© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA

OPTICAL INSTRUMENTS

Examples

1. Two boys one 52 inches tall and the other 55
inches tall, are standing at distances 4.0 m
and 5.0 m respectivley from an eye. Which boy will taller?

D Watch Video Solution

2. A compound microphone has an objective of
focal length 1 cm and an eyepiece of focal length 2.5 cm . An object has to be placed at a distance of 1.2 cm awy from the objective for normal adjustment. a.Find the angular magnification. b.Find the length of the microscope tube.

Watch Video Solution

3. A nearsighted man can clearly see objects
up to a distance of 1.5 m . Calculate the power of the lens of the spectacles necessary for the remedy of this defect.

D Watch Video Solution

Worked Out Examples

1. An object is seen thorugh a simple microscope of focal length 12 c . Find the angular mgnification produced if the image is formed at the near pointofhe eye which is 25 cm away from it.

D Watch Video Solution

2. (a) An object is seen through a simple microscope of focal length 12 cm . Find the angular magnification produced if the image is
formed at the near point of the eye which is

25 cm away from it.
(b) A $10 D$ lens is used as a magnifier. Where should the object be placed to obtain maximum angular magnification for a normal eye (near point $=25 \mathrm{~cm}$)?

D Watch Video Solution

3. A small object is placed at distance of 3.6 cm
from a magnifier of focal length 4.0 cm . a. find
the position of theimage. B. find the linear
magnification c. Find the angular

magnification.

D Watch Video Solution

4. A compound microscope consists of an objective of focal length 1.0 cm and an eyepiece of focal length 5.0 cm separated by
12.2 cm . At what distance from the objective should a object be placed to focus it properly so that the final image is formed at the least
distance of clear vision $(25 \mathrm{~cm})$? b. calculate the angular magnification in this case.

D Watch Video Solution

5. The separation L between the objective
($f=0.5 \mathrm{~cm}$) and the eyepiece ($\mathrm{f}=5 \mathrm{~cm}$) of a
compound microscope is 7 cm . Where should
a small object be placed so that the eye is least strained to see the image? Find the angular magnification produced by the microscope.
6. An astronomical telescope has an objective of focal length 20 cm and an eyepiece of focal length 4.0 cm . The telescope is focused to see an object 10 cm from the objective. the final image is formed at infinity. Find the length of the tube and the angular magnification produced by the telescope.

- Watch Video Solution

7. A Galilean telescope is constructed by an objective of focal length 50 cm and a eyepiece of focal length 5.0 cm a. find the tube length and magnifying power when it is used to see n object at a large distancei normal adjustment b. if the telescope is to focus an object 2.0 m away from the objective what should be the tube length and angular magnification, the image again forming at infinity?
8. The image of the moon is focussed by a converging lens of focal length 50 cm on a plane screen. The image is seen by an unaided eye from a distance of 25 cm . Find te angular magnificatioin achievd due to the converging lens.

D Watch Video Solution

9. The near and far points of a person are at 40 cm and 250 cm respectively. Find the power of the lens he/she should use while reading at

25 cm . With this lens on the eye, what maximum distance is clearly visible?

D Watch Video Solution

10. A young boy can adjust the power of his eye lens between 50 D and 60 D . His far point
is infinity. A. What is the distance of his retina from the eye-lens? b. What is the near point?
11. Can virtual image be formed on the retina in a seeing process?

- Watch Video Solution

2. Can the image formed by a simple microscope be projected on a screen without using any additional lens or mirror?
3. The angular magnification of a system is less
than one. Does it mean that the image formed is inverted?

- Watch Video Solution

4. A simple microscope using a single lens often shows coloured image of a white source.

Why?
5. A magnifying glass is a converging lens placed close to the eye. A farsighted person uses spectacles having converging lenses.

Compare the functions of a converging lens used as a magnifying glass and as spectacles.

- Watch Video Solution

6. A person is viewing an extended object. If a converging lens is placed in front of his eyes, will he feel that the size has increased?
7. By mistake, an eye surgeon puts a concave lens in place of the lens in the eye after a cataract operation. Will the patient be able to see clearly any object placed at any distance?

D Watch Video Solution

8. The magnifying power of a simple microscope is given by $1+\frac{D}{f}$, where D is the least distance for clear vision. For farsighted
persons, D is greater than the usual. Does it mean that the magnifying power of a simple microscope is greater for a farsighted person as compared to a normal person? Does it mean that a farsighted person can see an insect more clearly under a microscope than a normal person?

- Watch Video Solution

9. Why are the magnification properties of microscopes and telescopes defined in terms
of the ratio of angles and not in terms of the ratio of sizes of objects and images?

D Watch Video Solution

10. An object is placed at a distance of 30 cm from a converging lens of focal length 15 cm . A normal eye (near point 25 cm , far point infinity) is placed close to the lens on the other side. (a) Can the eye see the object clearly? (b) What should be the minimum separation between the lens and the eye so
that the eye can clearly see the object? c. Can
a diverging lens, placed in contact with the converging lens, help in seeing the object clerly when the eye is close to the lens?

- Watch Video Solution

11. A compound microscope forms an inverted image of an object. In which of the following cases it is likely to create difficulties? a.

Looking at small germs. b.Looking at circular
spots. c. Looking at a vertical tube containing some water.

- Watch Video Solution

Question For Short Answer

1. The magnifying power of a converging lens
used as a simple microscope is $\left(1+\frac{D}{f}\right)$. A
compound microscope is (f a combination of
two such converging lenses. Why don't we
have magnifying power $\left(1+\frac{D}{f_{0}}\right)\left(1+\frac{D}{f_{e}}\right)$
. In other words, why can the objective not be treated as a simple microscope but the eyepiece can?

- Watch Video Solution

Objective 1

1. The size of an object as perceived by an eye
depends primarily on
A. actual of the object
B. distances of the object from the eye
C. aperture of the pupil
D. size of the image formed on th retina

Answer: D

D Watch Video Solution

2. The muiscles of a normal eye are least strained when the eye is focussed on an object
A. far away from the eyes
B. very close to the eye
C. at abot 25 cm from the eye
D. at about 1 m from the eye

Answer: A

D Watch Video Solution

3. A normal eye is not able to see objects
closer than 25 cm because
A. the focal length of the eye is 25 cm
B. the distance of the retina from the eye lens is 25 cm
C. the eye is not able to decreae the
distance between the eye lens and the
retina beyond a limit

D. the eye is not able to decrease the focal

length beyond a limit.

Answer: D

D Watch Video Solution

4. When objects at different distances are seen by the eye, which of the following remai constant?
A. the focal length of the eye lens
B. the object distance from the eye lens
C. the radii foc curavature of the eye lens
D. the image distance from the the eye lens

Answer: D

5. A person can clearly see objects between 25
cm and 200 cm . Which of the following may represent the range of clear vision for a person B having muscles stronger than A bull all other parameters of eye identicl to that of A
A. 25 cm to 200 cm
B. 18 cm to 200 cm
C. 25 cm to 300 cm
D. 1 cm to 300 cm

Answer: B

D Watch Video Solution

6. The focal length of a normal eye lens is about
A. 1 mm
B. 2 cm
C. 25 cm to 300 cm
D. 1 m

Answer: B

- Watch Video Solution

7. The distance of the eye lens from the retina
is x. For a normal eye, the maximum focal
length of the eye lens
A. $=x$
B. $<x$
C. $>x$
D. $=2 x$

Answer: A

D Watch Video Solution

8. An object is placed at a distance u from a
simple microscope of focal length f. The angular magnifiction obtaioned depends
A. on f but not on u
B. on u but not on f
C. on f as well as u
D. neigher on f nor on u

- Watch Video Solution

9. To increase the angular magnification of a
simple microscope, one should increase
A. the focal length of the lens
B. the power of the lens
C. the apeture of the lens
D. the object size

Answer: B

- Watch Video Solution

Objective 1

1. A man weasring glasses of focal length +1 m
cannot clearly see beyond 1 m
A. if he is farsighted
B. if he is nearsighted
C. if his vision is normal

D. in each of these cases

Answer: D

- Watch Video Solution

2. A man is looking at a small object placed at
his near point. Without altering the position of Ihis eye or the object, he puts a simple microscope of magnifying power $5 x$ before his eyes. The angular magnification achieved is A. 5
B. 2.5
C. 1
D. 0.2

Answer: C

D Watch Video Solution

Objective 2

1. When we see an object the image formed on
the retina is
A. real
B. virtual
C. erect
D. inverted.

Answer: A::D

D Watch Video Solution
2. In which of the following the final image is erect?
A. simple microscope
B. compound microscope
C. Astronomical telescope
D. Galilean telescope

Answer: A::D

D Watch Video Solution

3. The maximum focal length of the eye lens of a person is greater than its distance from the retina. The eye is
A. always strained in looking at an object
B. strained for objects at large distances
only
C. strained for objects at short distances only

D. unstrained for all distances

Answer: A
4. The focal length of the objective of a compound microscope is f_{0} and its distance
from the eyepiece is L. The object is placed at a distance u from the objective. For proper working of the instrument.,
A. $L<u$
B. $L>u$
C. $f_{0}<L<2 f_{0}$
D. $L>2 f_{0}$

Objective 2

1. Mark the correct options.
A. if the far point goes ahead, the power of
the divergent lens should be reduced
B. if the near point goes ahead, the power
of the convergent lens should be reduced.
C. If the fr points 1 m away form the eye,
divergent lens should be used.
D. If the near point is 1 m away from the
eye, divergent lens should be used

Answer: A::C

- Watch Video Solution

Exercises

1. An object is to be seen through a simple microscope of focal length 12 cm . Where should the object be placed so as to produce maximum angular magnification? The least distance for clear vision is 25 cm .

D Watch Video Solution

2. A simple microscope has a magnifying power of 3.0 when the image is formed at the near point (25 cm) of a normal eye. (a) What is
its focal length? (b) What will be its
magnifying power if the image is formed at infinity?

D Watch Video Solution

3. A child has near point at 10 cm . What is the maximum angular magnification the child can
have with a convex lens of focal length 10 cm ?

D Watch Video Solution

4. A simple microscope is rated 5 X for a normal relaxed eye. What Nvill be its magnifying power for a relaxed farsighted eye whose near point is 40 cm ?

D Watch Video Solution

5. Find the maximum magnifying power of a compound microscope having a 25 diopter lens as the objective, a 5 diopter lens as the eyepiece and the separation 30 cm between
the two lenses. The least distance for clear vision is 25 cm .

D Watch Video Solution

6. The separation between the objective and
the eyepiece of a compound microscope can be adjusted between 9.8 cm to 11.8 cm . If the
focal lengths of the objective and the eyepiece are 1.0 cm and 6 cm respectively, find the range of the magnifying power if the image is always needed at 24 cm from the eye.
7. An eye can distinguish between two points of an object if they are separated by more than 0.22 mm when the object is placed at 25 cm from the eye. The object is now seen by a compound microscope having 20 D objective and 10D eyepiece separated by a distance of

20 cm . The final image is formed at 25 cm from
the eye. What is the minimum separation between two points d of the objects which can now be distinguished.

- Watch Video Solution

8. A compound microscope has a magnifying power of 100 when the image is formed at infinity. The objective has a focal length of 0.5
cm and the tube length is 6.5 cm . Find the fbcal length of the eyepiece.

D Watch Video Solution

9. A compound microscope consists of an objective of focal length 1 cm and an eyepiece
of focal length 5 cm . An object is placed at a distance of 0.5 cm from the objective. What should be the separation between the lenses so that the microscope projects an inverted real image of the object on a screen 30 cm behind the eyepiece?

D Watch Video Solution

10. An optical instrument used for angular magnification has a 25 D objective and a 20 D eyepiece. The tube length is 25 cm when the
eye is least strained. a. Whether it is a microsciAn optical instrument used for angular magnification has a 25 D objective and a 20 D eyepiece. The tube length is 25 cm when the eye is least strained.e or a telescope? b. What is the angulasr magnificant produced?

- Watch Video Solution

11. An astronomical telescope is to be designed to have a magnifying power of 50 in
normal adjustment. If the length of the tube is

102 cm , find the powers of the objective and the eyepiece.

D Watch Video Solution

12. The eyepiece of an astronomical telescope
has a focal length of 10 cm . The telescope is
focused for normal vision of distant objects
when the tube length is 1.0 m . find the focal
length of the objective and the magnifying power of the telescope.

Watch Video Solution

13. A Galilean telescope is 27 cm long when focussed to form an image at infinity. If the objective has a focal length of 30 cm , what is the focal length of the eyepiece?

- Watch Video Solution

14. A farsighted person cannot see objects placed closer to 50 cm . Find the power of the lens needed to see the objects at 20 cm .
15. A nearsighted person cannot clearly see beyond 200 cm . Find the power of the lens needed to see objects at large distances.

- Watch Video Solution

16. A person wears glasses of power $-2.5 D$. Is
the person short sighted or long sighted ?

What is the far point of the person without glasses ?

D Watch Video Solution

17. A professor reads a greeting card received on his 50th birthday with +2.5 D glasses
keeping the card 25 cm away. Ten years later, he reads his farewell letter with the same glasses but he has to keep the letter 50 cm away. What power of lens should he now use?
18. A normal eye has retina 2 cm behind the eye-lens. What is the power of the eye-lens when the eye is (a) fully relaxed, (b) most strained?

D Watch Video Solution

19. The near point and the far point of a child are at 10 cm and 100 cm . If the retina is 2.0 cm behind the eye-lens, what is the range of the power of the eye-lens?

- Watch Video Solution

20. A nearsighted person cannot see beyond 25 cm . Assuming that the separation of the glass from the eye is 1 cm , find the power of lens needed to see distant objects.

- Watch Video Solution

21. A person has near point at 100 cm . What power of lens is needed to read at 20 cm if
he/she uses (a) contact lens, (b) spectacles
having glasses 2.0 cm separated from the eyes?

D Watch Video Solution

22. A lady uses + 1.5 D glasses to have normal
vision from 25 cm onwards. She uses a 20 D
lens as a simple microscope to see an object.

Find the maximum magnifying power if she
uses the microscope (a) together with her glass (b) without the glass. Do the answers
suggest that an object can be more clearly seen through a microscope without using the correcting glasses?

D Watch Video Solution

23. A lady cannot see objects closer than 40 cm
from the left eye and closer than 100 cm from
the right eye. While on a mountaining trip, she is lose from her team. She tries to make an astronomical trip, from her reading glasses to
look from her teammates. (a) Which glass
should she use as the eyepiece? (b) What magnification can she get with relaxed eye?

- Watch Video Solution

