

CHEMISTRY

BOOKS - MS CHOUHAN

AROMATIC COMPOUNDS

Level 1

1.

Identify the position where electrophillic aromatic substitution (EAS) is most faourable .

A. A

B. B

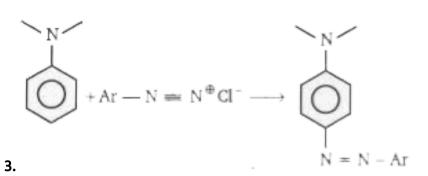
C. C

D. A and C

Answer: B

Correct order of rate of EAS (electrophillic aromatic substitution) is:

$$\operatorname{A.} c > b > a > a > d$$

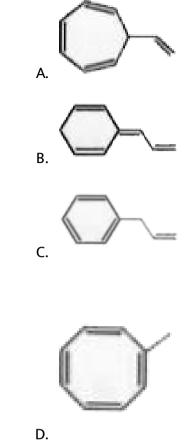

B.
$$c > d > a > b$$

$$\mathsf{C}.\,a>b>c>d$$

D.
$$c > d > b > a$$

Answer: D

Above (C-N) coupling reaction take place at:


- A. low pH
- B. intermediate pH
- C. high pH
- D. any pH

Answer: B

Watch Video Solution

4. Which of the following has the lowest heat of combustion?

Answer: C

5. The product obtained from the reaction is

Br
$$\longrightarrow$$
 CH₂CN

$$C$$
. NC — CH_2CN

$$Br \longrightarrow CH_2CI$$

D.

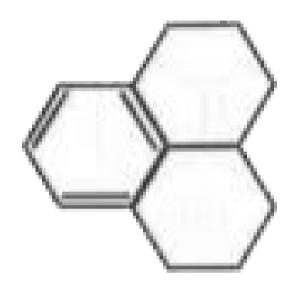
Answer: A

В.

$$\begin{array}{c|c} & CO \\ \hline &$$

The end product (C) is:

A.


В.

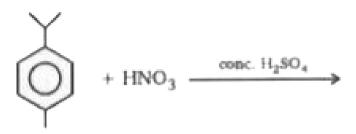
D.

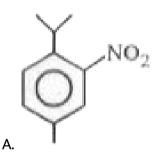
Answer: B

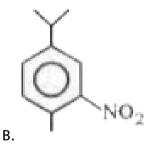
7. How many benzylic hydrogens are present in the hydrocarbon shown below?

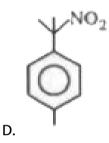
A. 3

B. 4


C. 5


D. 8


Answer: C


8. The major product formed in the reaction is :

Answer: B

Watch Video Solution

9. The major product formed in the reaction is :

$$C - O - C$$

Conc. HNO₃ / conc. H₂SO₄
(mononitration)

A. O₂N

Answer: D

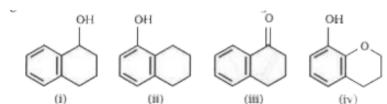
Watch Video Solution

10. Increasing order of rate of reaction with $HNO_3 \, / \, H_2SO_4$ is :

A.
$$iii < ii < i$$

$$\mathsf{B}.\,ii < iii < i$$

 $\mathsf{C}.\,I < iii < ii$


D. I < ii < iii

Answer: D

Watch Video Solution

11. Increasing order of rate of reaction with $Br_2 \, / \, AlCl_3$ is :

A.
$$iii < I < ii < iv$$

B. iv < ii < I < iii

 $\mathsf{C}.\,ii < iv < iii < i$

D. iv < ii < iii < i

Answer: A

12. Increasing order of equilbrium constant for the formation of a hydrate

is:

$$CH_3O \longrightarrow H_3CO \longrightarrow 0$$

$$(ii) \qquad (iii) \qquad (iii) \qquad (iiv)$$

A.
$$I < ii < iii < iv$$

$$\mathrm{B.}\,iv < ii < I < iii$$

C.
$$ii < iv < iii < i$$

$$\mathsf{D}.\,iv < ii < iii < i$$

Answer: A

13. Rank the following reaction A, B and C in order of increasing rate,

- A. B>A>C
- $\operatorname{B.}B > C > A$
- $\mathsf{C}.\,A>B>C$
- $\operatorname{D}.A > C > B$

Answer: A

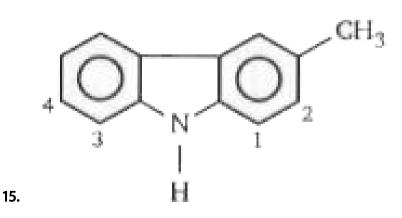
Watch Video Solution

14. Rank in order of increasing rate of reaction towards EAS with bromine in the presence of $FeBr_3$

$$(A) \bigcirc (B) \bigcirc (C) \bigcirc (C)$$

A. B It A It C

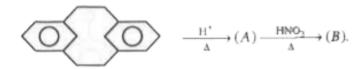
B. Alt Blt C


C. B lt C lt A

D. Alt Clt B

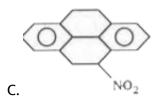
Answer: A

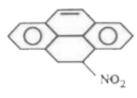
Watch Video Solution


Identify the position where E.A.S. can take place.

- A. 1
- B. 2
- C. 3
- D. 4

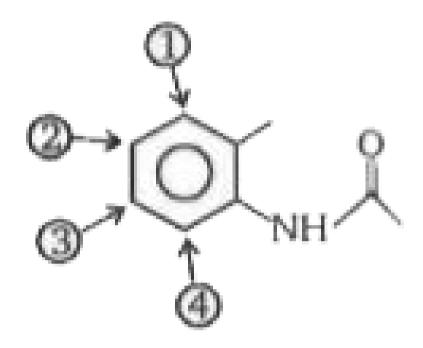
Answer: A




Watch Video Solution

Product (B) in the above reactions is:

Product (B) in the above reactions is:



D.

Answer: B

17.

Sulphonation is most favourable at the carbon number....

A. 1

B. 2

C. 3

D. 4

Answer: B

18. Arrange the following in decreasing order of reactivity towards EAS (electrophilic aromatic substitution)

A. a gt b gt c

B. c gt b gt a

C. a gt c gt b

D. c gt a gt b

Answer: A

Decreasing order of rate of electrophilic aromatic substitution is : (

- A. a gt b gt c gt d
- B. a gt c gt b gt d
- C. b gt a gt c gt d
- D. b gt c gt a gt d

Answer: B

Watch Video Solution

20. Arrange the following in increasing order of rate of Nitration:

$$\bigcup_{D}^{D}\bigcup_{D}^{D}$$

- A. b lt c lt a lt d lt e
- B. d lt e lt a = c lt b
- C. d lt a lt c lt e lt b
- D. a lt c lt b lt e lt d

Answer: B

Watch Video Solution

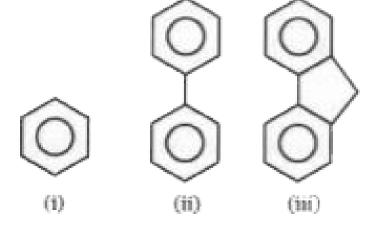
21.

The rate of nitration will be:

- A. a gt b gt c
- B. a gt c gt b
- C. a = b = c
- D. c gt a gt b

Answer: C

Watch Video Solution


22. The major product of the reaction is

Answer: C

Watch Video Solution

23. Arrange in their decreasing order of rate of electrophilic aromatic substitution :

A. i gt ii gt iii

B. iii gt ii gt i

C. iii gt i gt ii

D. i gt iii gt ii

Answer: B

24.

Watch Video Solution

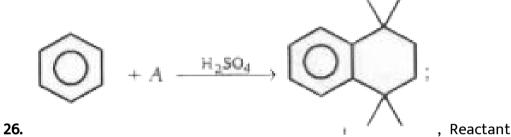
Product (A) of the given reaction is :

Answer: B

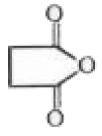
C.

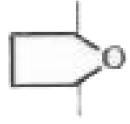
Watch Video Solution

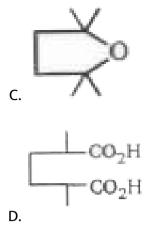
25. In which of the following compound electrophilic aromatic substitution take place in phenyl ring present in left hand side ?


$$\bigcirc - CH_2 - C$$

D.

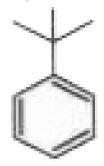

Answer: D

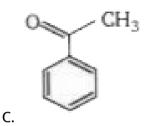

Watch Video Solution

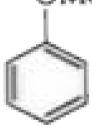

(A) is :

A.

В.


Answer: C


27. Which of the following compounds is the slowest to react with nitrosonium ion $\left(NO^{+}\right)$?


A.

В.

OMe

D.

Answer: C

$$\bullet \underbrace{ \begin{array}{c} 0 \\ 0 \\ \parallel \\ AICl_{3} \end{array}}_{\text{CIC}_{1}} \xrightarrow{\text{CIdemmensen}} \underbrace{ \begin{array}{c} 0 \\ \parallel \\ \text{CIR}_{3} - C - Cl \end{array}}_{\text{Red P}} \xrightarrow{\text{Red P} + \text{HI}} \underbrace{ \begin{array}{c} \text{Red P} + \text{HI} \\ \text{H}_{3} \text{O}^{\otimes} \end{array}}_{\text{H}_{3} \text{O}^{\otimes}} \xrightarrow{\text{Red P}_{3} + \text{HI}} \underbrace{ \begin{array}{c} \text{Red P} + \text{HI} \\ \text{H}_{3} \text{O}^{\otimes} \end{array}}_{\text{H}_{3} \text{O}^{\otimes}} \xrightarrow{\text{Red P}_{3} + \text{HI}_{3} + \text{H}_{3} + \text{H}$$

Ibuprofen is:

A.
$$CH_3 - CH_2 \longrightarrow CH_3 = CH_3 - CO_2H$$

$$\mathsf{B.}^{\mathsf{CH}_3-\mathsf{CH}_2-\mathsf{CH}_2} \xrightarrow{\mathsf{CH}_3-\mathsf{CH}_2} \mathsf{CH}_3$$

C.

Answer: B

D.

$$\begin{array}{c|c}
\hline
\begin{array}{c}
CH_2 - C \\
CH_2 - C \\
CH_2 - CH - C \\
CH_2 - CH - C
\end{array}$$

$$\begin{array}{c|c}
CH_2 - C \\
CH_2 - C \\
CH_2 - CH - C
\end{array}$$

What is the major product of above Friedel-Craft reaction?

29.

Watch Video Solution

30. What combination of acid chloride or anhydride and arene would you choose to prepare given compound ?

Answer: B

Watch Video Solution

31. In the given conversion best yield will obtained with:

A.
$$A=CH_3-\overset{O}{C}-Cl, AlCl_3, B=Zn(Hg), HCl$$

B.
$$A=Zn(Hg),HCl,B=CH_3-\overset{O}{\overset{|}{C}}-Cl,AlCl_3$$

$$C. A = CH_3 - CH_2 - Cl, B = Zn(Hg), HCl$$

D.
$$A = NH_2 - NH_2 / HO^-, D, B = CH_3 - CH_2 - Cl, AlCl_3$$

Answer: B

32. Rank the following in order of decreasing rate of reaction with alkoxide ion $\left(CH_3CH_{20}O^-\right)$ in a nucleophilic aromatic substitution reaction :

A. 3 gt 4 gt 1 gt 2

B. 3 gt 4 gt 2 gt 1

C. 2 gt 1 gt 4 gt 3

D. 4 gt 3 gt 2 gt 1

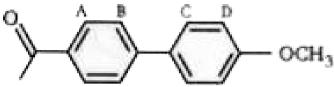
Answer: A

33. Identify the principal organic product of the following reaction.

$$O_2N$$
 F
 $+ NaSCH_3 \longrightarrow product$

A

В.

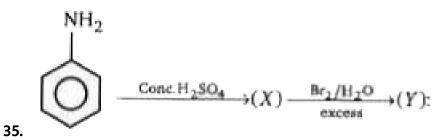

$$O_2N$$
 O_2N O_2N O_3

Answer: B

34. Which position will be attacked most rapidly by the nitronium ion $\left(-NO_2
ight)^+$ when the compound undergoes nitration with

$$HNO_3/H_2SO_4$$
 :

A. A


B. B

C. C

D. D

Answer: D

Product (Y) of this reaction is:

$$Br \longrightarrow SO_3H$$

A.

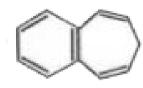
В.

$$\operatorname{Br}$$
 Br
 Br
 $\operatorname{SO}_3\operatorname{H}$

Answer: C

Watch Video Solution

36. All the hydrocarbons shown are very weak acids. One, however, is far more acidic than the others. Which one is the strongest acid?



A.

В.

D.

Answer: C

Watch Video Solution

$$+ \bigvee_{O} \xrightarrow{1. \text{AlCl}_3} (A) \xrightarrow{2. \text{SOCl}_2 \atop 3. \text{NaN}_3} (B) \xrightarrow{4. \text{MeOH} \atop 5. \text{LABH}_4} (C) \xrightarrow{6. \text{NaH}, \atop 7. \text{CF}_3} (D)$$

Product (D) in above sequence is:

A.
$$O$$
 $NH - GH_3$

C.
$$N - GH_3$$

Answer: A

Watch Video Solution

38. The action of bromine water (excess) on salicylic acid results in the formation of :

Answer: C

D.

В.

C.

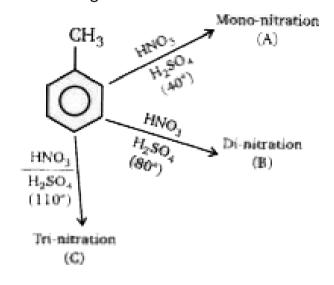
39. What is the correct order of o/p ratio when $E^{\,+}$ attacks the following system ?

A- PhF , B-PhCl, C-PhBr, D-Phl

A. A lt B lt C lt D

B.A = B = C=D

C. D It C It B It A


D. D It B It A It C

Answer: A

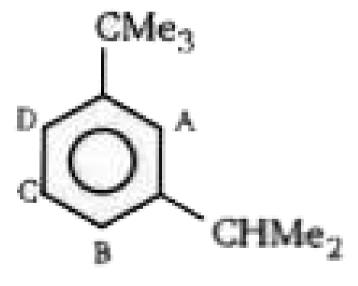
Watch Video Solution

40. How many products are capable of beings formed from toluene in each of following reaction ?

A.
$$A = 3$$
, $B = 6$, $C = 8$

B.
$$A = 3$$
, $B = 6$, $C = 6$

$$C. A = 3, B = 6, C = 10$$


D.
$$A = 3$$
, $B = 4$, $C = 6$

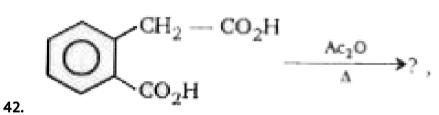
Answer: B

Watch Video Solution

41. Nitration takes place at the which position of the given compound?

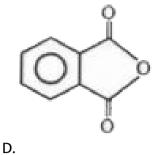
A. A

B.B


C. C

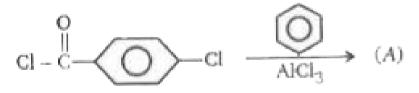
D. D

Answer: B

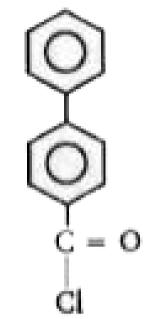


Watch Video Solution

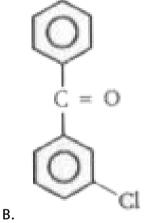
Indentify the product.

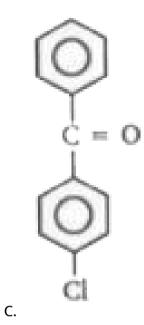

C.

Answer: D



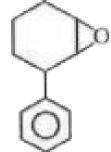
Watch Video Solution




43.

Unknown (A) is:

A.


Answer: C

Watch Video Solution

$$+ \bigcirc \longrightarrow \xrightarrow{H_3SO_4} (A) \xrightarrow{(1) \text{ NBS}} (B) \xrightarrow{RCO_3H} (C)$$

Product (C) is:

В.

Ρħ C.

D.

Answer: C

45. The reaction of toluene with chlorine in the presence of light gives :

В.

C.

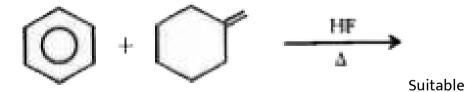
D.

Answer: A

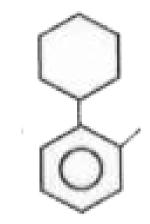
Watch Video Solution

$$(A) \xrightarrow{\text{NH}_2 - \text{NH}_2} (B),$$

$$(A) \xrightarrow{\text{NH}_2 - \text{NH}_2} (B),$$


Product (B) in this reaction is:

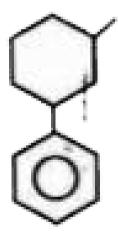
Answer: C



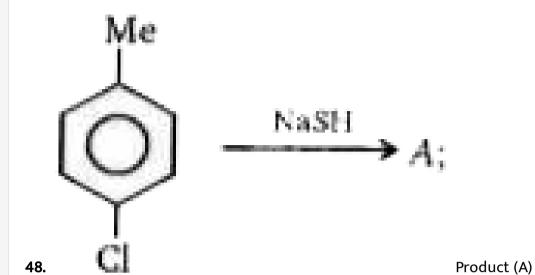
47.

Watch Video Solution

product of this reaction is :

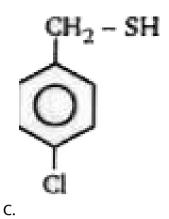

A.

В.


C.

D.

Answer: A



of the reaction is:

B. no reaction

A.

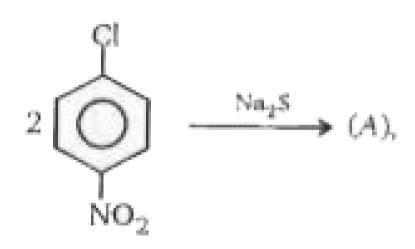
Answer: B

49. Product (B)

in this reaction is:

A.

В.

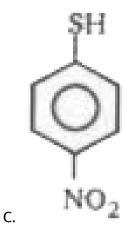

C.

Answer: B

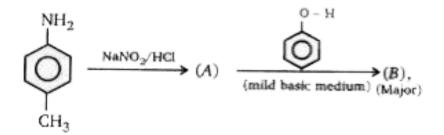
Watch Video Solution

Product

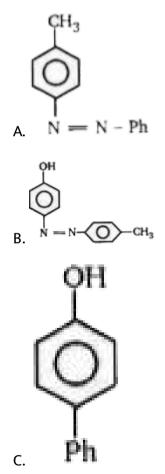
(A) in this reaction is:


50.

A.


В.

D.


Answer: B

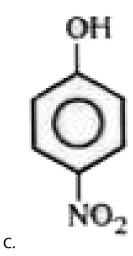
51. Product (B)

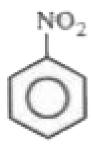
of this reaction is:

$$OH \longrightarrow N = N - O \longrightarrow CH_3$$

D.

Answer: B

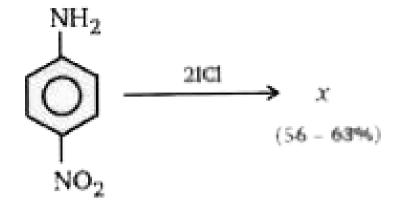



Watch Video Solution

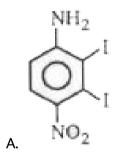
$$O - H$$
 HNO_3/H_2SO_4
 $(A) + (B)$
 $(more volatile)$ (less volatile)

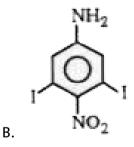
Product (A) of the above reaction is:

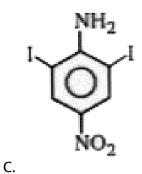
В.

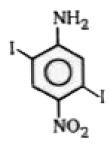


D.

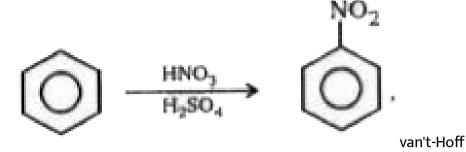

Answer: A




Major


product (x) in this reaction is:

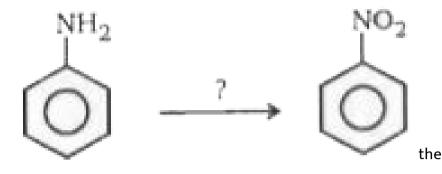
53.



D.

Answer: C

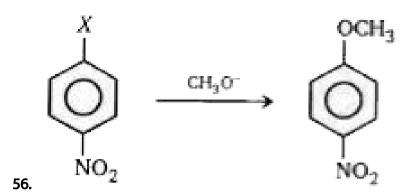
factor (i) for this reaction is :


A. 2

54.

- B. 3
- C. 4
- D. 5

Answer: C


missing reagent is:

55.

- A. CF_3CO_3H
- $\mathsf{B.}\,H_2SO_4$
- $\mathsf{C}.\,LAH$
- D. $NaBH_4$

Answer: A

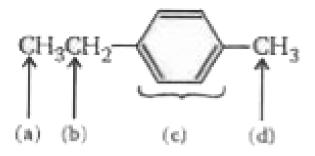
above reaction is an example of Nucleophilic aromatic substitution.

Which of the following halide (-X) is most readily replaced.

- A. $_{-}F$
- B.-Cl
- $\mathsf{C.}-Br$
- $\mathsf{D.}-I$

Answer: A

57. When comparing the hydrogenation of benzene with that of a hypothetical 1, 3, 5-cyclohexatriene, benzene ____than the cyclohexatriene.


- A. absorbs 152 kJ/mol more heat
- B. gives off 152 kJ/mol more heat
- C. absorbs 152kJ /mol less heat
- D. gives off 152 kJ/mol less heat

Answer: B

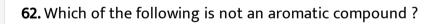
Watch Video Solution

58. Which of the following hydrogens is most easily abstracted on reaction with bromine free radicals, $Br^{\,+}$?

- A. a
- B.b
- C. c
- D. d

Answer: B

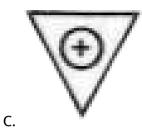
Watch Video Solution

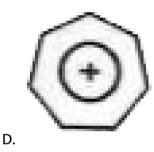

59. The electrophilic aromatic substitution proceeds through a:

- A. free radical
- B. sigma complex

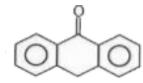
C. benzyne
D. carbene
Answer: B
Watch Video Solution
60. Which of the following substitution of benzene is ortho-para in
electrophilic substitution and ortho-para in nucleophilic substitution?
A. $-NO_2$
B.-NO
$C.-SO_3H$
D. $-SO_2Me$

Answer: B

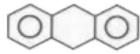

61. The number of possible isomers of dichloronitrobenzene is :
A. 3
B. 4
C. 6
D. 8
Answer: C
Watch Video Solution



В.



Answer: B



63. Consider the following sequence of reactions.

The end product (B) is:

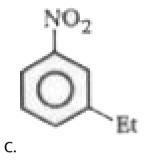
A.

В.

C.

D.

Answer: B



64. $Ph-NO_2-Et-Cl \stackrel{AlCl_3}{\longrightarrow} (A)$, Product (A) of the given reaction is

:

A.
$$Ph-NH-Et$$

B. no reaction

D.

Answer: B

Watch Video Solution

65. In nitration of benzene by mixed acid the rate of reaction will be:

A.
$$C_6 H_6 = C_6 D_6 = C_6 T_6$$

B.
$$C_6 H_6 > C_6 D_6 > C_6 T_6$$

$${\rm C.}\,C_6H_6=C_6D_6>C_6T_6$$

D.
$$C_6 H_6 < C_6 D_6 < C_6 T_6$$

Answer: A

$$(A) \xrightarrow{\text{Ph - CH}_2\text{CN}} (B)$$
66.

Product (B)

is:

A.
$$Ph-N= - CN$$

$$\mathsf{B.}\,Ph-N=C-PH$$

C.
$$Ph - N = N - Ph$$

Answer: A

View Text Solution

67. Which of the following ring compounds obeys Huckel's rule?

A.
$$C_4 H_4^{\,-1}$$

B.
$$C_4H_4^{\,+\,1}$$

C. $C_4H_4^{-2}$

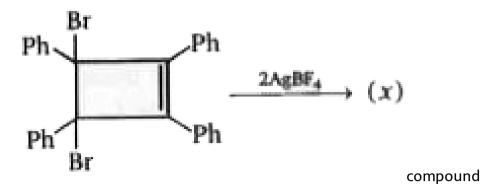
D. C_4H_4

Answer: C

Watch Video Solution

68. Nitration of which of the following reactant gives maximum % of meta product (using $HNO_3\,/\,H_2SO_4$) ?

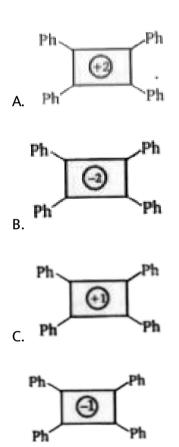
A. Toluene


B. Aniline

C. Benzene

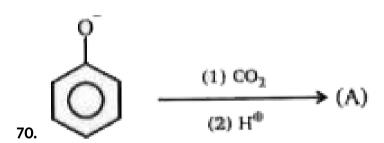
D. Isopropyl benzene

Answer: B



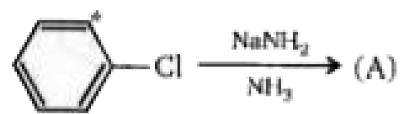
(x) will be:

D.


69.

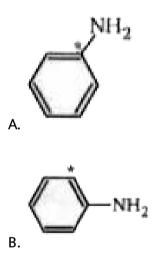
Answer: A

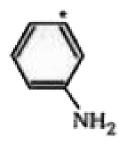
Watch Video Solution


Which of the following is true statement about the reaction?

- A. Ortho isomer is major if PhoNa is used
- B. Para isomer is major if PhOK is used
- C. Product formed is further used for preparation of drug aspirin
- D. All of these

Answer: D

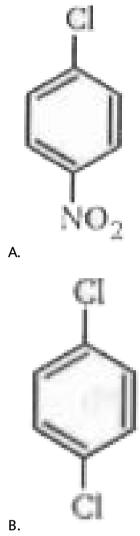


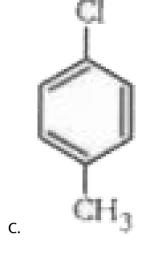

71. Two benzyne intermediates are likely to be formed equally. Reaction with amide ion can occur in two different directions with each benzyne, giving three possible products. They are formed in a 1:2:1 ratio. Asterisk (*) refers to ^{14}C .

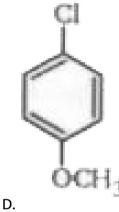
Product major,

product (A) is:

C.

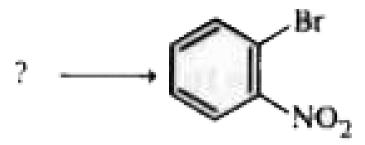



Answer: B



Watch Video Solution

72. Which one of the following undergoes nucleophilic aromatic substitution at the fastest rate ?


Answer: A

For

the

reaction,

the best

combination of reactants is:

A.
$$C_6H_5Br + HNO_3 + H_2SO_4$$

B. $C_6H_5Br+H_2SO_4,\;\mathsf{heat}$

C.
$$C_6H_5NO_2+Br_2,FeBr_3$$

D.
$$C_6H_5NO_2+HBr$$

Answer: A

A. to absorb HCl B. to release HCl C. to produce electrophile D. to produce nucleophile **Answer: C Watch Video Solution 75.** n-Butylbenzene on oxidation with hot alkanine $KMnO_4$ gives : A. benzoic acid B. butanoic acid C. benzyl alcohol D. benzaldehyde Answer: A **Watch Video Solution**

76. Which sequence of steps describes the best synthesis of 2-

phenylpropene?

- (a) Benzene + 2-chloropropene, AlCl₃
- (b) 1. Benzaldehyde (C₆H₅CH = O) + CH₃CH₂MgBr, diethyl ether
 - H₃O⁺
 H₂SO₄, heat
- (c) 1. Bromobenzene + Mg, diethyl ether 2. Propanal (CH₃CH₂CH = O)
 - 3. H₃O⁺ 4. H₂SO₄, heat
- (d) 1. Bromobenzene + Mg, diethyl ether 2. Acetone [(CH₃)₂C = O] 3. H₃O⁺ 4. H₂SO₄, heat

Watch Video Solution

77. What are the products of the following reaction?

Answer: C

Watch Video Solution

78. What is the product obtained by heating the following allylic ether of phenol?

$$CH_2CH = CHC_6H_5$$

C.
$$CH_2CH = CH_2$$

D. HO CHCH =
$$CH_2$$

Watch Video Solution

79. When you ingest aspirin, it passes through your stomach, which has an acidic pH, before traveling through the basic environment of your intestine. Provide the structure form as it exists in the intestine.

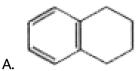
Answer: C

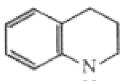
Watch Video Solution

80. Which of the following sets of reagents, used in the order shown, would be enable for the preparation of p-chlorophenol from p-chloronitrobenzene?

A. 1. $Fe, HCl, 2. NaOH, 3. NaNO_2, H_2SO_4, 4. H_3PO_2$

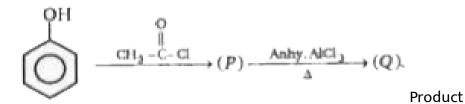
B. 1. $Fe, HCl, 2. NaOH, 3. NaNO_2, H_2SO_4, 4. H_2O$, heat


C. 1. Fe, HCl, 2. NaOH, 3. $NaNO_2, H_2SO_4$, 4. ethanol


D. 1. NaOH, heat, 2. HCl

Answer: B

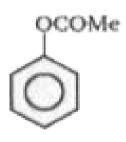
81. Which one of the following compounds undergoes bromination of its aromatic ring (electrophilic aromatic substitution) at the fastest rate?

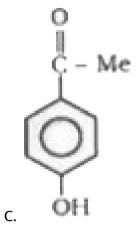


в. Н

D.

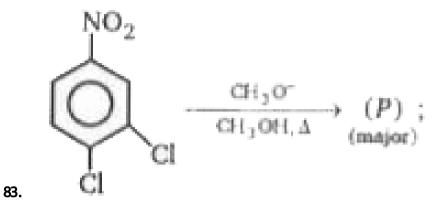

Answer: B



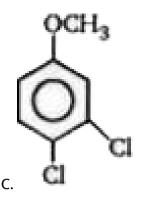

(Q) in this reaction is:

82.

В.



D.


Answer: C

The product (P) will be:

A.

Answer: A

Watch Video Solution

$$\begin{array}{c|c} & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & \\ & & \\ \\ & \\ \\ & & \\ \\ & & \\ \\ & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & & \\ \\ & \\$$

Product (A) is:

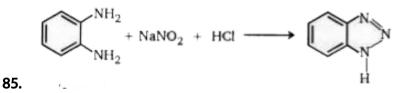
84.

A.
$$Ph-CH_2- \displaystyle \mathop{-}\limits_{N=O}^{} CH_2-Ph$$

B.
$$Ph-CH_2-\mathop{N-N}\limits_{\stackrel{|}{Ph}}=O$$

$$Ph - CH_2 - N = O CH_2 - Ph$$

$$CH_2 - Ph$$


$$CH_2 - Ph$$

D.
$$Ph - N = O$$

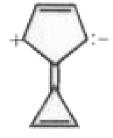
Answer: C

Watch Video Solution

This reaction is example of:

A. Intermolecular C-N coupling

B. Intramolecular C-N coupling


C. Intermolecular N - N coupling

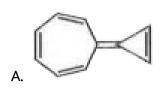
Watch Video Solution 86. The total number of possible isomeric trimethyl benzene is A. 2 B. 3 C. 4 D. 6	D. Intramolecular N - N coupling
86. The total number of possible isomeric trimethyl benzene is A. 2 B. 3 C. 4 D. 6	Answer: D
A. 2 B. 3 C. 4 D. 6	Watch Video Solution
A. 2 B. 3 C. 4	
B. 3 C. 4 D. 6	86. The total number of possible isomeric trimethyl benzene is
C. 4 D. 6	A. 2
D. 6	B. 3
	C. 4
Answer: B	D. 6
Watch Video Solution	

87. Caliene, C_7H_6 , is expected to be a fairly polar aromatic molecule. Which of the following resonance forms contributes to the greatest extent towards the real structure (resonance hybrid) of the molecule ?

A.

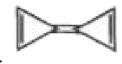
В.

C.



D.


Answer: D

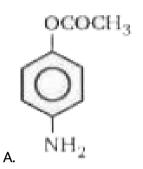


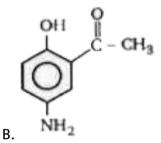
88. Which of the following molecules is expected to have the greatest resonance stabilization ?

Answer: B

89. In the reaction given below, the major product formed is:

$$N \longrightarrow Re$$
 Re
 Re


A.


B. Br

Answer: D

90. p-aminophenol reacts with one equivalent of acetyl chloride in the presence of pyridine to give mainly:

C.

None

91. Which of the following reactions can be used to prepare acetophenone?

A.
$$C_6H_6+CH_3COCl \stackrel{1.AlCl_3}{\longrightarrow} \stackrel{2.H_2O}{\longrightarrow}$$

$$\mathsf{B.}\left(C_{6}H_{5}COO\right)_{2}Ca+\left(CH_{3}COO\right)_{2}Ca\stackrel{\mathrm{heat}}{\longrightarrow}$$

D. All of these

Answer: D

Watch Video Solution

92. Consider the following sequence of reactions.

$$C_6H_6 + CH_3CH = CH_2 \stackrel{H_3PO_4}{\longrightarrow} A \stackrel{1.O_2.\,\mathrm{heat}}{\longrightarrow} B + C$$

The products (B) and (C) are:

A. benzaldehyde and acetaldehyde

B. benzoic acid and acetic acid

C. phenol and propionaldehyde

D. phenol and acetone

Answer: D

Watch Video Solution

93. An organic compound having the molecular formula $C_8H_{10}O$ on being heated with I_2 and dilute NaOH gives a yellow precipitate. The expected compound is :

A.
$$C_6H_5CH_2CH_2OH$$

Answer: D

Watch Video Solution

94. The product (B) of the reaction sequence is:

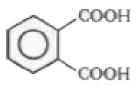
$$CI \longrightarrow CH_2B_T \xrightarrow{Mg. Et_2O} A \xrightarrow{1. CH_3CHO} B$$

D.
$$CH_2 = CH - CH_2Br$$

Answer: B

Watch Vidaa Calutian

Water video Solution


95. Consider the following sequence of reactions.

final

product (B) is:

В.

C.

D.

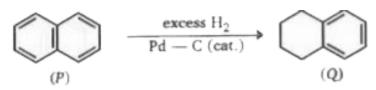
Answer: C

Watch Video Solution

96. For the reaction, the product expected is :

$$0 \xrightarrow{1. \text{ MeMgBr } (2 \text{ mole})} \text{product,}$$

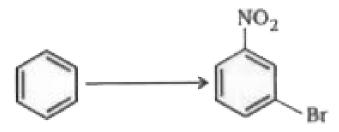
C.


Answer: D

Watch Video Solution

97. Hydrogenation of naphthalene (P) with excess hydrogen gas stops cleanly at 1, 2, 3, 4-tetrahydronaphthalene (Q). What conclusion can be

drawn from this experiment?



- A. the hydrogenation of P is exothermic
- $\ensuremath{\mathsf{B}}.$ one aromatic ring of $\ensuremath{\mathsf{P}}$ is more reactive than the aromatic ring of $\ensuremath{\mathsf{Q}}$
- C. one aromatic ring of P is less reactive than the other ring of Q
- D. reduction of the first C = C of P is faster than reduction of the second or third C=C

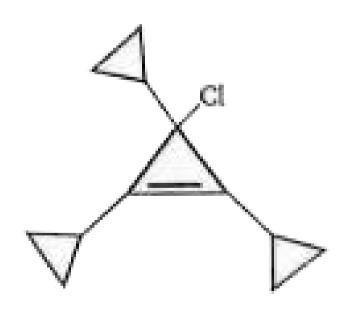
Answer: B

98. Suggest the best reaction conditions for the synthesis shown below.

A. $(1)HNO_3, H_2SO_2$,then (2) Br_2

B. $(1)Br_2$,then (2) $HNO_3,\,H_2SO_2$

C. $(1)CH_3Br, AlBr_3$, then (2) HNO_3, H_2SO_3


D. $HNO_3,\,H_2SO_2,\,$ then (2) $Br_2,\,FeBr_3$

Answer: D

99.

Watch Video Solution

In the above compound CI will liberated easily in the form of:

- A. Cl
- B. Cl^-
- $\mathsf{C}.\,Cl^+$
- D. Cl^{2+}

Watch Video Solution

100. Consider the following sequence of reactions:

$PhCO_2H \xrightarrow{1. PCl_5} A \xrightarrow{1. P_4O_{10}. heat} B.$

The final

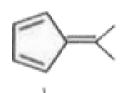
product (B) is:

- A. benzonitrile
 - B. benzylamine
 - C. aniline
 - D. benzamide

Watch Video Solution

101. The major product of the acetylation of salicylic acid with $Ac_2O(\,/\,)H^{\,+}$ followed by heating with anhydrous $AlCl_3$ is :

A.


В.

D.

Watch Video Solution

102. Which one of the following statements is True:

A. PhLi adds to both compounds with equal ease

B. PhLi does not add to either of the compounds

C. PhLi reacts readily with 1 but does not add to 2

D. PhLi reacts readily with 2 but does not add to 1

Answer: C

Watch video Solution

103. The major product expected from the mono-bromination of phenyl benzoate is :

Answer: D

Watch Video Solution

104. The Birch reduction of benzoic acid gives :

Answer: A

Watch Video Solution

105. The decreasing order of reactivity of meta-nitrobromobenzene (I), 2,4,6-trinitrobromo benzene (II), para-nitrobromobenzene (III), and 2,4-dinitrobromobenzene (IV) towards HO^- ions is :

A. I gt II gt III gt IV

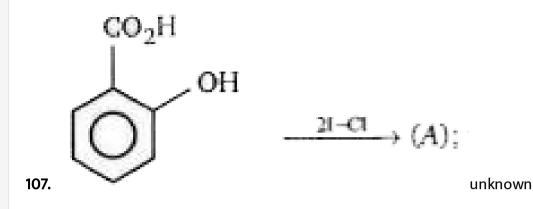
B. II gt I gt III gt I

C. IV gt II gt III gt I

D. II gt IV gt I gt III

Answer: B

Watch Video Solution


106. Which of the following tetracarboxylic acid form di-anhydride:

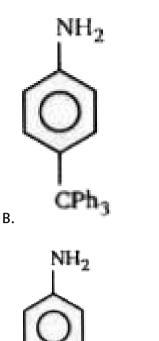
C. neither (a) nor (b)

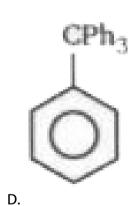
D. both (a) and (b)

Answer: D

(A) is:

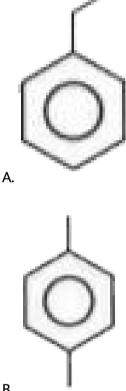
Answer: C


D.

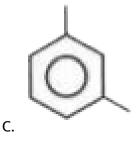

C.

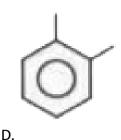
Watch Video Solution

108. $Ph-NH_2+Ph_3COH \xrightarrow{H^+/D}$ underset("major")(P)` (not a N-derivative), Product (P) is :


Answer: C

C.




109. Deduce structure of (A).

$$(A)C_8H_{10}\stackrel{KMnO_4}{\longrightarrow}BC_8H_6O_4\stackrel{Br_2}{\longrightarrow}C_6H_5BrO_4$$
 (C) (one-product only)

В.

Watch Video Solution

110. The deamination of $Ph_2C(OH)CH_2NH_2$ with $NaNO_2-HCl$ gives a product (P), which on oxidation gives benzoic acid only. Identify the product (P).

A.
$$Ph-CH_2-CH_2-Ph$$

B.
$$Ph-\overset{O}{\overset{||}{C}}-CH_2-Ph$$

C.
$$Ph-\overset{O}{\overset{||}{C}-\overset{||}{C}-Ph}$$

D.
$$Ph - CH_2 - NH - Ph$$

Watch Video Solution

111. $Ph-CO_2H \xrightarrow{SOCl_2} A \xrightarrow{Me_2NH} B \xrightarrow{(C)} Ph-CHO$, unknown

reagent (C) is:

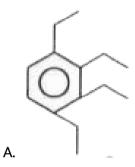
A. $LiAlH_4$

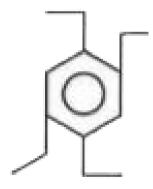
B. $NaBH_4$

 $\mathsf{C.}\,LiAlH(t-BuO)_3$

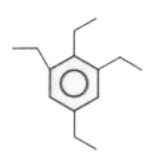
D. PCC/ CH_2Cl_2

Answer: C

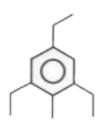



$$\begin{array}{c|c} CH_2CH_3 & 0 \\ \hline CH_2CH_3 & \parallel \\ \hline CH_3-C-Cl \\ \hline AICI_3 & (A) & NH_2-NH_2, NaOH \\ \hline CH_2CH_3 & (B) & (B) \\ \hline \end{array}$$

$$\begin{array}{c|c} CH_2CH_3 & 0 \\ \hline AICI_3 & (B) \\ \hline \end{array}$$


112. Product (B) is:

Product (B) is:

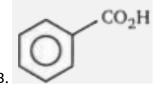


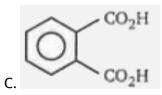
В.

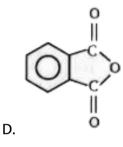
C.

D.

Answer: B

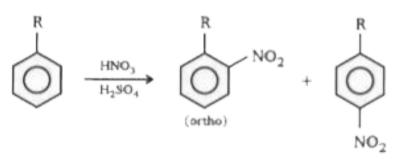

Watch Video Solution


$$C_6H_5(CH_2)_5C-Cl \xrightarrow{AlCl_3} (A) \xrightarrow{KMnO_4, D} (B);$$


113.

Compound (B) is:

$$\bigcap_{\substack{\mathsf{C} - (\mathsf{CH}_2)_4 - \mathsf{CO}_2\mathsf{H} \\ \mathsf{O}}}$$



Answer: C

114.

In the above reaction o/p ratio will be highest when:

A.
$$R = -CH_3$$

$$\mathsf{B.}\,R = \,-\,CH_2 - CH_3$$

$$\mathsf{C.}\,R = -\mathit{CHMe}_2$$

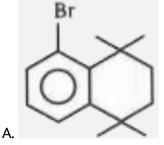
D.
$$R = -Cme_3$$

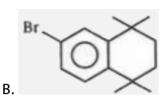
Answer: A

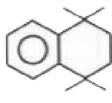
Watch Video Solution

$$\begin{array}{c} \text{CO}_2\text{H} \\ \xrightarrow{\text{HNO}_3} \end{array} (1) \xrightarrow{\text{Base}} (2) \xrightarrow{\text{SOCl}_2} (3) \xrightarrow{\text{(1) Bt}_2\text{NH}} (4)$$

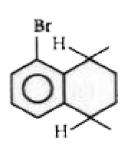
product (4) in the above reaction is:


$$A. \qquad O \qquad \bigcup_{C - N - Et} C - N - Et$$


$$\begin{array}{c|c} & & & \\ & & & \\$$

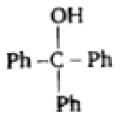


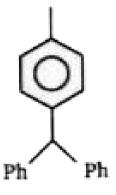
$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$


Product (A) of the reaction is :

C.

D.

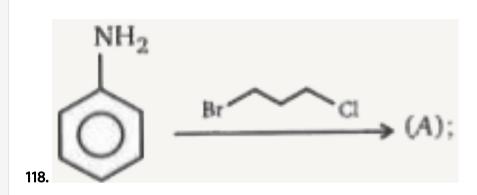

Answer: B


product of this reaction is:

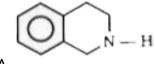
A. Ph_3CH

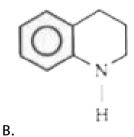
117.

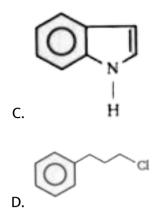
В.


C.

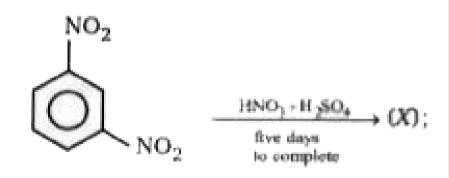
D. Ph_2CH_2


Answer: A


Watch Video Solution



Product (A) of this reaction is:


A.

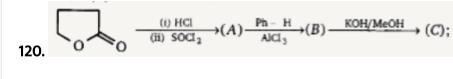
Watch Video Solution

119.

Compound (X) is:

A. 1,2,4-Trinitrobenzene

B. 1,3,5-Trinitrobenzene


C. 1,2,3 -Trinitrobenzene

D. Tri-nitro toluene (TNT)

Answer: B

Watch Video Solution

Compound (C) is

A.
$$Ph - CH_2 - C$$

B.
$$Ph - CH = CH - CH$$

$$Ph - C \longrightarrow$$

C.

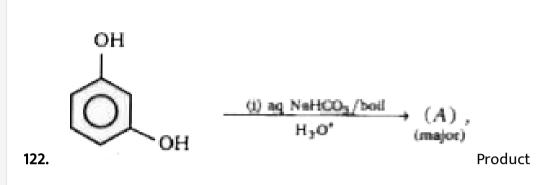
D.
$$Ph - \overset{\sqcap}{C} - CH = CH - CH$$

Answer: C

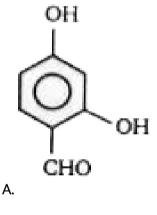
$$O \xrightarrow{C_6H_6} (A) \xrightarrow{\text{(ii) PCl}_5} (B) \xrightarrow{\text{NH}_2-\text{NH}_1} (C)$$

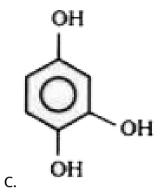
Compound (C) is

121.


A.
$$O = N$$

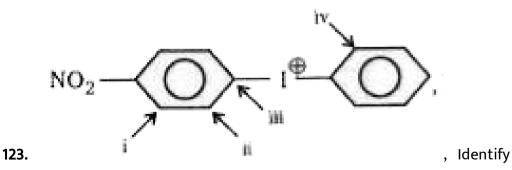
$$CH = N$$


$$\bigcirc CH = N$$


$$C = N$$
 $CH = N$

Answer: B

(A) in this reaction is:



D. No reaction

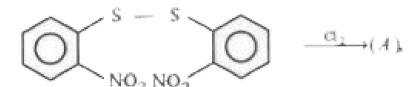
Answer: B

Watch Video Solution

position where attack of (ArO-) is favourable.

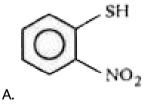
A. i

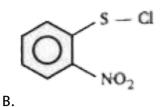
B. ii

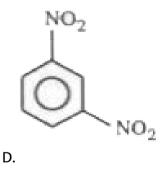

C. iii

D. iv

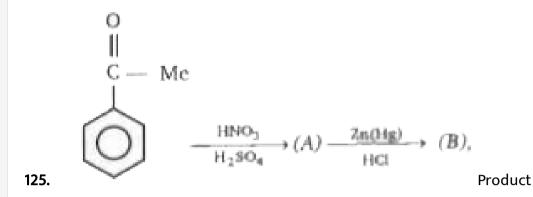
Answer: C

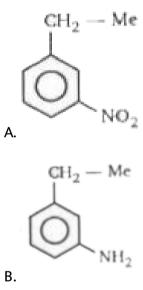


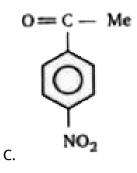

Watch Video Solution

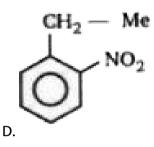

124. Product

(A) of this reaction is:



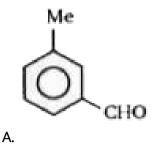






(B) of this reaction is:

126.


Watch Video Solution

$$Me$$

$$+HN = CH - Cl \xrightarrow{A|Cl_2} (A) \xrightarrow{H_1Q^*} (B),$$

Product

(B) of this reaction is:

В.

C. no reaction

D.

Answer: B

127. CH₂CO₂H

$$\xrightarrow{\text{BiOH}} \xrightarrow{\text{(ii) NaH}} \xrightarrow{\text{(ii) NaOH}} \xrightarrow{\text{(ii) SOCL}_2} \text{; Product}$$

$$\xrightarrow{\text{H}^+} \xrightarrow{\text{(ii) Mel}} \xrightarrow{\text{(ii) H}^+} \xrightarrow{\text{(ii) AiCl}_3} \text{; Product}$$

End product of the above reaction is :

D.

$$Ph - NH_2 \xrightarrow{CH_2 - Cl \ (2mole)} (A) \xrightarrow{Ph - N_2 \ Cl} (B)$$
128. (major)

Product of the above reaction is:

$$N = N - Me$$

$$N = N - Ph$$

$$\begin{array}{c} Me - N - Me \\ \hline \\ N = N - Pt \end{array}$$

$$Me \downarrow_{\bigoplus} N = N - Ph$$

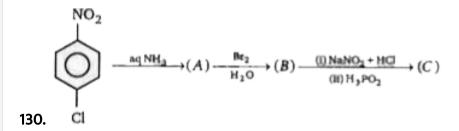
Answer: C

D.

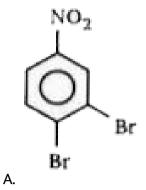
129. p-Toluedine reacts with benzene diazonium chloride to form compound, which on boiling with aq. H_2SO_4 give products :

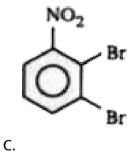
A. 3

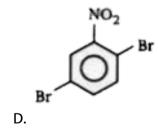
B. 2


C. 4

D. 5


Answer: C


Watch Video Solution

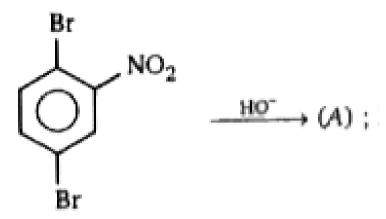


Product (C) of the above reaction is:

Major product (B) of this reaction is

131.

В.



C.

D.

Answer: D

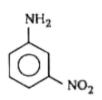
132. Product of

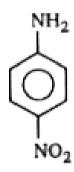
the given reaction is :

A.

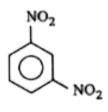
В.

Answer: B


D.

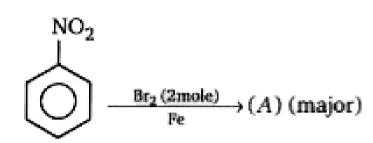

Watch Video Solution

133. Product


(C) of this reaction is:

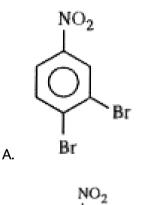
A.

В.



C.

Answer: B


D.

Product

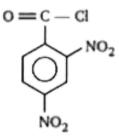
(A) will be:

134.

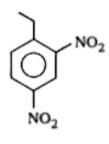
$$Br$$
 Br
 Br
 Br

Answer: A

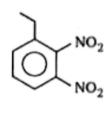
C.



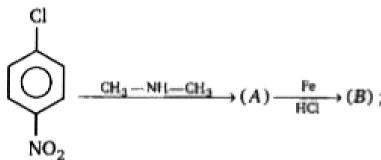
135.


Watch Video Solution

$$(i) \text{HNO}_3 \longrightarrow (A) \longrightarrow (Di - \text{nitro} \text{product}) \longrightarrow (B) \longrightarrow SOCI_2 \longrightarrow (C);$$
Product


(C) of this reaction is:

В.


C.

Answer: B

D.

136. Product

(B) of this reaction is:

A.

В.

D. none of these

Answer: A

Watch Video Solution

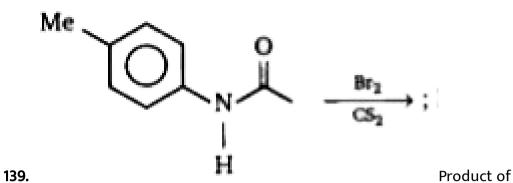
$$(A) \xrightarrow{\text{(i) SOCl}_2} (B) \xrightarrow{\text{Br}_2 + \text{KOH}} NH_2$$

137.

Which of the following compound on hydrolysis gives reactant (A):

Answer: B

Product (A) of the above reaction is:


В.

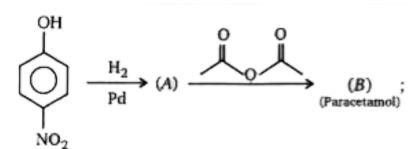
C.

D.

Answer: C

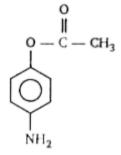
the reaction is:

. .

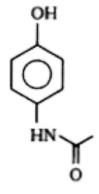

В.

C.

D.


Answer: D

Maril Miles Calenter



140. , Product

(B) of this reaction is:

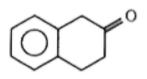
A.

В.

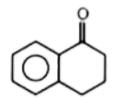
C.

D.

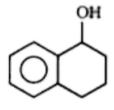
Answer: B

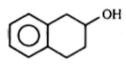


141.


Watch Video Solution

$$+ \bigcup_{\substack{O \\ O \\ \text{(succinic anhydride)}}}^{\text{AlCl}_3} \xrightarrow{\text{AlCl}_3} (A) \xrightarrow{\text{Zn(Hg)}} (B) \xrightarrow{\text{H}_3\text{PO}_4} (C);$$


Product (C) of the above reaction is:


A.

В.

C.

D.

Answer: B

Product of the above Friedel-Craft reaction is:

Α

142.

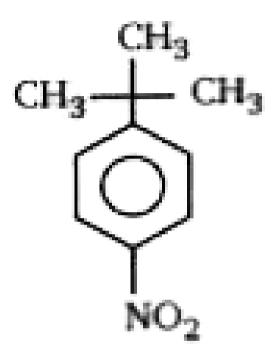
В.

D.

Answer: C

143. Which of the following 2-halo nitrobenzene is most reactive towards

nucleophilic aromatic substitution?


$$NO_2$$

D.

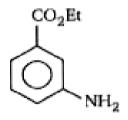
Answer: A

144. Choose the best method to prepare given compound :

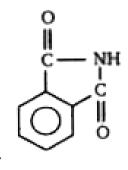
$$\underbrace{\begin{array}{c} \text{(1) HNO}_3/\text{H}_2\text{SO}_4\\ \hline \text{(2) CH}_3-\text{CH}_2-\text{CI}/\text{AlCI}_3 \end{array}}_{\text{CH}_3} \rightarrow$$

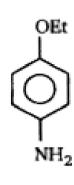
D.

Answer: B


Watch Video Solution

145


CH₃

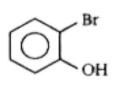

$$\begin{array}{c}
 & \xrightarrow{\text{HNO}_3} & \xrightarrow{\text{H}_2} & (A) & \xrightarrow{\text{H}_2} & (B) & \xrightarrow{\text{KMnO}_4} & (C) & \xrightarrow{\text{BIOH}} & (D) \\
& \xrightarrow{\text{H}_2\text{SO}_4} & \xrightarrow{\text{(Para isomer)}} & \xrightarrow{\text{Pd}, C} & (B) & \xrightarrow{\text{KMnO}_4} & (C) & \xrightarrow{\text{BIOH}} & (D)
\end{array}$$

Benzocaine has been used as a component of appetite suppressants, burn and sunburn remedies. Benzocaine is:

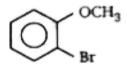
В.

Answer: B

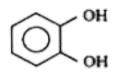
D.


146.

Watch Video Solution


$$\xrightarrow{\text{HBr}} (A)$$

Product


(A) of this reaction is:

A.

В.

C.

D.

Answer: C

$$OCH_3 \longrightarrow OCH_3 \longrightarrow Product.$$

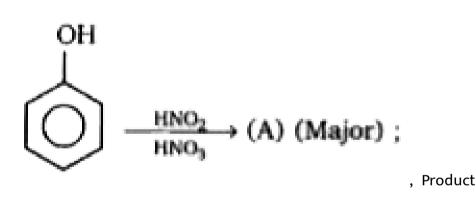
$$OCH_3 \longrightarrow OCH_3$$

Predict major product of the above reaction is :

В.

C.

147.


$$\bigcup_{\mathsf{OH}}^{\mathsf{OH}} \mathsf{O} - \mathsf{I}$$

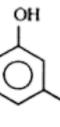
Answer: A

D.

Watch Video Solution

(A) is:

148.


A.

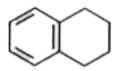
В.

C.

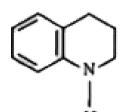
D.

Answer: C

Watch Video Solution


149. Arrange in their decreasing order of rate in SNAr.

- A. i gt ii gt iv gt iii gt v
- B. ii gt i gt iii gt v gt iv
- C. v gt iii gt i gt ii gt iv
- D. v gt iii gt ii gt i gt iv


Answer: C

150. Which one of the following compounds undergoes bromination of its aromatic ring (electrophilic aromatic substitution) at the fastest rate ?

A

В.

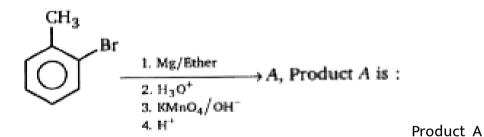
C.

Answer: B

D.

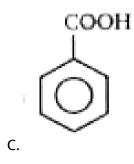
151. What is the product of the following reaction?

Answer: D


Watch Video Solution

152. Which sequence represents the best synthesis of 4-isopropylbenzonitrile?

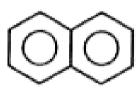
$$(CH_3)_2CH$$
 $C = N$
4-Isopropylbenzonitrile


0

Watch Video Solution

153. is :

В.



Answer: C

D.

$$\frac{1. \operatorname{Air}, V_2 O_5, \Delta}{2. \operatorname{NH}_3, \Delta} A,$$
3. KOBr, Δ

Product A

is:

154.

A.

В.

COOH

Answer: B

Watch Video Solution

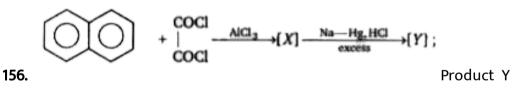
155. What is correct order of rate of nitration of the following compounds

?

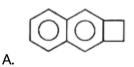
$$A-C_{6}H_{5}CH_{3},\,B-C_{6}H_{6},\,C-C_{6}D_{6},\,D-C_{6}T_{6},\,E-C_{6}H_{5}Br_{3},\,F-C_{6}R_{5}$$

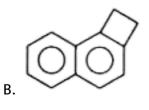
A.
$$G > A > B > C > D > E > F$$

$$\operatorname{B.} G > B > C > D > A > F$$

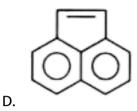

$$\operatorname{C.} G > A > B = C = D > E > F$$

$$\operatorname{D}.G > A > B > C = D > E > F$$

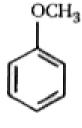

Answer: C



Watch Video Solution



is:



Answer: C

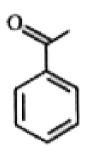
157. Compound A (C_7H_8O) is insoluble in water, dilute HCI & aqueous $NaHCO_3$, but it dissolves in dilute NaOH. When A is treated with Br_2 water it is converted into a compound $C_7H_5OBr_3$ rapidly. The structure of A is :

A.

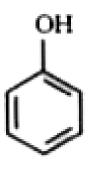
В.

C.




Answer: C

D.



158. Give the product of the following reaction sequence :

В.

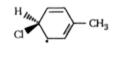
D.

Answer: B

Watch Video Solution

159. Give the product of the following reaction sequence:

Answer: C


D.

В.

Watch Video Solution

160. Which represents an intermediate formed in the reaction of toluene and chlorine at elevated temperature in sunlight?

Answer: C

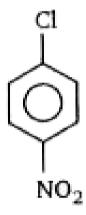
B.

Watch Video Solution

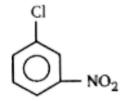
161. The decreasing order of reactivity of meta-nitrobromobenzene (I), 2,4,6-trinitrobromo benzene (II), para-nitrobromobenzene (III), and 2,4-dinitrobromobenzene (IV) towards HO^- ions is :

A. I gt II gt III gt IV

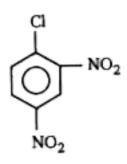
B. II gt I gt III gt I

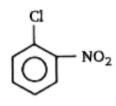

C. IV gt II gt III gt I

D. II gt IV gt I gt III



Watch Video Solution


162. Which one of the following compounds is most reactive for ArS_{N^2} reaction?


A.

В.

C.

Answer: C

D.

Watch Video Solution

163. Which one amongst the following carbocations is most stable?

$$C_6H_5 - \overset{\oplus}{C}H - C_6H_5$$

В.

C

D.

Answer: D

Watch Video Solution

164. Cyclopentadiene is much more acidic than cyclopentane. The reason is that :

A. cyclopentadiene has conjugated double bonds

B. cyclopentadiene has both sp^2 and sp^3 hybridized carbon atoms

C. cyclopentadiene is a strain-free cyclic system

D. cyclopentadienide ion, the conjugate base of cyclopentadiene, is an aromatic species and hence has higher stability

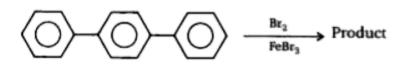
Answer: D

Watch Video Solution

CH₃O
$$(II)$$
 (III) (III) (IIV) (IV) (IV)

Friedel-Crafts acylation reaction can be used to obtain the compounds

A. II, III and IV


B. I, III and IV

C. I and II

D. II and III.

Answer: C

166. The major product of the reaction is :

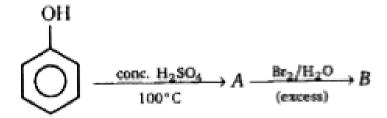
D.

Answer: C

167. The decreasing order of reactivity of given compound towards nucleophilic substitution with aqueous NaOH is :

A. I gt II gt III gt IV

B. II gt I gt III gt I


C. IV gt II gt III gt I

D. II gt IV gt I gt III

Answer: B

168. Identify the end product (B) of the following sequence of reactions.

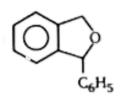
A.

В.

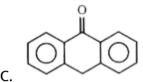
C.

Answer: D

D.


Watch Video Solution

169. Consider the following sequence of reactions:


$$COOH \xrightarrow{SOCI_2} A \xrightarrow{1.AICI_3} B \xrightarrow{Zn-Hg} COnc.HCl, heat$$

The end product (C) is:

A.

В.

D.

Answer: D

Watch Video Solution

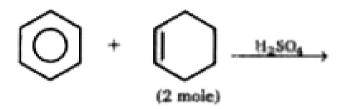
170. For the diazonium ions the order of reactivity towards diazo-coupling with phenol in the presence of dilute NaOH is :

$$Me_2N$$
 \longrightarrow N_2^+ O_2N \longrightarrow N_2^+ CH_3O \longrightarrow N_2^+ CH_3 \longrightarrow N_2^+ CH_3 \longrightarrow N_2^+

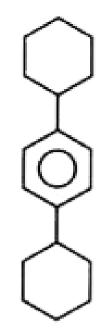
A. I lt IV lt II lt III

B. I It III It IV It II

C. III lt I lt II lt IV


D. III lt I lt IV lt II

Answer: B



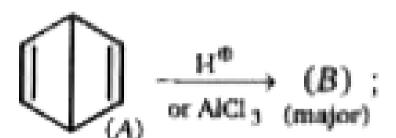
Watch Video Solution

171. Major product obtained in given reaction is :

A.

В.

C.



D.

Answer: B

Watch Video Solution

172. (A) & (B)

are isomers. Product (B) is:

A.

В.

C.

D.

Answer: A

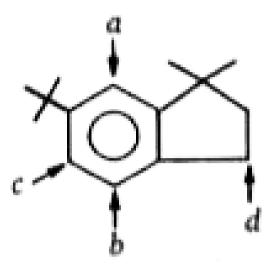
Watch Video Solution

173. The step shown below is a recent synthesis of corannulene.

Product (A) is:

A.

В.


C.

D.

Answer: A

174.

Identify the position where E.A.S. will take place:

A. a

B.b

C. c

D. all the position are identical

Answer: B

The labelled carbon goes with:

A.
$$Ph-\overset{14}{C}O_2H$$

B. $\overset{14}{CO_2}$

C.
$$Ph-\overset{14}{C}H_2-CO_2H$$

D. $\overset{14}{C}H_6$

Answer: B

176.

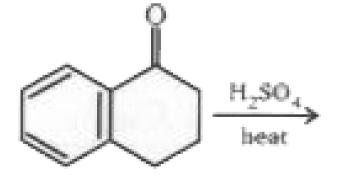
Watch Video Solution

: What is the expected order of reactivity of the following compounds in electrophilic chlorination in the presence of FeCl3.

A.
$$I>II>III>IV$$

$$\mathsf{B}.\mathit{IV}>\mathit{III}>\mathit{II}>\mathit{I}$$

$$\mathsf{C}.\,III > I > IV > II$$


D.
$$II > III > I > IV$$

Answer: D

Watch Video Solution

177. Which of the following is the major product from sulfonation of atetralone?

A.

В.

C.

Answer: B

D.

Watch Video Solution

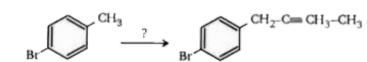
178. Which of the following procedures would be best for the preparation of phenyl benzyl ether? $C_6H_5OCH_2C_6H_5$

A.
$$C_6H_5Cl+C_6H_5CH_2O^-Na^+$$

В. $C_6 H_5 O^- Na^+ + C_6 H_5 C H_2 C l$

 $\mathsf{C.}\,2C_6H_5Cl+Na_2O$

D. $2C_6H_5MgBr+CH_2O$


Answer: B

Watch Video Solution

179. Which of the following procedures would be best for achieving the

following reaction?

A. KOH and heat (ii) $CH_3C=C-Br$

B. (i) $KMnO_4$ and heat (ii) $CH_3C=C^-Na^+$ (iii) excess H_2O

C. (i) NBS in CCl_4 and heat (ii) $CH_3C=C^-Na^+$

D. (i) Mg in ether (ii) $CH_3C=CBr$ (iii) excess H_3PO_4

Answer: C

Watch Video Solution

180. Which of the following procedures would be best for achieving the following reaction ?

$$CI$$
 CH_3
 $\xrightarrow{7}$
 CI
 CO_2H
 CO_2H
 CI
 CI
 CI

A. (i) $Br_2 + FeBr_3(ii)KMnO_4$ and heat (iii) HNO_3 and H_2SO_4

B. $(i)KMnO_4$ and heat $(ii)Br_3+FeBr_3(iii)HNO_3$ and H_2SO_4

C. (i) NBS in ${
m CCl_4}$ and heat (ii) $KMnO_4$ and heat (iii) HNO_3 and H_2SO_4

D. (i) NBS in CCl_4 and heat (ii) $NaNO_2$ and heat

Answer: A

181. Phenol reacts with acetone in the presence of conc. sulphuric acid to form a $C_{15}H_{16}O_2$ product. Which of the following compounds is this product ?

Answer: B

182. Heating benzene in a large excess of 80% D_2SO_4 in D_2O results in what product ?

- A. $C_6H_5SO_3D$
- B. C_6H_5OD
- $\mathsf{C}.\,C_6H_5D$
- D. C_6D_6

Answer: D

183. A solution of cyclohexene in benzene is stirred at $0^{\circ}C$ while concentrated sulphuric acid is added. After washing away the acid and removing the excess benzene, what product is isolated?

- A. cyclohexylbenzene
- B. 1-cyclohexylcyclohexene

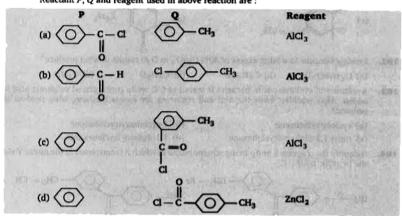
C. trans-1,2-diphenylcyclohexane

D. 1,1-diphenylcyclohexane

Answer: A

Watch Video Solution

184. Indentify the reagents S and μ in the scheme below in which R is converted to the nitrite V via the benzylic halide T.


R, S and μ respectively are :

185. Two aromatic compounds P and Q give product R.

$$P + Q \xrightarrow{\text{Reagent(a)}} CH_3$$

Reactant P, Q and reagent used in above reaction are:

Watch Video Solution

186. Which of the following C_6H_6 compounds has a single set of structurally equivalent hydrogen atoms?

$$\bigcirc \qquad \qquad \qquad \mathbf{H} - \mathbf{C} = \mathbf{C} - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{C} = \mathbf{C} - \mathbf{H} \bigcirc \qquad \qquad \mathbf{N}$$

A. I and II

B. I and IV

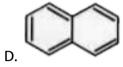
C. I and V

D. I, II and III

Answer: B

Watch Video Solution

187. Which of the following compounds would not be considered aromatic in its behaviour?


A.

В.

C.

Answer: B

Watch Video Solution

188. A C_8H_{10} hydrocarbon is nitrated by HNO_3 and sulphuric acid. Two, and only two, $C_8H_9NO_2$ isomers are obtained. Which of the following fits this evidence ?

- A. ethyl benzene
- B. ortho-xylene
- C. meta-xylene
- D. para-xylene

Answer: B

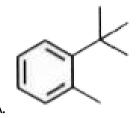
Watch Video Solution

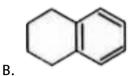
189. Which of the following benzene ring substituents is deactivating but ortho-para directing ?

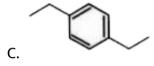
$$A.-N=O$$

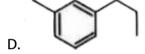
$$B.-OCH_3$$

$$C.-COCH_3$$


$$D.-NO_2$$


Answer: A




Watch Video Solution

190. Which of the following compounds forms ortho-benzenedicarboxylic acid when oxidized by hot aqueous potassium permanganate?

Answer: B

Watch Video Solution

191. Which of the following organic chlorides will not give a Friedel-Craft alkylation product when heated with benzene and $AlCl_3$?

A. $(CH_3)_3$ CCl

 $\operatorname{B.}CH_2 = CHCH_2Cl$

 $\mathsf{C.}\ CH_{3}CH_{2}Cl$

 $\operatorname{D.} CH_2 = CHCl$

Answer: C

Watch Video Solution

192. Which of the following is aromatic?

A.

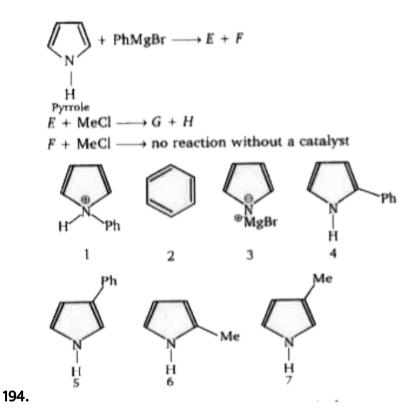
В.

C.

D.

Answer: B

A. Dil. H_2SO_4


B. Dil. HCl

C. conc. H_2SO_4

D. conc. CH_3COOH

Answer: C

The structure of products E-H, respectively are

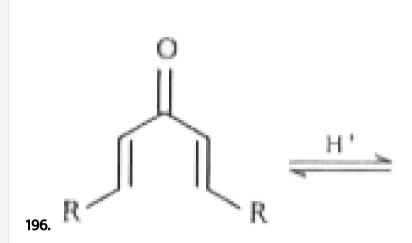
A. 3, 2, 6,7

B. 4, 5, 6, 1

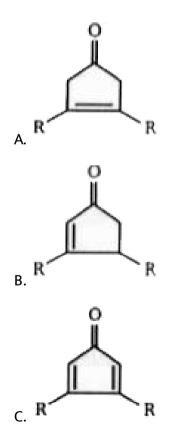
C. 3, 4, 5, 2

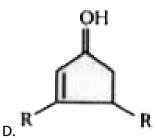
D. 3, 2, 4, 5

Answer: A


$$\begin{array}{c}
 & \xrightarrow{\quad \ } (A)
\end{array}$$

195. Product A


is:


D. none of these

Answer: C

Identify the product of the above rearrangement reaction.

Answer: B

Watch Video Solution

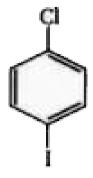
197. Product obtained in the following transformation is :

PPA = polyphosphoric acid

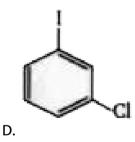
A.

D.

Answer: B



Watch Video Solution


198. The compound X in the reaction.

В.

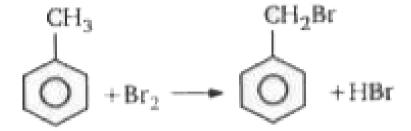
C.

Answer: B

following

- A. Nucleophilic addition
- B. Nucleophilic substitution
- C. Electrophilic addition
- D. Electrophilic substitution

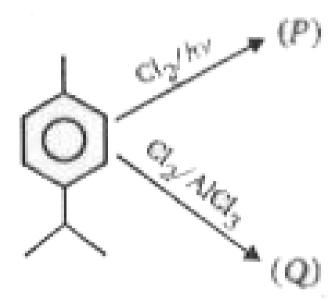
Answer: D



Complete

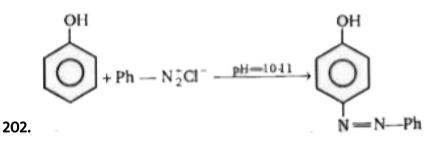
the

following


reaction

- A. Nucleophilic addition
- B. Nucleophilic substitution
- C. Electrophilic addition
- D. free radical substitution.

Answer: D


201.

Identify major product of both respectively.

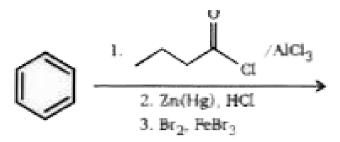
Answer: C

Watch Video Solution

Characteristics of above reaction is:

- A. C-N coupling reaction , Carbocation is intermediate
- B. N N coupling reaction, Carbocation is intermediate
- C. C-N coupling reaction , Carbanion is intermediate
- D. N N coupling reaction, Carbanion is intermediate

Answer: C


203. The compound formed on heating chlorobenzene with chloral in the presence of concentrated sulphuric acid, is :

- A. Freon
- B. DDT
- C. Gammexene
- D. Hexachloroethane

Answer: B

204. Predict the product of the following reaction.

205. Predict the major product of the following reaction sequence.

$$\begin{array}{c} \xrightarrow{\text{Cl}_2/\text{AIGL}_3} A \xrightarrow{\text{I. Pe, HCI}} B C \xrightarrow{\text{Br}_2/\text{PeBr}_2} D \xrightarrow{\text{NaOH}} E \\ \text{NO}_2 & \xrightarrow{\text{H}_2\text{SO}_4, \text{NaNO}_2} F \xrightarrow{\text{H}_3\text{PO}_2} G \\ \end{array}$$

A.

В.

C.

Answer: A

Watch Video Solution

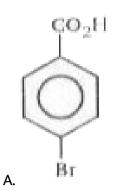
206. Give the major product of the following reaction:

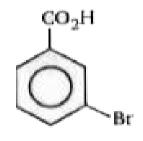
В.

D.

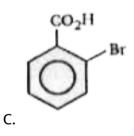
Answer: C

Watch Video Solution


$$CH_{3}$$


$$-\frac{Br_{2}}{Fe} \rightarrow (A) - \frac{sn/HG1}{HO^{n}} \rightarrow (B) \xrightarrow{NaNO_{2} + HG1} \rightarrow (C) \xrightarrow{H_{3}PO_{2}} \rightarrow (D) \xrightarrow{RMmO_{4}} \rightarrow (E)$$

$$NO_{n}$$


NO₂ Product (E) is:

Product (E) is:

В.

D.

Answer: C

Watch Video Solution

$$OH \longrightarrow C_6H_5COCI/base \longrightarrow X \xrightarrow{Nitration} Y(major product)$$

Y is

208.

A. Product A is 2, 4-DNP

- B. A to B dehydration reaction
- C. A to B, geometrical isomersm will obtained as a product
- D. B is known as oxime

Answer: D

Watch Video Solution

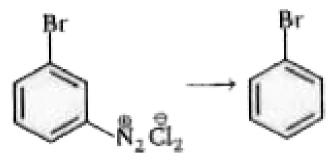
209. (i) chlorobenzene is mono-nitrated to M (ii) nitrobenezene is mono-chlorinated to N (iii) anisole is mono-nitrated to P (iv) 2-nitrochlorobenzene is mono-nitrated to Q.

Out of M, N, P and Q the compound that undergoes reaction with aq.

NaOH fastest is

A. M

B. N


C. P

D. Q

Answer: D

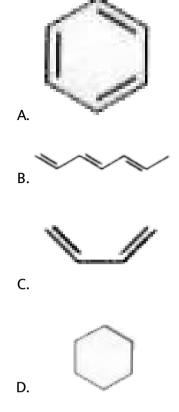
210. For the transformation the reagent used is

- A. $LiAlH_4$
- $B.H_3PO_2$
- $\mathsf{C}.\,H_3O^+$
- D. H_2/Pt

Answer: A

211. The reaction

is known as


- A. Perkin reaction
- B. Sandmeyer reaction
- C. Reimer-Tiemann reaction
- D. Cannizzaro reaction

Answer: C

Watch Video Solution

212. A compound X formed after heating coke with lime react with water to give Y which on passing over redhot iron at 873 produces Z. The compound Z is

Answer: A

213. The reaction of 50% aq KOH on an equimolar mixture of 4-methylbenzaldehyde and formaldehyde followed by acidification gives :

ŌН

Answer: B

D.

Watch Video Solution

214. Which isomer of xylene can give three different monochloroderivatives?

A. o-xylene

B. m-xylene

C. p-xylene

D. xylene cannot give a monochloro derivative

Answer: B

Watch Video Solution

The rate of o-nitration of the above compounds, (I) toluene, (II) 2-D-toluene and (III) 2, 6 D_2 -toluene is in the following order

A. I gt II gt III

B. II gt I gt III

C. III gt I gt II

D. The rate is the same for all the three compounds

Answer: D

Watch Video Solution

216. Cyclooctatetraene is expected to have:

- A. a planar structure
- B. a tub-shaped structure
- C. open chain isomeric structure
- D. tatutomeric bicyclic structure

Answer: B

Watch Video Solution

3HC = CH
$$\xrightarrow{\text{red hoc}}$$
 (A) $\xrightarrow{\text{CH}_3\text{COCI}}$ (B) $\xrightarrow{\text{Ni/H}_2}$ C + D 217.

Relation between C and D.

A. Identical B. enantiomer C. diastereomer D. position **Answer: B Watch Video Solution** Level 2 1. Each of the six compounds shown at the bottom of the page has two aromatic (benzene) rings. In each case the two rings are different and are labeled A & B. If an electrophilic substitution, such as nitration or

bromination, is carried out on each compound, then identify which ring

(A or B) will be preferentially attacked, and indicate the orientation of the

substitution (ortho/para, meta or all sites).

Compound	Reactivity	Substitution		Compound	Reactivity	Substitution
	A	ortho/para		350	A	ortho/para
1.	В	meta		2.	В	meta
		all sites				all sites
	A	ortho/para			A	ortho/para
3.	В	meta		4.	В	meta
		all sites				all sites
	A	ortho/para			A	ortho/para
5.	В	meta		6.	В	meta
1030	128	all sites			36	all sites
1.	A		2.		A	8
3.	(A)	4. CH ₃ O CH ₃ O CH ₃ O CH ₃				
5.	à là	CH ₃ B	6.	119 5	A C	CH ₃

2. When given substituents on a benzene ring, as activating or deactivating and as ortho-para or meta directing for electrophilic aromatic substitution fill the following by appropriate (righttick) right or (x) wrong.

5)	Substituent	Activating	De-activating	Ortho/para	Meta
1.	—OCH ₃				
2.	O -C-O-CH ₃				
3.	-O-C-CH ₃				
4.	—CH ₃				
5.	— F				
6.	— Ph				
7.	O				140
8.	O -C-NH-CH ₃				
9.	— Br				
10.	— CN				
11.	—CF ₃				
12.	0 -C— NH ₂				
13.	о СОН				
14.	$-CH = CH_2$				

15.	O -CH = CH - C - OH		
16.	O - CH = CH - C - H		
17.	- S - Et		
18.	-S-Et		
19.	O -S- Et O		
20.	- N = O		
21.	-CH ₂ X		
22.	-CHX ₂		

Watch Video Solution

3. Devise a series of reactions to convert benzene into meta - chlorobromobenzene. Select reagents and conditions from the following table, listing them in the order of use.

Compound			Compound		Compound	
1.	sulphuric acid (conc.) heat	5.	Mg in ether	9.	Cu ₂ Br ₂ + HBr	
2.	Cl ₂ + FeCl ₃ and heat	6.	PBr ₃	10.	(CH ₃ CO) ₂ O + Pyridine	
3.	NaNO ₂ + H ₃ O ⁽⁺⁾ 0°C	7.	H ₃ PO ₂			
4.	H ₂ Pt catalyst	8.	HNO ₃ (conc.)+ H ₂ SO ₄ (conc.) and heat			

A. 1 then 2 then 6

- B. 2 then 8 then 4 then 3 then
- C. 8 then 4 then 10 then 2 then 3 then 9
- D. 8 then 2 then 4 then 3 then 9

Answer: D

Watch Video Solution

4. Match the Column (I) and Column (II). (Matrix)

	Column (I)		Column (II)
(a)		(p)	Aromatic
(b)	H-B B-H H-N B-H H-H	(q)	$(4n + 2)\pi$ electron in a single ring
(e)	Fe(C ₅ H ₅) ₂	(r)	4nπ electron in a single ring
(d)	Cr(C ₆ H ₆) ₂	(s)	Effective atomic number of metal = 36

5. Match the Column (I) and Column (II).

	Column (I)		Column (II)	
Cor	mpound (Monocyclic)	Number of π - electron		
(a)	$C_4H_4^{-2}$	(p)	2πε	
(b)	C ₄ H ₄ ⁺²	(q)	бле	
(c)	C ₉ H ₉ ⁺¹	(r)	8πе	
(d)	C ₉ H ₉ ⁻¹	(s)	10πε	

Watch Video Solution

6. Match the Column (I), Column (II) and Column (III). (Matrix)

	Column I		Column II		Column III
(a)	++	(p)	Aromatic	(w)	$(4n + 2)\pi$ electron. n = 0, 1, 2, 3
(b)		(q)	Non-aromatic	(x)	$4n\pi$ electron $n = 1, 2, 3$
(c)		(r)	Anti- aromatic	(y)	Non-planar compound
(d)		(s)	Planar compound	(z)	Readily reacts with active metal

7. Match the Column (I), Column (II) and Column (III). (Matrix)

	Column I		Column II [.]		Column III
(a)		(p)	Readily react with active metal	(w)	Aromatic
(b)		(q)	Readily undergo Dimerization at room temperature	(x)	Anti-aromatic
(c)	@	(r)	$(4n + 2)\pi$ electron $n = 0, 1, 2, 3$	(y)	Non-aromatic
(d)	(+)	(s)	4nπ electron	(z)	High dipole

Watch Video Solution

8. Among the following compound.

	Compound		Compound	5 18	Compound
(a)		(b)		(c)	N N
(d)	I I	(e)		(f)	
(g)	C ₈ H ₈ ⁻²	(h)	C3H3	(1)	OH +
(f)	∑ _N	(k)	(O)	(1)	XIIIN N

- A. Number of compounds which are aromatic = P
- B. Number of compounds which are anti-aromatic = Q
- C. Number of compounds which are non-aromatic = R
- D. Number of compounds which readily undergo dimerization at room temperature = S

Answer: P+Q+R+S+T = 18

Watch Video Solution

9. Of the following compounds which will react with Br_2 at room temperature in dark.

	80.4 (300.0)	
(a)	Benzene (C ₆ H ₆)	
(b)	Cyclohexene (C ₆ H ₁₀)	11
(c)	Cyclohexane (C ₆ H ₁₂)	
(d)	Propanoic Acid (C ₂ H ₅ CO ₂ H)	
(e)	Phenol (C ₆ H ₅ OH)	
(f)	Nitrobenzene (C ₆ H ₅ NO ₂)	
(g)	Hexyne (C ₆ H ₁₀)	
(h)	2,2-dichloropropane (C ₃ H ₆ Cl ₂)	

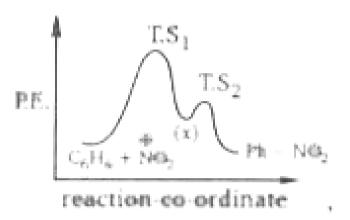
10. Among the following compound.

	Compound		Compound		Compound
(a)		(b)	C ₈ H ₈ ⁻²	(c)	
(d)	0	(e)		(f)	0
(g)		(h)	:NN:	(i)	C ₃ H ₃ ⁺¹
(j)	OH DH	(k)		(1)	

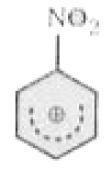
- A. Number of compounds which are aromatic = w
- B. Number of compounds which are non-aromatic = x
- C. Number of compounds which are anti-aromatic = y
- D. Number of compounds which readily undergo Dimerization at room

temperature = z Sum of w+x+y+z=...

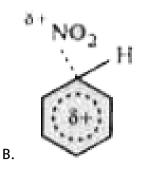
Answer:

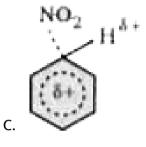

11. Complete the following table.

	Reactant	Reagents(s)/Conditions	Major Organic Products
(a)	CH ₃	(A)	CH ₂ Cl
(b)	NH ₂	1. NaNO ₂ in dilute H ₂ SO ₄ /0 - 5 °C 2. heat or boiling	(B)
(c)	CH ₃	SO ₃ /conc. H ₂ SO ₄	(C)
(d)	(D)	1. NaOH heated at 330°C 2. dilute H ₃ O ⁺	OH OH OH CH3
(e)	CI NO ₂	1. aqueous NaOH heated at 60°C 2. dilute H ₃ O ⁺	(E)


Watch Video Solution

Level 2 Comprehension


1. Given is the energy profile diagram of nitration of benzene using mixed acid. $(HNO_3 + H_2SO_4)$

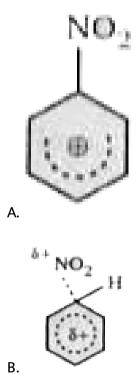


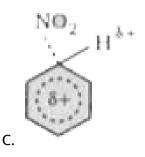
Identify (x) in above reaction:

A.

D. none

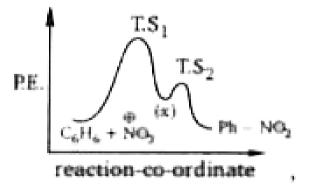
Answer: A



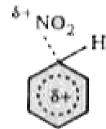

Watch Video Solution

2. Given is the energy profile diagram of nitration of benzene using mixed acid. $(HNO_3+H_2SO_4)$

Identify T. S_1 in the above reaction.


D. none

Answer:


Watch Video Solution

3. Given is the energy profile diagram of nitration of benzene using mixed acid. $(HNO_3+H_2SO_4)$

Identify T. S_2 in the above reaction :

В.

C.

D. none

Answer:

4. Examine the ten structural formulas shown below and select those that satisfy each of the following conditions. Enter one or more letters (a through j) in each answer box, reflecting your choice for each.

	Compound		Compound
a.	CH ₃	ь.	N(CH ₃) ₂
c.	SO ₃ H	d.	NO ₂
e.	OCH ₃	f.	C) N
g.	CH ₃ N - CH ₃ CH ₃ Br	h.	CH ₃ C - CH ₃ CH ₃
i.	O ⁱ	j.	Br

Which compounds undergo electrophilic nitration more rapidly than benzene?

5. Examine the ten structural formulas shown below and select those that satisfy each of the following conditions. Enter one or more letters (a through j) in each answer box, reflecting your choice for each.

	Compound		Compound
a.	CH ₃	ь.	N(CH ₃) ₂
c.	SO ₃ H	d.	NO ₂
e.	OCH ₃	f.	
g.	CH ₃ CH ₃ CH ₃ Br	h.	CH ₃ C - CH ₃ CH ₃
i.	O ^l	j.	Br

Which compounds give meta substitution under electrophilic bromination conditions?

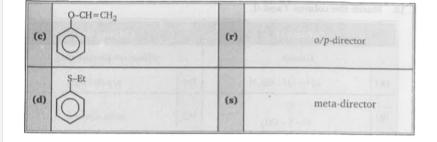
6. Nitrobenzene is a versatile compound that may be converted into a wide variety of substituted benzenes. Five such synthesis are shown below. In each reaction box above an arrow write letters designating the reagents and conditions, selected from the list at the bottom of the page, that would effect the transformation. The reagents must be written in the answer box in the correct order of their use. You may assume appropriate heating or cooling takes place, and more than one equivalent

of the reagent may be used if needed.

Reactant	R	leagent	648	Product
	a.		v.	Br
	ь.		w.	O ₂ N CN
NO ₂	c.		х.	CH ₃
	d.		y.	Cl NH ₂
	e.		z.	H_2N H_2

	Reagents		Reagents
A.	H ₂ , Ni catalyst	F.	Cl ₂ & FeCl ₃
B.	KBr & Cu ₂ Br ₂	G.	NaOH 10% solution
C.	KCN & Cu ₂ (CN) ₂	н.	(CH ₃ CO) ₂ O, pyridine
D.	HNO ₂ 0°C	I.	HNO ₃ /H ₂ SO ₄
E.	CH ₃ I & pyridine	- 276	

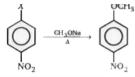
7. Match the column I and II.


Column (I)		Column (II)	
No.	Group	Effect on phenyl ring	
(a)	$-CH = CH - CO_2H$	(p)	o/p-directors
(b)	O -O - S - CH ₃	(q)	meta-directors
(e)	O -NH - C - CH ₃	(r)	Activating group
(d)	-S-CH ₃ O	(s)	De-activating group

Watch Video Solution

8. Match the column I and II.

Column (I)		Column (II)		
Group		Effect on phenyl group		
(a) NO	(p)	Activating group		
(b)	(q)	De-activating group		

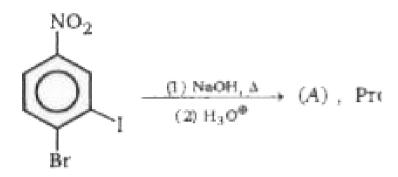

Watch Video Solution

9. Nucleophilic Aromatic substitution (SN_{Ar}) :

A substituted benzene derivative containing- NO_2 and Cl group at position is subjected to Nu-substitution.

$$P$$
-chioronitrobenzene P -chioronitrobenzene

Match the column I and II:


Column (I) X = halogen		Column (II)	
		relative reactivity toward (SN _{Ar}).	
(a)	- F	(p)	312
(b)	- Cl	(q)	1
(c)	– Br	(r)	0.8
(d)	-I	(s)	0.6

Watch Video Solution

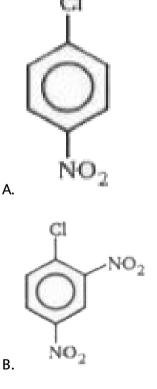
10. Nucleophilic Aromatic substitution (SN_{Ar}) :

A substituted benzene derivative containing- NO_2 and Cl group at position is subjected to Nu-substitution.

Product (A) is:

- A. Fluoride
- B. Chloride
- C. Bromide
- D. lodide

Answer: D



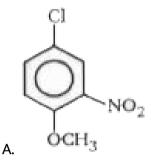
Watch Video Solution

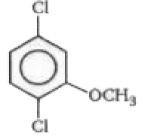
11. Nucleophilic Aromatic substitution (SN_{Ar}) :

A substituted benzene derivative containing- NO_2 and CI group at position is subjected to Nu-substitution.

Which of the following is most reactive toward SN_{Ar}

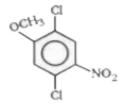
Answer: D


Watch Video Solution


12. Nucleophilic Aromatic substitution (SN_{Ar}) :

A substituted benzene derivative containing- NO_2 and CI group at position is subjected to Nu-substitution.

$$\begin{array}{c}
\text{CI} \\
& \xrightarrow{\text{HNO}_3} (A) \xrightarrow{\text{CI} I_3 \text{ONa}} (B) \text{ (Major)}
\end{array}$$


product (B) is:

В.

C.

D.

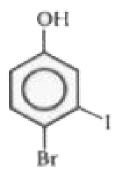
Answer: A

Watch Video Solution

13. Nucleophilic Aromatic substitution (SN_{Ar}) :

A substituted benzene derivative containing- NO_2 and CI group at position is subjected to Nu-substitution.

$$NO_2$$


$$I \xrightarrow{(1) \text{ NeOH}_1 \Delta} (A) \text{, Pro}$$

$$I \xrightarrow{(2) \text{ H}_3 O^{\oplus}}$$

Product (A) is:

A.

В.

C.

D.

Answer: B

Watch Video Solution

14. Nucleophilic Aromatic substitution (SN_{Ar}) :

A substituted benzene derivative containing- NO_2 and CI group at position is subjected to Nu-substitution.

$$NO_2$$

$$I \xrightarrow{(1) \text{ NeOH, } \Delta} (A) \text{, Pro}$$

$$I \xrightarrow{(2) \text{ H}_3 \text{ O}^{\oplus}}$$

Product (A) is:

$$F \longrightarrow O - CH = CH_2$$
 $O \rightarrow CH = CH_2$

Α.

C.

Answer: C

D.

Watch Video Solution

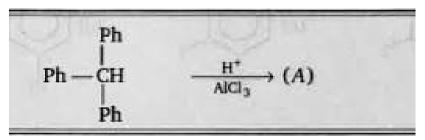
15. Nucleophilic Aromatic substitution (SN_{Ar}) :

A substituted benzene derivative containing- NO_2 and Cl group at position is subjected to Nu-substitution.

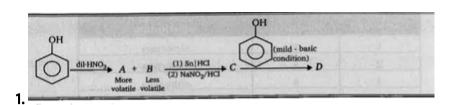
$$\begin{array}{c} \text{Cl} \\ \downarrow \\ \text{NO}_2 \\ p\text{-chloronitrobenzene} \end{array} + \begin{array}{c} \text{CH}_3\text{ONa} \\ & \xrightarrow{\text{CH}_3\text{OH}} \\ & \text{85°C} \end{array} + \begin{array}{c} \text{OCH}_3 \\ & \text{NO}_2 \\ & \text{(p-Nitroanisole)} \end{array}$$

Which is the best route for the synthesis of

Starting from benzene of?


$$\begin{array}{c} \xrightarrow{HNO_3} & \xrightarrow{HNO_3} & \xrightarrow{Br_2} & \xrightarrow{NaOCH_3} \\ B. & & & & \\ B. & & & & \\ \end{array}$$

$$\begin{array}{ccc} & \xrightarrow{HNO_3} & \xrightarrow{Br_2} & \xrightarrow{NaOCH_3} & \xrightarrow{HNO_3} \\ & & & & & & \\ D. & & & & & \\ \end{array}$$


Answer: A

16. Identify product (A) and write its structure.

Double bond equivalent of D is:

Watch Video Solution

2. How many isomers 'x' of C_8H_{10} when reacts with hot alkaline $KMnO_4$ give only aromatic dicarboxylic acid ? How many isomers 'y' of C_4H_8 when reacts with hot alkaline $KMnO_4$ give carbondioxide ? Sum of x+y=?

Watch Video Solution

3. How many groups are op director in the electrophilic aromatic substitution ?

