©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Product of three or more Vectors

Example

1. The position vectors of three A, B, and C in space are respectively $2 \vec{i}+3 \vec{j}-\vec{k}, \vec{i}-2 \vec{j}+3 \vec{k}$ and $4 \vec{i}+\vec{j}+\vec{k}$. Find the volume of the parallelepiped whose three concurrent edges are $O A, O B$ and $O C$ where O is the origin.

[^0]2. If \vec{a}, \vec{b} and \vec{c} are three non-zero vectors, prove that
$[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$

(Watch Video Solution

3. If the four points $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar, then show that $[\vec{a} \vec{b} \vec{c}]=[\vec{b} \vec{c} \vec{d}]+[\vec{c} \vec{a} \vec{d}]+[\vec{a} \vec{b} \vec{d}]$

- Watch Video Solution

4. If \vec{b} and \vec{c} be any two non-collinear vectors, and \vec{a} be any vector then $(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})$ is equal to

- Watch Video Solution

5. Let \hat{x}, \hat{y} and \hat{z} be unit vectors such that $\widehat{x}+\hat{y}+\hat{z}=a \cdot \widehat{x} \times(\hat{y} \times \hat{z})=b,(\widehat{x} \times \hat{y}) \times \hat{z}=c, a \cdot \widehat{x}=\frac{3}{2}, a \cdot \hat{y}=\frac{7}{4}$
. Find x, y and z in terms of a, b and c .

- Watch Video Solution

6. $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors , prove that $\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \vec{a} & \vec{a} & \vec{b} \\ \vec{a} \vec{c} \\ \vec{b} \vec{a} & \vec{b} & \vec{b} \\ \vec{b} & \vec{a}\end{array}\right|=0$

- Watch Video Solution

7. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ are two sets of vectors such that $\vec{e}_{i} \vec{E}_{j}=1$, if $i=j a n d \vec{e}_{i} \vec{E}_{j}=0$ and if $i \neq j$, then prove that $\left[\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}\right]\left[\vec{E}_{1} \vec{E}_{2} \vec{E}_{3}\right]=1$.

- Watch Video Solution

1. If three concurrent edges of a parallelopiped of volume V represent vectors $\vec{a}, \vec{b}, \vec{c}$ then the volume of the parallelopiped whose three concurrent edges are the three concurrent diagonals of the three faces of the given parallelopiped is

(Watch Video Solution

2. The position vectors of the points A, B, C, D are respectively $2 \vec{i}+\vec{j}-\vec{k}, \vec{i}+\vec{j}+\vec{k}, \vec{i}-2 \vec{j}+3 \vec{k} \quad$ and $\quad 3 \vec{i}-\vec{j}+2 \vec{k}$. Evaluate $[\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}]$.

(Watch Video Solution

3. If the three vectors $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are also coplanar.
4. Prove that $(\vec{a}-\vec{b})(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})=0$

- Watch Video Solution

5.

Let
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k} ; \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both $\vec{a} \& \vec{b}$. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|^{2}=$

- Watch Video Solution

6. If $\vec{a}, \vec{b}, \vec{c}, \vec{a}, \vec{b}, \vec{c}^{\prime}$, are two sets of non-coplanar vectors such that $\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b}^{\prime}=\vec{c} \cdot \vec{c}^{\prime}=1$, then the two systems are called Reciprocal System of vectors and $\bar{a}^{\prime}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{b},=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{c},=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ Find the value of $\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}$.

- Watch Video Solution

7. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and let $\vec{p}, \vec{q}, \vec{r}$ be the vectors defined by the relations $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ Then the value of

(Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=3,|b|=4,|\vec{c}|=5$ Find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$

- Watch Video Solution

9. Prove that $\hat{i} \times(\vec{a} \times \hat{i}) \hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$.

- Watch Video Solution

10.

$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 \beta-\sin \alpha) \vec{b}+\left(\beta^{2}-1\right) \vec{c}$ and being non-collinear then

- Watch Video Solution

11. Let \vec{a} be a unit vector and \vec{b} a non-zero vector not parallel to \vec{a} The angles of the triangle, two of whose sides are represented by $\sqrt{3}(\vec{a} \times \vec{b})$ and $(\vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}$ are

(Watch Video Solution

12.

For
any
vector
\vec{a},
prove
that
$|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=2|\vec{a}|^{2}$

- Watch Video Solution

13. If vectors b, candd are not coplanar, then prove that vector $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\overrightarrow{d x} x \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b}$ is parallel to \vec{a}.

- Watch Video Solution

14. If \vec{a}, \vec{b} and \vec{c} are three conterminuous edges of a parallelopiped of the volume 6 then find the value of $\left[\begin{array}{llll}\vec{a} \times \vec{b} & \vec{a} \times \vec{c} & \vec{b} \times \vec{c}\end{array}\right]$.

- Watch Video Solution

15. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, find scalars $p, q a n d r$ in terms of θ.

- Watch Video Solution

16. If $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{b}=\vec{i}-\vec{j}+\vec{k}$ and $\vec{c}=\vec{i}+2 \vec{j}-\vec{k}$, $\left\lvert\, \begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \quad \vec{a} \cdot \vec{c}\end{array}\right.$ then the value of $\vec{b} \cdot \vec{a} \vec{b} \cdot \vec{b} \quad \vec{b} \cdot \vec{c}$ is equal to: (1) 2 (2) 4 (3) 16 (4) $\vec{c} \cdot \vec{a} \quad \vec{c} \cdot \vec{b} \quad \vec{c} \cdot \vec{c} \mid$

- Watch Video Solution

17. If the volume of a parallelopiped, whose three coterminous edges are $-12 \vec{i}+\lambda \vec{k}$;
$3 \vec{j}-\vec{k}$ and $2 \vec{i}+\vec{j}-15 \vec{k}$, is 546 then $\lambda=$

- Watch Video Solution

18. Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:
$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$
$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=3 \hat{i}-\hat{j}-2 \hat{k}$
$\vec{a}=11 \hat{i}, \vec{b}=2 \hat{j}-\hat{k}, \vec{c}=13 \hat{k}$
$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$

- Watch Video Solution

19. The points $(3,6,9),(1,2,3),(2,3,4)$ and $(4,6, \lambda)$ are coplanar if λ
$=$ \qquad -

- Watch Video Solution

20. If $\vec{x} \dot{\vec{a}}=0, \vec{x} \vec{b}=0$ and $\vec{x} \vec{c}=0$ for some non-zero vector \vec{x}, then prove that $[\vec{a} \vec{b} \vec{c}]=0$.

- Watch Video Solution

21. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 respectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, the acute angle between \vec{a} and \vec{c} is

- Watch Video Solution

22. The scalar $\vec{A} \vec{B}+\vec{C} \times(\vec{A}+\vec{B}+\vec{C})$ equals $0 \quad$ b. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$ c. $[\vec{A} \vec{B} \vec{C}]$ d. none of these
A. 0
B. $\left[\begin{array}{lll}\vec{A} & \vec{B} & \vec{C}\end{array}\right]+[[\operatorname{vec} \mathrm{B}, \operatorname{vec} \mathrm{C}$, vec A$]]$
c. $[\vec{A} \vec{B} \vec{C}]$
D. none of these

Answer:

- Watch Video Solution

23. Let a,b,c be distinct non zero numbers. If the vectors $a \vec{i}+a \vec{j}+c \vec{k}$, $\vec{i}+\vec{k}$ and $c \vec{i}+c \vec{j}+b \vec{k}$ lie in a plane then 'c' is
A. the $A M$ of a and b
B. the GM of a and b
C. the HM of a and b
D. equal to zero

Answer: B

- Watch Video Solution

24. The vectors $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a})$ and $\vec{c} \times(\vec{a} \times \vec{b})$ are
A. unit vector
B. null vector
C. vector of magnitude $3|\vec{a}||\vec{b}||\vec{c}|$
D. none of these

Answer:

25. \vec{p}, \vec{q}, and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p})$ is given by $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$ b. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$ C. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$ d. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$
A. $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
B. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
D. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

Answer:

- Watch Video Solution

26. In each of the following, one or more options ar correct. Choose the correct option(s). If $\vec{a}, \vec{b}, \vec{c}$ represent three concurrent edges of a
rectangular parallelepiped whose lengths are 4,3,2 respectively then the value of $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$ is
A. 0
B. 48
C. 72
D. none of these

Answer: C

- Watch Video Solution

27. If $\vec{a}=\vec{p}+\vec{q}, \vec{p} \times \vec{b}=\operatorname{and} \vec{q} \vec{b}=0$, then prove that $\vec{b} \times(\vec{a} \times \vec{b})$

$$
=\vec{q}
$$

$\vec{b} \vec{b}$
A. \vec{q}
B. \vec{q}
C. $\vec{p} \times \vec{q}$
D. none of these

- Watch Video Solution

28. Given $|\vec{a}|=|\vec{b}|=1 a n d|\vec{a}+\vec{b}|=3$. If \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$, then find the value of \vec{b}.

- Watch Video Solution

[^0]: - Watch Video Solution

