©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MS CHOUHAN

HYDROCARBONS (ALKENES)

Level 1

1. (R)-3-bromocyclopentene (shown below) reacts with $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ to form two products, Y and Z, Y is not optically active (does not rotate planepolarized light). What is the structure of Y ?

A.

B.

C.

D.

Answer: C

2.
can be :

A.

B.

C.
D. All of these

Answer: D

3.
product of the reaction is :

A.

B.

Cl
C.

D.

- Watch Video Solution

4.

Which of the following products cannot be obtained in ozonolysis of oxylene?

CHO

A. |

CHO
B. $\mathrm{CH}_{3}-\stackrel{O}{\stackrel{O}{\mathrm{C}}-\stackrel{O}{\|}-\mathrm{C}}-\mathrm{H}$
c. $\mathrm{CH}_{3}-\stackrel{O}{\stackrel{O}{\mathrm{C}}}-\stackrel{O}{\mathrm{H}} \mathrm{C}-\mathrm{CH}_{3}$
D. $\mathrm{CH}_{3}-\stackrel{O}{\stackrel{O}{\mathrm{C}}}-\stackrel{O}{\mathrm{C}}-\mathrm{C}-\mathrm{CHO}$

- Watch Video Solution

5.
major
product of the reaction is :
A.

B.

C.

D.

Answer: B

- Watch Video Solution

$$
\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{~K}
$$

6.

$$
C H_{2}-C O_{2} K
$$

$$
\xrightarrow{\text { electrolysis }} \underset{\text { (major) }}{(A)} \text { (Kolbe electrolysis method) Product }
$$

(A) of the reaction is:
A. $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
C. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
D. None of these

Answer: B

- Watch Video Solution

) of the reaction is :

A.

B.

C.

D.

Answer: C

- Watch Video Solution

8.

Complete
A.

B.

C.

D.

Answer: C

9. The reaction of propene with $\mathrm{H}_{3} \mathrm{O}^{+}$will proceed with which of the following intermediates ?

B. $\mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\stackrel{\mathrm{OH}}{\mathrm{CH}} \mathrm{CH}_{2}$
c. $\stackrel{\substack{\oplus \\ \mathrm{OH}_{3} \\ \mathrm{l} \\ \mathrm{CH}}}{-\mathrm{CH}_{3}}$
D. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{3}$

Answer: C

- Watch Video Solution

10. Which of the following bromides is the major product of the reaction shown below, assuming that there are no carbocation rearrangement ?

A.

B.

C.

D.

Answer: D
11. Which of the following reactions results in the formation of a pair of diastereomers?
A.

B.

C.

D.

Answer: B

- Watch Video Solution

12. What is a likely product of the reaction shown ?
$\mathrm{Br}_{3} / \mathrm{CH}_{4} \mathrm{OH}$
A.

B.

D.

.

- Watch Video Solution

13. Which of the following, when undergoing addition of HBr , will form ONLY a pair of diastereomers ?
A.

B.

C.

D.

Answer: C
14. How many transition states and intermediates will be formed during the course of following reaction ?

A. 3 transition states and 3 intermediates
B. 4 transition states and 3 intermediates
C. 3 transition states and 2 intermediates
D. 5 transition states and 4 intermediates

Answer: B

- Watch Video Solution

15. Product of which of the following reactions, is racemic mixture ?
A.

B.

C. CH_{3}

D.

Answer: B

16. The product(s) of the following reaction can best be described as :

HT

A. a racemic mixture
B. a single enantiomer
C. a pair of diasteriomers
D. an achiral molecule

Answer: C

- Watch Video Solution

17. Taking into account the stability of various carbocations and, as well as the rules governing mechanisms of carbocation rearrangements, which reaction is most likely to occur during the given reaction ?

A.

B.

C.

D. None

Answer: D

- Watch Video Solution

18. Consider the following reaction in which the intermediate carbocation loses $\mathrm{H}+$ to give the final product ?

Which of the following energy profiles best represents the overall reaction?
A.

B.

D.

Answer: D

- Watch Video Solution

19. Methyl vinyl ether, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{OCH}_{3}$, reacts with $\mathrm{Br}_{2} / \mathrm{CH}_{3} \mathrm{OH}$. If methanol is reacting as water would, and if this reaction follows a typical mechanism of electrophilic addition, what would be the expected product $?$
A.

B.

C.

D.

Answer: B

- Watch Video Solution

20. 2, 4-hexadiyne (C6H6) is allowed to react with Li in NH3(liq). The product obtained is treated with 1 equivalent of $C l_{2}$ in $\mathbb{C} l_{4}$. Which of the following constitutional isomers are possible products ?

a)

(a)

(iii)

(iv)

(v)
A. I and II
B. II and III
C. I and V
D. I and III

Answer: D

21. Which of the following is the best stereochemical representation when reaction between 1-methylcyclohexene and NBS react in aqueous dimethyl sulfoxide?

A.

B.

C.
D. None of these

Answer: B

22. Which of the following is among the major products of the reaction of
(E)-3-methyl-2-pentene with BH_{3} in THF followed by the addition of $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HO}^{-}$?

A.

B.

C.

D.
23. Compare rate of dehydration of (i), (ii) and (iii) by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(i)

(ii)

A. (i) gt (iii) gt (ii)
B. (i) gt (ii) gt (iii)
C. (ii) gt (i) gt (iii)
D. (ii) gt (iii) gt (i)

Answer: B

24. How many products will be formed in this reaction?

A. 10
B. 2
C. 3
D. 4

Answer: B

25.
(A) of the reaction is:
A.

B.

C.

D.

Answer: B

D Watch Video Solution

26. $\mathrm{CH}_{3}-\underset{{ }_{C H_{3}}^{\mid}}{\stackrel{C \mathrm{H}_{3}}{C}} \mathrm{H}+\mathrm{H}_{2} \mathrm{C}=C \mathrm{H}_{2} \xrightarrow[2.5^{\circ} \mathrm{C}]{\mathrm{HF}}$ (A) , (A) is :

A.
B.

B.

C.
D. $\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: B

Watch Video Solution
27. Predict the product (A) of the following reaction

A.

B.

C.

D.

Answer: D

- Watch Video Solution

28.

product (A) is:
A.

B.

C.

D.

Answer: B
29. Di-imide $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is used to reduce double bond of:
A. $-C=O$
B. $-C=N$
C. $-\mathrm{NO}_{2}$
D. $-\mathrm{CH}=\mathrm{CH}-$

Answer: D

- Watch Video Solution

30.

End product of the reaction is:

Answer: B

Watch Video Solution

31.

Product (A) is :

A.

B.

Br
C.

D.

Answer: C

- Watch Video Solution

32.

Product (A) is :

A.

B.

C.

D.

Answer: B

- Watch Video Solution

33.

Product (X) will be :

B.

C.

D.

Answer: A

- Watch Video Solution

34.

Product (C) is :

B.

C.
D. $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{Ph}$

Answer: B

- Watch Video Solution

35.

MMPP \rightarrow Magnesium mono peroxy phthalate. Product (X) is :
A.

B.
C.

D.

Answer: B

- Watch Video Solution

(P) is :

A.

B.
C.

D. None of these

Answer: B

(A) is :

B.
B.
A. $\mathrm{CH}_{3} \quad \mathrm{OH}$

CH_{3} $\therefore \quad \mathrm{OH} \quad \mathrm{OH}$

C.

D.

Answer: B

D Watch Video Solution

38.

(no ring
substitution) product (A) is :
A. $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{Cl}$
B. $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{Br}$
C. $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CCl}_{3}$
D. $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CBrCl}_{2}$

Answer: B

39.
metachloroperbenzoic acid Product (A) of the above reaction is :
A.

B.

C.

D.

Answer: B
40. The major product of the following reaction sequence is :

\square
2. $\mathrm{H}_{2} \mathrm{O}_{\mu} \mathrm{HO}$

7
A.

B.

C.

D.
41. Which one of the following compounds gives acetone $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$ as one of the product of its ozonolysis?

A.
B.

C.

D.

Answer: D

42. Addition of HCI to 3,3-dimethyl-1-butene yields two products, one of which has a rearranged carbon skeleton. Among the following carbocations, select the possible intermediates in that reaction?

A. 1,2
B. 1,3
C. 1,4
D. 2,4

Answer:

Watch Video Solution
43. Conversion of cyclohexene to cyclohexanol can be conveniently achieved by:
A. $\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Br}_{2}-\mathrm{H}_{2} \mathrm{O}$
C. hydroboration, oxidation
D. hydroboration hydrolysis

Answer: C

- Watch Video Solution

44. Trans-cyclohexane-1,2-diol can be obtained by the reaction of cyclohexene with:
A. KMnO_{4}
B. OsO_{4}
C. peroxy formic acid $/ \mathrm{H}_{3} \mathrm{O}^{+}$
D. SeO_{2}

Answer: C

45. Bromination of (E)-2-butenedioic acid gives
A. (2R, 3S)-2, 3-dibromosuccinic acid
B. (2R, 3R)-2, 3-dibromosuccinic acid
C. a mixture of ($2 \mathrm{R}, 3 \mathrm{R}$) and ($2 \mathrm{~S}, 3 \mathrm{~S}$)-2, 3-dibromosuccinic acid
D. (2S, 3S)-2, 3-dibromosuccinic acid

Answer: A

- Watch Video Solution

46. The major product formed during the reaction of 1-methyl cyclopentene with $\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H}$ is

A.
B.

C.

D.

Answer: C

reaction is :
A. $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
C. $H-C \equiv C-H$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: C

- Watch Video Solution

48.

Complete
the
following
reaction

$\xrightarrow[\substack{\mathrm{NaHCO} \\ \text { (Aromolactonizatioa) }}]{\mathrm{Br}_{2}}$ (lactone)

A.

B.

C.

Answer: B

49.

Product
(P) is :
A.

B.

C.

D.

Answer: B

- Watch Video Solution

50. What is the major product expected from the following reaction ?

COMnO_{4}

 HO^{-}cold
A.

B.

C.
D.

Answer: B

D Watch Video Solution
51. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\text { (low conc.) }]{B r_{2} / h v}(A)$, Product (A) of the reaction is :
A. $\mathrm{CH}_{3}-\underset{\mid}{\mathrm{Cr}} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{Br}$
C. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{l} \\ \mathrm{Br}}}{\mathrm{C}}=\mathrm{CH}_{2}$
D. $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$

Answer: B

- Watch Video Solution

52.

(A) in the reaction is :
A. $O_{3} / Z n\left(H_{2} O\right)$
B. HIO_{4}
C. CrO_{3}
D. Cold dil KmnO_{4}

53.

Product of the reaction is:

A.

B.

C.

Answer: B

Watch Video Solution
54. Which compound is a possible product from addition of Br 2 to 1butene?

A.

B.

Br
C.

D.

Answer: D

- Watch Video Solution

55. Addition of $B r_{2}$ to cis-2-butene would give a product which is:
A. achiral
B. racemic
C. meso
D. optically active

Answer: B

56. Addition of $B r_{2}$ to trans-2-butene would give a product which is
A. achiral
B. racemic
C. meso
D. optically active

Answer: C

- Watch Video Solution

57. Addition of OsO_{4} to cyclopentene would give a product which is:
A. achiral
B. racemic
C. meso
D. optically active

Answer: C

58. Addition of BH_{3} followed by $\mathrm{H}_{2} \mathrm{O}_{2}$ to trans-2-butene would give a product which is:
A. achiral
B. racemic
C. meso
D. optically active

Answer: B

- Watch Video Solution

59.

$\mathrm{CH}_{3} \mathrm{CHCH}=\mathrm{CH}_{2}$
may be :
A. $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
B. $\mathrm{BH}_{3} \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{OH}^{-}$
C. $\mathrm{Hg}\left(\mathrm{OCOCH}_{3}\right)_{2} . \mathrm{H}_{2} \mathrm{O} / \mathrm{NaBr} . \mathrm{NaOH}$
D. All are possible

Answer: C

- Watch Video Solution

60. The major product of the following reaction is :
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr} \xrightarrow{\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O}_{2} \text { peroxide }}$
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
B. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{Br})-\mathrm{CH}_{3}$
C. $\mathrm{BrCH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

D.

61.

Identify (B):
A.

B.

C.

D.

Answer: B

O
 Watch Video Solution

62. Which of the following is a major product of the reaction shown below?

A.

B.

c.
D.

Answer: D

D Watch Video Solution

63. In methyl alcohol solution, bromine reacts with ethylene (ethene) to yield $\mathrm{BrCH}_{2}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$ in addition to 1, 2-dibromoethane because
A. the methyl alcohol solvates the bromine
B. the ion formed initially may react with Br^{-}or $\mathrm{CH}_{3} \mathrm{OH}$
C. this is a free radical reaction
D. the reaction follows Markovnikov's rule

Answer: A

- Watch Video Solution

64. Which of the following compound was the starting material for the oxidation shown below?

A.

B.
C.

D.

Answer: B
65. Which series of reactions will achieve the following transformation ?

A. $1-C l_{2} / C C l_{4} \quad 2-B r_{2}$
B. $1-H B r \quad 2-C l_{2} / C C l_{4}$
C. $1-C l_{2} / C C l_{4} \quad 2-N B S / h v$
D. $1-N B S / h v \quad 2-C l_{2} / C C l_{4}$

Answer: D

- Watch Video Solution

66. Taking into account the stability of various cycloalkanes and carbocations, as well as the rules governing mechanisms of carbocation
rearrangements, what is the most likely product of this reaction?

A.

B.

C.
D.

D Watch Video Solution

67. A triene is treated with ozone followed by zinc in acetic acid to give the following three products. What is the structure of the triene?

A.
B.

C.

D.

Answer: D

- Watch Video Solution

68. Which of the following compound would yield trialkylborane shown below when treated with $\mathrm{BH}_{3} / T H F$?

A. 2-methylbut-1-ene
B. 2-methylbut-2-ene
C. 3-methylbut-1-ene
D. 3-methylbut-1-yne

Answer: A

- Watch Video Solution

69. If the following compound is treated with Pd / C in excess of hydrogen gas, how many stereoisomers of the product will be obtained?
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

70. Which is the most precise designation of stereochemistry for the products formed in the electrophilic addition of DBr to 1methylcyclohexene ? $\left(D={ }^{2} H\right.$, an isotope of hydrogen)

A.

B.

C.
D. Both (a) and (b)

Answer: D

- Watch Video Solution

71. Consider the addition of HBr to 3,3-Dimethyl-1-butene shown below. What is the best mechanistic explanation for the formation of the observed product?

A. Protonation of the alkene followed by a hydride shift and addition of bromide to the carbocation
B. Double bond shift in the alkene following by the protonation and addition of bromide to the carbocation
C. Addition of bromide to the alkene followed by a double bond shift and protonation
D. Protonation of the alkene followed by a methyl shift and addition of bromide to the carbocation

Answer: D

- Watch Video Solution

72. Propene, $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$, can be converted to 1-propanol by oxidation. Which set of reagents among the following is ideal to effect the conversion?
A. KMnO_{4} (alkaline)
B. Osmium tetroxide $\left(\mathrm{OsO}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
C. $\mathrm{B}_{2} \mathrm{H}_{6}$ and alk. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. $O_{3} / Z n$

Answer: C

- Watch Video Solution

73. Which is the most suitable reagent among the following distinguish compound (3) from the others?
(1) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
(4) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
A. Bromine in carbon tetrachloride
B. Bromine in acetic acid solution
C. Alk. KMnO_{4}
D. Ammonical silver nitrate

Answer: D

Watch Video Solution

74. The principal organic product formed in the reaction given below is : $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}+\mathrm{HBr} \xrightarrow{\text { peroxide }}$
A. $\mathrm{CH}_{3}-\mathrm{CHBr}\left(\mathrm{CH}_{2}-8 \mathrm{COOH}\right.$
B. $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COBr}$
C. $\mathrm{CH}_{2} \mathrm{BrCH}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}$
D. $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CHBrCOOH}$

Answer: C

- Watch Video Solution

75. When 2-butyne is treated with $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$, the product formed will be :

A. cis-2-butene

B. trans-2-butene
C. 1-butene
D. 2-hydroxy butane

Answer: A

- Watch Video Solution

76. In the reaction, $\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}-\mathrm{CH}_{3} \xrightarrow[(i i) \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}]{\text { (i)X }}$ $0 \quad O$

$$
C H_{3}-C-C-C H_{3}, X \text { is : }
$$

A. HNO_{3}
B. O_{2}
C. O_{3}
D. KMnO_{4}

Answer: A

77. Which of the following alkene on catalytic hydrogenation given cis and trans-isomer ?
A.

B.

C.

D. all of these

Answer: D

D Watch Video Solution

78. In the reaction of hydrogen bromide with an alkene (in the absence of peroxides), the first step of the reaction is the \qquad to the alkene.
A. fast addition of an electrophilic
B. slow addition of an electrophile
C. fast addition of a nucleophilic
D. slow addition of a nucleophile

Answer: B

- Watch Video Solution

79. Which of the following alcohols cannot be prepared from hydration of an alkene ?

B.
C.

D.

Answer: D

- Watch Video Solution

80. Which of the species shown below is the most stable form of the intermediate in the electrophilic addition of Cl_{2} in water to cyclohexene to form a halohydrin ?

A.

B.
C.

D.

Answer: D

- Watch Video Solution

81. The reaction, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{Br} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{Br}$ is an example of a / an...... step in a radical chain reaction.
A. initiation
B. termination
C. propagation
D. heterolytic cleavage

Answer: C

- Watch Video Solution

82. Which of the following most accurately describes the first step in the reaction of hydrogen chloride with 1-butene?
A.

B.

C.

D.

Answer: B

D Watch Video Solution

83. Which of the following best describes the flow of electrons in the acidcatalyzed dimerization of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$?
A.

B.

Answer: A

- Watch Video Solution

84. Hydroboration of 1-methylcyclopentene using $B_{2} D_{6}$, followed by treatment with alkaline hydrogen peroxide, gives

A.

B.

C.

D.

Answer: A

85.
(Y)

The correct statements with respect to the above pair of reactions are that (I) the reactions are stereospecific (II) (X) is erythro and (Y) is threoisomer (III) (X) is threo and (Y) is erythro isomer (IV) each of (P) and (Q) gives a mixture of (x) and (Y)
A. I and II
B. I and III
C. I and IV
D. II and IV

Answer: A

86. The products P and Q in the following sequence of reactions, are

A.

B.

C.

D.

Answer: D

- Watch Video Solution

87.4-Pentenoic acid when treated with I_{2} and NaHCO_{3} gives:
A. 4,5-diiodopentanoic acid
B. 5-iodomrthyl-dihydrofuran-2-one
C. 5-iodo-tetrahydropyran
D. 4-pentenolyiodide

Answer: B

- Watch Video Solution

88.

Product
(B) of the reaction is:
A.

B.
C.

D.

Answer: B

- Watch Video Solution

$$
\xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Br}_{2}}(A) \xrightarrow[\text { (ii) } \mathrm{NaNH}_{2}]{\text { (i) alc. } \mathrm{KOH}} \text { (B) } \xrightarrow[\text { (ii) } \mathrm{CH}_{3}-\mathrm{Cl}]{\text { (i) } \mathrm{NaNH}_{2}}(C) \text {, }
$$

89. (Styrene)

Product
(C) is :
A. $P h-C \equiv C N a$
B. $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
C. $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
D. $\mathrm{Ph}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$

Answer: C

90. Which of the following will give a mixture of cis and trans-1,4-dimethyl cyclohexane, when undergo catalytic hydrogenation?

B.

Cis-3-6 dimethyl
C. cyclohexene
D. Both (a) and (b)

- Watch Video Solution

91. An optically active compound A with molecular formula $C_{8} H_{14}$ undergoes catalytic hydrogenation to give meso compound, the structure of (A) is :

A.

B.
C.

D.

Answer: B

92.

How many products will be formed in above reaction?
A. 2
B. 4
C. 3
D. 6

Answer: B

- Watch Video Solution

93.

Product of the reacion is :
A. Racemic
B. Diastereomers
C. Meso
D. Pure enantiomers

Answer: A

94. cis-2-butene $\xrightarrow[\text { Peroxide }]{\mathrm{HBr}}$ product, Product of the reaction is :
A. Racemic
B. Diastereomers
C. Meso
D. E and Z isomer

Answer: A

- Watch Video Solution

95.

Rate of reaction towards reduction using $\left(H_{2} / P t\right)$:
A. $a>b$
B. $a=b$
C. $b>a$
D. Reduction of given molecule is not possible

Answer: A

D Watch Video Solution

96.

Product A
of the above reaction is :

B. $R^{\prime}-\mathrm{CHO}$
C. $\mathrm{R}-\mathrm{CO}_{2} \mathrm{H}$
D. Both (a) and (b)

- Watch Video Solution

97.

$M C P B A \rightarrow$ Metachloroperbenzoic acid

A.

c

D.

Answer: B

D Watch Video Solution

Product of
the reaction is :

B.

D.

Answer: A

- Watch Video Solution

99. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[(2) C H_{3} \mathrm{CO}_{2} T]{\stackrel{(1) T H F, B D_{2}}{\longrightarrow}}(A)$, Product A of the above reaction is

$$
\text { A. } \mathrm{CH}_{3}-\mathrm{CHD}-\mathrm{CH}_{2} D
$$

B. $\mathrm{CH}_{3}-\mathrm{CHT}-\mathrm{CH}_{2} \mathrm{~T}$
C. $\mathrm{CH}_{3}-\mathrm{CHD}-\mathrm{CH}_{2} \mathrm{~T}$
D. $\mathrm{CH}_{3}-\mathrm{CHT}-\mathrm{CH}_{2} \mathrm{D}$

Answer: C

- Watch Video Solution

100. Optically active isomer (A) of $\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Cl}\right)$ on treatment with one mole of H 2 gives an optically inactive compound (B) compound (A) will be :
A. $\mathrm{CH}_{3}-\underset{\substack{\mid \\ \mathrm{CH}_{2} \mathrm{Cl}}}{\mathrm{CH}}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{Cl}-\underset{\underset{\mid}{\mathrm{CH}} \mathrm{CH}}{\mathrm{CH}}=\mathrm{CH}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{3}-\underset{\mathrm{Cl}}{\mathrm{CH}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{Cl}}{\mathrm{CH}} \mathrm{H}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: D

D Watch Video Solution

101. An organic compound $C_{4} H_{6}$ on ozonolysis give $\mathrm{HCHO}, \mathrm{CO}_{2}, \mathrm{CH}_{3} \mathrm{CHO}$. Compound will be:
A. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$
C. $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$

D.

Answer: B

- Watch Video Solution

A.

C.

D.

Answer: B
103. $\mathrm{CH}_{3}-\underset{\substack{\mid \\ C \mathrm{CH}_{3}}}{\stackrel{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{KmnO}_{4}}(A) \xrightarrow[\Delta]{\mathrm{H}^{+}}(B) \xrightarrow[R O O R]{\mathrm{HBr}}(C)$

Product (C) in the above reactions is :

D. $\mathrm{CH}_{3}-\underset{C \mathrm{CH}_{3}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{Br}$

Answer: D

- Watch Video Solution

A. 2, 2, 3-trimethyl pentane
B. 2, 2, 4-trimethyl pentane
C. 2,2-dimethyl hexane
D. n-octane

Answer: B

- Watch Video Solution

105.

(Q) is :
A.

B.
$\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{OMe}$
C.

Answer: B

106.

Product (C) of the reaction is:

A.

B.

C.

D.

Answer: C

- Watch Video Solution

107. What is the major product expected from the following reaction ?

CH_{3}

A.

Answer: B

D Watch Video Solution
108. Choose the correct product of this reaction :

A.

B.

C.
D. None

$\xrightarrow[\text { 2. } \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}]{\text {1. } \mathrm{BH}_{3} / \mathrm{THF}} A$;
109.

A, Product
A is:

A.

B.
C. Both 1 and 2

D.
110.

Product,

Product is :
A.

B.

C.
D.

Answer: D

111. Choose the correct product of the following reactions :

B.

C.

Answer: C

- Watch Video Solution

112. How many stereoisomeric tetrabromides will be formed in the following reaction ?

A. 2
B. 3
C. 4
D. 6

Answer: B

D Watch Video Solution

113. How many stereoisomeric pentabromides will be formed in the following reaction?

A. 2
B. 3
C. 4
D. None of these

Answer: A

114.

(Z) in the above sequence of reactions :
A.

B.

C.

Answer: B

- Watch Video Solution

$\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CO}_{2} \mathrm{~K}$

 । $\xrightarrow{\text { electrolysis }}(A)$ (Major) 115. $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CO}_{2} \mathrm{~K}$major product (A) of the above reaction :
A.

B.

C.

D.

Answer: C

116.
(only one enantiomer is taken) Which of the following statement is correct about A and B ?
$A . A$ and B are mixture of diastereomers
B. A and B are mixture of enantiomer
C. A and B are optically active
D. B is racemic mixture

Answer: A

- Watch Video Solution

$\xrightarrow{\mathrm{NaBH}_{4}} A \xrightarrow{\mathrm{O}_{3}} \mathrm{~B} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}(C)$ (one of the product)

A.

$\mathrm{CH}_{2}-\mathrm{OH}$
\mid
$\mathrm{CH}-\mathrm{OH}$

$\mathrm{CH}_{2}-\mathrm{OH}$
B.

CHO
$\mathrm{CH}-\mathrm{OH}$

$\mathrm{CH}_{2}-\mathrm{OH}$

CHO
 1
 CHOH
 |
 CHO

D.

Answer: B

- Watch Video Solution

118.

Product (Y) of the above reaction is :
A.

B.
C.

D.

Answer: B

119. In the reaction $\mathrm{Me}-\mathrm{C} \equiv \mathrm{C}-E t \xrightarrow{\mathrm{Na} / l i q . N H_{3}} P \xrightarrow[C C l_{4}]{\mathrm{Br}_{2}}(\mathrm{Q})$, then Q is :
A.A pure compound which is optically inactive due to internal compensation
B. A binary mixture which is optically inactive due to external compensation
C. A binary mixture which is optically active
D. A pure compound which is optically inactive due to absence of chiral centre

Answer: B

- Watch Video Solution

Which (π-bond) will reduce first, when above compound undergoes catalytic hydrogenation?
A. a
B. b
C. c
D. d

Answer: D

D Watch Video Solution

121. Compound A , which is a degradation product of the antibiotic vermiculine has following structure

- Watch Video Solution

122.

Major product (A) is :
A.

B.
C.

D.

Answer: C

- Watch Video Solution

123. In the reaction given below, the product would be:
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
A. a mixture of diastereomers
B. optically active
C. optically pure enantiomer
D. a racemic mixture

- Watch Video Solution

124. Surprisingly, the reaction shown below goes through classical carbocation. What is the major product of this reaction?

A. trans-1, 3-dibromocyclohexane
B. cis-1, 3-dibromocyclohexane
C. trans-1, 2-dibromocyclohexane
D. cis-1, 2-dibromocyclohexane
125. The major product of the reaction given below is:

(i) $\mathrm{Br}_{\text {rom }}$ (CH
(iii) $\mathrm{HO}_{\%}$
(v)

(ii)
(iv) $\mathrm{CO}^{\text {Br }}$
(vi)

A. (i) and (ii)
B. (iii) and (iv)
C. (v) and (vi)
D. none of these

Answer: C

- Watch Video Solution

126. Which reaction will occur at the fastest rate ?
A.

B.

D.

Answer: D

- Watch Video Solution

127.

reaction is known as:
A. Wurtz reaction
B. Fittig reaction
C. Wurtz fittig reaction
D. Kolbe electrolysis

Answer: C

0
 Watch Video Solution

128. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\stackrel{O}{\mathrm{C}}}{\mathrm{C}}-\mathrm{H} \xrightarrow{\text { Red } P+H I} A$

Product A is :
A. propane
B. propanol
C. prapanoic acid
D. propene

Answer: A

- Watch Video Solution

129. Which of the following compound give diastereomers when treated with Br_{2} in CCl_{4} ?

CH_{2}
A.

Methylicyclopentane

B. 1-Mechylicyclopentene

C. ${ }^{3-M e t h y l e y c i o p e n t e n c ~}$

D. ${ }^{4-M e t h y l c y c i o p e n t e n e ~}$

Answer: D

- Watch Video Solution

130. A mixture of $C_{2} H_{6}, C_{2} H_{4}$ and $C_{2} H_{2}$ is bubbled through alkaline solution of copper (I) chloride, contained in Woulf's bottle. The gas coming out is
A. original mixture
B. $C_{2} H_{6}$
C. $C_{2} H_{6}$ and $C_{2} H_{4}$ mixture
D. $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

131.

Possible products $\xrightarrow{\mathrm{Br}_{2} / C C l_{4}}(\mathrm{y})$ products $\mathrm{OH}(\mathrm{x})$ The number of possible products for x and y is :
A. 2,4
B. 3,5
C. 3,6
D. 3,4

Answer: B

- Watch Video Solution

132. Select the incorrect statement :
A. Bromine is more selective and less reactive
B. Chlorine is less selective and more reactive
C. Benzyl free radical is more stable than 2° free radical
D. Vinyl free radical more stable than allyl free radical

Answer: D

133. Which of the following compounds does not evolve CO_{2} gas, on oxidative ozonolysis?

A.
B.

C. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
D.

Answer: D
134. cis-3-hexene $\xrightarrow{(\mathrm{a})}$ meso 3,4-hexanediol trans-3-hexene $\xrightarrow{(\mathrm{b})}$
3,4-hexanediol. Choose pair of reagent (a, b) for above conversions.
A. Cold $\mathrm{KmNO}_{4}, \mathrm{OsO}_{4}$
B. cold $\mathrm{KmnO}_{4}, \mathrm{RCO}_{3} \mathrm{H} / \mathrm{H}_{3} \mathrm{O}^{\mathrm{O}+}$
C. $\mathrm{RCO}_{3} \mathrm{H} / \mathrm{H}_{3} \mathrm{O}^{\mathrm{O}+}$ cold KmnO_{4}
D. None of these

Answer: B

- Watch Video Solution

135.

Product (C) of the above reaction is :
A. 1,3-hexadiene
B. 1,4-pentadiene
C. 1,3-butadiene
D. 1,3-heptadiene

Answer: B

- Watch Video Solution

136. How many carbon-hydrogen bond orbitals are available for overlap with the vacant p-orbital in ethyl carbocation ?
A. 0
B. 3
C. 5
D. 6

Answer: B

137.

To achieve above conversion, the reagents used will be :
A. $\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HO}^{-} / \Delta$
B. Hbr, alcKOH $, \mathrm{O}_{3}, \mathrm{LiAIH}_{4}, \mathrm{H}^{+} / \Delta$
C. $\mathrm{HBr}, t-\mathrm{buOK}, \mathrm{O}_{3}, \mathrm{KMnO}_{4}, \Delta$
D. $\mathrm{HCl}, \mathrm{KMnO}_{3}$ (cold), H^{+} / Δ

Answer: B

$\xrightarrow[\mathrm{AcOH}_{2}]{\mathrm{Hg}(\mathrm{OAc})_{2}} X$ (major); Product (X) is:
138.

A.

B.

Answer: B

- Watch Video Solution

139. Decreasing order of heat evolved upon catalytic hydrogenation of given reactants with a $H_{2}(\mathrm{Pd} / \mathrm{C})$ is :

(a)

(b)

(c)

(d)
A. $b>c>a>d$
B. $d>a>c>b$
C. $d>c>a>b$
D. $c>b>c>d$

Answer: B

- Watch Video Solution

140.

(b)

(c)

(d)

The correct order of heat of hydrogenation of given molecules is :
A. $d>c>a>b$
B. $d>c>b>a$
C. $b>a>c>d$
D. $d>a>c>b$

Answer: C

- Watch Video Solution

141.

Product (A) of the above reaction is :
A.

B.

C.

D.

Answer: B

- Watch Video Solution

142.

Product (A) is :
A.

B.

C.

D.

Answer: A
143. What is the product of 1, 4-addition in the reaction shown below?

A.

B.

C.

D.

Answer: D

- Watch Video Solution

$\mathrm{CH}_{3} \gg \mathrm{OH}$

144.

Dehydration of the above compound will give :
A. meso product
B. racemic mixture
C. diastereomer
D. optically pure enantiomer

Answer: B

145.

What is stereochemistry of product ?
A. Racemic mixture
B. Optically inactive
C. Diastereomers
D. Meso product

Answer: A

- Watch Video Solution

146.

End product formed in the above reaction is :
A. Optically active
B. Racemic
C. Meso
D. Diastereomer

Answer: D

- Watch Video Solution

147. How many moles of BH_{3} are needed to react completely with 2 mole of 1-pentene in hydroboration-oxidation reaction?
A. 2 mole
B. 3 mole
C. $2 / 3$ mole
D. $3 / 2$ mole

Answer: C

- Watch Video Solution

148.

$\xrightarrow[\text { Liq. } \mathrm{NH}_{3}]{\mathrm{Li}} A \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \bar{B}$

Product (B) in the above reaction is :

B.

C.

D.

- Watch Video Solution

149. $\mathrm{H}_{2} \stackrel{14}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow[\text { or highi temp. }]{\text { low conc. of } \mathrm{Br} r_{2}}(?)$

Product of the above reaction is :
A. $\mathrm{H}_{2} \stackrel{14}{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Br}$
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\stackrel{14}{\mathrm{CH}}{ }_{2}-\mathrm{Br}$
C. $\stackrel{14}{\mathrm{C}}_{2}-\mathrm{CH}-\mathrm{CH}_{3}$

D. Both (a) and (b)

Answer: B

D Watch Video Solution

150. In which of the following reactions 1,3 -butadiene will be obtained as a major product ?
A. $\mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} \xrightarrow[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}]{\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COK}(2 \text { mole })}$
B. $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{concH}_{2} \mathrm{SO}_{4}}$
C. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH} \equiv \mathrm{CH} \xrightarrow[N i_{2} B]{\mathrm{H}_{2} 1 \mathrm{~mole}}$
D. All of these

Answer: B

- Watch Video Solution

 151.

Identify A.

A.
B. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH} \\ \mathrm{O} \\ \mathrm{O}}}{\mathrm{H}} \mathrm{CHO}$
C. $\mathrm{CH}_{3}-\stackrel{\text { I }}{\mathrm{C}}-\mathrm{cH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3}-\stackrel{\stackrel{C \mathrm{H}_{3}}{\mathrm{C}}}{\mathrm{C}}=C \mathrm{H}_{2}$

Answer: B

D Watch Video Solution

152.

Product (A) is :
A.

B.

C.
D.

Answer: B

- Watch Video Solution

153.

Bromination take place at :
A. a
B. b
C. c
D. d

Answer: A

D Watch Video Solution

154. Which is incorrect statement about heats of combustion ?
B.
 ∞ $<$
C. Iso-butene > trans-2-butene > 1-butene
D. n-Hexane < n-Heptane < n-Octane

Answer: C

155. Predict the major product of the reaction.

A.

B.

D.

Answer: B

- Watch Video Solution

156.

of the reaction is :
A. Meso compound
B. Enantiomeric pair
C. Diastereomers
D. Optically pure enantiomer

Answer: B

(A)
Optically active
(B)
Optically inactive
157.

Product (A) of above reaction is:
A. $\mathrm{CH}_{3} \mathrm{O} \underset{\mid}{\mathrm{CH}} \mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$
B. $\mathrm{CH}_{3} \mathrm{O}-\mathrm{CH}_{2}-\stackrel{\stackrel{\mathrm{CH}}{2}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}$
C. $\mathrm{CH}_{3} \mathrm{O}-\underset{\substack{ \\\mathrm{CO}_{2} \mathrm{H}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H}$
D. $\mathrm{CH}_{3} \mathrm{O}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}$ $\mathrm{CO}_{2} \mathrm{H}$

Answer: D

158.

Comment up on optical activity of products.
A. Diastereomers
B. Racemic mixture
C. Meso
D. Optically pure enantiomer

Answer: B

159.

Addition of a mineral acid to an olefin bond leads to major product, Identify it:
A.

B.

C.

D.

Answer: C

160.

In polyenes that contain differently substituted ($\mathrm{C}=\mathrm{C}$) double bonds, it is possible to hydrogenate chemeselectively one ($\mathrm{C}=\mathrm{C}$) double bond. Product is :

A.

B.

C.

Answer: B

161.

MCPBA \rightarrow meta-chloro perbenzoic acid) Stereochemistry of the product of above reaction is :
A. Meso
B. Racemic
C. Diastereomers
D. Optically inactive due to absence of chiral center.

Answer: B

- Watch Video Solution

162.

Identify product (P).
A.

B.

C.
D.

Answer: B

A isomerise to B on addition of traces of acid $\mathrm{H}_{2} \mathrm{SO}_{4}$. Compound (B) is :
A.

B.

C.

D.

Answer: C

164.

Product (A) of the reaction is :

A.

B.

Answer: B

- Watch Video Solution

165.
(A) is :

A.
B.

C.
D.

Answer: C

D Watch Video Solution
166. Which of the following reactions do not represent the major product of given Birch reductions ?

A. (i), (iii), (vi)
B. (iv), (vi), (vii)
C. (iv), (v), (vi)
D. (i), (ii), (v), (vii)

Answer: B

D Watch Video Solution

Product (A) is:
167.

Product (A) is:
A.

B.

C.

Answer: B

- Watch Video Solution

168.

Correct statement about above reaction is:
A. A =cis-2-chlorocyclohexanol,
B. $A=$ trans-2-chloro cyclohexanol,
C. $A=$ trans-2-chlorocyclohexanol,
D. A = cis-2-chlorocyclohexanol,

- Watch Video Solution

169.

Predict
the major product:

B.

C.

D.

Answer: C

- Watch Video Solution

(A) is :
A.

B.

C.

D.

Answer: C

- Watch Video Solution

Major
product of the reaction is :

A.
B.

C.

D.

Answer: B

- Watch Video Solution

172.

stereochemistry of the product is:
A. Diastereomers
B. Racemic mixture
C. Meso
D. Pure Enantiomers

Answer: A

-
 Watch Video Solution

173.

obtained is/are :
A. Diastereomers
B. Meso
C. Racemic
D. Optically pure enantiomers

Answer: BWatch Video Solution
174.

(x) is :

A.

B.

C.

D.

Answer: B

175.

$$
C H_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{\substack{\mid \\ C_{3}}}{\stackrel{C H_{3}}{C}}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow[\Delta]{\stackrel{H^{+}}{\longrightarrow}} \underset{\text { (major })}{A}
$$ product (A) is :

A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{C H_{3}}{\mathrm{C}}=\mathrm{CH}-\mathrm{CH}_{3}$
B. ${ }^{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}} \stackrel{\mathrm{CH}_{3}}{ } \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{\text { | }}{\mathrm{C}}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{{ }_{\mathrm{CH}}^{3}}{\mathrm{CH}} \mathrm{H}-\mathrm{CH}_{2}-\stackrel{\mid}{\mathrm{C}}-\mathrm{CH}_{2}$

Answer: B

Watch Video Solution

176. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow[R_{2} \mathrm{O}_{2} \Delta \text { (Anti-Markownikoff's addition) }]{\mathrm{HBr}}$

Comment on optical activity of the products:
A. Racemic
B. Diastereomer
C. Meso
D. Optically pure enantiomer

Answer: A

D Watch Video Solution

177.
(al is :
A.

B.

C.

D.

Answer: B

- Watch Video Solution

178. Alkene (A) will be :

Alkene (A) will be :
A. cis-2-pentene
B. cis-2-hexene
C. cis-4-octene
D. trans-2-hexene

Answer: C

- Watch Video Solution

179. Product (A) is

Product (A) is
A. trans-2-butane
B. cis-2-butene
C. 1-butene
D. Iso-butene

Answer: B

- Watch Video Solution

180. In which of the following reactions, two products will be formed other than phosphonium ylide $\left(P O P h_{3}\right)$
A. $+\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2} \longrightarrow$
B. $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{Ph}_{3} \mathrm{P}=\underset{\substack{\mathrm{C} \\ \mathrm{CH}}}{\mathrm{C}}-\mathrm{CH}_{3} \rightarrow$
C. $\mathrm{Ph}-\stackrel{O}{\|} \mathrm{C}-\mathrm{H}+\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}-\mathrm{Ph} \rightarrow$
D. $\mathrm{H}-\stackrel{O}{\|}-\stackrel{\mathrm{Cl}}{\mathrm{C}}-\mathrm{H}+\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}-\mathrm{CH}_{3} \rightarrow$

Answer: C

- Watch Video Solution

181. To carry out the given conversions, select the correct option:

A. $a=\mathrm{Ag}_{2} \mathrm{O}, b=\mathrm{Zn} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{C}=\mathrm{LiAlH}_{4}$
B. $a=\mathrm{H}_{2} \mathrm{O}_{2}, b=\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{3}, c=\mathrm{NaBH}_{4}$
C. Both (a) and (b
D. None of these

Answer: C

- Watch Video Solution

182. The product (A) of given alkoxymercuration de-mercuration is :

(2) $\mathrm{NaBH}_{4}, \mathrm{HO}^{-}$
(major)
A.

B.

C.

D.

Answer: B

- Watch Video Solution

183. $\mathrm{CH}_{3}-\stackrel{\stackrel{\text { ONa }}{\mathrm{C}}}{\mathrm{C}}=\mathrm{CH}_{2} \xrightarrow{\mathrm{HC=CH}} \xrightarrow{\mathrm{H}^{+}} \xrightarrow[p d-\mathrm{BaSO}_{4}]{\mathrm{H}_{2}} \xrightarrow{\stackrel{\Delta}{\mathrm{Al}_{2} \mathrm{O}_{3}}}$

End product of the reaction is :
A. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}}}{\mathrm{C}}-\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
C. $\mathrm{H}_{2}=\mathrm{CH}-\mathrm{cH}=c \mathrm{H}_{2}$
D. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: A

- Watch Video Solution

184. Major product of the given reaction is:

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{HI}}
$$

B. $\mathrm{CH}_{3}-\underset{I}{\mathrm{CH}}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$
D. $\mathrm{I}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$

Answer: B

185. The rate constant for a reaction can be increased by a the stability of the reactant or by b the stability of the transition state. Select the correct choice for a and b .
A. decreasing, decreasing
B. increasing, decreasing
C. decreasing, increasing
D. increasing, increasing

Answer: C

- Watch Video Solution

186. Major product of the given reaction is:

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+>\mathrm{CH}_{2} \quad \xrightarrow[\Delta]{\mathrm{H}^{+}} \text {Product }
$$

A.

B.

C.
D. $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}-\stackrel{\stackrel{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}}{ }$

Answer: C

Major product (A) is :
187.

Major product (A) is :
A.

B.

Answer: C

- Watch Video Solution

188. In the given reaction, only one alkene undergo preferential oxidation by electrophilic ozone. Identify product (P) of the given reaction:

Answer: B

- Watch Video Solution

189.

Product
(P) is:
A.

B.

C.

D.

- Watch Video Solution

190.

Major
product of the reaction is :
A.

B.

C.

D.

Answer: B

- Watch Video Solution

Product (B) is :
191.
(B) is :

B. $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
C. $\mathrm{Ph}-(\mathrm{CH}=\mathrm{CH})_{2}-\mathrm{CHO}$
D. $\mathrm{Ph}-(\mathrm{CH}=\mathrm{CH})_{3}-\mathrm{CHO}$
192. Isobutene, in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$, forms a mixture of two isomeric alkene $\left(\mathrm{C}_{8} \mathrm{H}_{16}\right)$. The major alkene is :

Answer: B

- Watch Video Solution

193. An unknown alkene (A) reacts with 3 mole of H_{2} gas in presence of platinum catalyst to form 1-isopropyl-4-methyl cyclohexane. When
unknown alkene (A) is ozonized and reduced, following product are obtained

The alkene (A) is :

C.

D.

Answer: B

- Watch Video Solution

194.

Product (C) is :

B.

C.
D. Both (a) and (b)

Answer: B

195. The following reaction take place in high yields.

Use your knowledge of alkene chemistry to predict a product even though you have never seen this reaction before

A.

B.

C.

Answer: B

D Watch Video Solution

196.

What is the ratio of glyoxal to pyrualdehyde obtained in the above reaction?
A. $1: 3$
B. $3: 1$
C. $3: 2$
D. 2:3

Answer: C

197.

Which of the following product cannot be obtained in above reaction ?
A. $\mathrm{H}-\stackrel{\mathrm{O}}{\mathrm{C}}-\stackrel{O}{\mathrm{C}}-\mathrm{CH}_{2}-\stackrel{\stackrel{\|}{\mathrm{C}}-\mathrm{H}}{ }$
B. $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{C}}}{\mathrm{C}}-\mathrm{CH}_{2}-\stackrel{\stackrel{-}{\|}}{\mathrm{C}}-\mathrm{H}$
c. $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{C}} \mathrm{C}}{\substack{\| \\ \mathrm{CHO}}}-\mathrm{H}$
D. None of these

Answer: C

- Watch Video Solution

Product (A) is not ?

A.

c. $\mathrm{CH}_{3}-\stackrel{\text { I }}{\mathrm{C}}-\mathrm{CH}_{3}$
D. $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{C}}}{\mathrm{C}}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$

Answer: B

- Watch Video Solution

199.

$\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} A$

Product (A) of the reaction is :
A.

B.
C.

D. None of these

Answer: A

$$
\xrightarrow[\Delta]{\mathrm{H}^{+}} \underset{\text { (majer) }}{(A)}
$$

200.

Product (A) is :

A.

B.

C.

D.

Answer: B

- Watch Video Solution

201.
(a)

(b)

(c)

Arrange the above in the decreasing order of reactivity towards HBr :
A. $a>b>c$
B. $b>a>c$
C. $b>c>a$
D. $a>c>b$

Answer: B

- Watch Video Solution

202. Which reaction has the lowest ΔG^{+}or (Activation-Energy)?

B.

D Watch Video Solution

203. Which of the following will rearrange ?
(1)

(2)

(3)

(4)

A. 1
B. 1 and 3
C. All
D. 1,2,4

Answer: C

204. Which of the following is most likely to undergo a favorable hydride shift ?

A.

C.

D.

Answer: A

205. Energy profile diagram for dehydration of 2-butanol using conc.
$\mathrm{H}_{2} \mathrm{SO}_{4}$ is given below:

Product (b) of above reaction is :
A. 1-butene
B. cis-2-butene
C. trans-2-butene
D. iso-butene

Answer: B

206. How many alkene on catalytic hydrogenation given isopentane as a product ?
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

207. Which of the following would not rearrange to a more stable form?

B.

C.

D.

Answer: C

- Watch Video Solution

208. Consider the following reaction.

$$
\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{~F}+\mathrm{SbF}_{5} \xrightarrow[-60^{\circ} \mathrm{C}]{\mathrm{SO}_{2}} \mathrm{CH}_{2}-\mathrm{Br}_{+}^{+} \mathrm{CH}_{2}+\mathrm{SbF}_{6}^{-}
$$

In this reaction $S b F_{5}$ acts as:
A. an acid
B. a base
C. a nucleophile
D. an electrophile

Answer: D

- Watch Video Solution

209.

Product (Z) is:

A.

Answer: C

210.

Relation between (B) and (C) is:
A. Enantiomer
B. Diastereomer
C. Geometrical isomer
D. Meso

Answer: B::C

- Watch Video Solution

211. The reaction of HBr with the following compound would produce:

A.

B.

C.

D.

Answer: B

- Watch Video Solution

212.

is an
example of:
A. Nucleophilic addition
B. Nucleophilic substitution
C. Electrophilic substitution
D. Electrophilic addition

Answer: C

D Watch Video Solution

213. Olefins can be hydrogenated by :
A. Zinc and HCl
B. Nascent hydrogen
C. Raney Ni and H
D. Lithium hydride in ether

Answer: C

214. What are the products obtained on hydroboration-oxidation of the

given alkene
(I)

(IV)

(V)

(VI)

A. I and III
B. II and IV
C. II and VI
D. III and V

Answer: D

D Watch Video Solution

215.

Relation between A and B, C and D are :
A. Position, chain
B. Position, Functional
C. Chain, Identical
D. Metamer, Functional

Answer: B

- Watch Video Solution

216. In which reaction syn addition doesn't take place.
A.

B.

C.

D.

Answer: D

- Watch Video Solution

Level 2

Reagents

A. HCl	B. Br_{2}	C. $\mathrm{Hg}(\mathrm{OAc})_{2}$ in $\mathrm{H}_{2} \mathrm{O}$	D. $\mathrm{B}_{2} \mathrm{H}_{6}\left(\mathrm{BH}_{3}\right)$ in ether
E. $\mathrm{H}_{2} \mathrm{O}_{2}$	F. KMnO_{4} in $\mathrm{H}_{2} \mathrm{O}$	G. HOBr	H. NaBH_{4}

In each reagent box write a letter designating the best reagent and
condition selected from the above list of reagents.

Reactant	Reagent		Product
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$ 3 -methyl-1 butene	(i)	\square	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}(\mathrm{Cl}) \mathrm{CH}_{3}$ 2.Chloro-3-methyl butane
	(ii)		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHBrCH}_{2} \mathrm{Br}$ 1,2-dibromo-3-methyl butane
	(iii)		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHOHCH}_{2} \mathrm{Br}$ 1,bromo-3-methyl 2-butanol
	(iv)		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}(\mathrm{OH}) \mathrm{CH}_{3}$ 3-methyl-2-butanol
	(v)	\square	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$ 3-methyl-1,2-butanediol

- Watch Video Solution

2. Propene $\left(\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ can be transformed to compounds (a to j) listed in the left-hand column. Write letter designating the reagent, you believe will achieve desired transformation. In the case of a multi step sequence write the reagent in the order they are to be used.

c.	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	two	c.	NaBH_{4} in alcohol
d.	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	three	D.	Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
e.	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$	three	E.	$\mathrm{H}_{2} \mathrm{O}_{2}$ in aqueous base
f.	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Br}$	one	F.	HOBr (NBS in aqueous acetone)
g.	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}$	one	G.	HBr in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
h, k.	$\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{OH}$	two	H.	OsO_{4} in ether
i.	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$	three	I.	Thionyl chloride (SOCl_{2})
j.	$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}$	two	J.	NaHSO_{3} in aqueous acetone
			K.	NaOH in alcohol and reflux
			L.	NaNH_{2} (strong base)

- Watch Video Solution

3. In each reaction box write a single letter designating the best reagent and condition selected from the list at bottom of the page. (F.S., \rightarrow first
step, S.S \rightarrow second step, T.S. \rightarrow third step)
S. action

- Watch Video Solution

4. Match the reagents $a-j$ with products $A-J$. There is one best product for each reaction.

The molecule (x) is the starting material for all reactions in problem. Do
the ones you know first and then tackle the rest by deductive reasoning

- View Text Solution

5. Match the column :

Column (1)			Column (II)
(a)	$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$	(p)	cis-product with $\mathrm{H}_{2} / \mathrm{Pd} \cdot \mathrm{BaSO}_{4}$
(b)	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}=\mathrm{CH}$	(q)	Trans-product with $\mathrm{Na} /$ liq. NH_{3}
(c)	$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}$	(r)	White with amm. AgNO_{3}
(d)	$\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}-\mathrm{Et}$	(s)	H_{2} gas with Na

0
 Watch Video Solution

6. Match the column I with column II and with column III (Matrix).

7. Match the column I and II.
(a)

- Watch Video Solution

8. Sum of molecular mass of A, B, C, D (i.e. $A+B+C+D$) is equal to :
(1)

(2)

(3)

(4)

- Watch Video Solution

9. $\underset{\text { (all isomers) }}{C_{2} F C l B r l} \xrightarrow[N i]{\mathrm{H}_{2}}(A)$ (exclude stereoisomer)
(2) $C_{4} H_{8}$ (alkene) $\xrightarrow[N i]{H_{2}}(B)$ (exclude stereoisomer) $\mathrm{A}+\mathrm{B}=$ (all isomers)

Watch Video Solution
10.

- Watch Video Solution

11. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

1-metioyl cyclopentene
Mechanism :

Step 1

 Cl^{-1}

Step 2

Which of the following is most reactive toward Markovnikov addition ?
A.

B.

C.

D.

Answer: B

- Watch Video Solution

12. Vladimir Markovnikov rule: Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

What is the energy profile for the given reaction?

B.

C.

D.

Answer: C

- Watch Video Solution

13. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the
hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

In which of following reactions carbocation rearrangement is possible ?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\mathrm{O}^{\circ} \mathrm{C}]{\mathrm{HCl}}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[0^{\circ} \mathrm{C} / \mathrm{Cl}_{4}]{\mathrm{HBr}}$
C. $\mathrm{ph}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2} \xrightarrow[\mathrm{CCl}_{4}]{\stackrel{\mathrm{HBr}}{ }}$
D. All of these

Answer: D

- Watch Video Solution

14. Vladimir Markovnikov rule: Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t-
electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

Mechanism :
Step 1

Identify the major products r_{1}, r_{2}, and r_{3} in the given reactions.

A.

B.

C.

D.

Answer: B

- Watch Video Solution

15. Vladimir Markovnikov rule: Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

In which of the following reactions, product is racemic mixture ?
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[C C l_{4}]{\mathrm{HBr}}$
B.

C.

D. All of these

Answer: D

D Watch Video Solution

16. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward telectrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

Mechanism :

Step 1

Step 2

In which of the following reactions, diastereomers will be formed ?
A.

B.

C.
D. All of these

- Watch Video Solution

17.

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\mid \\ \mathrm{OCH}_{3}}}{\mathrm{CH}-\mathrm{CH}_{3}}
$$

What is electrophile in first step?
A. $\stackrel{\oplus}{C} H_{3}$
B. H^{\oplus}
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$
D. HO^{\oplus}

Answer: B

Watch Video Solution
18.

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\mid \\ \mathrm{OCH}_{3}}}{\mathrm{CH}-\mathrm{CH}_{3}}
$$

What is nucleophile in first step?
A. $\mathrm{CH}_{3} \mathrm{OH}$
B. 1-butene
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$

Answer: B

- Watch Video Solution

19.

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\mid \\ \mathrm{OCH}_{3}}}{\mathrm{CH}-\mathrm{CH}_{3}}
$$

What is electrophile in second step ?
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}$
B. H^{\oplus}
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\stackrel{\oplus}{\mathrm{CH}}{ }_{2}$

Answer: C

- Watch Video Solution

20.

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\mid \\ O C H_{3}}}{\mathrm{CH}}-\mathrm{CH}_{3}$
What is nucleophile in second step ?
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$

- Watch Video Solution

21.

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{H}^{\oplus}} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\text { | } \\ \text { ○CH }}}{\mathrm{CH}}-\mathrm{CH}_{3}$
Which step is rate determining step ?
A. attack of nucleophile $\mathrm{CH}_{3} \mathrm{OH}$
B. attack of electrophile H^{\oplus}
C. attack of nucleophile $\mathrm{H}_{2} \mathrm{O}$
D. attack of electrophile $\stackrel{\oplus}{C} H_{3}$

Answer: B

- Watch Video Solution

22. Match the column I and II :
(a) Column (I)

D Watch Video Solution

