

CHEMISTRY

BOOKS - MS CHOUHAN

ALKYL HALIDES (SUBSTITUTION REACTIONS)

1. Which of the following is not expected to be intermediate of the following reaction ?

A.

Β.

C.

D.

Answer: A

2.

product of

the reaction is :

D.

Answer: B

Watch Video Solution

3. Rate of S_{N^2} will be negligible in :

Β.

D.

C.

Answer: C

Watch Video Solution

4. What is the major product obtained in the following reaction ?

Answer: A

5.
$$Cl-CH_2-\overset{CH_3}{\overset{l}{\underset{CH_3}{CH_2}}}-CH_2-CH_2-Cl+l^- \xrightarrow[DMF]{}$$
 product, Major

product of this reaction is:

$$\begin{array}{c} CH_{3} \\ \mathsf{A}.\,l-CH_{2} - \overset{|}{\overset{|}{C}} - CH_{2} - CH_{2} - Cl \\ \overset{|}{CH_{3}} \\ \mathsf{B}.\,Cl-CH_{2} - \overset{|}{\overset{|}{C}} - CH_{2} - CH_{2} - l^{-} \\ \overset{|}{CH_{3}} \\ \mathsf{C}.\,H_{2}C = \overset{|}{\overset{|}{C}} - CH_{2} - CH_{2} = Cl \\ \mathsf{C}.\,H_{2}C = \overset{|}{\overset{|}{C}} - CH_{2} - CH_{2} = Cl \\ \mathsf{D}.\,Cl-CH_{2} - \overset{|}{\overset{|}{CH_{3}}} - CH_{2} = CH_{2} \\ \overset{|}{CH_{3}} \end{array}$$

Answer: B

6. Which of the following expressions is representative of the rate law for

a S_{N^2} reaction ?

A. Rate = k [electrophile]

B. Rate = k [electrophile] [nucleophile]

C. Rate = k [nucleophile]²

D. Rate = k[electrophile]²

Answer: B

Answer: B

8. Which of the following alkyl halide undergo rearrangement in S_{N^1} reaction ?

	-	
	-	

9. Arrange the following three chlorides in decreasing order towards S_{N^1}

reactivity.

A. 1 gt 2 gt 3

B. 2 gt 3 gt 1

C. 2 gt 1 gt 3

D. 3 gt 2 gt 1

Answer: B

10. Which compound undergoes nucleophilic substitution with NaCN at

Answer: A

11. Rank the following in order of decreasing rate of solvolysis with aqueous ethanol (fastest ightarrow slowest)

 $H_{2}C = C - Br \qquad (2) \qquad (H_{3} - CHCH_{2}CH(CH_{3})_{2} \\ (1) \qquad (2) \qquad (3) \qquad (3) \qquad (3) \qquad (3)$ A. 2 gt 1 gt 3 B. 1 gt 2 gt 3 C. 2 gt 3 gt 1 D. 1 gt 3 gt 2

Answer: C

Watch Video Solution

12. The reaction of 4-bromobenzyl chloride with sodium cyanide in ethanol leads to the formation of :

A. 4-bromobenzyl cyanide

B. 4-cyanobenzyl chloride

C. 4-cyanobenzyl cyanide

D. 4-bromo-2-cyanobenzyl chloride

Answer: A

Watch Video Solution

13. Which of the following reactant will not favour nucleophilic substitution reaction ?

B. Ph-Br

$$\stackrel{CH_3}{\mathop{\sqcup}\limits_{\substack{l\ CH_3}}}_{C.\,CH_3} \stackrel{|}{\stackrel{C}{\mathop{\sqcup}\limits_{\substack{l\ CH_3}}}} - CH_2 - Br$$

D. All the above

Answer: D

14.

Conversion of I to II :

A. takes place by S^1_N

B. takes place by S_N^2

C. takes place both by S^1_N and S^2_N

D. does not take place

Answer: D

Watch Video Solution

15. Which is the correct reaction coordinate diagram for the following solvolysis reaction ?

Answer: B

16.

product,

Product of this reaction is

C. both (a) and (b)

D. None of these

Answer: C

Product (B)

is :

17.

Β.

D. None of these

Answer: A

Watch Video Solution

18. Which of the following represents the correct graph for S_{N^2} reaction ?

Answer: A

19. Which of the following graph represents correct graph for S_{N^1} reaction :

Answer: C

20. Which of the following is most reactive towards $S_N 1$ reaction?

Β.

C.

D.

Answer: D

Br

21. Among the given pairs, in which pair first compound reacts faster than second compound in S_{N^1} `reaction ?

A.
$$CH_3 - CH_2 - CH_2 - CH_2 - Br$$
 or $CH_3 - CH_2$ -CH - CH_3
 $B. CH_3 - CH_3 - CH_2 - CH_2Br$ or $CH_3 - CH - CH - CH_3$
 $CH_3 - CH_3 - CH - CH_3 - CH - CH_3$
 $CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $C.$
D. $CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$
 $Br - CH_3 - CH_3 - CH_3 - CH_3$
 $H - CH_3 - CH_3 - CH_3 - CH_3$

Ι

Answer: B

22. What is the major product of the following reaction?

 $egin{aligned} H_2C &= CH - CH_2 - OH \xrightarrow[excess]{HBr} Product \ & \mathsf{A}. CH_3 - \overset{|}{C}H - CH_2 - Br \ & \mathsf{B}. H_2C &= CH - CH_2 - Br \ & \mathsf{B}. H_2C &= CH - CH_2 - Br \ & \mathsf{C}. CH_3 - \overset{|}{C}H - CH_2 - OH \ & \mathsf{OH} \ & \mathsf{D}. CH_3 - \overset{|}{C}H - CH_2 - OH \end{aligned}$

Answer: A

Watch Video Solution

23. S_{N^1} and S_{N^2} products are same with (excluding stereoisomer):

A.

Β.

Answer: C

Watch Video Solution

24. Consider the nucleophilic attacks given below. Select in each pair that

shows the greater S_{N^2} reaction rate.

Watch Video Solution

25. Which of the two stereoisomers of 4-t-butylcyclohexyl iodide $\left(^{127}I^{\,-}
ight)$

T127

н

will undergo S_N^2 substitution with ${}^{128}I^-$ faster, and why?

A. A will react faster because it is the more stable of the two isomers

B. A will react faster because it will yield a more stable product, and

the transition state for both reactions is of the same energy

- C. A will react faster because the approach of $^{128}I^-$ can depart unhindered.
- D. B will react faster because it is less stable than A, and the transition

state for both reactions is of the same energy

Answer: D

Watch Video Solution

26. (Z)-2-Butene reacts with Br_2/H_2O . The resulting bromohydrin when treated with methoxide in methanol undergoes an intramolecular S_{N^2} reaction. Taking into consideration the stereochemical consequences of the reaction mechanism involved, choose the final product(s) of these transformations.

A. (I) only

B. (II) only

C. (III) only

D. Equal amounts of (I) and (II)

Answer: D

Watch Video Solution

27. Rank the following species in order of decreasing nucleophilicity in a polar protic solvent (most \rightarrow least nucleophilic):

 $\begin{array}{ccc} & & & & & \\ CH_3CH_2CH_2O^- & CH_3CH_2CH_2S^- & & CH_3CH_2C-O^- \\ (1) & & (2) & & (3) \end{array}$

A. 3 gt 1 gt 2

B. 2 gt 3 gt 1

C. 1 gt 3 gt 2

D. 2 gt1 gt 3

Answer: D

D.

single product obtained in both the reactions

Answer: A

Watch Video Solution

29.

Which of the following is true about given graphs A and B?

A.
$$A o S_{N^1} \quad B o S_{N^2}$$

B.
$$A o S_{N^2}$$
 $B o S_{N^1}$

 $\mathsf{C}. A \text{ and } B \to E_1$

D. A and $B \rightarrow E_2$

Answer: A

30. In each of the following groups, which is the strongest (best)

nucleophile ?

A. I,3 , II,3 , III,2

B. 1,2 , II,1 , III,3

C. I,1, II,2 , III,1

D. 1,3 , II, 3 , III,3

Answer: D

Watch Video Solution

$$(A) : Product (A) is :$$

D. None of these

Answer: B

32. Which of the following reaction is an elimination reaction ?

$$A. \qquad \stackrel{H}{\longrightarrow} \stackrel{H_{2}SO_{4}}{\longrightarrow} \stackrel{H_{2}SO_{4}}{\longrightarrow} \stackrel{H}{\longrightarrow} H$$

D. both (a) and (b)

Answer: D

Which of the following products can be obtained from above reaction ?

A.
$$\begin{array}{c} & & & \\$$

D. All of these

Answer: D

Watch Video Solution

34. What is the principal product of the following reaction ?

Answer: C

35. What would be the effect of increasing solvent polarity on the rate of

each of the following reactions ?

(A) $Nu+R-L
ightarrow \overset{\oplus}{N}\!\!u-R+L^-$

(B) $R-L^\oplus o R^\oplus + L$

A. increases

B. decrease

C. constant

D. can not predict

Answer: A

Watch Video Solution

36. Which of the following is most reactive towards $S_N 1$ reaction?

A.
$$CH_2 = CH - CH_2 - Cl$$

B. $Ph - CH_2 - Cl$
c. $Me - OCl$
D. $Ph - CL - CH_2 - Cl$

Answer: D

Watch Video Solution

37. 4-chloro-1-butanol + NaOH \rightarrow (B)

Product (B) of the above reaction is :

A.

Answer: B

38. In the given pairs of alkyl-halide, in which pair the first compound is more reactive than second compound toward S_{N^2} reaction ?

A.
$$(CH_3)_2 CHBr~~\mathrm{or}~~CH_3 - CH_2 - CH_2 - Br$$

B. $CH_3 - CH_2 - CH_2 - Br$ or $CH_3 - CH_2 - CH_2 - CH_2 - I$
C. Ph - Br or $CH_3 - CH_2 - CH_2 - Br$

D. $CH_2 = CH - CH_2 - Cl$ or $H_2C = CH - Cl$

Answer: D

Watch Video Solution

39. Among the following pair of reactions in which pair the second reaction is more reactive than first in S_{N^1} reaction ?

A.
$$CH_3-CH_2-Cl+CH_3-CH_2-O^-
ightarrow Et-O-E~~({
m or})$$

$$CH_2-CH_2-Cl+CH_3-CH_2-OH
ightarrow Et-O-Et$$

B. $CH_3 - CH_2 - Cl + ErO^- \rightarrow Et - O - Et$ (or)

 $CH_3 - CH_2 - Cl + ErS^-
ightarrow CH_3 - CH_2 - S - Et$

C. $Et_{(1m)} - Cl + CH_3O^-
ightarrow Et - O - CH_3$ (or) underset((2m))

(Et)-Cl+underset((1m))(CH_(3))O^(-)rarrEt-O-CH_(3)`

D.
$$Et-Br+Ph_3P
ightarrow Et-\overset{\oplus}{P}Ph_3$$
 (or) "

$$Et-Br+Ph_3N
ightarrow E+ \ -\stackrel{\scriptscriptstyle \oplus}{N}Ph_3$$

Answer: B

Watch Video Solution

40. Among the following pair of reactions in which pair the second reaction is more reactive than first in S_{N^1} reaction ?

A.
$$Me_3CCl+H_2O
ightarrow Me_3COH$$
 $\,\,{
m (or)}$

 $Me_3CBr + H_2O \rightarrow Me_3COH$

Β.

$$Me_3CCl+CH_3OH
ightarrow Me_3C-OCH_3 ~~{
m (or)} ~~ Me^3 ~C-Cl ~~+ H_2C$$

 $ext{C.} egin{array}{ccc} Me_3CCl + H_2O
ightarrow & (ext{or}) & Me_3CCl + H_2O \ & (2m) \end{array}$

D. All of these

Answer: D

41. Which is a true statement concerning the transition state of an S_{N^2} reaction ?

A. Closely resembles a carbocation intermediate

B. The electrophile is responsible for the reaction

C. Lower is energy than the starting materials

D. Involves both the nucleophile and electrophile

Answer: D

Watch Video Solution

42. Increasing the concentration of a nucleophile in a typical S_{N^2} reaction

by a factor of 10 will cause the reaction rate to :

A. increase by a factor of 10

B. increase by a factor of 10^2

C. decrease by a factor of 10

D. remain about the same

Answer: A

Watch Video Solution

43. Decreasing the concentration of an electrophile in a typical S_{N^2} reaction by a factor of 3 will cause the reaction ratio to :

A. increase by a factor of 3

B. increase by a factor of 3^2

C. decrease by a factor of 3

D. remain about the same

Answer: C

44. Increasing the concentration of an electrophile in a typical S_{N^2} reaction by a factor of 3 and the concentration of the nucleophile by a factor of 3 will change the reaction rate to :

A. increase by a factor of 6

B. increase by a factor of 9

C. decrease by a factor of 3

D. remain about the same

Answer: B

Watch Video Solution

45. Consider the following reaction and select the best choice that represents the reaction.

Answer: C

C.

Answer: D

48. Consider the following anions.

When attached to sp -hybridized carbon, their leaving group ability in nucleophilic substitution reaction decreases in the order :

A. I > II > III > IVB. I > II > IV > IIIC. IV > I > I > II > IIID. IV > III > II > I

Answer: B

Answer: B

Watch Video Solution

50. Reaction of R-2-butanol with p-toluenesulphonyl chloride in pyridine

followed by reaction with LiBr gives:

A. R-2-butyl bromide

B. S-2-butyl tosylate

C. R-2-butyl tosylate

D. S-2-butyl bromide

Answer: D

51. The compound which undergoes SN1 reaction most rapidly is :

D.

Answer: B

52. Addition of KI accelerates the hydrolysis of primary alkyl halides

because :

A. KI is soluble in organic solvents

B. the iodide ion is a weak base and a poor leaving group

C. the iodide ion is a strong base

D. the iodide ion is a powerful nucleophile as well as a good leaving

group

Answer: D

Watch Video Solution

53. Which of the following phrases are not correctly associated with Svi reaction ?

- (1) Rearrangement is possible
- (2) Rate is affected by polarity of solvent
- (3) The strength of the nucleophile is important in determining rate
- (4) The reactivity series is tertiary > secondary > primary
- (5) Proceeds with complete inversion of configuration

A. 3,5

B. 5 only

C. 2, 3, 5

D. 3 only

Answer: A

Β.

D.

Answer: B

- A. A o B
- $\mathbf{B}.\,B\to C$
- $\mathsf{C}.\, C \to D$
- D. can not predict

Answer: A

Β.

A.

C.

Answer: A

 $\xrightarrow{\text{LiBr/DMSO}} \text{Major product } (X)$ S_{N2} conditions

The product X is :

Answer: B

58. Relative rate of reaction of the following amine with methyl iodide is:

A. A > B > C

- $\mathsf{B.}\, A > C > B$
- $\mathsf{C}.\,B>C>A$
- $\mathsf{D}.\,B > A > C$

Answer: C

Answer: C

Β.

D.

Answer: B

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

A. $\begin{array}{c} CH_{3} \searrow ^{14} \\ CH_{3} \swarrow ^{C} = C \swarrow ^{Ph} \\ CH_{3} \swarrow ^{C} = C \swarrow ^{Ph} \\ CH_{3} \swarrow ^{C} = C \swarrow ^{Ph} \\ CH_{3} \leftthreetimes ^{14} = C \leftthreetimes ^{Ph} \\ CH_{3} \leftthreetimes ^{14} = C \leftthreetimes ^{Ph} \\ CH_{3} \leftthreetimes ^{Ph}$

$$CH_3$$
 CH_3 $C = C^{14}$ CH_3 CH_3 CH_3 CH_3 CH_3

$$CH_3 C = C C_{CH_3}^{Ph}$$

Answer: C

62. The decreasing order of reactivity of the compounds given below

towards solvolysis under identical conditions is :

- A. II > III > I
- $\mathsf{B}.\, I > II > III$
- $\mathsf{C}.\,III>II>I$

 $\mathsf{D}.\,II>I>III$

Answer: D

D. None of these

Answer: A

64. (R)-2-octyl tosylate is solvolyzed in water under ideal conditions. The product(s) will be:

A. R-2-octanol and S-2-octanol in a 1:1 ratio

B. R-2-octanol and S-2-octanol in a 1.5:1 ratio

C. R-2-octanol only

D. S-2-octanol only

Answer: B

Watch Video Solution

65. From each of the following pairs select the compound that will react

faster with sodium iodide in acetone :

Pair-A: (1) 2-Chloropropane

(2) 2- Bromopropane

Pair-B: (3) 1 - Bromobutane

(4) 2- Bromobutane

A. 1,3

B. 1,4

C. 2,3

D. 2,4

Answer: C

Watch Video Solution

66. Among the given halides, which one will give same product in both S_{N^1} and S_{N^2} reactions.

A. (III) only

B. (I) & (II)

C. (III) & (IV)

D. (I), (III) & (IV)

Answer: D

68. Anisole $\mathop{o}\limits_{\operatorname{reflux}} \mathop{veset}(\operatorname{excess}\,\operatorname{HI}\,(\operatorname{conc.}))
ightarrow \, \operatorname{Product}$

A.
$$\bigcirc$$
 I + CH₃I

C.
$$\bigcirc$$
 -OH + CH₃I
D. \bigcirc -OH + CH₃CH₂I

Answer: C

Watch Video Solution

69. Which of the following compounds would react faster with NaCN in an

 S_{N^2} reaction ?

70.
$$HC\equiv CNa+Cl-CH_2-CH_2-CH_2-I
ightarrow (A)$$
 Major product
(A) is :

A.
$$H-C\equiv C-CH_2-CH_2-CH_2-I$$

 $\mathsf{B.}\,CH_2=CH-CH_2-I$

$$\mathsf{C}.\,H-C\equiv C-CH_2-CH_2-CH_2-Cl$$

$$\mathsf{D}. CH_2 = CH - CH_2 - Cl$$

Answer: C

71. What is the major product obtained in the following reaction

D.

Answer: C

D. None is correct

Answer: B

73.
$$Me_2C = CH - CH_2 - CH_2 - Cl \xrightarrow[CaCO_3]{H_2O}$$
 (X), Major product of the

reaction is :

A.
$$Me - \bigcup_{Me}^{OH} - CH_2 - CH_2 - CH_2$$

B. $Me_2C = CH - CH_2 - CH_2 - OH$
C. $Me_2C = CH - CH_2 - CH_2 - OH$
 $\bigcup_{OH}^{OH} OH$

Answer: D

74.

Answer: B

75. Relative rate of reaction with H_2O .

A.
$$(i) > (ii) > (iii)$$

 $\mathsf{B.}\left(ii\right) >\left(i\right) >\left(ii\right)$

$$\mathsf{C}.\left(iii
ight)>\left(ii
ight)>\left(i
ight)$$

$$\mathsf{D}.\left(iii
ight)>\left(i
ight)>\left(i
ight)>\left(ii
ight)$$

Answer: C

77. Which of the following statements is correct regarding the rate of hydrolysis of the compounds (A) and (B) by S_{N^2} reaction ?

A. A reacts faster than B

B. B reacts faster than A

C. Both A and B reacts at the same rate

D. Neither A nor B reacts

Answer: B

Watch Video Solution

78. What are reactant X and product Y in the following sequence of reactions ?

79.

 $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$

A.

Β.

Answer: D

80. $C_6 H_{13} Br + OH^-
ightarrow C_6 H_{13} OH + Br^-$ this reaction is an example

of:

- A. Nucleophilic addition
- B. Nucleophilic substitution
- C. Electrophilic addition
- D. Electrophilic substitution

Answer: B

81. Transition state 2 is structurally most likely as :

A. intermediate 1

B. transition state 3

C. intermediate 2

D. product

Answer: C

Watch Video Solution

82.

x = Number of aromatic compound obtained when above compound undergo complete acidic hydrolysis.

A. 1		
B. 2		
C. 3		
D. 4		

Answer: B

View Text Solution

- 83. S_{N^1} and S_{N^2} reactions are
 - A. Both stereospecific
 - B. Both stereoselective
 - C. Stereoselective and stereospecific respectively
 - D. Stereospecific and stereoselective respectively

Answer: B::C

84. Most reactive compound toward S_{N^1} is :

Answer: D

D.

85.

D. .

Answer: B

86. Following reaction is an example of :

- A. S_{N^2} Reaction
- B. S_{N^1} Reaction
- C. Electrophilic Addition
- D. S_N NGP

Answer: A

87. The major product of the following reaction : :

Answer: C

88. Choose the suitable option for the correct mechanism for the

following reactions.

Answer: C

Type of mechanism followed by reaction 1 and 2 respectively.

- A. $S_{N^1},\,S_{N^1}$
- B. S_{N^1}, S_{N^2}
- C. S_{N^2}, S_{N^1}
- D. $S_{N^2},\,S_{N^2}$

Answer: C

D.

Answer: B

1. Statement - 1 : Nucleophilicity order in polar-protic solvent is `l^(-)< Br^(-)< Cl^(-) Statement-2 : Due to bigger size of I it is less solvated in polar-protic solvent.

A. Statement-1 is true, statement -2 is true and statement - 2 is correct

explanation for statementn-1

B. Statement-1 is true, statement - 2 is true and statement -2 is NOT

the correct explanation statement-1.

C. Statement-1 is true, statement-2 is false.

D. Statement-1 is false, statement- 2 is true.

Answer: D

Watch Video Solution

2. Statement - 1 $CH_3 - CH_2 - Cl + Nal \xrightarrow{\text{Acetone}} CH_3 - CH_2 - I + NaCl \downarrow$

:

Statement- 2 : Acetone is polar-aprotic solvent and solubility order of sodium halides decreases dramatically in order Nal > NaBr > NaCl. The last being virtually insoluble in this solvent and a 1° and 2° chloro alkane in acetone is completely driven to the side of Iodoalkane by the precipitation reaction.

A. Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for statement-1.

B. Statement-1 is true, Statement-2 is true and Statement-2 is Not the

correct explanation for statement-1.

C. Statement-1 is true, Statement-2 is false.

D. Statement-1 is false, Statement-2 is true.

Answer: A::C

3. Encircle whichever of the following:

A. is the stronger nucleophile (aprotic solvent): $F^{\,-}\,$ or $I^{\,-}\,$

B. is the stronger nucleophile (protic solvent): $F^{\,-}\,$ or $I^{\,-}$

C. is the stronger base : $F^{\,-}$ or $I^{\,-}$

D. is the stronger nucleophile (protic solvent) : NH_3 , or NH_2 NH_2

(e) is the better leaving group : CH_3COO^- or $CH_3SO_3^-$

Answer:

4. Encircle whichever of the following:

undergoes S_{N^2} reaction more rapidly, C_2H_5-Br or CH_3-Br or $CH_3-CH-CH_3$

5. Encircle whichever of the following:

undergoes S_{N^1} reaction more rapidly, CH_3-Br or $CH_3-\overset{Br}{CH}-CH_3$

Watch Video Solution

6. Encircle whichever of the following:

undergoes an E_2 reaction to give (Z) - 1,2 - diphenylpropene :

7. Encircle whichever of the following:

reacts with Nal to give (Z) - 1,2 diphenylpropene :

Watch Video Solution

8. Encircle whichever of the following:

undergoes S_{N^1} reaction more rapidly,

11. Encircle whichever of the following :

undergoes an S_{N^1} reaction more rapidly :

12. Encircle whichever of the following :

undergoes an S_{N^2} reaction more rapidly :

13. Encircle whichever of the following :

undergoes an E_2 reaction more rapidly :

Watch Video Solution

14. Match the column :

	Alkyl halide	C. Matrice	Relative ra (S _{N1})	ate	Relative rate (S _{N2})
(a)	CH ₃ – Br	(p)	1	(w)	1200
(b)	$CH_3 - CH_2 - Br$	(q)	1.05	(x)	40
(c)	$CH_3 - CH - Br$ I CH_3	(r)	11	(y)	16
(d)	$\begin{array}{c} CH_3\\ \downarrow\\ CH_3 - C - Br\\ \downarrow\\ CH_3 \end{array}$	(s)	1,200000	(z)	

15. Matrix :

Column (I)			Column (II)	
	Compound	Type of reaction		
(a)	d	(p)	S_{N^1} reaction can take place	
(b)	CT CI	(q)	S_{N^2} reaction can take place	
(c)		(r)	S_{N^1} is not possible	
(d)	C C C I	(s)	S _{N²} is not possible	

Watch Video Solution

16. Encircle whichever of the following :

undergoes an S_{N^2} reaction more rapidly :

17. Encircle whichever of the following :

undergoes an S_{N^1} reaction more rapidly :

```
(CH_3)_3C - Br or (CH_3)_3C - I
```


- (Y) Answer the following quesitons :
- (i) Both reactoin pathways are :

(ii) Which step is the determining step (RDS) ?

(iii) Which product is most stable ?

(iv) In accordance with Hammonds postulate, exothermic reactions tend to have

A. early transition states that are reactant - like

B. late transition states that are reactant - like

C. early transition states that are product - like

D. late transition states that are product-like.

Answer: A::B::C::D

Watch Video Solution

21. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2)$

Answer: A::B

22. Select whether the following combinations of reactants will react by

substitution $(S_{N^1} \text{ or } S_{N^2}$ mechanism) elimination $(E_1 \text{ or } E_2)$

Answer: C::D

Watch Video Solution

24. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2)$

CH) C OH	HBr 48% in H ₂ O
$(CH_3)_3 C = OH$	25°C

A. S_{N^1}

B. S_{N^2}

 $\mathsf{C}. E_1$

D. E_2

Answer: A::D

D Watch Video Solution

25. Select whether the following combinations of reactants will react by

substitution $(S_{N^1} ext{ or } S_{N^2}$ mechanism) elimination $(E_1 ext{ or } E_2$

(CH) CH = Br	NaCN in ethanol		
$(GII_3)_2 CII = BI$	25° C		
A. S_{N^1}			
D C			
D. \mathcal{S}_{N^2}			
C. E_1			
D. E_2			
A			
Answer: B			

Watch Video Solution

26. Select whether the following combinations of reactants will react by

substitution $(S_{N^1} ext{ or } S_{N^2} ext{ mechanism})$ elimination $(E_1 ext{ or } E_2 ext{ or } E_2$

27. Select whether the following combinations of reactants will react by substitution $(S_{N^1} \text{ or } S_{N^2} \text{ mechanism})$ elimination $(E_1 \text{ or } E_2$

	HBr 48% in H ₂ O 50°C	
G. $(CH_3)_2 CHCH_2 CH_2 = OH$		
A. S_{N^1}		
B. S_{N^2}		
C. E_1		
D. E_2		

Answer: B

28. Examine the ten structural formulas shown in fig. & select that satify each of the following conditions. Write one or more (a through J) in each answer box.

A. Which compounds give and S_{N^2} substitution reaction on treatment with alcoholic NaSH ?

B. Which compounds give and E_2 elimation reaction on treatment with alcoholic KOH ?

C. Which compounds do not react under either of the previous reaction

conditions ?

Watch Video Solution

29. Select which reaction from the following reaction pairs will occur faster.

30. Select which reaction from the following reaction pairs will occur

faster.

PART - 2				
Reaction C	$\bigcup_{CH_3} \xrightarrow{Nal} \bigcup_{CH_3} I$			
Reaction D	CH ₂ Cl <u>Nat</u> DMSO			

31. Select which reaction from the following reaction pairs will occur faster.

32. Select which reaction from the following reaction pairs will occur

faster.

Watch Video Solution

33. Select which reaction from the following reaction pairs will occur faster.

34. Tick your answer in the given box.

	Alkyl Halide	2-D Structure	Expect S _{N²} (at a reasonable rate)
(a)	1-Bromobutane	\sim	Yes
		Br	No
(b)	1- Chlorobutane	Cl	No
(0)	0. Describertos	Br	Yes
(c)	2-Bromobutane	\sim	No
		Cl	Yes
(d)	2-Chlorobutane	\sim	No
(-)		+	Yes
(e)	2-Chloro-2-methyl propane	CI	No

		Br	Yes
(f)	Bromocyclohexane	\bigcirc	No
	Bromobenzene	Br	Yes
(g)		\bigcirc	No
(h)	Benzyl bromide	CH ₂ -Br	Yes
		\bigcirc	No
G	1-Bromo-2,2-dimethyl propane	Br	Yes
		\sim (No
		A	Yes
0)	Bicyclo compound	Br	No
	1-bromotriptycene	Br	Yes
(K)			No
35. Match the column :

	Column-I		Column-II
(a)	C d	(p)	It will uncergo Nucleophilic Substitution reaction
(b)	OL_CH2-CI	(q)	It will undergo E_2 reaction
(c)	CH ₃ C-Cl CH ₃	(r)	It will undergo E_1 reaction
(d)	NO ₂	(s)	It will undergo S_{N^2} reaction
		(t)	It will undergo S_{N^1} reaction

Watch Video Solution

36.

Watch Video Solution

37.

Watch Video Solution

	Column (I)	Column (II)	
	(Reaction sequence)		(Reagent required)
(a)	$\rightarrow 0^{\Theta} \rightarrow \rightarrow OEt$	(p)	EtO^{Θ}
(b)	\rightarrow Br \rightarrow >=	(q)	EtBr
(c)	$\rightarrow \rightarrow \checkmark^{OEt}$	(r)	EtOH∕H [⊕]
(d)	$Et - Cl \longrightarrow \checkmark$	(s)	Et–Cl/Na ether

38.

Watch Video Solution

39. Choose the one compound within each set the meets the indicated

criterion :

View Text Solution

40. Comprehension

The first demonstration of the stereochemistry of the S_{N^2} reaction was carried out in 1934 by Prof. E.D Hughes and his colleagues at the University of London. They allowed (R) -2- iodooctane to react with radioactive iodide ion (* I -) $CH_3CH(CH_2)_5CH_3 + *I^- \longrightarrow CH_3CH(CH_2)_5CH_3 + I^-$ II2-iodooctane2-iodooctane(radioactive)

The rate of substitution (rate constant K_5) was determined by measuring the rate of incorporation of radioactivity into the alkyl halide. The rate of loss of optical acitivity from the alkyl halide (rate constant K_0) was also determined under the same conditions:

What ratio K_0/K_s is predicted for each of the following stereochemical

scenarios :

For inversion reaction :

A.
$$rac{K_O}{K_S} = 1$$

B. $rac{K_O}{K_S} < 1$
C. $rac{K_O}{K_S} > 1$

D. can not be predicted

Answer:

Watch Video Solution

41. Comprehension

The first demonstration of the stereochemistry of the S_{N^2} reaction was carried out in 1934 by Prof. E.D Hughes and his colleagues at the University of London. They allowed (R) -2- iodooctane to react with radioactive iodide ion (* I -)

$$\begin{array}{c} CH_{3}CH(CH_{2})_{5}CH_{3} + *I^{-} & \longrightarrow \\ | \\ I \\ 2\text{-iodooctane} \\ & & 2\text{-iodooctane} \\ & & (radioactive) \end{array}$$

The rate of substitution (rate constant K_5) was determined by measuring the rate of incorporation of radioactivity into the alkyl halide. The rate of loss of optical acitivity from the alkyl halide (rate constant K_0) was also determined under the same conditions:

What ratio $K_0 \,/\, K_s$ is predicted for each of the following stereochemical scenarios :

For equal amounts of both retention and inversion ?

A.
$$rac{K_O}{K_S}=1$$

B. $rac{K_O}{K_S}<1$
C. $rac{K_O}{K_S}>1$

D. can not be predicted

Answer:

Watch Video Solution