©゙’ doubtnut India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA

ALTERNATING CURRENT

Examples

1. The peak value of an alternating current is 5 A and
its frequency is 60 Hz . Find its rms value. How long will
the cukrgrenQt current IS 5 A and its frequency is 60
Hz . Find its runs value.
2. Find the reactance of a capacitor $(C=200 \mu F)$ when it is connected to (a) a10HzACsource, (b) $a 50 H z A C$ source and (c) $a 500 H z A C$ source.

D Watch Video Solution

3. An inductor $(L=200 \mathrm{mH})$ is connected to an $A C$ source of peak emf 210 V and frequency 50 Hz .

Calculate the peak current. What is the instantaneous
voltage of the source when the current is at its peak value?
4. An LCR series circuit with
$L=100 \mathrm{mH}, C=100 \mu F, R=120 \Omega$ is connected
to an $A C$ source of emf $\varepsilon=(30 V) \sin \left(100 s^{-1}\right) t$.
Find the impedance, the peak current and the resonant frequency of the circuit.

D Watch Video Solution

5. A radio set operates at $6 V D C$. A transformer with

18 turns in the secondary coil is used to step down the input $220 V A C e m f \rightarrow 6 V A C e m f$. This $A C e m f$
is then rectified by another circuit to give $6 V D C$
which is fed to the radio. Find the number of turns in the primary.

- Watch Video Solution

Worked Out Examples

1. A resistance of 20Ω is connected to a source of alternating current rated $110 \mathrm{~V}, 50 \mathrm{~Hz}$. Find (a) the $r m s$ current, (b) the maxium instantaneous current in the resistor and (c) the time taken by the current to change from its maximum value to the rms value.
2. The current in a discharging $L R$ circuit is given by $I=i_{0} e^{-\frac{t}{\tau}}$ where τ is the time constant of the circuit. Calculate the rms current for the period $t=0$ to $t=\tau$.

D Watch Video Solution

3. A coil having a resistance of 50.0Ω and an inductance of 0.500 henryisco \cap ected \rightarrow anAC sourceof 110 volts, $50.0^{\text {© cycle//s. Find the rms value }}$ of the current in the circuit.
4. A capacitor of capacitance $100 \mu F$ and a coil of resistance 50Ω and inductance 0.5 H are connected in series with $a 110 \mathrm{~V}, 50 \mathrm{HzAC}$ source. Find the rms value of the current.

- Watch Video Solution

5. A capacitor of capacitance $12.0 \mu F$ is joined to an
$A C$ source of frequency 200 Hz . The rms current in the circuit is $2.00 A$. (a) Find the rms voltage across the capacitor. (b) Find the average energy stored in the electric field between the plates of the capacitor.
6. A series AC circuit contains an inductor $(20 \mathrm{mH})$, a capacitor $(100 \mu F)$, a resistor (50Ω) and an AC source of $12 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the energy dissipated in the circuit in $1000 s$.

D Watch Video Solution

7. An inductor of inductance 100 mH is connected in series with a resistance, a variable capacitance and an
$A C$ source of frequency 2.0 kHz . What should be the
value of the capacitance so that maximum current may be drawn into the circuit?
8. An inductor coil joined to a $6 V$ battery draws a steady current of $12 A$. This coil is connected to a capacitor and an $A C$ source of rms voltage 6 V in series. If the current in the circuit is in phase with the emf, find the rms current.

- Watch Video Solution

Short Answer

1. What is the reactance of a capacitor connected to a

 constant $D C$ source?
- Watch Video Solution

2. The voltage and current in a series AC circuit are given by
$V=V_{0} \cos \omega t$ and $I=i_{0} \sin \omega t$.
What is the power dissipated in the circuit?

D Watch Video Solution
3. Two alternating currents are given by
$i_{1}=i_{0} \sin \omega t$ and $\left.i_{2}=i_{0} \sin \left(\omega t+\frac{\pi}{3}\right)\right)$.
Will the rms values of the currents be equal or different?

- Watch Video Solution

4. Can the peak voltage across the inductor be greater than the peak voltage of the source in an LCR

circuit?

5. In a circuit containing a capacitor and an AC source, the current is zero at the instant the source voltage is maximum. Is it consistent with Ohm's law?

- Watch Video Solution

6. An AC source is connected to a capacitor. Will the rms current increase, decrease or remain constnat if a dielectric slab is inserted into the capacitor?
7. When the frequency of the AC source in an LCR circuit equals the resonant frequency, the reactance of the circuit is zero. Does it mean that there is no current through the inductor or the capacitor?

- Watch Video Solution

8. When an AC source is connected to a capacitor there is a steady-state current in the circuit. Does it mean that the charges jump from one plate to the other to complete the circuit?
9. A current $i_{1}=i_{10} \sin \omega t$ passes through a resistor of resistance R. How much thermal energy is produced in one time period? A current
$i_{2}=-i_{0} \sin \omega t$ passes through the resistor. How much thermal energy is produced in one time period?

If i_{1} and i_{2} both pass through the resistor simultaneously, how much thermal energy is produced? Is the principle of superposition obeyed in this case?
10. Is energy produced when a transformer steps up the voltage?

D Watch Video Solution

11. A transformer is designed to convert an AC voltage of 110 V to an $A C$ voltage of 12 V . If the input terminals are connected to a $D C$ voltage of 110 V , the transformer usually burns. Explain.
12. Can you have an $A C$ series circuit in which there is a phase difference of (a) 180° (b) 120° between the emf and the current?

- Watch Video Solution

13. A resistance is connected to an $A C$ source. If a
capacitor is included in the series circuit, will the average power absorbed by the resistance increase or decrease? If an inductor of small inductance is also included in the series circuit, will the average power absorbed increase or decrease further?
14. Can a hot-wire ammeter be used to measure a direct current having a constant value? Do we have to change the graduation?

- Watch Video Solution

Objective 1

1. A capacitor acts as an infinite resistance for
A. DC
B. $A C$
C. DC as well as AC
D. Neither AC nor DC

Answer: A

D Watch Video Solution

2. An AC source producing emf

$$
\varepsilon=\varepsilon_{0}\left[\cos \left(100 \pi s^{-1}\right) t+\cos \left(500 \pi s^{-1}\right) t\right]
$$

is connected in series with a capacitor and a resistor.
The steady-state current in the circuit is found to be

$$
I=i_{1} \cos \left[\left(100 \pi s^{-1} t+\varphi_{1}\right]+i_{2} \cos \left[\left(500 \pi s^{-1}\right) t+\phi_{2}\right]\right.
$$

A. $i_{1}>i_{2}$
B. $i_{1}=i_{2}$
C. $i_{1}<i_{2}$
D. The information is insufficient to find the relation between i_{1} and i_{2}.

Answer: C

D Watch Video Solution
3. The peak voltage in a $220 \mathrm{~V} A C$ source is
A. 220 V
B. about 160 V

C. about 310 V

D. 440 V

Answer: C

D Watch Video Solution

4. An AC source is rated $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The average voltage is calculated in a time interval of 0.01 s . It
A. must be zero
B. may be zero
C. is never zero
D. is $\left(\frac{220}{\sqrt{2}}\right) V$

Answer: B

- Watch Video Solution

5. The magnetic field energy in an inductor changes
from maximum value to minimum value in 5.0 ms
when connected to an AC source. The frequency of
the source is
A. 20 Hz
B. 50 Hz

C. 200 Hz

D. 500 Hz .

Answer: B

D Watch Video Solution

6. Which of the following plots may represent the reactance of a series $L C$ combination?

7. A series $A C$ circuit has a resistance of 4Ω and a reactance of 3Ω. The impedance of the circuit is
A. 5Ω
B. 7Ω
C. $\frac{12}{7} \Omega$
D. $\frac{7}{12} \Omega$

Answer: A

- Watch Video Solution

8. Transformer are used in
A. in DC circuits only
B. in AC circuits only
C. in both DC and AC circuits

D. neither in $D C$ nor in $A C$ circuits

Answer: B

D Watch Video Solution

9. An alternating current is given by the equation
$i=\left(i_{1} \cos \omega t+i_{2} \sin \omega t\right)$. The rms current is given by

$$
\text { A. } \frac{i_{1}+i_{2}}{\sqrt{2}}
$$

B. $\frac{\left|i_{1}+i_{2}\right|}{\sqrt{2}}$
C. $\sqrt{\frac{i_{1}^{2}+i_{2}^{2}}{2}}$
D. $\sqrt{\frac{i_{1}^{2}+i_{2}^{2}}{\sqrt{2}}}$

Answer: C

D Watch Video Solution

10. An alternating current having peak value $14 A$ is used to heat a metal wire. To produce the same heating effect, a constant current i can be used where i is
A. $14 A$
B. about $20 A$
C. $7 A$
D. about $10 A$

Answer: D

D Watch Video Solution

11. A constant current of $2.8 A$ exists in a resistor. The rms current is
A. $2.8 A$
B. about $20 A$
C. $1.4 A$
D. undefined for a direct current

Answer: A

D Watch Video Solution

Objective 2

1. An inductor, a resistor and a capacitor are joined in series with an AC source. As the frequency of the source is slightly increased from a very low value, the reactance
A. of the inductor increases
B. of the resistor increases
C. of the capacitor increases
D. of the circuit increases

Answer: A

D Watch Video Solution

2. The reactance of a circuit is zero. It is possible that the circuit contains
A. an inductor and a capacitor
B. an inductor but no capacitor

C. a capacitor but no inductor

D. None of the Above

Answer: A

- Watch Video Solution

3. In an AC series circuit, the instanctaneous current is zero when the instantaneous voltage is xamimum.

Connected to the source may be a
A. pure inductor
B. pure capacitor

C. pure resistor

D. combination of an inductor and a capacitor

Answer: A::B::D

D Watch Video Solution

4. An inductor-coil having some resistance is connected to an AC source. Which of the following quantities have zero average value over a cycle?
A. Current
B. Induced emf in the inductor
C. Joule heat

D. Magnetic energy stored in the inductor

Answer: A::B::D

- Watch Video Solution

5. The AC voltage across a resistance can be measured using
A. a potentiometer
B. a hot-wire voltmeter
C. a moving-coil galvanometer
D. a moving magnet galvanometer

Answer: B

D Watch Video Solution

6. To convert mechanical energy into electrical energy,

one can use

A. DC dynamo
B. AC dynamo
C. motor
D. transformer

Answer: A::B::D
7. An $A C$ source rated $100 \mathrm{~V}(\mathrm{rms})$ supplies a current of $10 A(r m s)$ to a circuit. The average power delivered by the source
A. must be $1000 W$
B. may be 1000 W
C. may be greater than 1000 W
D. may be less than 1000 W

Answer: B::D

1. Find the time required for a 50 Hz alternating current to become its value from zero to the rms value.

D Watch Video Solution

2. The household supply of electricity is at 220 V (rms
value) and 50 Hz . Find the peak voltage and the least
possible time in which the voltage an change from the rms value to zero.
3. A bulb rated 60 W at 220 V is connected across a household supply of alternating voltage of 220 V .

Calculate the maximum instantaneous current through the filament.

- Watch Video Solution

4. An electric bulb is designed to operate at $12 v \mathrm{DC}$. If this bulb is connected to an AC source and gives normal brightness, what would be the peak voltage of the source?
5. The peak power consumed by a resistive coil when connected to an AC source is 80 W . Find the energy consumed by the coil in 100 seconds which is many times larger than the time period of the source.

- Watch Video Solution

6. The dielectric strength of air is $3.0 \times 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}$. A parallel-plate air-capacitor has area $20 \mathrm{~cm}^{2}$ and plate separation 0.10 mm . Find the maximum rms voltage of an AC source which can be safely connected to this capacitor.
7. The electric current in a circuit is given by $I=i_{0}\left(\frac{t}{\tau}\right)$ for some time. Calculate the rms current for the period $t=0$ to $t=(\tau)$.

- Watch Video Solution

8. A capacitor of capacitance $10 \mu F$ is connected to an oscillator giving an output voltage $\varepsilon=(10 \mathrm{~V}) \sin \omega t$.

Find the peak currents in the circuit for $\omega=10 s^{-1}, 100 s^{-1}, 500 s^{-1}, 1000 s^{-1}$.
9. A coil of inductance 5.0 mH and negligible resistance is connected to the oscillator of the previous problem. Find the peak currents in the circuit for $\omega=100 s^{-1}, 500 s^{-1}, 1000 s^{-1}$.

D Watch Video Solution

10. A coil has a resistance of 10Ω and an inductance
of 0.4 henry. It is connected to an AC source of $6.5 \mathrm{~V}, \frac{30}{\pi} \mathrm{~Hz}$. Find the average power consumed in the circuit.
11. A resistor of resistance 100Ω is connected to an $A C$ source $\varepsilon=(12 V) \sin \left(250 \pi s^{-1}\right) t$. Find the energy dissipated as heat during $t=0$ to $t=1.0 \mathrm{~ms}$.

- Watch Video Solution

12. In a series $R C$ circuit with an AC source,
$R=300 \Omega, C=25 \mu F, \varepsilon_{0} 50 \mathrm{~V}$ and $v=\frac{50}{(\Pi) H z}$. Find
the peak current and the average power dissipated in the circuit.
13. An electric bulb is designed to consume $55 W$ when operated at 110 volts. It is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ line through a choke coil in series. What should be the inductance of the coil for which the bulb gets correct voltage?

- Watch Video Solution

14. In a series $L C R$ circuit with an AC source,
$R=300 \Omega, C=20 \mu F, L=1.0 h e n r y, \varepsilon_{r m s}=50 \mathrm{~V}$
and $v=\frac{50}{\pi} H z$. Find (a) the rms current in the
circuit and (b) the rms potential differences across
the capacitor, the resistor and the inductor. Note that
the sum of the rms potential differences across the three elements is greater than the rms voltage of the source.

- Watch Video Solution

15. Consider the situation of the previous problem.

Find the average electric field energy stored in the capacitor and the average magnetic field energy stored in the coil.
16. An inductance of $2.0 H$, a capacitance of $18 \mu F$ and a resistance of $10 k \Omega$ are connected to an AC source of 20 V with adjustable frequency. (a) What frequency should be chosen to maximise the current in the circuit? (b) What is the value of this maximum current?

- Watch Video Solution

17. A coil a capacitor and an $A C$ source of rms voltage 24 V are connected in series. By varying the frequency of the source, a maximum rms current of 6

A is observed. If coil is connected is at DC batteryof
emf 12 volt and internal resistance 4Ω, then current through it in steady state is

- Watch Video Solution

18. Figure shows a typical circuit for low-pass filter. An
$A C$ input $V_{i}=10 \mathrm{mV}$ is applied at the left end and the output V_{0} is received at the right end. Find the output voltages for
$v=10 \mathrm{kHz}, 100 \mathrm{kHz}, 1.0 \mathrm{MHz}$ and 10.0 MHz . Note
that as the frequency is increased the output decreases and hence the name low-pass filter.

19. A transformer has 50 turns in the primary and 100 in the secondary. If the primary is connected to a $220 V D C$ supply, what will be the voltage across the secondary?

- Watch Video Solution

