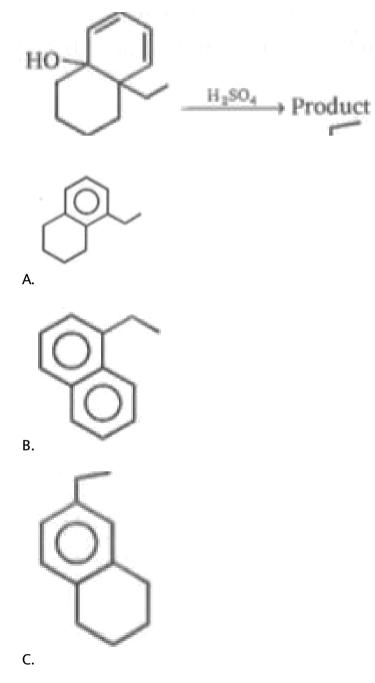

CHEMISTRY

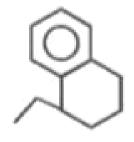
BOOKS - MS CHOUHAN

ALCOHOL, ETHERS AND EPOXIDES

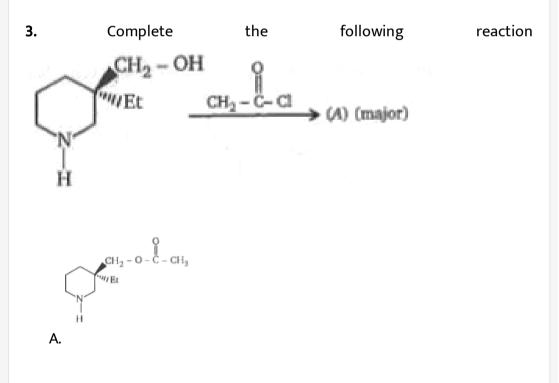
1. The following transformation involves a carbocation rearrangement. The carbocation is generated by protonation of the hydroxyl group, followed by the loss of water. Which bond has to migrate in the carbocation to yield the product indicated (after the deprotonation)

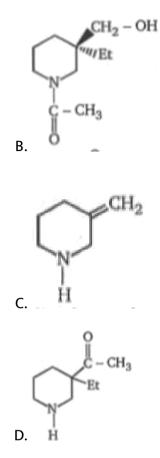
A. a


B.b

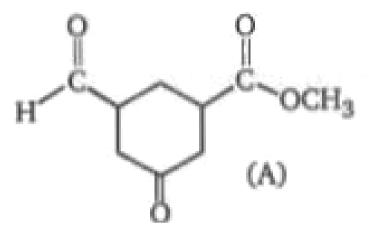

С. с

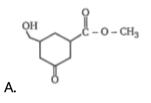
D. d

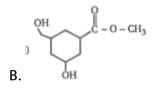

2. Identify the major product.

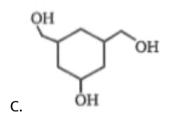


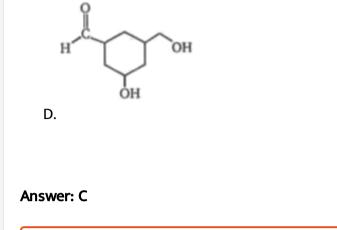
D.

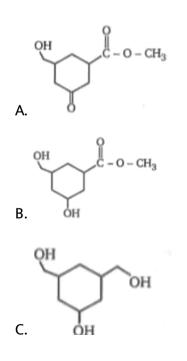


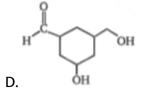







4. Predict the product when given compound reacts with $LiAlH_4$.

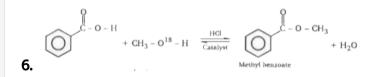




Watch Video Solution

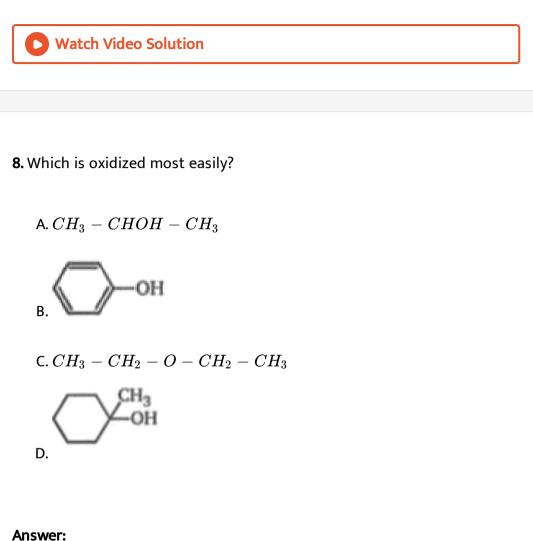
5. Predict the product when given compound (A, in the above question 4)

reacts with $NaBH_4$

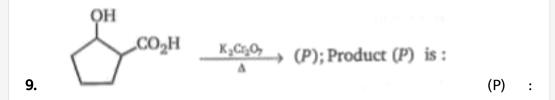


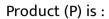
Answer: b

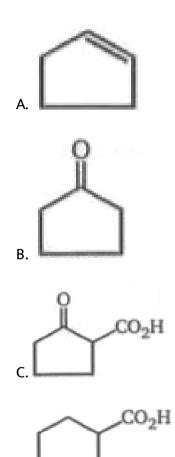
Watch Video Solution


The labelled $-O^{18}$ will be in :

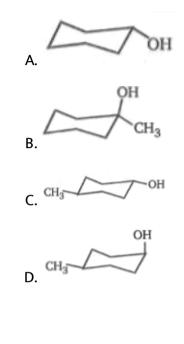
A. H_2O

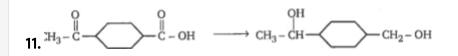

B. Methyl benzoate


C. Both (a) and (b)


D. Benzoic acid

Watch Video Solution



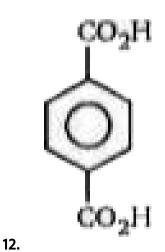

D.

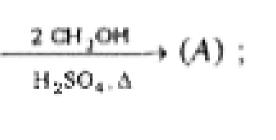
10. Which of the following react with HBr at faster rate?

Answer:

Above conversion can be done by :

A. $NaBH_4$

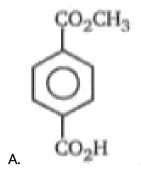

B. $LiAlH_4$

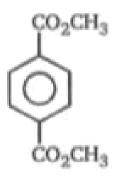

 $\mathsf{C}.\,PCC$

D. $KMnO_4$

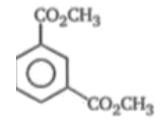
Answer:

Watch Video Solution

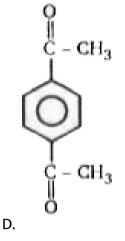


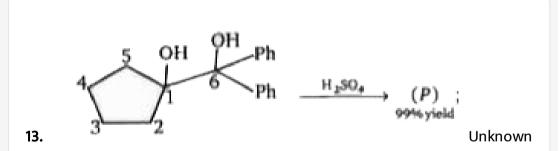


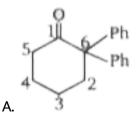
(A)

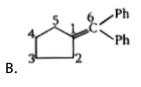

,

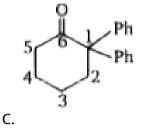
product (A) is :

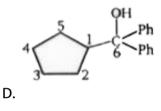


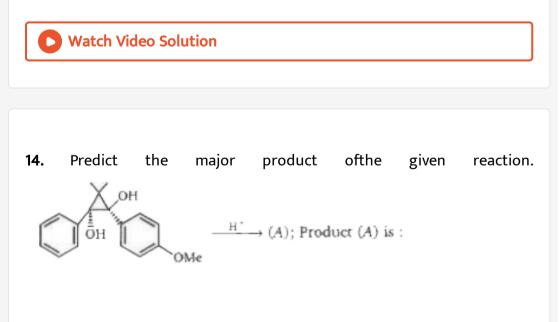

Β.

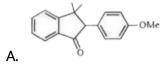

C.



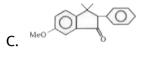


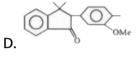


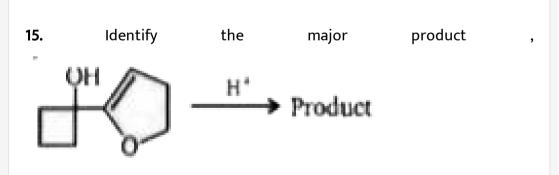

(P) of the reaction is :

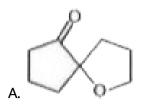


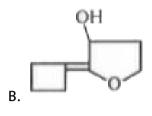


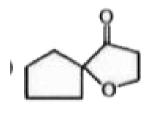


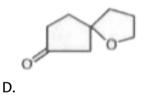


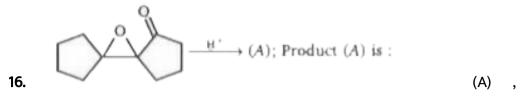


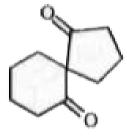


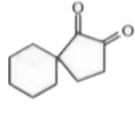


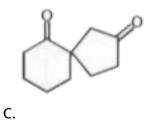


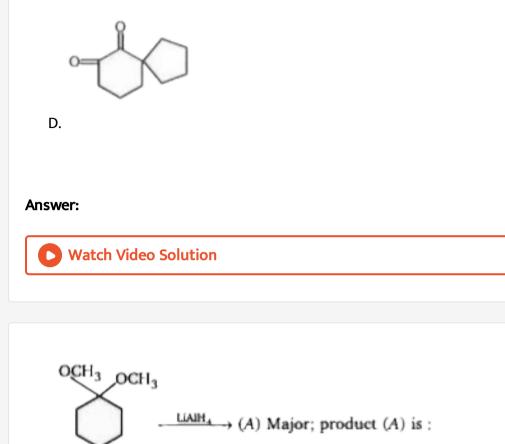


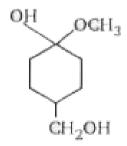


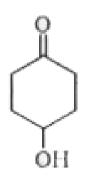




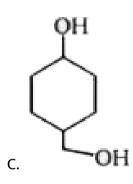

Product (A) is :

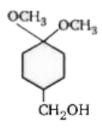




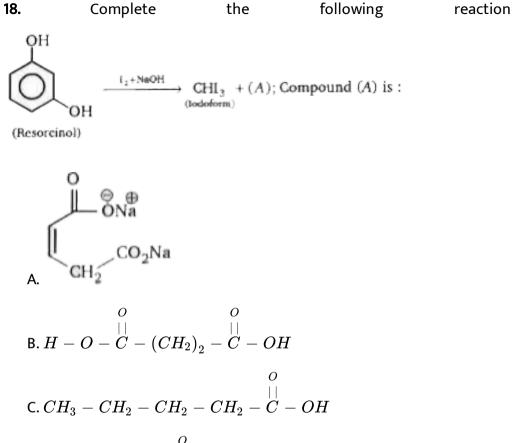

17. CO₂CH₃

(A) Major,

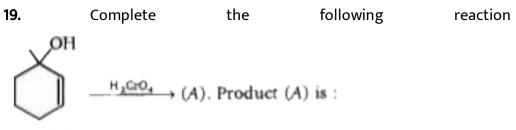

product (A) is :



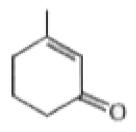
A.



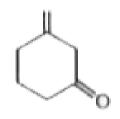
D.


Answer:

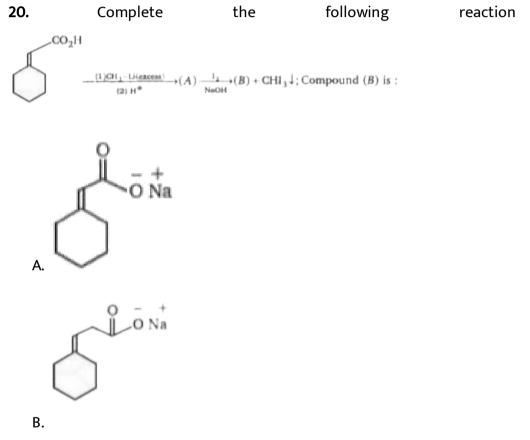
Watch Video Solution

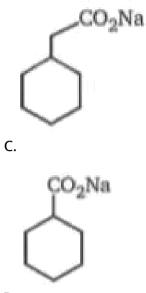

D.
$$CH_3-\left(CH_2
ight)_3-\overset{ert}{C}-ONa$$

Watch Video Solution

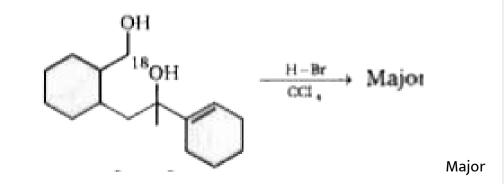


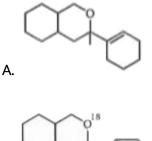
A. No reaction

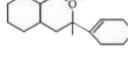


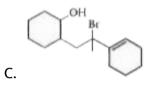


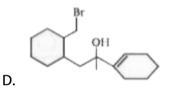
C.



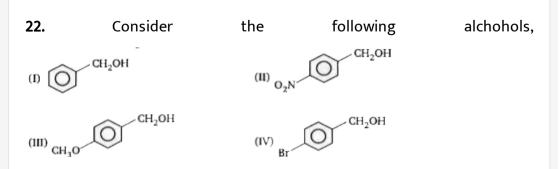




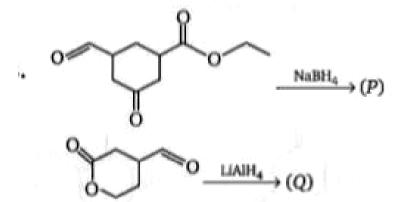



21.

product obtained in the reaction is :



Β.

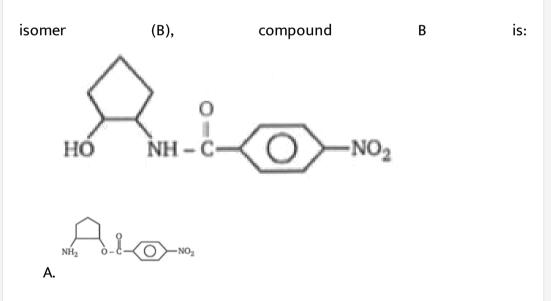


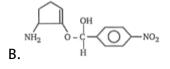
The order of decreasing reactivities of these alcohols towards nucleophilic substitution with HBr is:

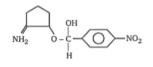
A. III > I > IV > IIB. III > I > II > IVC. I > III > IV > IID. I > III > II > IV

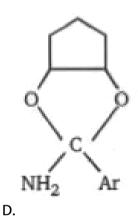
Answer:

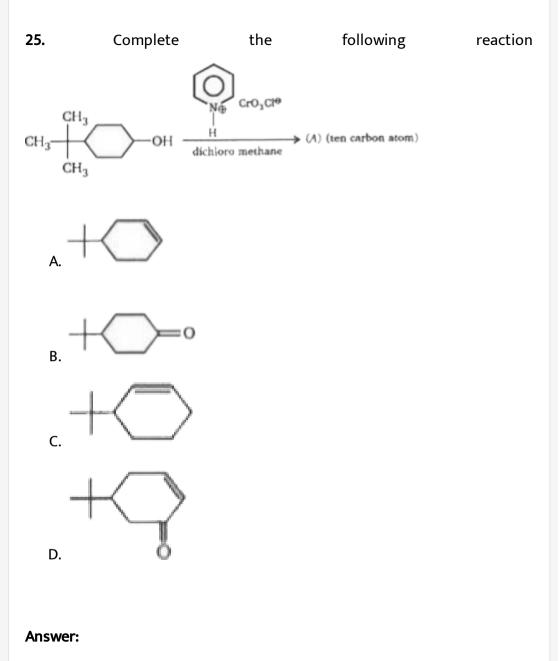
Watch Video Solution

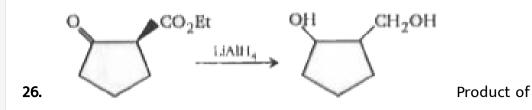

23.


Sum of number of alcoholic groups in product (P) and (Q) is


A. 2			
B. 3			
C. 4			
D. 5			

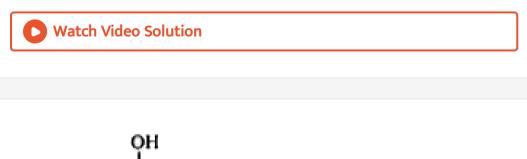

24. In presence of dil. HCI, compound A is converted to a constitutional

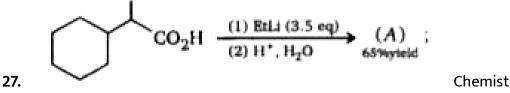



C.

Watch Video Solution

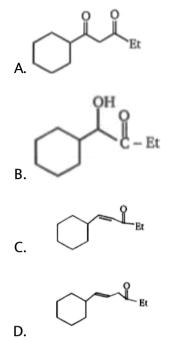
the reaction is :

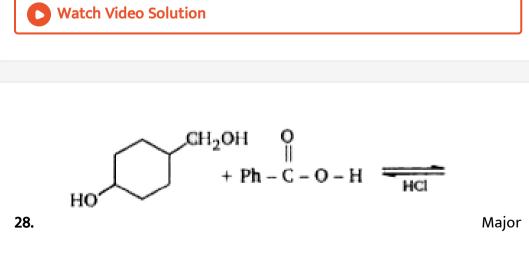

A. Racemic

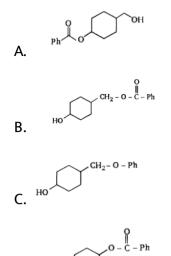

B. Diastereomer

C. Meso

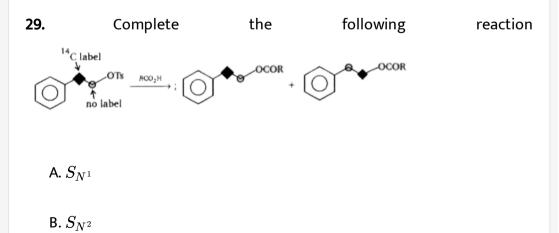
D. Optically pure


Answer:

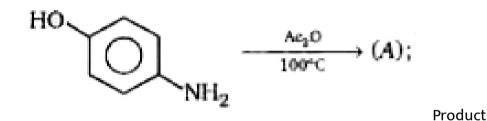



added extra 0.5 mole of Et-Li in above reaction to obtain product (A),

which is ?



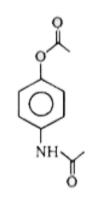
product of above esterification reaction is:

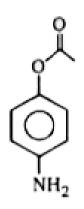


C. SN - NGP

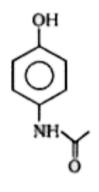
D. SN - Ar

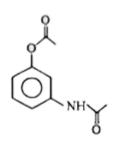
Answer:


Watch Video Solution

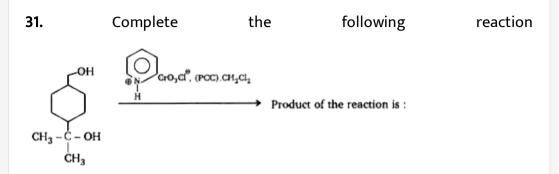


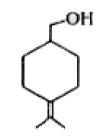
30.


A.

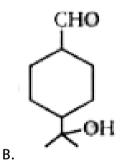

(A) of reaction is :

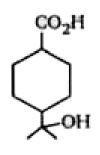
Β.

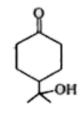




D.


C.


Answer:



A.

C.

D.

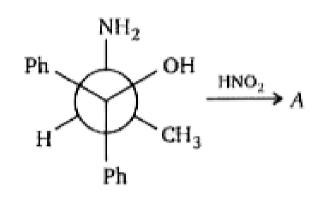
Answer:

32. Which is the best reagent to convert isopropyl alcohol 'to isopropyl

bromide?

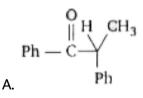
 $CH_3 \stackrel{CH_3}{\stackrel{|}{\longrightarrow}} CH_3 - \stackrel{CH_3}{\stackrel{|}{\longrightarrow}} CH_3 - \stackrel{|}{\stackrel{C}{\longrightarrow}} H - Br$

A. HBr


B. $SOBr_2$

 $\mathsf{C}.\,Br_2$

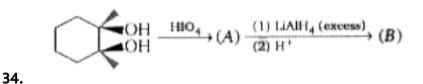
D. CH_3MgBr


Answer:

33.

Major product obtained in the above reaction is :

$$\mathbf{P}\mathbf{h} - \mathbf{C} - \bigvee_{\mathbf{P}\mathbf{h}}^{\mathbf{O}} \mathbf{C} \mathbf{H}_{3} \mathbf{H}$$

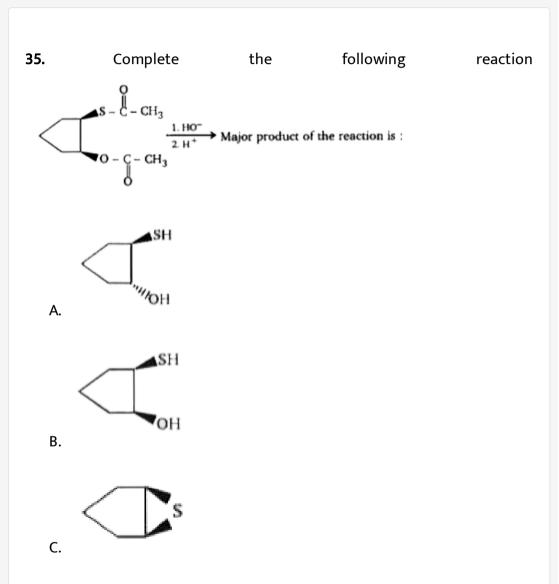

C. Racemic

D. Diastereomers

Answer:

Β.

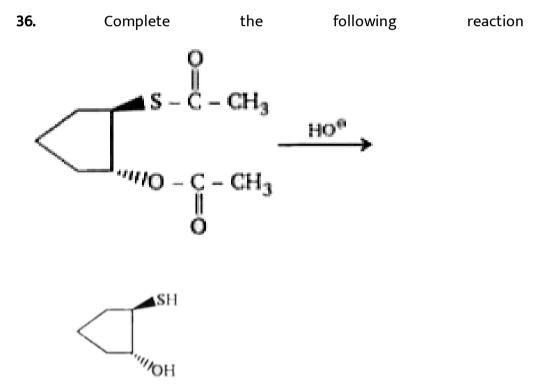
Watch Video Solution

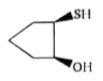

Total number of stereoisomers of product (B) will be:

B. 3 C. 4

A. 2

D. 5

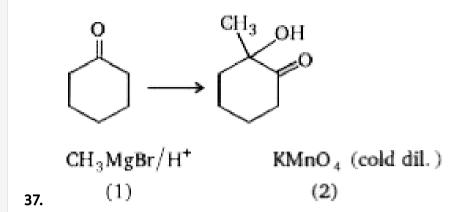



D.

Answer:

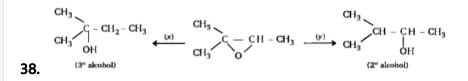
A.

Β.



C.

D.



For the above conversion the correct order of reagents used is :

A. $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ B. $1 \rightarrow 4 \rightarrow 3rar2$ C. $1 \rightarrow 4 \rightarrow 2 \rightarrow 3$ D. $2 \rightarrow 3 \rightarrow 4 \rightarrow 1$

Find missing reagents .

A.
$$x=LiAlH_4, y=NaBH_4$$

B. $x=LiAlH_4/AlCl_3, y=LiAlH_4$
C. $x=LiAlH_4, y=LiAlH_4/AlCl_3$
D. $x=H_2/Ni, y=H_2/Pt$

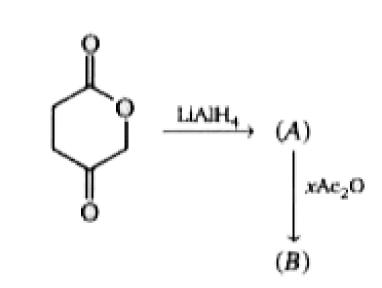
Answer:

Watch Video Solution

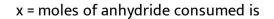
39. In solvolysis of 1,2-dimethyl propyl p-toluene sulfonate in acetic acid at

 $75^{\,\circ}C$, how many (alkene + substitution) products will be formed ?

A. S_{N^2}, E_2


B. S_{N^2}, E_1

 $\mathsf{C}.\,S_{N^1},\,E_2$


D. S_{N^1}, E_1

Answer:

40.

A. 1

B. 2

C. 3

D. 4

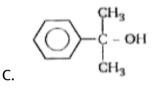
Answer:

Watch Video Solution

41. Identify product when (R) - and (S) - 2 - butanol reacts with (R,R) tartaric acid in acidic medium.

A. Racemic

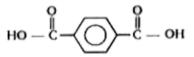
B. Diastereomer

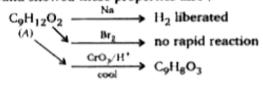

C. Meso

D. Pure enantiomer

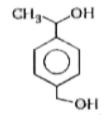
Answer:

Watch Video Solution

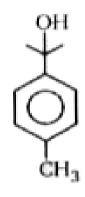

42. An alcohol of formula $C_9H_{12}O$ reacts with $Na_2Cr_2O_7$ to form a compound having formula $C_9H_{10}O$. The original alcohol might be


Answer:

Watch Video Solution


43. An optically active alcohol of formula $C_9H_{12}O_2$ produced the following compound when refluxed with $KMnO_4$

The original compound showed these properties also :


What is structure of (A)?

он он он сн₃

Β.

A.

C.

D. both (a) and (b)

Answer:

Watch Video Solution

44. Which are not cleaved by HIO_4 ?

I: glycerol

II : glycol

III : 1,3 - propanediol

IV : methoxy - 2- propanol

A. I,II,III,IV

B. I,II

C. II,III

D. III,IV

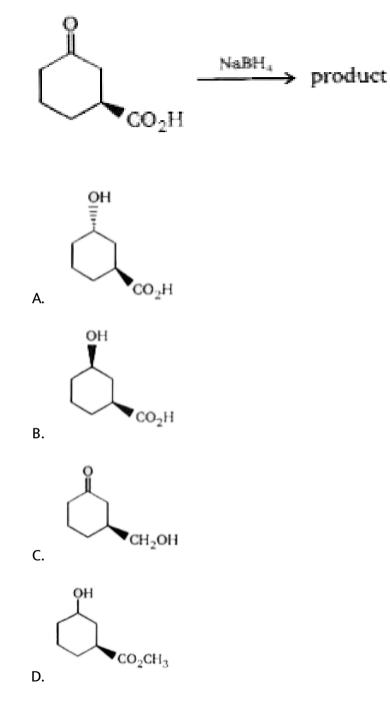
Answer:

Watch Video Solution

45. Which of the following reactions require an oxidising agent?

A.
$$CH_3-CH=CH_2
ightarrow CH_3-CH_2-CH_3$$

B.
$$CH_3 - CH_2OH
ightarrow CH_3CHO$$


 $\mathsf{C.}\,CH_3-CH_2Cl\to CH_3-CH_3$

D. $CH_3 - CH_2OH \rightarrow CH_3 - CH_2Cl$

Answer:

Watch Video Solution

46. What is the major product of the following reaction ?

Watch Video Solution

47. Which of the esters shown, after reduction with $LiAlH_4$ and aqueous workup, will yield two molecules of only a single alcohol ?

A. $CH_3CH_2CO_2CH_2CH_3$

 $\mathsf{B.}\, C_6H_5CO_2CH_2C_6H_5$

 $\mathsf{C.}\, C_6H_5CO_2C_6H_5$

D. None of these

Answer:

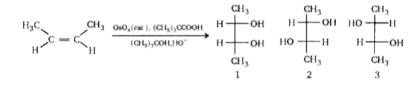
48. For the following reaction, select the statement that best describes

the change.

 $RCH_2OH + PCCig[C_5H_5NH^+ClCrO_3^-ig]
ightarrow$

A. The alcohol is oxidized to an acid, and the Cr(VI) is reduced

B. The alcohol is oxidized to an aldehyde, and the Cr(VI) is reduced


C. The alcohol is reduced to an aldehyde, and the CrCIII) is oxidized

D. The alcohol is oxidized to a ketone, and the Cr(VI) is reduced

Answer:

Watch Video Solution

49. What is the product of the following reaction ?

A. Only 1

B. 1:1 mixture of 2 and 3

C. Only 2

D. 1:1: 1 mixture of 1,2, and 3

Answer:

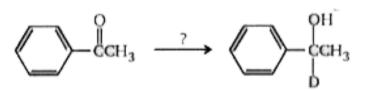
50. An organic compound B is formed by the reaction of ethylmagnesium iodide (CH_3CH_2MgI) with a substance A, followed bytreatment with dilute aqueous acid. Compound B does not react with PCC in dichloromethane. IdentifyA ?

A.
$$CH_3 - \overset{O}{\overset{||}{C}} - H$$

B. $CH_2CH_2\overset{||}{C}CH_3$

$$\mathsf{C}.\,H_2C=O$$

D.



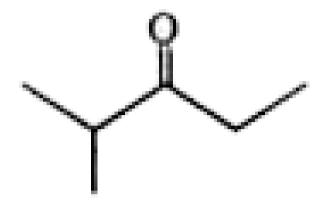
(D

=

²H)

transformation?

A. $NaBD_4$ in CH_3OH


B. $LiAlH_4$, then D_2O

C. $NaBD_4$ in CH_3OD

D. $LiAlD_4$, then D_2O

52. Which sequence of steps describes the best synthesis of 2-methyl-3-

A. (1) 1 - Propanol + $(CH_3)_2$ CHMgBr , diethyl ether

(2) $H_3 O^+$

- (3) PCC, CH_2Cl_2
- B. (1) 1-Propanol + $Na_2Cr_2O_7, H_2SO_4, H_2O$ heat

(2) $SOCl_2$

- (3) $(CH_3)_2 CHCl, AlCl_3$
- C. (1) 1- Propanol + PCC, CH_2Cl_2

(2) $(CH_3)_2 CHLi$, diethyl ether

(3) H_3O^+

(4) $Na_2Cr_2O_7, H_2SO_4, H_2O$ heat

D. (1) 2 - Propanol + $Na_2Cr_2O_7, H_2SO_4, H_2O$, Heat

(2) $CH_3CH_2CH_2Li$, diethyl ether

(3) H_3O^+

(4) PCC, CH_2Cl_2

Answer:

Watch Video Solution

53. Diols (I-IV) which react with CrO_3 in aqueous H_2SO_4 and yield

products that readily under go dercarboxylation on heating, are :

A. I and II

B. II and III

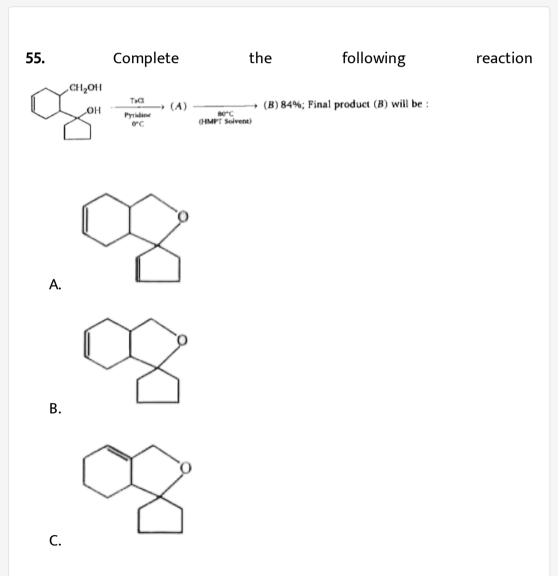
C. II and IV

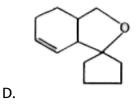
D. I and IV

Answer:

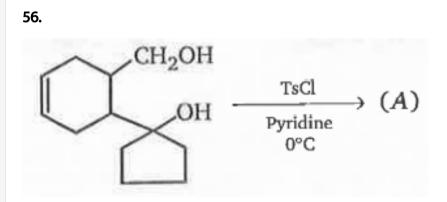
Watch Video Solution

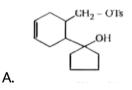
54. Which of following compounds are not oxidized by HIO_4 ?

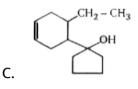

A. 5, 6, 7

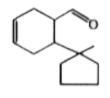

B. 4, 5, 6, 7

C. 6, 7

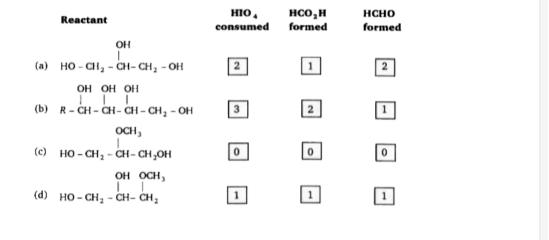

D. 3, 4, 5, 6, 7



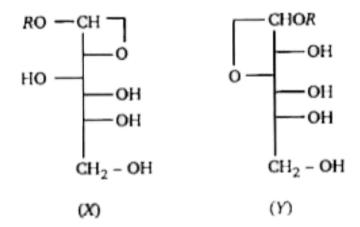




Unknown (A) in the reaction (given in Q. 55) is :



D.


57. In the given table, identify the incorrect option. The digit in box indicate the moles of that substance.

Watch Video Solution

58. Succinic acid
$$\xrightarrow{\Delta} (A) \xrightarrow{NH_2} (B) \xrightarrow{Br_2} (C)$$
, Product (C) will be :
 $CH_2 - CO_2H$
A. |
 $CH_2 - CH_2 - NH_2$
 $CH_2 - CO_2H$
B. |
 $CH_2 - NH_2$
 $CH_2 - CO_2^-K^+$
C. |
 $CH_2 - NH_2$
 $CH_2 - O_2H$
D. |
 $CH_2 - CH_2 - Br$

59. Given are the structures of cyclic D-glucoside. Moles of HIO_4 consumed with X and Y are respectively:

A. 2,2

B. 3,3

C. 2,3

D. 3,2

Answer:

60. Moles of formic acid formed in X and Y respectively are:

A. 1,2 B. 2,1 C. 2,3

Answer:

D. 3,2

61. Moles of HCHO formed are:

A. 1,1

B. 2,2,

C. 1,2

62. In which of the following group, each member gives positive iodoform

test?

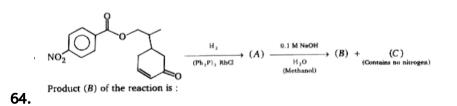
A. A) methanol, ethanol, propanone

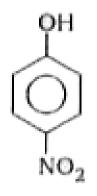
B. B) ethanol, isopropanal, methanal

C. C) ethanol, ethanal, isopropyl alcohol

D. D) propanal, propanol-2, propanone

Answer:


Watch Video Solution

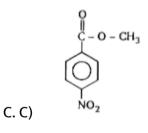

63.
$$H_2O^{18}+Na
ightarrow A_{
m (base)}+(B)$$

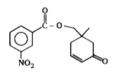
 $O_{
m (base)}^{O}$
 $CH_3C^{
m (D)}-O-CH_2-CH_3+(A)
ightarrow (C)+(D)$ alcohol

Product (C) of the reactions is:

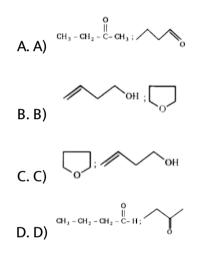
A. A)
$$CH_3 - \overset{O}{\overset{||}{C}} - \overset{O}{\underset{18}{O}} - H$$

B. B) $CH_3 - \overset{O}{\overset{||}{C}} - O - H$
C. C) $CH_3 - \overset{O}{\overset{||}{C}} - \overset{18}{O} -$
D. D) $CH_3 - \overset{O}{\overset{||}{C}} - O^{\Theta} N^{\oplus}_a$

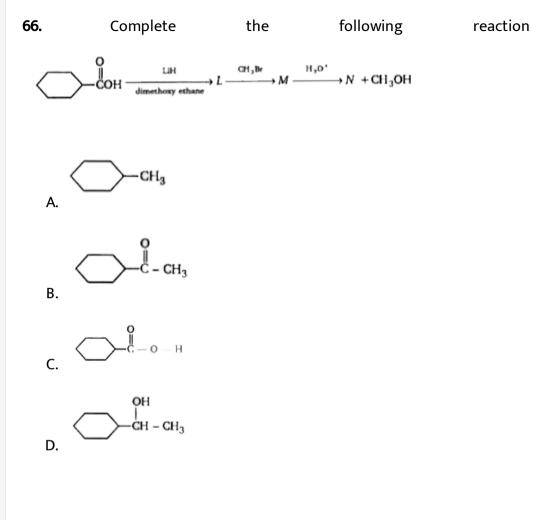




A. A)

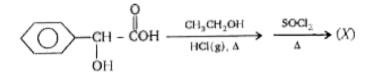

D. D)

65. Two unknown compounds X and Y, both having molecular formula


 C_4H_gO , give following results with four chemical tests.

	Bromine	Na metal	Chromic acid	Lucas reagent
Compound X	decolourises	bubbles	Orange to Green	No reaction
Compound Y	No reaction	No reaction	No reaction	No reaction

Compound X and Y respectively are :

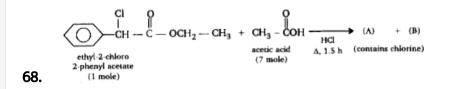


67. Assign the structure ofmajor product (X) of the reaction given below.

Et

$$(\bigcirc -CH - C - OEt$$

B. B)


$$\bigcup_{\substack{I \\ OEt}} CH - C - CI$$

D. D)
$$O$$
 $CH = CH - C - O - O$

Answer:

C. C)

Product (A) and (B) respectively in the above reaction are

A. A)

$$\begin{array}{c} \bigcirc -c_{H} - c_{-} OH, CH_{3} - c_{-} OCH_{2}CH_{3}}{C_{1}} \\
\end{array}$$
B. B)

$$\begin{array}{c} \bigcirc -c_{H} - c_{-} OBt, CH_{3} - c_{-} OCH_{3}}{C_{1}} \\
\hline \\ C. C) \\
\end{array}$$
D. D)

$$\begin{array}{c} \bigcirc -c_{H} - c_{-} OBt, CH_{3} - c_{-} OH \\
\hline \\ CH_{2} - CI, CH_{3} - c_{-} OH \\
\hline \\ OH \\
\end{array}$$

Answer:

Watch Video Solution

69.

 $H_2C = CH - \overset{O}{\overset{||}{C}} - OCH_3 + CH_3CH_2CH_2OH \xrightarrow[n-buty]{alcohol}{} {}^{h-butylalcohol}{}_{h-butylalcohol}{} {}^{h-butylalcohol}{}_{h-butylalcohol}{} {}^{H_3OH, \, \Delta}{} {}^{OH, \, \Delta}{} {}^{OH, \, \Delta}{} {}^{OH, \, \Delta}{}^{OH, \, \Delta}{}^{O$

Product (A) of above reaction is :

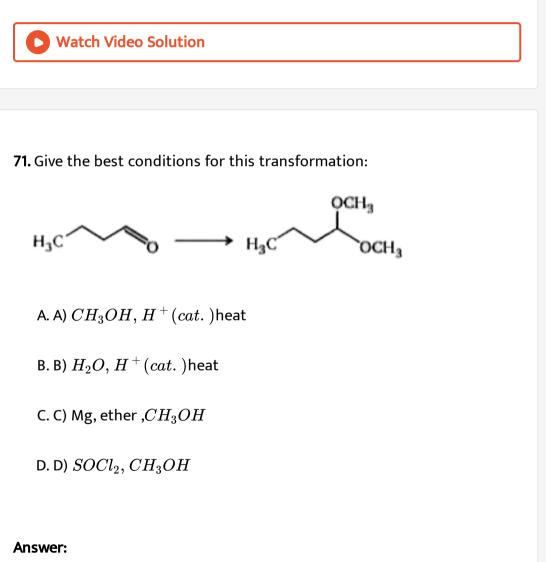
A. A)
$$H_2C = CH - \overset{O}{\overset{||}{C}} - OCH_2CH_2CH_3$$

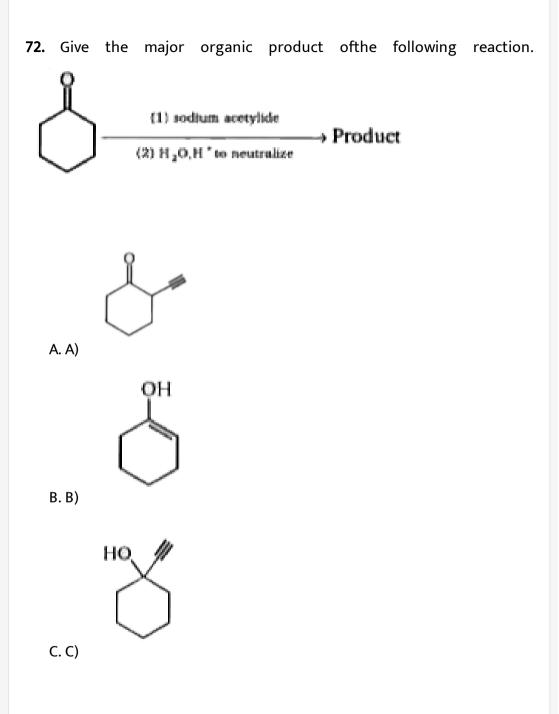
B. B) $H_2C = CH - \overset{O}{\overset{||}{C}} - O - CH(Me)_2$
C. C) $H_2 \overset{O}{\underset{OCH_3}{C}} - CH_2\overset{O}{\underset{OCH_3}{C}} - OCH_3$
D. D) $H_3C - (CH_2)_4 - \overset{O}{\underset{C}{C}} - O - CH_3$

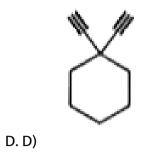
Watch Video Solution

$$\begin{array}{c} - OH \\ - OH & 3Ac_2O \longrightarrow \\ OH & (acetic anhydride) \end{array}$$

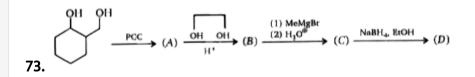
In above reaction molecular formula of glycerol increases by :

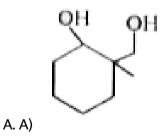

A. $C_4H_4O_2$

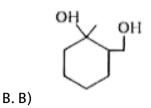

 $\mathsf{B.}\, C_6 H_6 O_6$

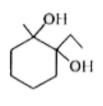

 $\mathsf{C.}\, C_6 H_6 O_2$

 $\mathrm{D.}\, C_6 H_6 O_3$


Answer:

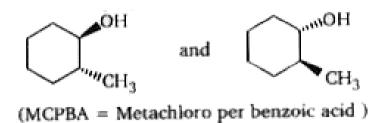






Product (D) in above reaction is :

C. C)



D. D)

Answer:

Watch Video Solution

74. Select the best method for the preparation of the following compounds :

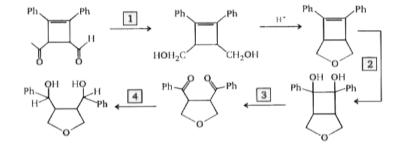
A. A) reaction of cyclohexanone with CH_3Li

B. B) reaction of 1-methylcyclohexene with $Hg(OAc)_2$ followed by

 $NaBH_4$

C. C) reaction of cyclohexene with BH_3 : $NaOH/H_2O_2$, following by

 CH_3Br


D. D) reaction of cyclohexene with MCPBA, followed by CH_3MgBr

Answer:

75. Identify the reagents (1-4), required for the transformations shown

and arrange them in correct order.

 $(1)LAH(LiAlH_4) \qquad (2)OSO_4$

 $(3)NaIO_4$ $(4)NaBH_4$

A. A) 1
ightarrow 3
ightarrow 4
ightarrow 2

B. B) 2
ightarrow 3
ightarrow 1
ightarrow 4

C. C) 2
ightarrow 1
ightarrow 3
ightarrow 4

D. D) 1
ightarrow 2
ightarrow 3
ightarrow 4

Answer:

Watch Video Solution

76. Which describes the best stereochemical aspects of the following reaction ?

- A. A) Inversion of configuration occurs at the carbon undergoing substitution.
- B. B) Retention of configuration occurs at the carbon undergoing substitution.
- C.C) Racemization (loss ofconfiguration) occurs at the carbon undergoing substitution.
- D. D) The carbon undergoing substitution is not stereogenic

77. Which of following is an example of Pinacol-Diazotization ?

A. A)
$$Me_2 C - CMe_2 \xrightarrow{Ag^+} Me - \overset{O}{\overset{||}{C}} - CMe_3$$

 $OH \quad Br$
B. B) $Me_2 C - C Me_2 \xrightarrow{NaNO_2} Me - \overset{O}{C} - CMe_3$
 $OH \quad NH_2$
C. C) $Me_2 C - C me_2 \xrightarrow{H^*} Me - \overset{O}{C} - CMe_3$
 $OH \quad OH$
 OH

Watch Video Solution

78. $(A) \xrightarrow{H_2O^*} B + C$, (B) and (C) both give +ve iodoform test. Compound (A) is

A. A)
$$CH_3 - CH = CH - O - CH_2 - CH_3$$

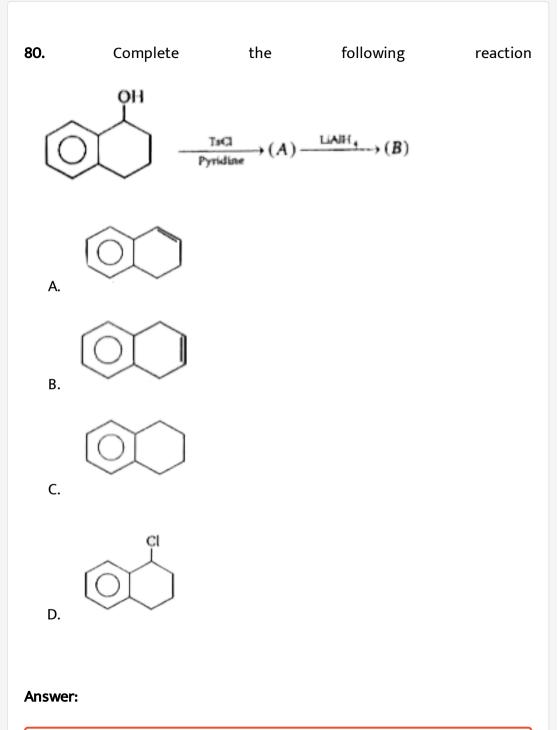
B. B)
$$CH_3 \mathop{C}\limits_{\stackrel[]{}_{CH_3}}^{H} - O - CH_2 - CH_3$$

C. C)
$$CH_3 - \displaystyle \underset{||_{CH_2}}{C} - O - CH_2 - CH_3$$

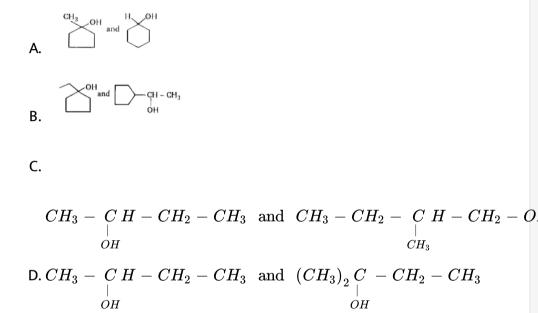
D. D) both (b) and (c)

Answer:

Watch Video Solution


79. A solution of Ph_3CCO_2 H in conc. H_2SO_4 gives (X) when poured into

methanol X is :

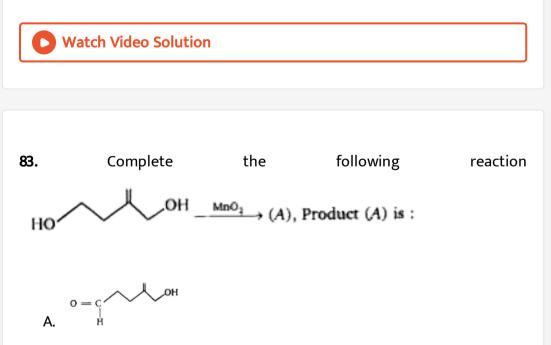

A.
$$Ph_3C-\overset{O}{\overset{||}{C}}-O-CH_3$$

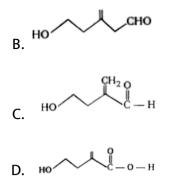
B. $Ph_2CH-\overset{O}{\overset{||}{C}}-O-CH_3$

$$\mathsf{C}. Ph_3C - OCH_3$$

D.
$$Ph_3C - CH_3$$

81. In the given pair of alcohols, in which pair second alcohol is more reactive than first towards hydrogen bromide?


Answer:

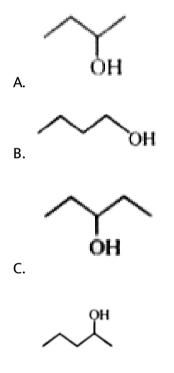


82. Rank the transition states that occur during the following reaction steps in order of increasing stability (least \rightarrow most stable):

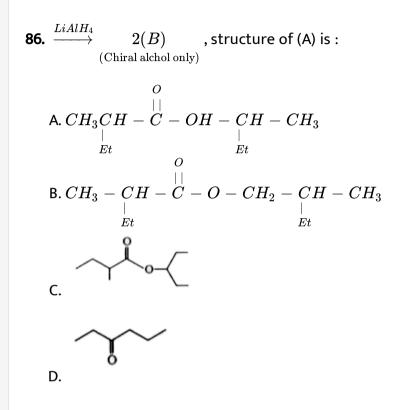
1. $H_3C - \overset{+}{O}H_2
ightarrow CH_3^+ + H_2O$ 2. $(CH_3)_3C - \overset{+}{C}H_2 \rightarrow (CH_3)_3C^+ + H_2O$ 3. $(CH_3)_2CH - \overset{+}{O}H_2
ightarrow (CH_3)_2CH^+ + H_2O$ A. 1 < 2 < 3B. 2 < 3 < 1 ${\sf C}.\,1 < 3 < 2$

D. 2 < 21 < 3

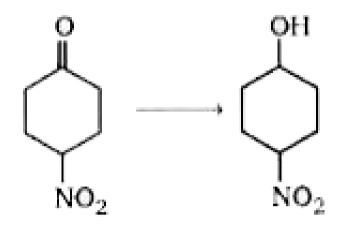
84. In which of the following reactions hydrogen gas will not be evolved ?


A.
$$CH_3 - CH_2 - OH \xrightarrow{Na}$$

B. $CH_3 - CH_2 - OH \xrightarrow{K}$
C. $CH_3 - CH_2 - OH \xrightarrow{Al}$


85.

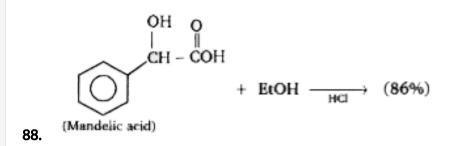
When Grignard reagent reacts with (B) product (D) will obtained. Reactant (A) of the above reaction is



D.

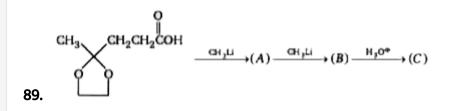
87.

Above conversion can be acheived by :


A. $LiAlH_4$

B. $NaBH_4$

 $\mathsf{C.}\,H_2\,/\,Ni$


D. CrO_3

Answer:

Identify product of above Fischer esterification reaction:

Answer:

Product (C) of the above reaction is :

$$\begin{array}{c} \begin{array}{c} O & OH \\ \mathsf{A}.\,CH_3 - \overset{O}{C} - CH_2 - CH_2 - \overset{O}{C} - CH_3 \\ & \overset{OH}{} \\ \mathsf{B}.\,CH_3 - \overset{I}{\overset{O}{}} - CH_2 - CH_2 - \overset{I}{\overset{O}{}} - CH_3 \\ & \overset{OH}{} \\ \mathsf{C}.\,CH_3 - \overset{I}{\overset{O}{}} - CH_2 - CH_2 - \overset{I}{\overset{O}{}} - CH_3 \\ & O \\ \mathsf{C}.\,CH_3 - \overset{O}{} - CH_2 - CH_2 - \overset{II}{} - CH_2 \\ \end{array}$$

Answer:

Watch Video Solution

90. What is the major product of the following reaction?

$$CH_3 - \stackrel{|}{\overset{C}{C}} H - CH_2 - CH_2 - OH \xrightarrow{CrO_3} Product$$

 $\begin{array}{c} OH & O \\ I & O \\ A. CH_3 - C H - CH_2 - C - H \\ B. CH_3 - C - CH_2 - C - H \\ C. CH_3 - C - CH_2 - C - C \\ OH & O \\ OH & O \\ D. CH_3 - C H - CH_2 - C - OH \end{array}$

Answer:

Watch Video Solution

91. The major reason that phenol is a better Bronsted acid than cyclohexanol is that:

A. it is a better proton donor.

B. the cyclohexyl group is an electron donating group byinduction,

which destabilizes the anion formed in the reaction by resonance.

C. phenol is able to stabilize the anion formed in the reaction.

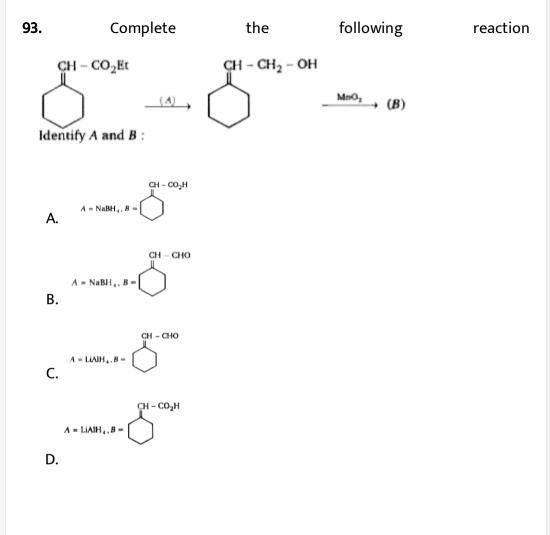
D. the phenyl group is an electron withdrawing group by induction,

which stabilizes the anion formed in the reaction.

Answer:

92. Which of these reagents would accomplish the following reduction?

$$N\equiv C-CH_2-\overset{O}{\overset{||}{C}}-CH_2-CH=CH_2
ightarrow N\equiv C-CH_2-\overset{OH}{\overset{|}{C}}-CH_2$$


A. $NaBH_4$

B. $LiAlH_4$

C. 1 mole H_2 , poisomed catalyst, low pressure

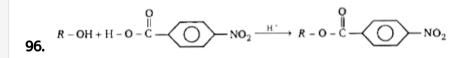
D. H_2O^+

Answer:

94.
$$Ph - CH_2 \underset{|}{C} H - CH_3 \xrightarrow{K} \overset{C_2H_2Br}{\longrightarrow} (A)$$

Product (A) in above reaction is :

A.
$$Ph - CH_2 - CH - CH_3$$
 (iversion)
 $|OEt|$
B. $Ph - CH_2 - CH - CH_3$ (retention)
 $|OEt|$
C. $Ph - CH_2 - CH - CH_3$ (racemic)
 $|OEt|$
D. $Ph - CH = CH - CH_3$


Answer:

95.
$$Ph - \overset{O}{\overset{||}{C}} - O - H + CH_3 - O^{18} - H \stackrel{H^+}{\iff} (X) + H_2O$$
, Identify X :
A. $X = Ph - \overset{O}{\overset{||}{C}} - O^{18} - CH_3$ (Trans esterfication)
B. $X = Ph - \overset{O}{\overset{||}{C}} - O^{18} - CH_3$ (Esterification reaction)

C.
$$X = Ph - \overset{O}{\overset{||}{C}} - O^{18} - CH_3$$
 (Saponification)

D.
$$X=Ph-\overset{ ext{ }}{C}-O-CH_3$$
 (Hydrolysis)

Watch Video Solution

Fastest of recation will be when R is :

A. CH_3 -

 $\mathsf{B.}\,CH_3-CH_2$

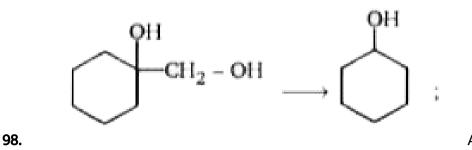
$${\sf C.} \, CH_3 - \mathop{C}\limits_{| CH_3 \ CH_$$

- **97.** Select the correct statement.
 - A. Solvolysis of $(CH_3)_2C = CH CH_2 Cl$ in ethanol is over 6000

times greater than alkyl chloride (25°C)

B. $CH_3 - CH = CH - CH_2 - OH$ when reacts with HBr give a

mixture of I-bromo-2-butene and 3-bromo I-butene


C. When solution of 3-buten-2-ol in aqueous sulphuric acid is allowed

to stand for one week, itwas found to contain both 3-buten-2-ol and

2-buten-1-ol

D. All of these

Answer:

Above

transformation can be carried out by :

A. $H^{\,+}\,/\,\Delta zn(Hg),\,HCl$

B. HlO_4 , $LiAlH_4$

- C. $HlO_4, H^+/\Delta$
- D. $H^{\,+}$ $/\Delta, HiO_4$

Answer:

Watch Video Solution

99.

$$H_2C = CH - (CH_2)2 - \mathop{C}\limits_{ert} H - CH_3 \stackrel{SOCl_2}{\mathop{ ext{Pyridine}}} (A) \stackrel{O_3 / Zn}{\mathop{ ext{(H_2O)}}} (B) \stackrel{NaBH_4}{\longrightarrow} (C) \stackrel{O_3 / Zn}{\longrightarrow} (B)$$

Compound (C) is :

$$\begin{array}{c} OH \\ A. \, CH_3 - \overset{OH}{C} H - CH_2 - \overset{OH}{CH} - CH_3 \\ B. \, HOCH_2 - CH_2 \\ C. \, HO - CH_2 - CH_2 - CH_2 - \overset{OH}{CH} - CH_3 \\ D. \, HO - CH_2 - CH_2 - \overset{OH}{CH} - CH_2 - CH_3 \\ \overset{I}{Cl} \end{array}$$

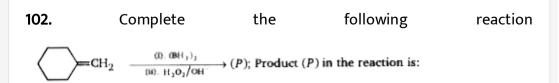
Watch Video Solution

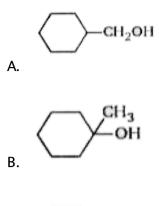
100. Iodoform can be obtained on wanning NaOH and iodine with:

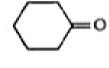
A.
$$CH_{3}CH_{2}CH(OH)CH_{3}$$

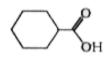
 O
B. $(CH_{3})_{2}CHCC_{2}H_{5}$
C. $CH_{3} - C - OCH_{3}$
 O
D. $(CH_{3})_{2}CHCH_{2}OH$

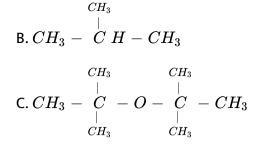
101. Which of these is a reducing agent?


A. CrO_3 / $H^{\,+}$


B. $KMnO_4$


C. $LiAlH_4$


 $D.O_3$



D.

C.

Watch Video Solution

103. $CH_3 - \overset{CH_3}{\overset{|}{C}}_{OH} - CH_3 \xrightarrow[cool]{Na_2Cr_2O_7}_{cool}$ (P) , product (P) in the reaction is : $A. CH_3 - \overset{CH_3}{\overset{|}{C}}_{C} = CH_2$

D. No reaction

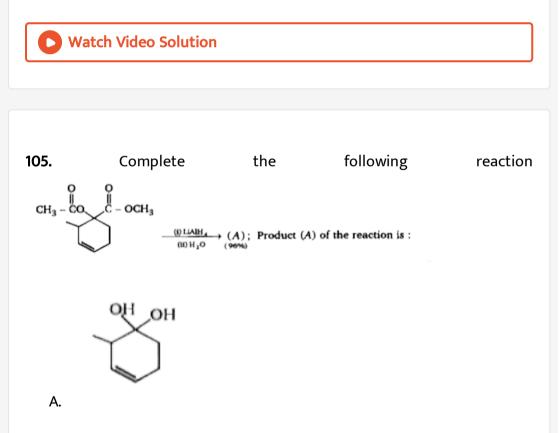
Answer:

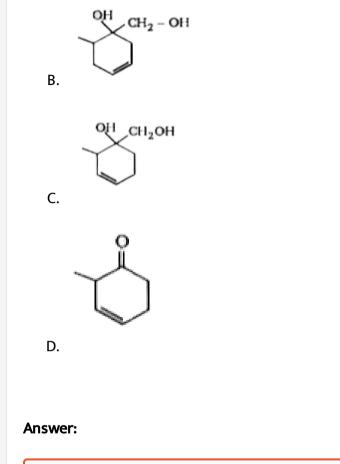
Watch Video Solution

104. 1, 2, 3 - butanetriol undergoes oxidative cleavage of HIO_4 During this process

A.1 equivalent of HlO_4 consumed & $HCO_2H\&H_3C - \underset{\substack{||\\O}}{C} - CO_2$ H

are formed


B. 2 equivalents of HlO_4 consumed & $HCO_2H, HCH = O\&CH_3 - CH - O$ are formed


C.3 equivalents of HIO_4 consumed & $HCO_2H(2eq.)$ & 1 eq. of

 CH_3CO_2 H are formed

D. 2 equivalents of HlO_4 consumed & 2 e.q . Of HCO_2H & 1 eq. of

 $CH_3CH = O$ is formed

Above reaction is/an example of

A. esterification

B. saponification

C. trans-esterification

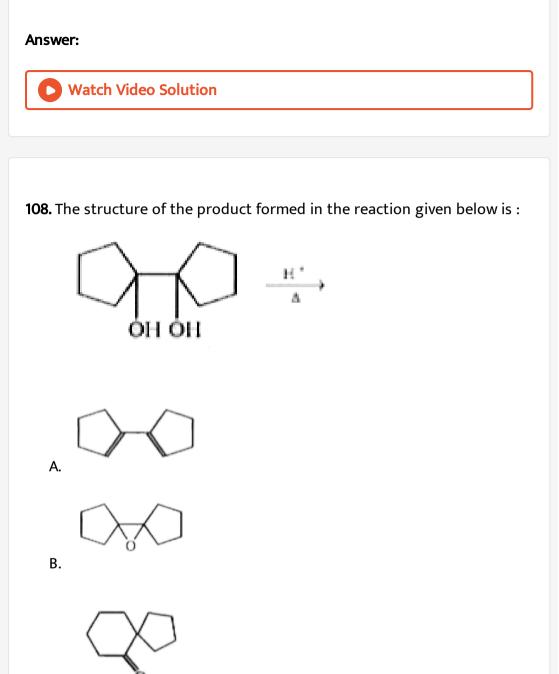
D. hydrolysis

Answer:

Watch Video Solution

107. What is the major organic product of the following sequence of reactions ?

~

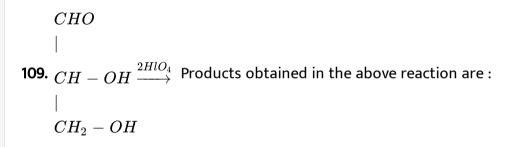

$$(CH_3)_2 CHCH_2 OH \xrightarrow{PB_{g_3}} M_g \xrightarrow{H_2 C - CH_2} H_{30}^{+} ?$$

A. $(CH_3)_2CHCHCH_2CH_3$

 $\mathsf{B}.\,(CH_3)_2CHCH_2CH_2OH$

 $\overset{OH}{\overset{}_{}}_{\mathsf{C}} . \left(CH_3 \right)_2 CHCH_2 \overset{OH}{\overset{}_{C}} HCH_3$

D. $(CH_3)_2 CHCH_2 CH_2 CH_2 OH$

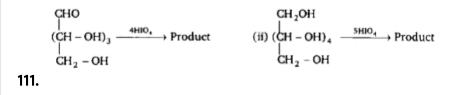


C.

D.

Watch Video Solution

A. $HCHO, HCO_2H$


B. HCHO, $2HCO_2H$

 $\mathsf{C}.\,CO_2,\,2HCO_2H$

 $\mathsf{D}.\,CO_2,\,HCHO,\,HCO_2H$

Answer:

Ratio of moles of formic acid obtained in reaction (i) and reaction (ii) is :

A. 3/4

 $\mathsf{B.}\,4/5$

C. 1

D. 5/4

Answer:

Watch Video Solution

112. Which of the following compound gives $HCHO, CO_2, 2HCO_2H$ when oxidised by periodic acid ?

Β.

$$CH_2 - OH$$

$$C = O$$

$$(CH - OH)_2$$

$$CH_2 - OH$$

$$CH_2 - OH$$

Answer:

D.

113. Hydration of 3-phenylbut-l-ene in dil. H_2SO_4 will give mainly:

A. 3-Phenylbutan-l-ol

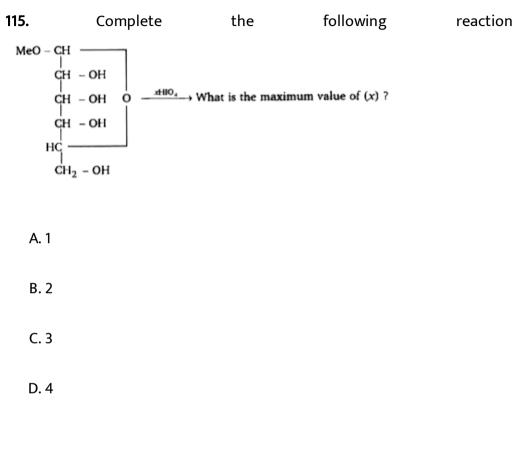
- B. 3-Phenylbutan-2-o1
- C. 2-Phenylbutan-2-o1
- D. 2-Phenylbutan-l-ol

Answer:

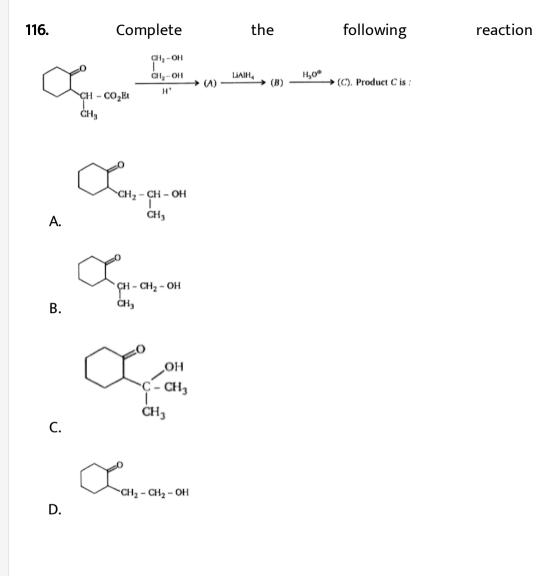
Watch Video Solution

114. Decarboxylation of sodium salicylate with soda lime forms

A. Salicylic acid


B. Phenol

C. Benzene


D. None of these

Answer:

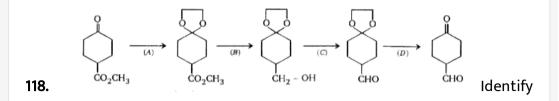
Watch Video Solution

Watch Video Solution

$$(A) + CH_2 - OH \xrightarrow{Pyridine} CH_2 - O = 0;$$

$$(A) + CH_2 - OH \xrightarrow{Pyridine} CH_2 - O = 0;$$

$$(A) + CH_2 - OH \xrightarrow{Pyridine} CH_2 - O = 0;$$


$$(A) + CH_2 - OH \xrightarrow{Pyridine} CH_2 - O = 0;$$

Reactant A of the above reaction is :

A.
$$CH_3 - \overset{O}{\overset{\scriptstyle ||}{C}} - CH_3$$

B. $COCl_2$
C. $CH_3 - \overset{O}{\overset{\scriptstyle ||}{C}} - Cl$
D. $CH - 3 - \overset{O}{\overset{\scriptstyle ||}{C}} - OEt$

Answer:

Natch Video Solution

the correct combination.

$$CH_2-OH$$

A. $(A)=ert$ CH_2-SH
B. (B) = $NaBH_4$
C. $(C)=KMnO_4$
D. $(D)=H_3O^\oplus$

Answer:

Watch Video Solution

119. In the Libennann's nitroso reaction, sequential changes in the colour

ofphenol occurs as :

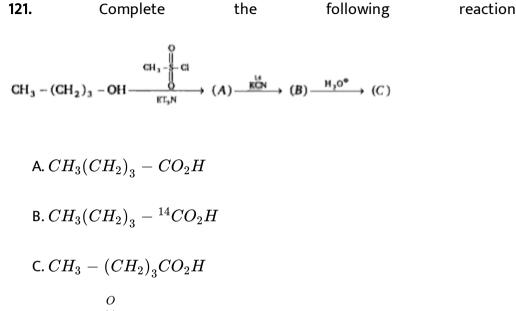
A. Brown or red \rightarrow green \rightarrow deep blue

B. Red \rightarrow deep blue \rightarrow green C. Red \rightarrow green \rightarrow white D. White \rightarrow red \rightarrow green

Answer:

Watch Video Solution

120. Ethanol when reacts with PCl_5 gives A, $POCl_3$ and HCl. A reacts with

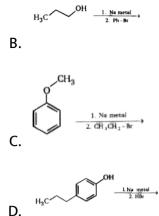

dry AgO_2 to form B (major product) and AgCl. A and B respectively are:

A. C_2H_2Cl and $C_2H_5OC_2H_5$

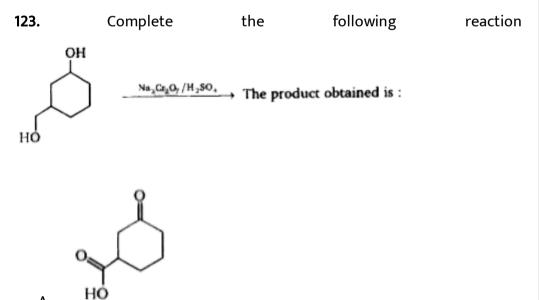
B. C_2H_4 and $C_2H_4OC_2H_5$

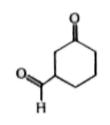
 $C. C_2H_6$ and $C_2H_5OC_2H_5$

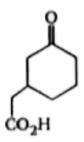
 $\mathsf{D}.\,C_2H_6 \ \text{and} \ C_2H_5NO_2$


D.
$$CH_3- \overset{|\,|}{\overset{}_{14}}-O-H$$

Watch Video Solution


122. Choose the best synthesis of phenyl n-propyl ether.


A.



A.

C.

Β.

D. None of these

Answer:

Watch Video Solution

124. What is true for the equilibrium reaction ?

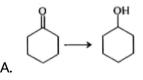
$$CH_3 - \overset{O}{\overset{||}{C}} - OH + CH_3 - OH \stackrel{cat}{\Longleftrightarrow} CH_3 - \overset{O}{\overset{||}{C}} - O - CH_3 + H_2O$$

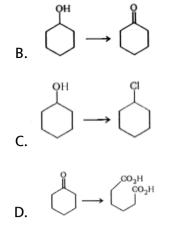
A. The use of equimolar quantities of CH_3OH and CH_3COOH will

give the greatestyield of the ester at equilibrium

- B. Removal of water will increase the amount of ester at equilibrium
- C. Addition of CH_3COOCH_3 will cause the formation of equal an

equal number of moles of water


D. Application of pressure increases the amount of ester at equilibrium


Answer:

Watch Video Solution

125. PCC (Pyridiniumchloro chromate) is a good reagentfor which of the

following transformations ?

Watch Video Solution

126. How many primary alcohols (including stereoisomers) are possible with formula $C_5 H_{12} O$?

A. Two

B. Three

C. Four

D. Five

127. 1-Phenylethanol can be prepared by the reaction of benzaldehyde with the product obtained in the reaction between

A. CH_3I and Mg

 $B. C_2H_5I$ and Mg

 $C. CH_3Br$ and $AlCl_3$

D. CH_3OH and $ZnCl_2$

Answer:

128. 0.092 g of a compound with the molecular formula $C_3H_8O_3$ on

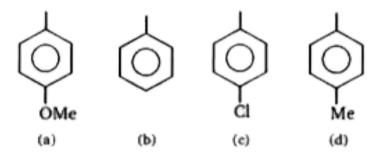
reaction with an excess of CH_3 Mgl gives 67.00 mL of methane at STP. The

number of active hydrogen atoms presentin a molecule of the compound

is :

A. one

B. two


C. three

D. four

Answer:

Watch Video Solution

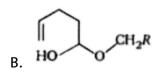
129. Migratory aptitude of the following in decreasing order is :

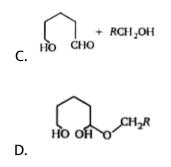
A. a > c > b > d

 $\mathsf{B}.\, a > d > b > s$


 $\mathsf{C}. a > d > c > b$

 $\mathsf{D}.\, b > c > a > b$


Answer:


Watch Video Solution

130. The major product formed in the reaction is :

A.
$$+ RCH_2OH$$

131. Reaction of R-2-butanol with p-toluenesulphonyl chloride in pyridine then LiBr gives:

A. R-2-butyl bromide

B. S-2-butyl tosylate

C. R-2-butyl tosylate

D. S-2-butyl bromide

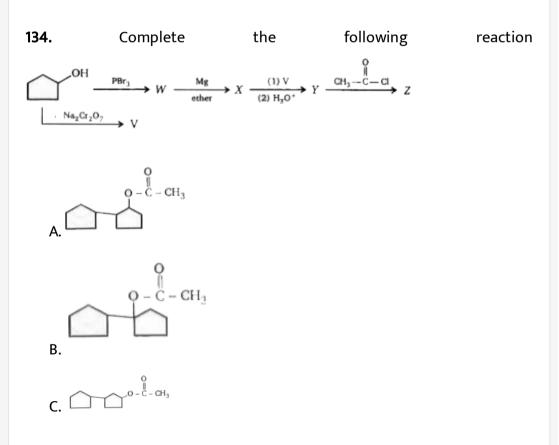
132. Optically active 2-octanol rapidly loses its optical activity when exposed to :

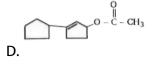
A. dilute acid

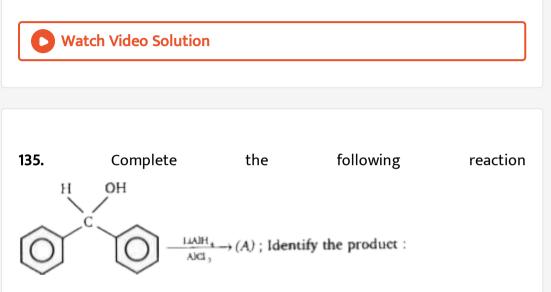
B. dilute base

C. light

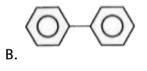
D. humidity

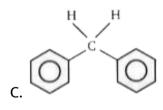

Answer:


Watch Video Solution

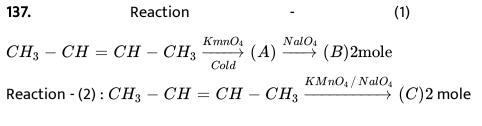

133. If (\pm) 2-methyl butanoic acid were esterified by reaction with (\pm) 2-butanol, how many optically active compounds would be present in the final equilibrium reaction mixture?

B. 3	
C. 4	
D. 6	





A. No reaction


136.
$$(EtO)_2 CHCHO + CH_3 MgI \xrightarrow{H_2O^{\oplus}} (A)$$

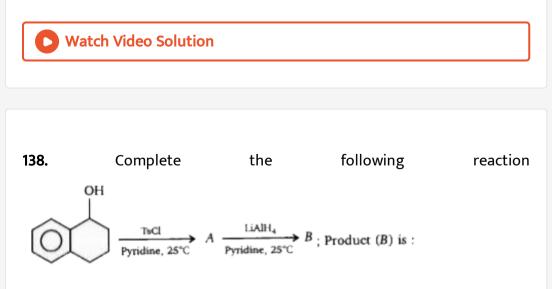
Product obtained in the above reaction is :

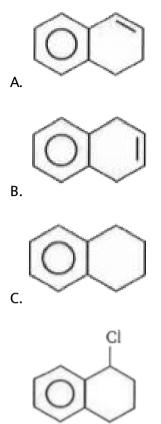
$$\begin{array}{cccc} & & & & & & \\ & & & & & \\ \mathsf{A}.\,CH_3C - & & & & \\ & & & & \\ \mathsf{B}.\,CH_3 - & & & & \\ & & & & \\ \mathsf{C}.\,CH_3 - & & & \\ & & & \\ \mathsf{C}.\,CH_3 - & & \\ & & & \\ \mathsf{O}.\,CH_3 - & & \\ & & & \\ \mathsf{O}.\,H - CH_2 - OH \end{array}$$

Answer:

Watch Video Solution

:


Product (B) and (C) respectively are :


A. CH_2CHO, CH_3CO_2H

 $\mathsf{B.}\,CH_3CO_2H,\,CH_3CHO$

C. CH_3CHO in both reaction

D. CH_3CO_2H in both reaction

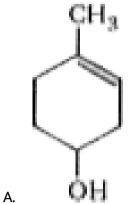
D.

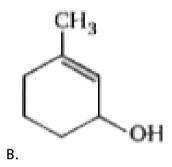
conversion can be achieved by

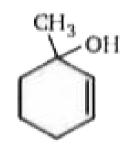
A. O_3, Zn , then $LiAlH_4$

B. O_3/H_2O_2 , then $LiAlH_4$

C. cold dil . $KMnO_4HlO_4$, then $LiAlH_4$

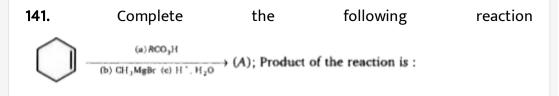

D. All of these

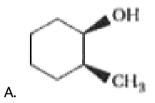

Answer:

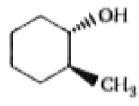

Watch Video Solution

140. Which of the following alcohol on treatment with HCI give 3-chloro-3-

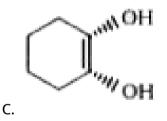
methyl cyclohexene as a product?

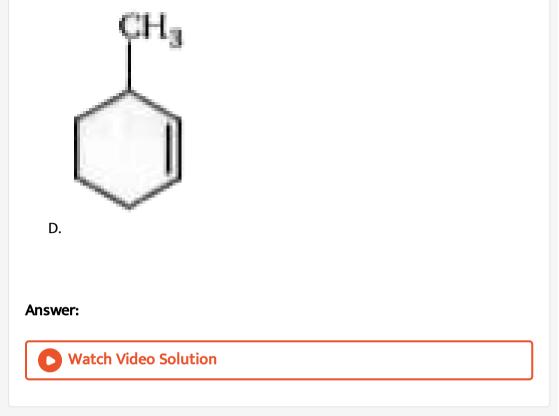


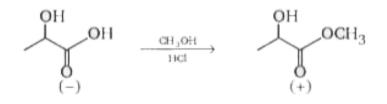

C.


D. All of these

Answer:


Watch Video Solution





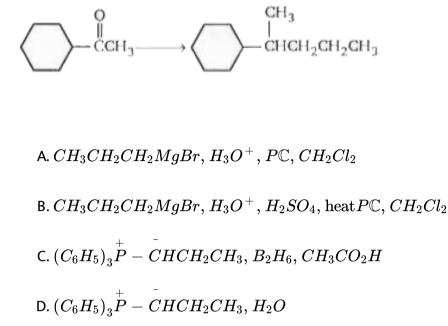
142. Esterification (shown below) is a reaction converting a carboxylic acid toits ester. Itinvolves only the carbonyl carbon. Esterification of (-) -lactic acid with methanol yields (+)-methyl lactate. Assuming that there are no side reactions, what is true about this reaction ?

A. AnS_{N^2} process has occurred, inverting the absolute configuration

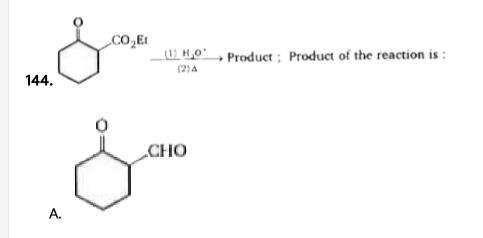
of the chiral center

- B. AnS_{N^1} reaction at the chiral center has inverted the optical rotation
- C. A diastereomer has been produced, diastereomers have different

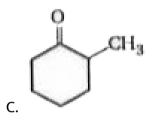
physical properties including optical rotation

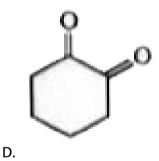

D. Optical rotation is notdirectly related to absolute configuration, so

the change in sign of rotation is merely a coincidence


Answer:

Watch Video Solution


143. Which of the following sets of reagents, used in the order shown, would successfully accomplish the conversion shown ?



Watch Video Solution

145. Which of the following compound on hydrolysis followed byheating gives a product, which gives positive iodoform test?

A.
$$CH_3 - \bigcup_{CO_2Et}^{i} H - C - CH_2 - CH_3$$

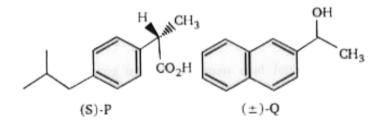
B. CO_2Et
B. CO_2Et
C. $CH_3 - C H - CO_2Er$
 CO_2Et
 CO_2Et

Answer:

146. Treatment of a 2° OH with CrO_3 / H_2SO_4 yields an/a :

A. aldehyde

B. carboxylic acid

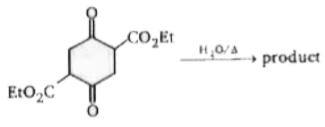

C. ester

D. ketone

Answer:

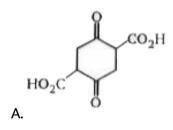
Watch Video Solution

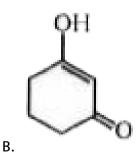
147. Esterification of the acid P with the alcohols Q will give :

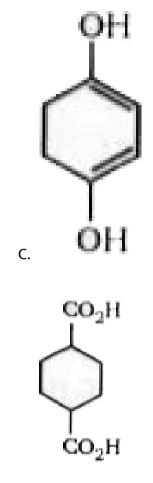

A. only one enantiomer

B. a mixture of diastereomers

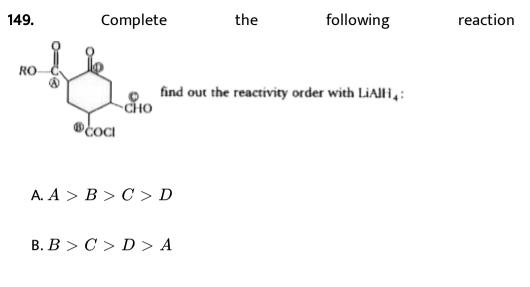
C. a mixture of enantiomers


D. only one diastereomer

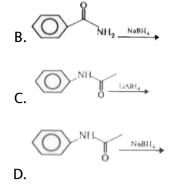

Watch Video Solution



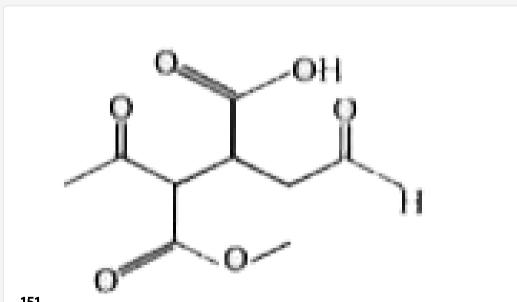
Identify major product of the reaction, when the given compound is hydrolysed and heated strongly:



D.


$$\mathsf{C}.\, D > C > B > A$$

 $\mathsf{D}.\,B > D > C > A$


Answer:

Watch Video Solution

150. Find out the reaction in which obtained product give positive isocyanide test:

151.

In the above given compound how many functional group reduced by LAH (Lithium aluminium hydride) and SBH (sodium borohydride) respectively?

A. 4,4	
B. 4,3	
C. 3,4	
D. 4,2	

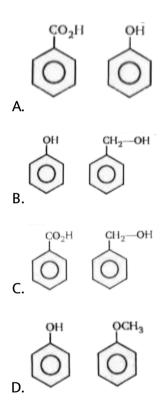
Watch Video Solution

152. An unknown compound (A) (molarmass = 180) on acylation gives a product (molar mass = 390) than find the number ofhydroxyl group present in compound (A).

A. 5

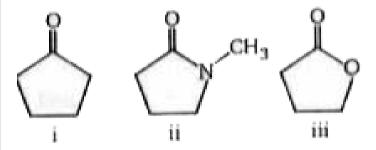
B. 6

C. 10


D. 1

Answer:

153. Which of the following compound is differentiated by $NaHCO_3$ as


well as by NaOH ?

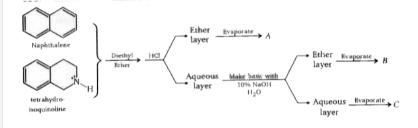
Answer:

154. Arrange the following compounds in order of their reactivity toward

A. i < ii < iii

B. i < iii < ii

 $\mathsf{C}.\,ii < i < Iii$


D. ii < iiil < i

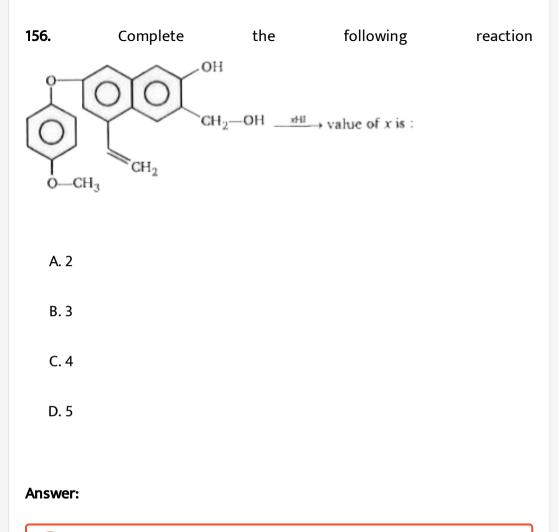
Answer:

155. Choose the statement that is true about A, Band C in the following

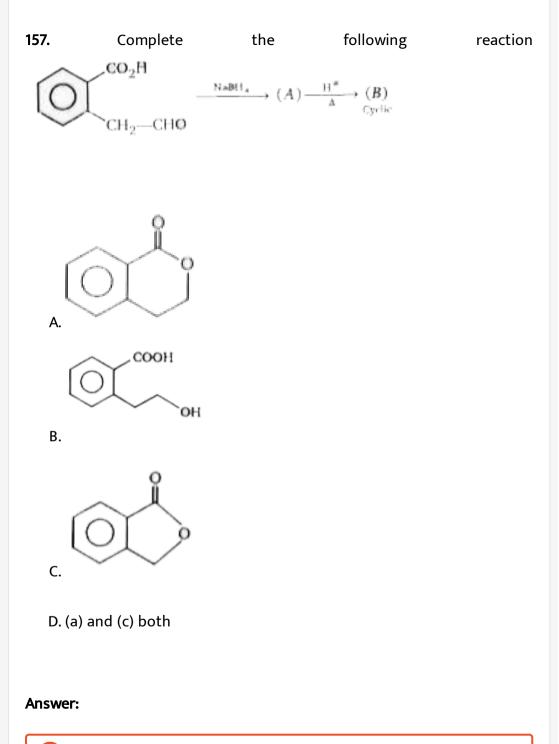
separation scheme.

- A. A = tetrahydroisoquinoline, B = naphthalene and C = inorganic ions
 - such as Na^+ and Cl^-
- B. A = naphthalene, B = tetrahydroisoquinoline and C = inorganic ions

such as Na^+ and Cl^-


C. A = inorganicions such as Na^+ and Cl^- ,B = naphthalene and C

=tetrahydroisoquinoline


D. A = inorganicions such as Na^+ and Cl^- ,B = naphthalene and C =

tetrahydroisoquinoline

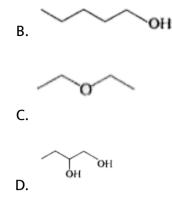
Answer:

158. 1-Phenoxypropane is treated with excess of conc. HI at 0° C and the mixture ofproducts is treated with thionyl chloride. The products formed are

A. n-propanol + Chlorobenzene

B. Phenol + n-propyl iodide

C. n-propyl chloride + Chlorobenzene


D. n-propyl chloride +Phenol

Answer:

Watch Video Solution

159. Amongst the following compounds, the compound having the lowest

boiling point is

Answer:

160. Which statement/s are true about products P & Q.

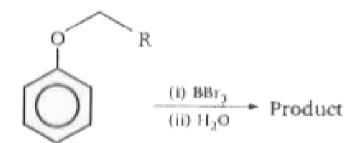
(A)
$$CH_3 - CH = CH - CH_2 - OH \xrightarrow{SOCl_2} P$$

(B) $CH_3 - CH - CH = CH_2 \xrightarrow{SOCl_2} Q$
(B) $CH_3 - CH - CH = CH_2 \xrightarrow{SOCl_2} Q$
(CH (6 member T.S.))

A. P & Q are position isomers

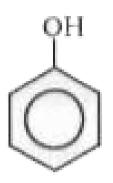
B. P show geometrical isomerism but Qnot

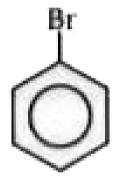
C.


$$P=CH_3-CH-CH=CH_2$$
 $Q=CH_3-CH=CH-CH_2$

D.

$$P\equiv CH_3-CH=CH_2-Cl$$
 $Q=CH_3-CH-CH=CH_2 \ ert \$

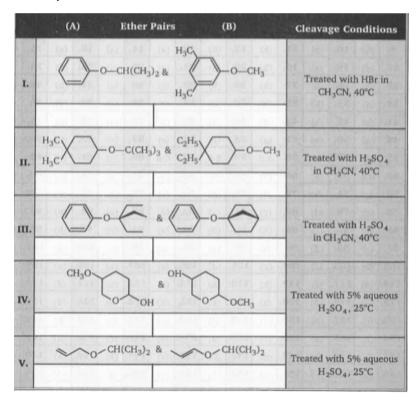

Answer:

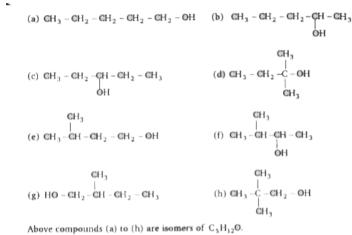


161.

Which of the following is/are possible end product of the above reaction?

A.

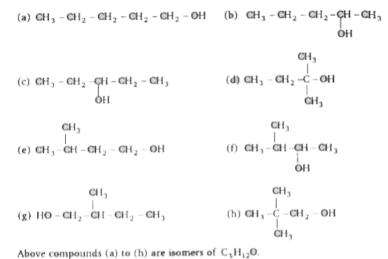



D. both (a) and (c)

Answer:

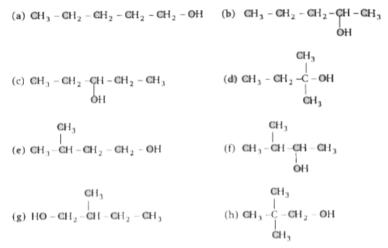
1. Consider the pairs ofethers, numbered I throughV, shown below. To the right of each pairis a description of reaction conditions to be applied to each. One compound of the pair will react more rapidly than the other. Which ether of the two will be more rapidly cleaved?

Write your answer in box.



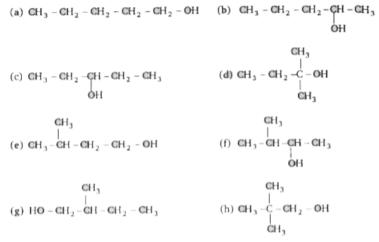
2.

Based on the above isomer answer the following (A to F).


Which isomer is most reactive towards dehydration by conc. H_2SO_4 ?

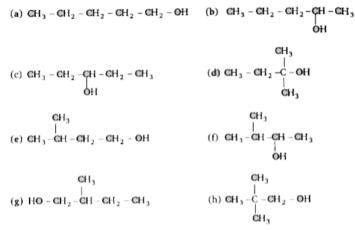
3.

Based on the above isomer answer the following (A to F).


Which isomer will undergo rearrangement when treated with conc. H_2SO_4 ?

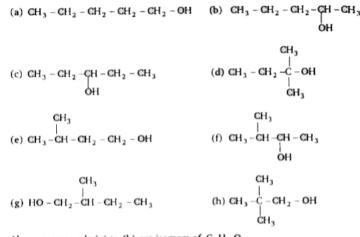
Above compounds (a) to (h) are isomers of C₅H₁₂O.

Based on the above isomer answer the following (A to F).


Which isomers on dehydration with conc. H_2SO_4 give alkene which is capable to show geometrical isomerism ?

5. Above compounds (a) to (h) are isomers of $C_5H_{12}O$.

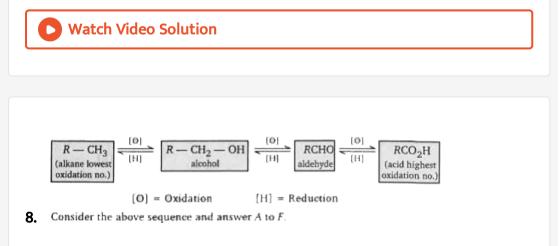
Based on the above isomer answer the following (A to F).


Which isomer is least acidic ?

Above compounds (a) to (h) are isomers of C₅H₁₂O.

Based on the above isomer answer the following (A to F).

Which isomers on dehydration give most stable alkene?



Above compounds (a) to (h) are isomers of C₅H₁₂O.

7.

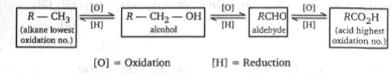
Based on the above isomer answer the following (A to F).

Which isomer on dehydration with conc. H_3PO_4 undergo maximum rearrangement?

 ${\small {\sf Conversion}} \ (CH_3-CH_3 \rightarrow CH_3-CH_2-OH) \ \ {\rm alkane} \quad \rightarrow \ \ {\small {\sf alcohol}}$

is ahieved by :

A. $Br_2/hv, alcKOH$


B. Br_2/hv , aq. KOH

 $\mathsf{C}. Br_2 / CCl_4, LiAlH_4$

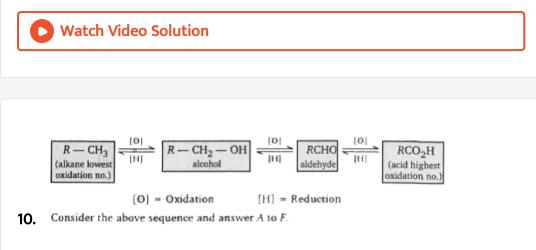
D. $Br_2/CCl_4, NaBH_4$

Answer: A-b;

Watch Video Solution

Consider the above sequence and answer A to F.

Conversion $R-CH_2-OH
ightarrow R-CHO$ can be done by :


A. PCC/CH_2Cl_2

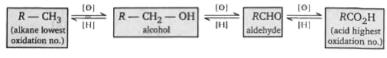
B. Cu, $300^{\circ}C$

 $C. CrO_3$

D. All of these

Answer: B::D

Conversion $R-CHO ightarrow R-CO_2 H$ can be done by


A. $KMnO_4$

 $\mathsf{B.}\,H_2CrO_4$

C. $K_2 C r_2 O_7$

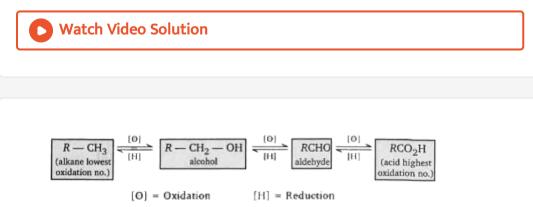
D. All of these

Answer: C::D

[O] = Oxidation [H] = Reduction

Consider the above sequence and answer A to F.

Coversion $R-CO_2H
ightarrow R-CHO$ can be done by :


A. $LiAlH_4$

B. $NaBH_4$

C. DIBAL - H

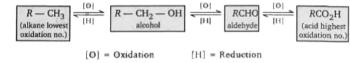
D. All of these

Answer: C::D

12. Consider the above sequence and answer A to F.

Coversion $R - CHO
ightarrow R - CH_2 - OH$ can be done by :

A. $LiAlH_4$


B. $NaBH_4$

 $\mathsf{C.}\,H_2\,/\,Ni$

D. All of these

Answer: D

Watch Video Solution

13. Consider the above sequence and answer A to F.

Reduction $R-CH_2-OH
ightarrow R-CH_3$ can be done by :

A. $LiAlH_4$

B. $NaBH_4 - AlCl_3$

 $\mathsf{C}.\,H_2+Ni$

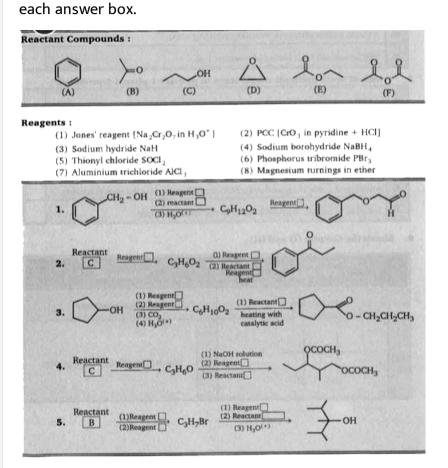
 $\mathsf{D}.\, RedP + HI$

Answer: D

Watch Video Solution

14. Which of the following is true for 3- methylbutanal?

a.	This compound may be classified as an aldehyde.			
b.	This compound may be classified as a ketone			
c.	An aldol reaction takes place on treatment with NaOH solution.			
d.	There is no reaction with LiAlH ₄ in ether solution.			
e.	An excess of CH ₃ MgBr in ether reacts to give 4-methyl-2-pentanol.			
£.	Wolff-Kishner reduction gives butane.			
8.	This compound is an isomer of 3-pentanone.			



15. This problem is an introduction to the planning of multistep syntheses

For use, you have six reactant compounds (A through F) , and eight reagents (1 through 8), shown below

Following these lists, five multistep syntheses are outlined. For each of

these, certain reactants or reagents must be identified by writing an appropriate letter or number in designated answer boxes. Write a single letter or number, indicating your choice of the best reactant or reagent, in

View Text Solution

16. Which of the following is true for 3- methyl-2-butanone?

a.	It may be prepared by CrO	3 oxidation of 2-methyl-2-butanol.
----	---------------------------	------------------------------------

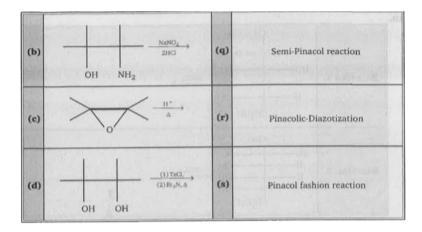
b. Its reaction with NaBH₄ gives a secondary alcohol.

c. It may be prepared by acidic Hg²⁺ catalyzed hydration of 3-methyl-1-butyne.

d. It forms a silver mirror on treatment with [Ag(NH₃)₂]*.

This compound is an isomer of 4-penten-1-ol.

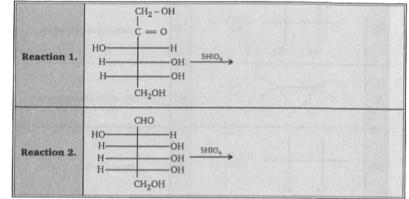
e.


Watch Video Solution

17. Which of these methods would serve to prepare 1-phenyl-2-propanol?

a.	Addition of benzyl Grignard reagent to acetaldehyde (ethanal).				
b.	Addition of phenyl lithium to propylene oxide (methyloxirane).				
c.	Addition of phenyl Grignard reagent to acetone (2-propanone).				
d.	Acid-catalyzed hydration (addition of water to) of 2-phenyl-1-propene.				
e.	Addition of methyl Grignard reagent to acetophenone (methyl phenyl ketone).				
f.	Addition of methyl Grignard reagent to phenylacetaldehyde.				

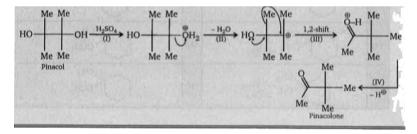
18. Match the Column (I) and (II) .


Column (I)			Column (II)	
Reaction		0 11.5	Name of Reaction	
	$\xrightarrow{H^*}_{\Delta}$	(p)	Pinacol-Pinacolone rearrangement	
		Reaction	Reaction H*	

19. Match the Column (I) and (II) .

1. 01	Column (l)	Column (II)		
Reactant		Products		
(a)	CH3 CH3OH OH H304 Conc.	(p)	CH ₃ 14 OCH ₃	
(b)	$\overset{CH_3}{\overset{(1)NaH}{\overset{(1)NaH}{\overset{(2)CH_3I}{$	(q)	CH ₃ CH ₃	
(c)	$\overset{CH_3}{\underset{(3) \text{ GH}_3^{-1}}{\overset{(1) \text{ HBr}}{\overset{(2) \text{ MB}}{\overset{(3) \text{ GH}_3^{-1}}}}}$	(r)	CH ₃ očH ₃	
(d)		(s)	OCH3	

View Text Solution



20.

Ratio of moles of formaldehyde obtained in the reaction (1) and reaction

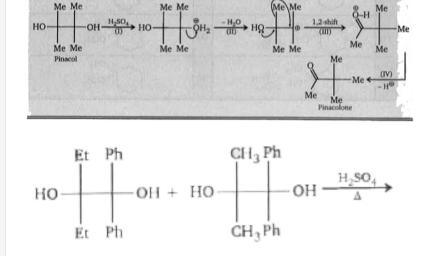
(2)?

21. Di-tert-glycols rearrange in the presence of acid to give *alpa*-tertiary ketones. The trivial name of the simplest glycol of this type is pinacol, and this type of reaction therefore is named pinacol rearrangement (in this specific case, the reaction is called a pinacol-pinacolone rearrangement). The rearrangement involves 4 steps. one of the hydroxyl groups is protonated in the first step. A molecule of water is eliminated in the second step and a tertiary carbocation is formed. The carbocation rearrangement. In the last step, the carboxonium ion via a [1,2] rearrangement. In the last step, the carboxonium ion is deprotonated and the product ketone is obtained.

What is R.D.S. of pinacol-pinacolone rearrangement?

A. I step

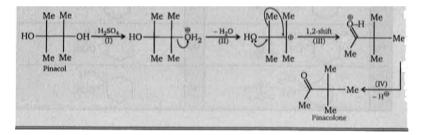
B. II step

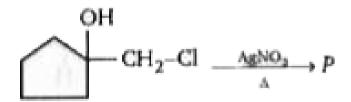

C. III step

D. IV step

Answer: A::B

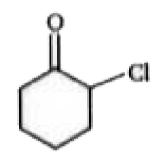
22. Di-tert-glycols rearrange in the presence of acid to give *alpa*-tertiary ketones. The trivial name of the simplest glycol of this type is pinacol, and this type of reaction therefore is named pinacol rearrangement (in this specific case, the reaction is called a pinacol-pinacolone rearrangement). The rearrangement involves 4 steps. one of the hydroxyl groups is protonated in the first step. A molecule of water is eliminated in the second step and a tertiary carbocation is formed. The carbocation rearrangement. In the last step, the carboxonium ion via a [1,2] rearrangement. In the last step, the carboxonium ion is deprotonated and the product ketone is obtained.




How many products obtained in above reaction?

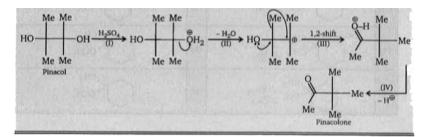
A. 1 B. 2 C. 3 D. 4

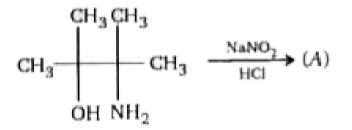
Answer: B

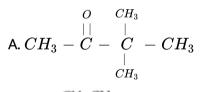

23. Di-tert-glycols rearrange in the presence of acid to give *alpa*-tertiary ketones. The trivial name of the simplest glycol of this type is pinacol, and this type of reaction therefore is named pinacol rearrangement (in this specific case, the reaction is called a pinacol-pinacolone rearrangement). The rearrangement involves 4 steps. one of the hydroxyl groups is protonated in the first step. A molecule of water is eliminated in the second step and a tertiary carbocation is formed. The carbocation rearrangement. In the last step, the carboxonium ion via a [1,2] rearrangement. In the last step, the carboxonium ion is deprotonated and the product ketone is obtained.

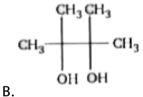
A.

C.

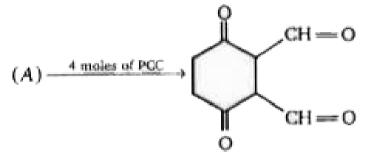

D.


Answer: C




24. Di-tert-glycols rearrange in the presence of acid to give *alpa*-tertiary ketones. The trivial name of the simplest glycol of this type is pinacol, and this type of reaction therefore is named pinacol rearrangement (in this specific case, the reaction is called a pinacol-pinacolone rearrangement). The rearrangement involves 4 steps. one of the hydroxyl groups is protonated in the first step. A molecule of water is eliminated in the second step and a tertiary carbocation is formed. The carbocation rearrangement. In the last step, the carboxonium ion is deprotonated

and the product ketone is obtained.



D. None of these

Answer: A::D

Subjective Problems

1.

Maximum number of moles of Ac_2O consumed by reactant (A) is :

