b=0 \quad x+a+b=0$
$x-a-b=0$

D Watch Video Solution

13. Find the equation of the chord to the parabola $y^{2}=4 a x$ whose middle point is (h, k).

D Watch Video Solution

14. Prove that the normal chord to a parabola at the point whose ordinate is equal to the
abscissa subtends a right angle at the focus.

- Watch Video Solution

15. Show that the area formed by the normals
to $y^{2}=4 a x$ at the points t_{1}, t_{2}, t_{3} is

D Watch Video Solution

16. $P \& Q$ are the points of contact of the
tangents drawn from the point T to the parabola $y^{2}=4 a x$. If PQ be the normal to the
parabola at P, prove that TP is bisected by the directrix.

D Watch Video Solution

17. For what values of 'a' will the tangents drawn to the parabola $y^{2}=4 a x$ from a point, not on the y-axis, will be normal to the parabola $x^{2}=4 y$.
18. Find the centre and radius of the smaller of
the two circles that touch the parabola
$75 y^{2}=65(5 x-3)$ at $\left(\frac{6}{5}, \frac{8}{5}\right)$ and the x axis.

D Watch Video Solution

19. Prove that the length of the intercept on
the normal at the point $P\left(a t^{2}, 2 a t\right)$ of the parabola $y^{2}=4 a x$ made by the circle
described on the line joining the focus and P as diameter is $a \sqrt{1+t^{2}}$.

D Watch Video Solution

20. Prove that the locus of the middle pointsof chords of the parabola $y^{2}=4 a x$ through the vertex is also a parabola.Find focus and latus rectum of the locus.
21. Prove that the locus of a point, which moves so that its distance from a fixed line is equal to the length of the tangent drawn from it to a given circle, is a parabola.

- Watch Video Solution

22. 5. The locus of point of intersection of two
tangents to the parabola $y^{2}=4 x$ such that their chord of contact subtends a right angle at the vertex is
1. Find the locus of the intersection of normals to the parabolay ${ }^{2}=4 a x$ at the extremities of a focal chord.

- Watch Video Solution

24. Find the locus of the point of intersection
of those normals to the parabola $x^{2}=8 y$ which are at right angles to each other.
25. Find the locus of point of intersection of tangent to the parabola $y^{2}=4 a x$ (i)which are inclined at an angle θ to each other. (ii) which intercept constant length c on the tangent at the vertex (iii) such that the area of $\Delta A B C$ is constant c; where A and B are the points of intersection of tangents with the y-axis and R is a point of intersections of tangents.

- Watch Video Solution

26. Find the locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola.

D Watch Video Solution

27. Show that the locus of points such that two of the three normals drawn from them to
the parabola $y^{2}=4 a x \quad$ coincide is
$27 a y^{2}=4(x-2 a)^{3}$.
28. Prove that the locus of the point of intersection of the normals at the ends of a system of parallel chords of a parabola is a straight line which is a normal to the curve.

- Watch Video Solution

29. Find the locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which
subtend a right angle at the vertex of the parabola.

D Watch Video Solution

30. If two tangents to the parabola $y^{2}=4 a x$ from a point P make angles θ_{1} and θ_{2} with the axis of the parabola, then find the locus of
P in each of the following cases. $\tan ^{2} \theta_{1}+\tan ^{2} \theta_{2}=\lambda($ a constant)
31. Locus of the feet of the perpendiculars drawn from vertex of the parabola $y^{2}=4 a x$ upon all such chords of the parabola which subtend a right angle at the vertex is

D Watch Video Solution

32. If the focus $=(2,3)$ and directrix is $x+y=1$ then the equation of the parabola is \qquad .

- Watch Video Solution

33. The line $x+y+1=O t o u c h e s ~ t h e ~ p a r a b o l a$ $y^{2}=k x$ if $\mathrm{k}=$

D Watch Video Solution

34. If the normals to the parabola $y^{2}=4 a x$ at the ends of the latus rectum meet the parabola at $\operatorname{Qand} Q^{\prime}$, then \mathbb{Q}^{\prime} is $10 a$ (b) $4 a$ (c) $20 c$ (d) $12 a$

D Watch Video Solution

35. Write the length of het chord of the parabola $y^{2}=4 a x$ which passes through the vertex and in inclined to the axis at $\frac{\pi}{4}$.

D Watch Video Solution

36. Find the condition that the line $x \cos \alpha+y \sin \alpha=p$ touches the parabola $y^{2}=4 a x$.

D Watch Video Solution

37. The point of intersection of the tangents at

 the ends of the latus rectum of the parabola $y^{2}=4 x$ is
- Watch Video Solution

38. Find the angle between the tangents drawn from $(1,3)$ to the parabola $y^{2}=4 x$.

- Watch Video Solution

39. Find the equation of the circle described on the line segment joining the foci of the parabolas $x^{2}-4 a y$ and $y^{2}=4 a(x-a)$ as diameter.

- Watch Video Solution

40. A double ordinate of the parabola
$y^{2}=8 p x$ is of length $16 p$. The angle subtended by it at the vertex of the parabola is
A. а) $\frac{\pi}{4}$
B. b) $\frac{\pi}{2}$
C. c) $\frac{\pi}{3}$
D. d)none of these

Answer:

D Watch Video Solution

41. The equation of parabola whose vertex and focus lie on the axis of x at distances a and a_{1} from the origin respectively, is

$$
\begin{aligned}
& \text { A. a) } y^{2}=4\left(a^{\prime}-a\right)(x-a) \\
& \text { B. b) } y^{2}=4\left(a^{\prime}-a\right)\left(x-a^{\prime}\right) \\
& \text { C. c) } x^{2}=4\left(a^{\prime}-a\right)(y-a) \\
& \text { D. d) } y^{2}=4\left(a-a^{\prime}\right)(x-a)
\end{aligned}
$$

Answer:

D Watch Video Solution

42. f the normal at the point $P\left(a t_{1}, 2 a t_{1}\right)$
meets the parabola $y^{2}=4 a x$ aguin at
$\left(a t_{2}, 2 a t_{2}\right)$, then

> A. a) $t_{1}=-t_{2}-\frac{2}{t_{2}}$
> B. b) $\frac{t_{1}+t_{2}}{2}=\frac{1}{t_{1}}$
> C. c) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
> D. d) $\frac{t_{1}+t_{2}}{2}=\frac{1}{t_{2}}$

Answer:

D Watch Video Solution

43. If the tangents to the parabola $y^{2}=4 a x$ at
the points $\left(x_{1}, y_{1}\right)$ and $\left(\left(x_{2}, y_{2}\right)\right.$ meet at the point $\left(x_{3}, y_{3}\right)$ then
A. $y_{3}=\sqrt{y_{1} y_{2}}$
B. $2 y_{3}=y_{1}+y_{2}$
C. $\frac{2}{y_{3}}==\frac{1}{y_{1}}+\frac{1}{y_{2}}$
D. none of these

Answer: B

D Watch Video Solution

44. Find the condition that the line
$x \cos \alpha+y \sin \alpha=p$ touches the parabola
$y^{2}=4 a x$.
A. a) $p \cos \alpha+a \sin ^{2} \alpha=0$
B. b) $p \sin \alpha+a \cos ^{2} \alpha=0$
C. c) $a \cos \alpha+p \sin ^{2} \alpha=0$
D. d) $a \sin \alpha+p \cos ^{2} \alpha=0$

Answer:

D Watch Video Solution
45. The angle between the tangents drawn from the origin to the parabola
$y^{2}=4 a(x-a)$ is
A. a) 90°
B. b) 30°
C. c) $\tan ^{-1}(1 / 2)$
D. d) 45°

Answer:

D Watch Video Solution

46. The equation of a tangent to the parabola
$y^{2}=8 x i s y=x+2$. The point on this line
from which the other tangent to the parabola
is perpendicular to the given tangent is (1)

$$
(-1,1)(2)(0,2)(3)(2,4)(4)(-2,0)
$$

A. a) $(2,4)$
B. b) $(-2,0)$
C. c) $(-1,1)$
D. d)none of these

Answer:
(Watch Video Solution
47. If' t_{1} 'and ' t_{2} ' be the ends of a focal chord of the parabola $y^{2}=4 a x$ then $t_{1} t_{2}$ is equal to
A. 1
B. -1
C. 2
D. none of these

Answer: B

D Watch Video Solution
48. The general equation to a system of parallel chords of the parabola $y^{2}=4 x$ is $y=2 x+k$.The equation of the corresponding diameter is \qquad .

- Watch Video Solution

49. P is a point on the parabola $y^{2}=4 a x$ and $P Q$ is its focal chord. If PT is tangent at P and QN is normal at Q , the angle α, between $P T$ and $Q N$, distance between PT and QN is 'd' then
A. a) $0^{\circ}<\alpha<90^{\circ}$
B. b) $\alpha=0^{\circ}$
C. c) $d=0$
D. d) $\frac{a\left(1+t^{2}\right)^{3 / 2}}{t^{2}}$

Answer:

D Watch Video Solution

50. The radius of the circle whose centre is
$(-4,0)$ and which cuts the parabola $y^{2}=8 x$ at
A and B such that the common chord $A B$ subtends a right angle at the vertex of the parabola is equal to

D Watch Video Solution

51. Let C_{1} and C_{2} be parabolas $x^{2}=y-1$ and $y^{2}=x-1$ respectively. Let P be any point on C_{1} and Q be any point C_{2}. Let P_{1} and
Q_{1} be the reflection of P and Q , respectively w.r.t the line $\mathrm{y}=\mathrm{x}$ then prove that P_{1} lies on C_{2} and Q_{1} lies on C_{1} and $P Q \geq\left[P P_{1}, Q Q_{1}\right]$.

Hence or otherwise, determine points P_{0} and
Q_{0} on the parabolas C_{1} and C_{2} respectively such that $P_{0} Q_{0} \leq P Q$ for all pairs of points (P, Q) with P on C_{1} and Q on C_{2}

