

CHEMISTRY

BOOKS - MS CHOUHAN

HYDROCARBONS (ALKANES)

Level 1

1. On halogenation, an alkane gives only one monohalogenated product.

The alkane may be:

- A. 2-methyl butane
- B. 2, 2-dimethyl propane
- C. cyclopentane
- D. both (b) and (c)

Answer: D

2.	Which	of t	he	fallowing	compounds	can	be	best	prepared	by	wurtz-
re	action?										

A. Iso-butane

B. n-butane

C. n-pentane

D. Iso-pentane

Answer: B

Watch Video Solution

3. A hydrocarbon A(V.D=36)forms only one monochloro substitution product.A will be:

A. iso-pentane

B. neo-pentane						
C. cyclohexane						
D. methyl-cyclohexane						
Answer: B						
Watch Video Solution						
4. Ethyl iodide and n-propyl iodide are allowed to under go wurtz						
reaction. The alkane which will not be obtained in this reaction is						
A. butane						
B. propane						
C. pentane						
D. hexane						
Answer: B						
Watch Video Solution						

5.
$$CH_3 - CH - CH_2 - CH_3 \xrightarrow{Cl_2} hv$$

Number of chiral centers generated during monochlorination in the above reaction :

- A. 1
- B. 2
- C. 3
- D. 4

Answer: B

- **6.** $CH_3Cl o CH_4$ Above conversion can be achieved by :
 - A. Zn/H^+
 - B. $LiAlH_4$

C. Mg/(ether) then ${\cal H}_2{\cal O}$

D. all of these

Answer: D

Watch Video Solution

7. n-Butane $\stackrel{Cl_2/hv}{\longrightarrow}$

Give the total number of monochloro products (including stereoisomers), which are possible in the above reaction.

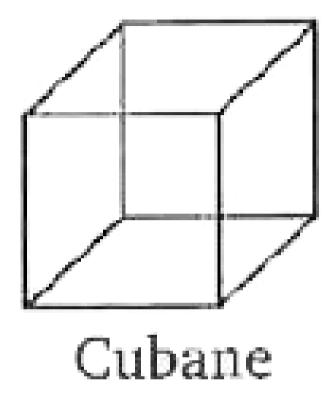
- A. 2
- B. 3
- C. 4
- D. 5

Answer: B

8. $CH_4+Cl_2\stackrel{hv}{\longrightarrow} CH_3Cl+HCl$ to obtain high yields of CH_3Cl , the ratio of CH_4 to Cl_2 must be

A. high

B. low


C. equal

D. Can't be predicted

Answer: A

9. Double bond equivalent of cubane is :

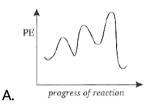
A. 4

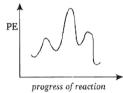
B. 5

C. 6

D. 7

10. How many bond cleavages are required to convert cubane into non-cyclic skeleton?



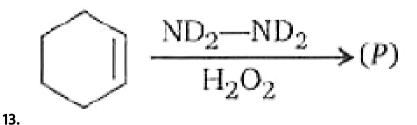

- A. 2
- B. 3
- C. 4
- D. 5


Answer: D

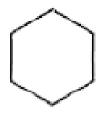
11. Draw an energy profile diagram for a three step-reaction in which first step is slowest and last step is fastest. (Assume that reaction is exothermic)

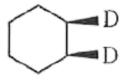
D. None of these

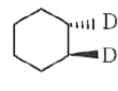
Answer: C


12. $CH_3 - CH - CH_2 - CH_3 \xrightarrow{Cl_2} (x)$ = Number of monochloro CH_3

product including stereoisomers.


- A. 4
- B. 5
- C. 6
- D. 7

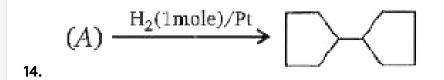

Answer: C



Product (P) is:

D. both (b) and (c)

Answer: B


A.

В.

C.

Watch Video Solution

Double bond equivalent (degree of Unsaturation) of (A) is :

- A. 1
- B. 2
- C. 3
- D. 4

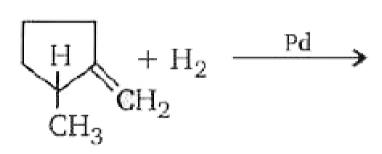
Watch Video Solution

15. Arrange the following alkanes in decreasing order of their heats of combustion.

(i)
$$CH_3 - egin{pmatrix} CH_3 & | & & \ | & CH_3 & | & \ | & CH_3 & \ & CH_3 & \ & (ext{Neo-pentane}) \ (\emph{i}) \end{pmatrix}$$

(ii)
$$CH_3-CH-CH_2-CH_3 \ CH_3 \ (ext{Iso-pentane})$$
 (ii)

(iii)
$$CH_3-CH_2-CH_2-CH_2-CH_3 = \frac{1}{(ext{n-pentane})}$$


A.
$$(i) > (ii) > (iii)$$

$$\mathsf{B.}\left(iii\right) > (i) > (ii)$$

$$\mathsf{C.}\left(iii\right)>\left(ii\right)>\left(i\right)$$

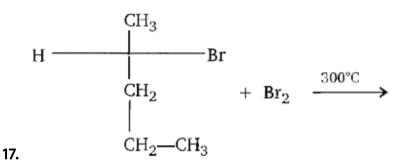
Watch Video Solution

16.

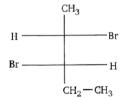
Product of the above reaction will be:

A. Racemic mixture

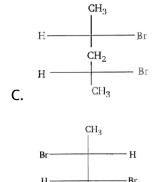
B. Diastereomers


C. Meso

D. Constitutional isomers


Answer: B

Watch Video Solution



Which of the following compound will not be obtained as a product in the above reaction ?

A.

Answer: D

D.

Watch Video Solution

 $CH_2 - CH_3$

18. Following are the structures of four isomer of hexane. Among the names given below, which correctly identifies the fifth isomer?

 $CH_3CH_2CH_2CH_2CH_3$

 $(CH_3)_3CCH_2CH_3$

 $(CH_3)_2CHCH_2CH_2CH_3$

 $(CH_3)_2CHCH(CH_3)_2$

A. 2-methyl pentane

- B. 2-Ethyl butane
- C. 2, 3-Dimethyl butane
- D. 3-Methyl pentane

Answer: D

Watch Video Solution

19. Which of the fallowing describes the best relationship between the methyl groups in the chair conformation of the substance shown below?

A. Trans

B. Anti C. Gauche D. Eclipsed Answer: C

Watch Video Solution

- 20. compare the stabilities of the fallowing two compounds (A) and (B)
- A: cis:-1-ethyl-3-methyl cyclohexane B: trans -1-ethyl -3-methyl cyclohexane
 - A. A is more stable
 - B. B is more stable
 - C. A and B are of equal stability
 - D. No comparison can be made

Answer: A

21. Which conformation of ethane has the lowest potential energy?			
A. Eclipsed			
B. Skew			
C. Staggered			
D. All will have equal potential energy			
Answer: C			
Watch Video Solution			
22. Ethane is subjected to combustion processes. During the combustion			
the hybrid state of carbon changes from			

A. sp^2 to sp^3

B. sp^3 to ${\sf sp}$

C. sp to sp^3

D.
$$sp^2$$
 to sp^2

Answer: B

Watch Video Solution

23. The reaction $CH_3-CH_2-CH_2-CH_3 \xrightarrow{HCl \; \mathrm{Gas}} AlCl_3$

$$CH_3 - CH - CH_3$$
 , is an example of $_{CH_3}^{\mid}$

- A. isomerization
- B. polymerization
- C. cracking
- D. de-hydrogenation

Answer: A

24. Which of the fallowing has highest chlorine content?					
A. Pyrene					
B. DDT					
C. Chloral					
D. Gammaxene					
Answer: A					
Watch Video Solution					
25. Pure methane can be prepared by:					
A. Wurtz reaction					
B. Kolbe electrolysis method					
C. soda-lime de-carboxylation					
D. reduction with H_2					

Watch Video Solution

26. Calcium carbide + heavy water \rightarrow ? The product of the above

reaction is

- A. C_2H_2
- B. CaD_2
- $C. Ca(OD)_2$
- D. CD_4

Answer: C

$$\mathrm{CH_3}-\mathrm{CH_2}-$$
Ethyl cyclopentane

$$\mathrm{CH_3}-\mathrm{CH_2}-$$
 Ethyl cyclohexane

(II)

$$\operatorname{CH}_3 - \operatorname{CH}_2$$
Ethyl cycloheptane
(III)

Ethyl cyclopentano

Arrange the compounds I, II and III in decreasing order of their heats of combustion:

A.
$$II > I > III$$

B.
$$I > II > III$$

D.
$$III > I > II$$

Answer: C

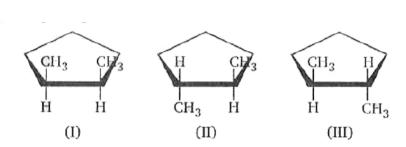
Watch Video Solution

28. An alkane with mol.mass = 86 on bromination gives only two monobromo derivatives (excluding stereoisomers). The alkane is

$$egin{array}{c} CH_3 \ CH_3 - C \ C - CH_2 - CH_3 \ CH_3 \end{array}$$
 C. $CH_3 - CH - CH - CH_3 \ CH_3 \ CH_3 \ CH_3 \end{array}$ D. $CH_3 - CH_3 \ CH_3$

hybridized carbon atom is :

29. Order of the bond strength of C – H bonds involving sp, $sp^2 \; {
m and} \; sp^3$


A.
$$sp>sp^2>sp^3$$

$$\mathtt{B.}\, sp^3 > sp^2 > sp$$

$$\mathsf{C.}\, sp^2 > sp^3 > sp$$

D.
$$sp^2>sp>sp^3$$

Answer: A

Among the structures given, select the enantiomers:

A. I and II

30.

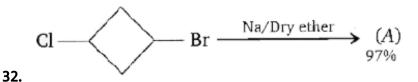
- B. I and III
- C. II and III
- D. I, II and III

Answer: C

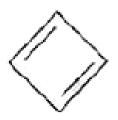
(I)

31.

(II) (III)


The correct order of reactivity of I, II & III towards addition reactions is:

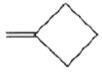
- A. I>III>II
- $\mathrm{B.}\,I > II > III$
- $\mathsf{C}.\,III > II > I$
- D. III > I > II


Answer: B

Watch Video Solution

Product (A) of above reaction is:

A.



В.

C.

D.

Answer: B

33. Which of the following reactants is suitable for preparation of methane and ethane by using one step only?

A.
$$H_2C=CH_2$$

 $\mathsf{B.}\,CH_3OH$

C. $CH_3 - Br$

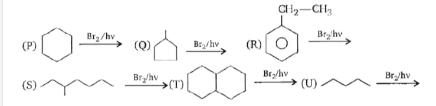
D. $CH_3 - CH_2 - OH$

Answer: C

34. How many carbon atoms does an alkane (not a cycloalkane) need before it can exist in enantiomeric form?

A. 4

B. 5


C. 6

Answer: D

Watch Video Solution

35. Among the following free radical bromination reactions, select those in which 2° halide is the major product-

A. P, Q, R, S

B. P, R, U

C. P, R, S, T

D. P, Q, R, S, T

Answer: B

Valcii Video Solution

36. $(A)+Cl_2\stackrel{hv}{\longrightarrow} ext{monochloro product}$

To maximise the yield of monochloro product in the above reaction?

- A. Cl_2 must be added in excess
- B. Reactant (A) must be added in excess
- C. Reaction must be carried out in dark
- D. Reaction must be carried out with equimolar mixture of Cl_2 and A

Answer: B

Watch Video Solution

37.
$$CH_3 - \overset{CH_3}{CH} - CH_2 - CH_3 + Br_2 \stackrel{hv}{\longrightarrow}$$

Major organic product of the reaction is

A. Racemic mixture

B. Meso

C. Diastereomers

D. Constitutional isomers

Answer: A

Watch Video Solution

38. Select the chain propogation steps in the free-radical chlorination of methane

- 1) $Cl_2
 ightarrow 2Cl^+$ 2) $Cl^+ + CH_4
 ightarrow CH_3Cl + H^+$
- 3) $Cl^{\cdot}+CH_4
 ightarrow CH_3^{\cdot}+HCl$ 4) $H^{\cdot}+Cl_2
 ightarrow HCl+Cl^{\cdot}$
- 5) $CH_3^+ + Cl_2
 ightarrow CH_3Cl + Cl^+$
 - A. 2, 3, 5
 - B. 1, 3, 6
 - C. 3, 5
 - D. 2, 3, 4

Watch Video Solution

The number of possible monobromo products is (excluding stereoisomers)

- A. 4
- B. 5
- C. 8
- D. 10

Answer: B

$$H^{d}$$
 H^{b}
 CH_{2}
 H^{c}
 CH_{2}
 H^{c}

40.

 Br^{\cdot} will abstract which of the hydrogen most readily ?

- A. a
- B.b
- C. c
- D. d

Answer: A

Watch Video Solution

41. Arrange the following compounds in decreasing order of their heats of combustion

A.
$$(iii)>(ii)>(i)$$

$$\mathtt{B.}\,(ii) > (i) > (iii)$$

$$\mathsf{C.}\left(iii\right)>\left(i\right)>\left(ii\right)$$

$$\mathsf{D}.\left(i
ight)>\left(ii
ight)>\left(iii
ight)$$

Answer: D

Watch Video Solution

42.
$$CH_3 - CH_2 - CH_2 - CH_2 - F$$

Arrange the hydrogens a, b, c, d, in decreasing order of their reactivities

towards chlorination:

$$\operatorname{A.} a > b > c > d$$

$$\operatorname{B.}b>c>d>a$$

$$\mathsf{C}.\,b>c>a>d$$

D.
$$c > b > a > d$$

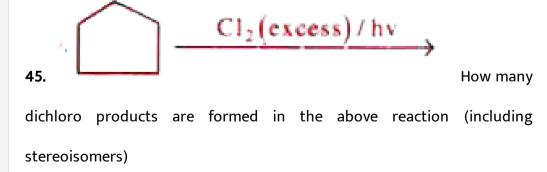
Watch Video Solution

- 43. On catalytic reduction with H/Pt how many alkenes will give n-butane?
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: C

44. On catalytic reduction (H_2/Pt) how many alkenes will give 2-methylbutane ?

A. 1


B. 2

C. 3

D. 4

Answer: C

- A. 5
- B. 6
- C. 7
- D. 9

Watch Video Solution

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3

46.

Product of the above reaction will be:

- A. Racemic mixture
- **B.** Diastereomers
- C. Meso
- D. Constitutional isomers

Answer: A

Watch Video Solution

47. $Ph-CH_2-CH-CH_3 \xrightarrow{Br_2/hv}$ Product of the above reaction will

be:

- A. Diastereomers
- B. Racemic mixture
- C. Meso
- D. Constitutional isomers

Answer: A

$$\begin{array}{c|c} \text{CH}_2-\text{Cl} \\ \hline \text{CH}_3 & \xrightarrow{\text{Na/(Dry ether)}} \end{array}$$

Product obtained in above Wurtz reaction is:

$$_{\mathrm{CH}_{3}}$$
 $_{\mathrm{CH}_{3}}$

D. Both (a) and (b)

Answer: D

48.

49. Rank the transition states that occur during the following reaction

steps in order of increasing stability (least \rightarrow most stable):

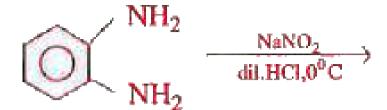
1.
$$H_3C-\stackrel{+}{O}H_2
ightarrow CH_3^{\ +}+H_2O$$

2.
$$(CH_3)_3C-\overset{+}{C}H_2 o (CH_3)_3C^{\,+}+H_2O$$

3.
$$(CH_3)_2CH-\overset{+}{O}H_2 o (CH_3)_2CH^{+}+H_2O$$

A.
$$1 < 2 < 3$$

$${\rm B.}\,2<3<1$$

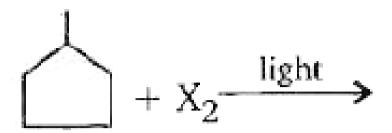

$$\mathsf{C.}\,1<3<2$$

$$\mathsf{D.}\,2<1<3$$

Answer: C

50. The major product of the reaction is

$$Br \longrightarrow Br \xrightarrow{Na} dry \text{ ether} \rightarrow \emptyset$$

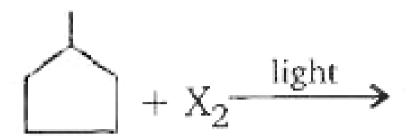

Answer: D

Watch Video Solution

Level 2 1 Comprehension

1. For the given question (1, 2, 3), consider the following reaction.

monohalogenation product


Light in involved in which step of the reaction:

- A. Initiation only
- B. Termination only
- C. Propagation only
- D. Propagation and Termination

Answer: A

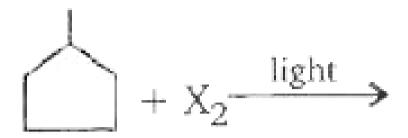
2. For the given question (1, 2, 3), consider the following reaction.

monohalogenation product

Which halogen will give the best yield of a single monohalogenation product?

A. F_2

B. Cl_2

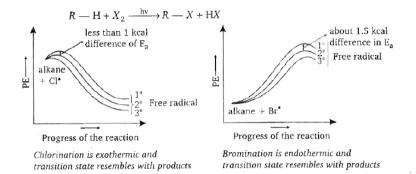

 $\mathsf{C.}\,Br_2$

D. I_2

Answer: C

3. For the given question, consider the following reaction.

monohalogenation product


How many monohalo derivatives are possible (excluding stereoisomers)?

- A. 3
- B. 4
- C. 5
- D. 6

Answer: B

1. Halogenation is a substitution reaction, where halogen replaces one or more hydrogens of hydrocarbon.

Chlorine free radical make $1^{\circ}, 2^{\circ}, 3^{\circ}$ radicals with almost equal ease, whereas bromine free radicals have a clear preference for the formation of tertiary free radicals. So, bromine is less reactive, and more slective whereas chlorine is less selective and more reactive.

The relative rate of abstraction of hydrogen by Br is

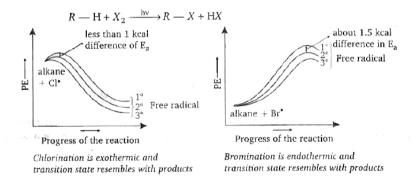
$$3^{\circ} > 2^{\circ} > 1^{\circ} \ (1600) \ (82) \ (1)$$

The relative rate of abstraction of hydrogen by Cl is

1-halo-2, 3-dimethyl butane will be obtained in better yields, if halogen is:

A. Br_2

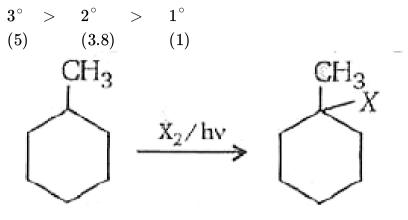
B. Cl_2


D. Can't be predicted

Answer: B

Watch Video Solution

2. Halogenation is a substitution reaction, where halogen replaces one or more hydrogens of hydrocarbon.

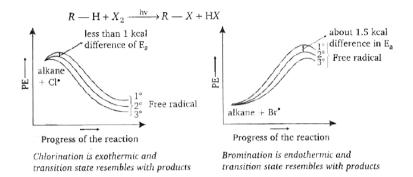


Chlorine free radical make $1^{\circ}, 2^{\circ}, 3^{\circ}$ radicals with almost equal ease, whereas bromine free radicals have a clear preference for the formation of tertiary free radicals. So, bromine is less reactive, and more slective whereas chlorine is less selective and more reactive.

The relative rate of abstraction of hydrogen by Br is

 $3^{\circ} > 2^{\circ} > 1^{\circ} \ (1600) \ (82) \ (1)$

The relative rate of abstraction of hydrogen by Cl is


Above product will obtained in better yield if X is

- A. Cl_2
- B. I_2
- C. Br_2
- D. Can't be predicted

Answer: C

3. Halogenation is a substitution reaction, where halogen replaces one or more hydrogens of hydrocarbon.

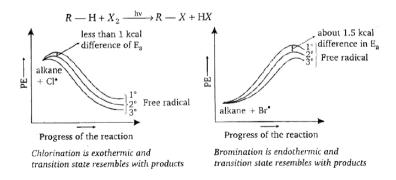
Chlorine free radical make $1^{\circ}, 2^{\circ}, 3^{\circ}$ radicals with almost equal ease, whereas bromine free radicals have a clear preference for the formation of tertiary free radicals. So, bromine is less reactive, and more slective whereas chlorine is less selective and more reactive.

The relative rate of abstraction of hydrogen by Br is

$$3^{\circ} > 2^{\circ} > 1^{\circ} \ (1600) \ (82) \ (1)$$

The relative rate of abstraction of hydrogen by Cl is

Major product in the above reaction is:


A.
$$CH_3$$
 $\stackrel{CH_3}{-}$ $\stackrel{CH_3}{-}$ $\stackrel{CH_3}{-}$ $\stackrel{CH_3}{-}$ $\stackrel{CH_3}{-}$ $\stackrel{C}{-}$ $\stackrel{C}{-}$

D.
$$CH_3-\overset{Cl}{\overset{}{\overset{}{\underset{}{Cl}}}}-CH_2-CH_3$$

Answer: A

4. Halogenation is a substitution reaction, where halogen replaces one or more hydrogens of hydrocarbon.

Chlorine free radical make $1^{\circ}, 2^{\circ}, 3^{\circ}$ radicals with almost equal ease,

whereas bromine free radicals have a clear preference for the formation of tertiary free radicals. So, bromine is less reactive, and more slective whereas chlorine is less selective and more reactive.

The relative rate of abstraction of hydrogen by Br is

$$3^{\circ} > 2^{\circ} > 1^{\circ} \ (1600) \ (82) \ (1)$$

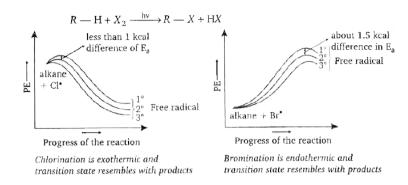
The relative rate of abstraction of hydrogen by Cl is

$$3^{\circ} > 2^{\circ} > 1^{\circ} (5) (3.8) (1)$$

Which of the following will give five monochloro products, when allowed to react with Cl_2 in presence of sun light (excluding stereoisomers) ?

A. n-pentane

B. Iso-pentane


C. 2-methyl-pentane

D. 3-methyl pentane

Answer: C

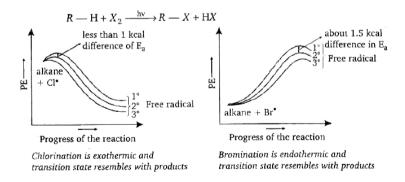
5. Halogenation is a substitution reaction, where halogen replaces one or more hydrogens of hydrocarbon.

Chlorine free radical make $1^{\circ}, 2^{\circ}, 3^{\circ}$ radicals with almost equal ease, whereas bromine free radicals have a clear preference for the formation of tertiary free radicals. So, bromine is less reactive, and more slective whereas chlorine is less selective and more reactive.

The relative rate of abstraction of hydrogen by Br is

The relative rate of abstraction of hydrogen by Cl is

What is the value of x (% yield of product)?


- A. 0.18
- B. 0.82
- C. 0.9
- D. 0.6

Answer: C

Watch Video Solution

6. Halogenation is a substitution reaction, where halogen replaces one or more hydrogens of hydrocarbon.

Chlorine free radical make $1^{\circ}, 2^{\circ}, 3^{\circ}$ radicals with almost equal ease, whereas bromine free radicals have a clear preference for the formation of tertiary free radicals. So, bromine is less reactive, and more slective

whereas chlorine is less selective and more reactive.

The relative rate of abstraction of hydrogen by Br is

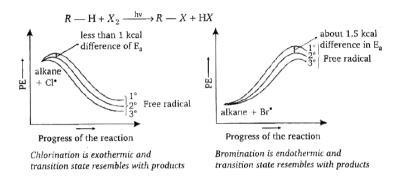
The relative rate of abstraction of hydrogen by Cl is

$$3^{\circ} > 2^{\circ} > 1^{\circ} \ (5) \ (3.8) \ (1)$$

What would be the product ratio x/y in the chlorination of propane if all

the hydrogen were abstracted at equal rate?

$$CH_3-CH_2-CH_3 \stackrel{Cl_2}{\longrightarrow} CH_3-CH_2-CH_2-Cl+CH_3-CH-C.$$


A. $\frac{1}{3}$ B. $\frac{3}{1}$ C. $\frac{9}{1}$

D. $\frac{1}{0}$

Answer: B

7. Halogenation is a substitution reaction, where halogen replaces one or more hydrogens of hydrocarbon.

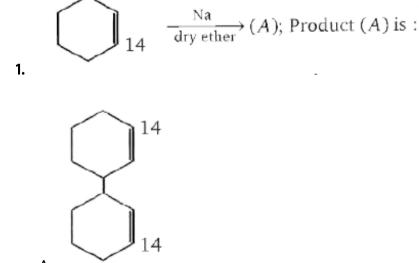
Chlorine free radical make $1^{\circ}, 2^{\circ}, 3^{\circ}$ radicals with almost equal ease, whereas bromine free radicals have a clear preference for the formation of tertiary free radicals. So, bromine is less reactive, and more slective whereas chlorine is less selective and more reactive.

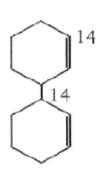
The relative rate of abstraction of hydrogen by Br is

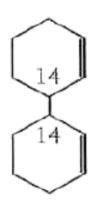
The relative rate of abstraction of hydrogen by Cl is

$$3^{\circ} > 2^{\circ} > 1^{\circ} \ (5) \ (3.8) \ (1)$$

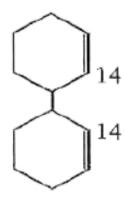
How many dichloro products (including stereoisomers) will be formed when R-2-chloropentane reacts with Cl_2 in presence of UV radiation ?


- B. 6
- C. 7
 - D. 8


Answer: C


Watch Video Solution

Level 2



В.

C.

Answer: A::B::C

D.

$$\begin{array}{c|c}
& CO_2CH_3 & \xrightarrow{H_2 \text{ (1 mole)}} \\
& CO_2CH_3
\end{array}$$
(A);

2. Product (A)

is:

- A. Meso compound
- B. Racemic mixture
- C. Diastereomers
- D. Optically active

Answer: A

Watch Video Solution

3.
$$Ph-CH_2-\overset{O}{C}-OH \xrightarrow{\hspace*{1cm} (1)\,NaOH\,,CaO\,,\,\Delta} (A)$$

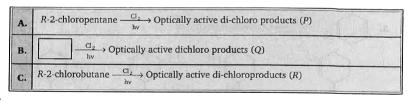
Product (A) is:

A. $Ph-CO_2H$

 $\mathsf{B.}\,Ph-CH_2-OH$

 $\mathsf{C.}\,Ph-CH_3$

D.


Answer: C

4. Match the column I with column II and with column III.

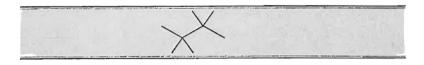
Compound		Column (II) Mono-chloro products (excluding stereoisomerism)		Column (III) Monochloro products (including stereoisomerism)							
						(a)	20.70	(p)	1	(w)	1
						(b)	$\begin{array}{c} \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{CH_3} \\ \mathrm{CH_3} \end{array}$	(g)	2	(x)	3
(c)	$\begin{array}{c c} CH_3 CH_3 \\ & & \\ CH_3 - C - C - CH_3 \\ & & \\ CH_3 CH_3 \end{array}$	(r)	3	(y)	5						
(d)	$\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH_2} - \mathrm{CH_3}$	(s)	4	(z)	6						

0	Watch	Video	Solution

Sum P + Q + R is:

6. Match the column I and II.

Column (I)			Column (II)		
Reaction		Type of Reaction			
(a)	CH ₃	(p)	Meso compound		
(b)	CH_3 CH_3 CH_3	(q)	Diastereomers		
(c)	$\begin{array}{c} CH_2 \\ CH_3O \end{array} \longrightarrow \begin{array}{c} CH_2 \\ Pt \end{array}$	(r)	Racemic		
(d)	$\stackrel{H_2}{\underset{H}{\longrightarrow}}$	(s)	Optically inactive due to absence of chiral center		


7. Match the column:

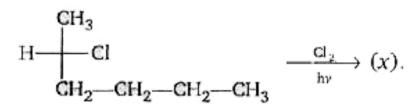
Time and	Column (I)		Column (II)
	Reaction		Product
(a)	$\xrightarrow{\text{CH}_3} \xrightarrow{\text{(1) BD}_3: \text{THF}} \xrightarrow{\text{(2) CH}_3\text{CO}_2\text{T}}$	(p)	CH ₃
(ь)	$\xrightarrow{\text{(1) BT}, \text{THF}} \xrightarrow{\text{(2) CH}_3\text{CO}_2\text{D}}$	(q)	CH ₃ D H
(c)	(1) BD ₃ : THF (2) CH ₃ CO ₂ H	(r)	CH ₃
(d)	(1) BH ₃ ;THF (2) CH ₃ CO ₂ D	(s)	CH ₃ T D

Watch Video Solution

8. How many distinct monochlorinated products, (including stereoisomers) may be obtained when the alkane shown below is heated in the presence of Cl_2 ?

A. 1
B. 2
C. 3
D. 4
Answer: A
Watch Video Solution
9. How many distinct monochlorinated products, (including steroisomers)
may be obtained when the alkane shown below is heated in the presence
of Cl_2 ?
A. 2
B. 4
C. 5

Answer: D



Watch Video Solution

10. Match the column:

	Column (I)		Column (II)		
	Wurtz reaction		Number of dimerization product		
(a)	$CH_3 - Cl \xrightarrow{Na} dry ether \rightarrow$	(p)	5		
(b)	$CH_3 - Cl + CH_3 - CH_2 - Cl \xrightarrow{Na} \frac{Na}{dry \text{ ether}} \rightarrow$	(q)	6		
(c)	$CH_3 - Cl + CH_3 - CH_2 - Cl$ $+ CH_3 - CH_2 - CH_2 - Cl \xrightarrow{Na} \frac{Na}{dry \text{ ether}} \rightarrow$	(r)	. 3		
(d)	$\begin{aligned} H_2C &= CH - CH = CH - CH_2 - CI \\ + CH_3 - CH_2 - CI &\xrightarrow{Na} \\ dry \text{ ether} \end{aligned}$	(s)	1		

11. (x) = total

number of di-chloro product

