

India's Number 1 Education App

CHEMISTRY

BOOKS - MS CHOUHAN

CARBENE AND NITRENE

Level 1

1.

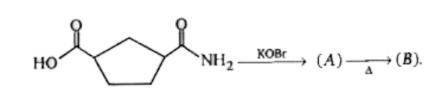
$$OH \longrightarrow NH_2 \longrightarrow Br_2/KOH \longrightarrow product;$$

$$(\alpha-hydroxy amide)$$

Product of this Hoffmann bromamide reaction is:

A.
$$Ph-\overset{O}{C}-CH_3$$

$$\mathsf{B.}\,Ph-CHO$$


$$\mathsf{C.}\,Ph-CH-OH$$

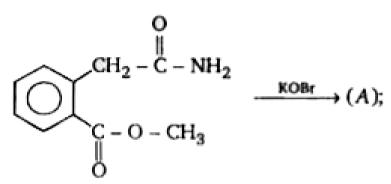
D.
$$Ph-CH_2-NH_2$$

Answer: B

Watch Video Solution

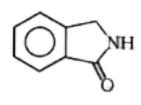
2.

Compmound (B) is:


В.

D. 📝

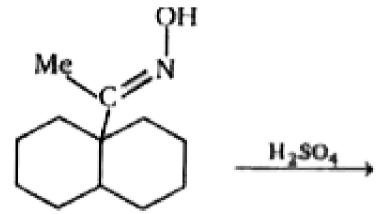
Answer: B


Watch Video Solution

3. is :

Product (A)

В.


C.

Answer: C

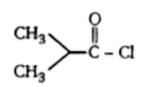
D.

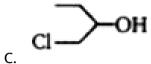
Watch Video Solution

4. Product

and name of the reactions is :

D. None of these


Answer: B


Watch Video Solution

5.
$$(X)C_4H_7OCl \xrightarrow{NH_3} C_4H_9ON \xrightarrow[KOH]{Br_2} CH_3CH_2CH_2NH_2$$
, Compound (X)

is:

В.

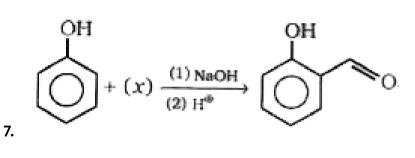
D. CI CHO

Answer: A

6. Which of the following will not give Hoffmann bromamide reaction?

A.
$$CH_3-\overset{||}{C}-NH_2$$

B.
$$Ph-\overset{||}{C}-NH_2$$


C.
$$CH_3 - \overset{\mid}{C} - NH - Br$$

D.
$$Ph-\stackrel{|}{C}-NH-Ph$$

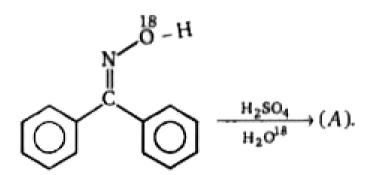
Answer: D

Watch Video Solution

, Reactant x

A. CH_3Cl

is:


B. CH_2Cl_2

C. $CHCl_3$

D. CCl_4

Answer: C

8. Product (A)

of the reaction is:

A.
$$Ph-NH-\overset{O}{C}-Ph$$

B.
$$Ph-NH-\overset{\circ}{C}-Ph$$

$$\mathsf{C.}\left(Ph
ight)_{2}-\stackrel{OH}{C}-NH_{2}$$

D.
$$Ph-CH_2-NH-Ph$$

Answer: B

9.
$$CH_3$$
 C Ph H_2SO_4 (A) ,

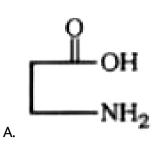
$$\begin{array}{c}
\text{Ph} & \text{CH}_3 \\
& \parallel & & \\
\text{OH} & & & \\
\end{array}$$

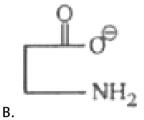
Product (A) & (B) respectively in the above reaction are:

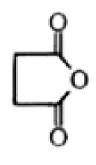
A.
$$Ph-\stackrel{O}{C}-NH-CH_3, Ph-\stackrel{O}{C}-NH-CH_3$$

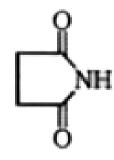
B.
$$CH_3-\overset{O}{\overset{||}{C}}-NH-Ph, CH_3-\overset{O}{\overset{||}{C}}-NH-Ph$$

C.
$$Ph-\stackrel{O}{C}-NH-CH_3, CH_3-\stackrel{||}{C}-NH-Ph$$


D.
$$CH_3 - \overset{O}{\overset{||}{C}} - NH - Ph, Ph - \overset{O}{\overset{||}{C}} - NH - CH_3$$


Answer: C




Watch Video Solution

10. $NBS \xrightarrow{KOBr} (A)$. Product (A) is :

Answer: B

D.

C.

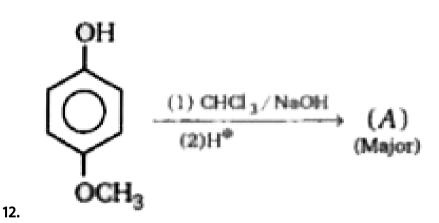
 CH_3 H O NH_2 NH_2 NaOBr (A); (major)

Product of

the reaction is:

A.

В.


Ph—H

C.

$$CH_3 \xrightarrow{Ph} C - O^{Ph}$$
D.

Watch Video Solution

Product (A) is:

В.

C.

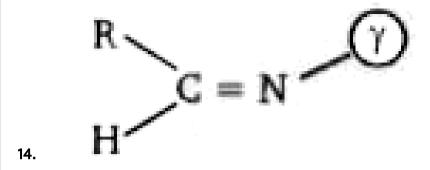
D.

Answer: A

13.

 $R-\stackrel{||}{C}-NH_2+xNaOH+Br_2
ightarrow R-NH_2+2NaBr+Na_2CO_3+H$ Number of moles of NaOH used in above Hoffmann bromamide reaction

is:


A. 3

B. 4

C. 5 D. 6

Answer: B

, Rate of

reaction toward Backmann rearrangement

when
$$\gamma = CH_3CO_2^-$$
 , $Cl-CH_2-CO_2^-$, $Ph-SO_3^ _{(ii)}$

A.
$$(i) > (ii) > (iii)$$

$$\mathsf{B.}\left(ii\right) > \left(i\right) > \left(iii\right)$$

$$\mathrm{D.}\left(iii\right)>\left(i\right)>\left(ii\right)$$

Answer: C

15. When primary amine reacts with chloroform in ethanolic KOH, then product is :

A. an isocyanide

B. an aldehyde

C. a cyanide

D. an alcohol

Answer: A

Watch Video Solution

16. The reaction of chloroform with alcoholic KOH and p-toluidine forms :

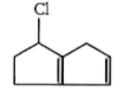
$$H_3C - CN$$

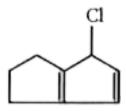
$$H_3C - O$$

C.
$$H_3C \longrightarrow N_2CI$$

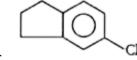
$$H_3C \longrightarrow NHCHCl_2$$

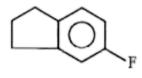
Answer: B




A.

Watch Video Solution


17. What is the product (Q) of the following reaction?



В.

C.

D.

Answer: D

, Product

(A) is:

18.

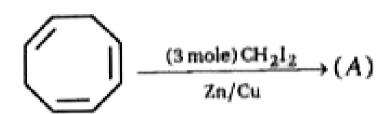
A.

В.

C.

Answer: A

D.


Watch Video Solution

19. Which of the following reaction, does not give chloro benzene as a product?

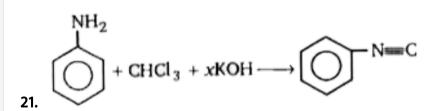
Answer: D

Watch Video Solution

20.

Compound (A) is:

A.


В.

Answer: A

Watch Video Solution

x = moles of KOH consumed is:

A. 1

B. 2

C. 3

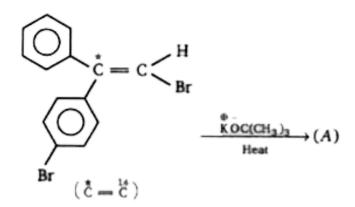
D. 4

Watch Video Solution

22. Heating the acyl azide in dry toluene under reflux for 3-hours give a 90% yield for a heterocyclic product. Identify the product (A).

$$\begin{array}{c|c}
O \\
\parallel \\
C - N_3 \\
\hline
NH_2
\end{array}
\xrightarrow{\text{heat}} (A) \\
\text{toluene} & 90\%
\end{array}$$

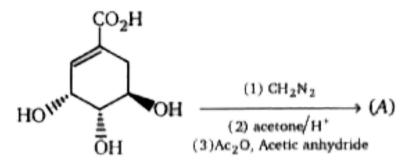
A.


$$\bigcup_{N \atop | \atop |} N - H$$

В.

D.

Answer: A



23.

$$C = \hat{C} - C = B_r$$

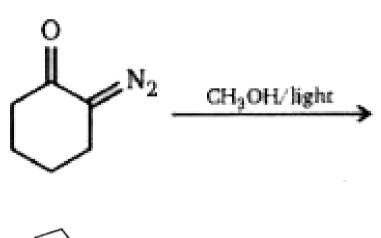
Answer: B

24. (de-

colourises Br_2 water)

Product (A) of the above reaction is:

A.


В.

Answer: B

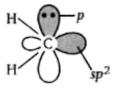
View Text Solution

25. A rather interesting example of the Wolff rearrangement with 2-diazocyclohexanone in methanol is given below. Identify the major product:

CO2CH3

Answer: A

В.



Watch Video Solution

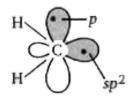

26. The orbital picture of a singlet carbene $(:CH_2)$ can be drawn as:

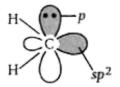
$$H$$
 C Sp^2

A.

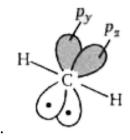
В.

D. none of these


Answer: A



A.

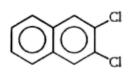

Watch Video Solution

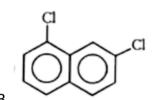
27. The orbital picture of a triplet carbene can be drawn as:

В.

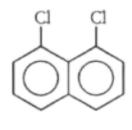
D. none of these

Answer: C

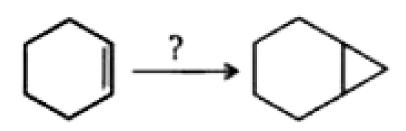



Watch Video Solution

$$\xrightarrow{\text{CHCl}_3}$$
 $(A) \xrightarrow{\text{CHCl}_3}$ (B) ;


28. Product

(B) is:


c. Cl

Answer: C

D.

29.

Select the suitable reagent for above conversion.

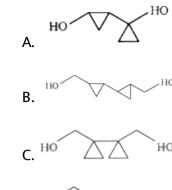
A.
$$CH_2N_2$$
 / Δ

B. $CBr_4 \, / \, RLi$

$$\mathsf{C.}\,H_2C=CH_2$$

D. t-BuOK

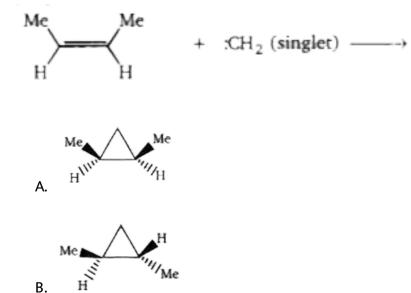
Answer: A



Watch Video Solution

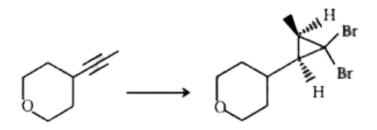
30. Complete the following reaction

HO
$$\xrightarrow{\text{HO}} \xrightarrow{\text{Cri}_2 i_2 \text{ (2 more)}} A$$


$$\xrightarrow{\text{Zn (Cu)}} (97\%)$$

Answer: B

31. The major product formed in the following reaction is


C. 50:50 mixture of above two compounds

D.
$$H \rightarrow H$$

Answer: A

Watch Video Solution

32.

To carry out conversion reagent used in decreasing order.

A. $Na/ ext{liq}$. $NH_3, ChBr_3/NaOH(\Delta)$

B. $H_2/Pd-CaCO_3, CHBr_3/NaOH(\Delta)$

C. Na/liq. NH_3 , $CHCl_3/NaOH$

D. $H_2/Pd-CaCO_3,CHCl_3/NaOH$

Answer: B

Watch Video Solution

$$CH_2 \xrightarrow{Br_2} (A) + CHBr_3 \downarrow$$

Product (A) of the reaction is:

$$CO_2H$$

A.

В.

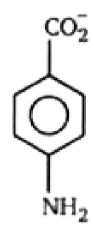
33.

C.

D.
$$CH_3$$

Answer: C

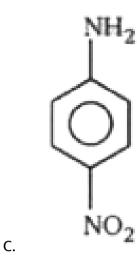
Watch Video Solution


C=N
$$\xrightarrow{(1) \text{ HO}^-(1 \text{ mole})} (A);$$

$$(2) \text{ HO}^-, \text{Br}_2$$

34.

(A) is:


Product

A.

В.

Answer: C

D.

$$\begin{array}{c|c}
O \\
NH \\
NO_2
\end{array}$$

$$\begin{array}{c}
N \text{NoCI} \\
H_2O
\end{array}$$

$$\begin{array}{c}
(X) \\
(80\%)
\end{array}$$

35. Product X

will be:

$$\bigcup_{\mathrm{NO_2}}^{\mathrm{CO_2H}}$$

A.

В.

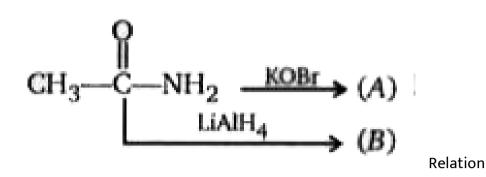
$$O_2$$
 O_2
 O_2
 O_2

$$\bigcap_{\mathrm{NO_2}}^{\mathrm{CO_2H}}$$

C.

$$NO_2$$
 NH_2 CO_2H

Watch Video Solution



Which of the following product(s) is/are can be obtained in the above reaction.

- A. Isopentane
- B. 3-Methyl hexane
- C. n-Pentane
- D. 3-Methyl pentane

Answer: D

between (A) & (B) is:

37.

- A. Identical
- B. Functional isomer
- C. Homologous
- D. Positional isomers

Answer: C

Watch Video Solution

38. If we use pyrene (CCl_4) in the Riemer-Tiemann reaction in place of chloroform, the productformed is :

A. Salicylaldehyde B. Phenolphthalein C. Salicylic acid D. Cyclohexanol **Answer: C Watch Video Solution** 39. Alkyl ethylamine is heated with chloroform and alcoholic KOH, a compound with offensive smell is formed. This compound is : A. A secondary amine B. An isocyanide C. A cyanide D. An acid **Answer: B**

40. Which of the following species would not be involved in the Hoffmann rearrangement shown below?

$$\begin{array}{c}
 & \xrightarrow{\text{Br}_2, \text{NaOH}, \text{H}_2\text{O}} \\
 & \xrightarrow{\text{NH}_2}
\end{array}$$

D. All of the above are involved in the reaction.

Answer: D

C.

Watch	Video	Solution	

41. In which of the following reactions migration of alkyl group from carbon to oxygen is observed ?

A. Pinacol-pinacolone rearrangement

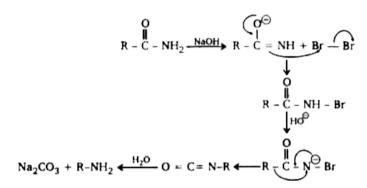
B. Bayer-villiger oxidation.

C. Prepration of phenol from cumene hydroperoxide.

D. Both (b) & (c)

Answer: D

Watch Video Solution


Level 2 Comprehension

1. Hoffmann bromamide reaction involves conversion of a carboxylic acid amide into an amine with a loss of a carbon atom on treatment with

aqueous sodium hypobromite. Thus Hoffmann result in shortening of a carbon chain.

$$R-\overset{O}{\overset{||}{C}}-NH_{2}\overset{Br_{2}}{\underset{NaOH}{\longrightarrow}}R-NH_{2}+NaBr+Na_{2}CO_{3}$$

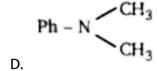
Mechanism of the reaction is:

Number of moles of NaOH consumed in above reaction.

- A. 1
- B. 2
- C. 3
- D. 4

Answer: D

2. Hoffmann bromamide reaction involves conversion of a carboxylic acid amide into an amine with a loss of a carbon atom on treatment with aqueous sodium hypobromite. Thus Hoffmann result in shortening of a carbon chain.


$$R-\stackrel{O}{\stackrel{||}{C}}-NH_2 \stackrel{Br_2}{\stackrel{NaOH}{\longrightarrow}} R-NH_2+NaBr+Na_2CO_3$$

Mechanism of the reaction is:

A. $Ph-NH_2$

B.
$$Ph-CH_2-NH_2$$

 $\mathsf{C.}\,Ph-NH-CH_3$

Answer: A

3. Hoffmann bromamide reaction involves conversion of a carboxylic acid amide into an amine with a loss of a carbon atom on treatment with aqueous sodium hypobromite. Thus Hoffmann result in shortening of a carbon chain.

$$R-\overset{O}{\overset{\mid\mid}{C}}-NH_{2}\overset{Br_{2}}{\overset{NaOH}{\longrightarrow}}R-NH_{2}+NaBr+Na_{2}CO_{3}$$

Mechanism of the reaction is:

$$R - C - NH_{2} \xrightarrow{NaOH} R - C = NH + Br - B$$

$$R - C - NH - Br$$

$$R - C - NH - Br$$

$$V = R - C - NH - Br$$

$$V = R - C - NH - Br$$

$$V = R - C - NH - Br$$

$$V = R - C - NH - Br$$

$$V = R - C - NH - Br$$

$$V = R - C - NH - Br$$

$$V = R - C - NH - Br$$

$$V = R - C - NH - Br$$

Which of the following will not give Hoffmann bromamide reaction.

A.
$$CH_3 - \overset{O}{C} - NH_2$$

Answer: D

4. Hoffmann bromamide reaction involves conversion of a carboxylic acid amide into an amine with a loss of a carbon atom on treatment with aqueous sodium hypobromite. Thus Hoffmann result in shortening of a carbon chain.

$$R-\stackrel{O}{\stackrel{||}{C}}-NH_2\stackrel{Br_2}{\stackrel{NaOH}{\longrightarrow}}R-NH_2+NaBr+Na_2CO_3$$

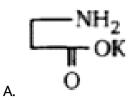
Mechanism of the reaction is:

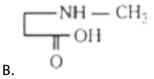
$$R - C - NH_{2} \xrightarrow{NaOH} R - C = NH + Br - Br$$

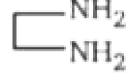
$$R - C - NH - Br$$

$$Ho^{\circ}$$

$$Na_{2}CO_{3} + R - NH_{2} \xrightarrow{H_{2}O} O = C = N - R \leftarrow R - C = N - Br$$


$$O$$


$$NH$$


$$KOBr$$

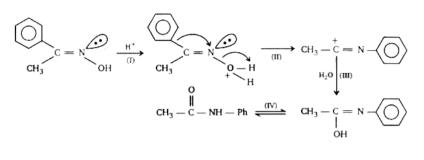
$$A$$

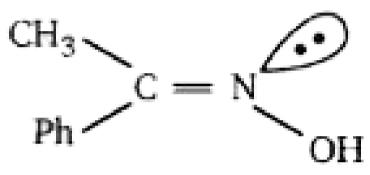
Product (A) is

C.

D. None of these

Answer: A


$$C = N \xrightarrow{H^+} C = N \xrightarrow{C} C = N \xrightarrow{CH_3 - C} CH_3 - C = N \xrightarrow{CH_3 - C} CH$$


Rate determining step in Beckmann rearrangement:

- A. I
- B. II
- C. III
- D. IV

Answer: B

On treatment H_2SO_4 followed by hydrolysis in acidic medium above compound gives.

A.
$$CH_3 - CO_2H$$
, $Ph - NH_2$

B.
$$CH_3 - NH_2$$
, $Ph - CO_2H$

$$\mathsf{C.}\,Ph-CH_2-NH_2+Ph-CO_2H$$

D.
$$Ph-CO_2H+CH_3-CO_2H$$

Answer: B

$$C = N \xrightarrow{H^+} CH_3 \xrightarrow{C} C = N \xrightarrow{(II)} CH_3 - C = N \xrightarrow{(IV)} CH_3 - C = N \xrightarrow{(IV)} CH_3 - C = N \xrightarrow{OH} CH_3 - C$$

Which of the following reagent cannot used in Beckmann rearrangement?

A. TsOH

B. $R-SO_2H$

 $\mathsf{C}.\,BF_3$

D. Ph-Li

Answer: D

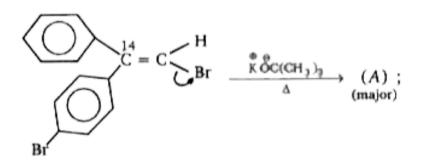
$$C = N \xrightarrow{PCl_5} (A);$$

$$CH_3$$

Product (A) of the above reaction is:

 $C \rightarrow C - NH \rightarrow CH^3$

C.
$$CH_3 \longrightarrow C - NH \longrightarrow CH_3$$



Watch Video Solution

9. Consider the given reaction for preparation of alkyne. (Fritsch reaction).

$$\begin{array}{c|c} & & & & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\$$

Anti group will migrate because of less steric hindrance.

Major

product (A) is:

A.
$$C = C$$

$$R$$
 $C = C$ Br

C.
$$Ph-C\equiv C^{14}-Ph$$

$$\mathsf{D}.\,Ph-C\equiv C-Ph$$

Watch Video Solution

10. Consider the given reaction for preparation of alkyne. (Fritsch reaction).

$$C = C \xrightarrow{Ph-l.i} C = C \xrightarrow{Ph-l.i} (Acid-base)$$

$$Ph C = C \xrightarrow{Ph-l.i} C = C - Ph$$

Anti group will migrate because of less steric hindrance.

Product (A) is

:

$$\bigcirc$$

D. ()

Answer: C

Watch Video Solution

11. Consider the given reaction for preparation of alkyne. (Fritsch reaction).

$$C = C \xrightarrow{Ph} C = C \xrightarrow{Ph-l,i} (Acid-base) \xrightarrow{Ph} C = C \xrightarrow{r.d.s} Ph-C = C - Ph$$

Anti group will migrate because of less steric hindrance.

Rate of reaction when the halide ion:

A.
$$I^{\,\Theta}\,>Cl^{\,\Theta}\,>Br^{\,\Theta}\,>F^{\,\Theta}$$

B.
$$I^{\,\Theta} > Br^{\,\Theta} > Cl^{\,\Theta} > F^{\,\Theta}$$

C.
$$F^{\,\Theta} > C l^{\,\Theta} > B r^{\,\Theta} > I^{\,\Theta}$$

D.
$$F^{\,\Theta} > Br^{\,\Theta} > Cl^{\,\Theta} > I^{\,\Theta}$$

Watch Video Solution

12. Consider the given reaction for preparation of alkyne. (Fritsch reaction).

$$Ph = C \xrightarrow{\delta\Theta} C \xrightarrow{Ph-1,i} (Acid-base) \qquad Ph = C = C \xrightarrow{r.d.s} Ph-C = C - Ph$$

Anti group will migrate because of less steric hindrance.

$$CH_3O$$
 $\star C$
 $\to C$
 \to

Product (A) is

$$: \left(C^{\,*}\,=\,C^{14}\right)$$

D.

B.

Watch Video Solution

13. Wolff rearrangement

When α -Diazoketones are photo-irradiated or heated at high temperature or reacted with silver oxide or silver salts at room temperature, they loose nitrogen and rearrange to form ketene.

The ketenes reacts rapidly with water, alcohol and amines. Therefore, the reactions called Wolff-rearrangement.

$$\begin{array}{c} & & & \\ & &$$

$$Ph-\stackrel{O}{\overset{|}{C}}_{14}-CHN_2\stackrel{Ag_2O}{\overset{}{ extcolored}}(A)$$
 , Product (A) is :

A.
$$Ph-\overset{14}{CH_2}-CO_2H$$

B.
$$Ph-CH_2-\overset{14}{CO_2}H$$

C.
$$Ph-\overset{14}{CO_2}N$$

D.
$$Ph-CO_2H$$

Watch Video Solution

14. Wolff rearrangement

When α -Diazoketones are photo-irradiated or heated at high temperature or reacted with silver oxide or silver salts at room temperature, they loose nitrogen and rearrange to form ketene.

The ketenes reacts rapidly with water, alcohol and amines. Therefore, the

reactions called Wolff-rearrangement.

$$(\overset{\circ}{C} = \overset{\circ}{C}) \xrightarrow{\overset{\circ}{N}} \overset{\Theta}{\overset{\circ}{N}}$$

$$\xrightarrow{CH_3OH} (A) \text{ (Major)},$$

Product (A) is

Answer: C

Watch Video Solution

15. Wolff rearrangement

When α -Diazoketones are photo-irradiated or heated at high temperature or reacted with silver oxide or silver salts at room temperature, they loose nitrogen and rearrange to form ketene.

The ketenes reacts rapidly with water, alcohol and amines. Therefore, the reactions called Wolff-rearrangement.

Major

product of the reaction is :

D. None of these

Answer: D

16. Wolff rearrangement

When α -Diazoketones are photo-irradiated or heated at high temperature or reacted with silver oxide or silver salts at room temperature, they loose nitrogen and rearrange to form ketene.

The ketenes reacts rapidly with water, alcohol and amines. Therefore, the reactions called Wolff-rearrangement.

$$\begin{array}{c} O \\ C - CHN_2 \\ \hline \\ C - CHN_2 \end{array} \xrightarrow{Ag_2O \\ NH_3} (A) \text{ (Major)} \\ \\ \text{, Product (A)} \end{array}$$

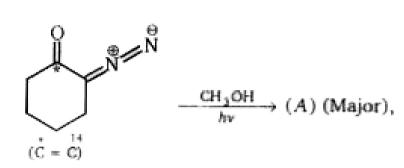
is:

В.

D.

C.

Answer: B



Watch Video Solution

17. Wolff rearrangement

When α -Diazoketones are photo-irradiated or heated at high temperature or reacted with silver oxide or silver salts at room temperature, they loose nitrogen and rearrange to form ketene.

The ketenes reacts rapidly with water, alcohol and amines. Therefore, the reactions called Wolff-rearrangement.

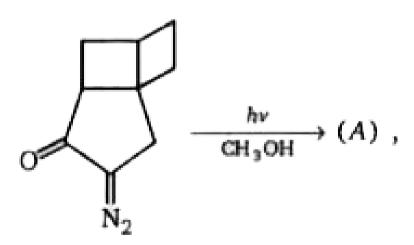
Product (A) is

A.
$$Ph - Ch = CH - OH$$

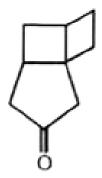
B.
$$Ph - CH = CH - OCH_3$$

$$C. CH_3 - CH = CH - O - PH$$

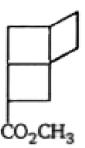
$$D. CH_3 - CH = CH - OH$$


Answer: B

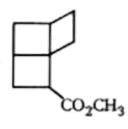
18. Wolff rearrangement


When α -Diazoketones are photo-irradiated or heated at high temperature or reacted with silver oxide or silver salts at room temperature, they loose nitrogen and rearrange to form ketene.

The ketenes reacts rapidly with water, alcohol and amines. Therefore, the reactions called Wolff-rearrangement.



, Product (A)

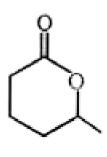

is:

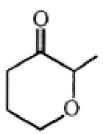
A.

В.

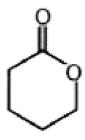
C.

Answer: B

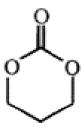

D.


19. Wolff rearrangement

When α -Diazoketones are photo-irradiated or heated at high temperature or reacted with silver oxide or silver salts at room temperature, they loose nitrogen and rearrange to form ketene.


The ketenes reacts rapidly with water, alcohol and amines. Therefore, the reactions called Wolff-rearrangement.

$$HO-CH_{2}-CH_{2}-CH_{2}-CH_{2}-\overset{||}{C}-CHN_{2}\overset{Ag_{2}O}{\longrightarrow}(A)$$
 , Product (A) is :



В.

C.

D.

Answer: C

1. Match the column I and II.

	Column (I)		Column (II)	
(a)	$CI \xrightarrow{\text{aq. KOH}} (A) \xrightarrow{\text{H}^*} (B) \xrightarrow{\text{CHCl}_3} (C)$	(p)	D.B.E. = even for product (Double bond equivalent)	
(ь)	$ \begin{array}{c} OH \\ & \xrightarrow{H^+} (A) \xrightarrow{CHC_3} (B) \end{array} $	(q)	D.B.E. = odd for product	
(c)	$\frac{\text{CHCl}_3}{\text{KOH}} \to (A) \xrightarrow{\text{CHCl}_3} (B)$	(r)	Ring expansion takes place	
(d)	$ \begin{array}{c} $	(s)	Carbene will formed	

2. Match the column I and II.

	Column (I)		Column (II)
(a)	$\xrightarrow{\text{CHCl}_3} \xrightarrow{\text{KOH}}$	(p)	Reimer Tiemann reaction
(b)	OH CHCl₃ KOH	(q)	Reimer Tiemann expansion (or) Abnormal RNT reaction
(c)		(r)	Simman-smith reaction.
(d)	$ \begin{array}{c} OH \\ CH_2I_2+Zn \\ \Delta \end{array} $	(s)	Increase in carbon takes place

3. Match the column I and II.

5.

	Column (I)		Column (II)	
(a)	$\begin{array}{c c} & & \text{CO}_2\text{H} & \xrightarrow{\text{SOCl}_2} & \xrightarrow{\text{NH}_3} & \\ & & & & & & \text{HNO}_2 \end{array}$	(p)	Aromatic compound will formed	
(b)		(q)	Migration take place from carbon to electron deficient nitrogen	
(c)	$ \phi - \text{CHCl}_2 \xrightarrow{t - \text{BuO}^{\Theta} K^{\Phi}} (A) $ $ \phi - \text{C=C-} \phi \to (B) \xrightarrow{AlCl_3} (C) $	(r)	Carbene will formed in this reaction	
(d)	O ₂ N O ₂ O ₀ C - NH ₂ KOBr	(s)	N ₂ will evolve.	

4. Match the column I and II.

Column (I) Reaction			Column (II)
		Intermediate	
(a)	$CHCl_3 + KOH \xrightarrow{\Delta}$	(p)	Carbocation
(b)	$\xrightarrow{Br} \xrightarrow{p_{h-Li}} \xrightarrow{\Delta}$	(q)	Carbanion
(c)	$CI - C - C - OH \xrightarrow{Na} A$	(r)	Free radical
(d)	OH → H ⁺ Δ	(s)	Carbene

5. Matrix:

Column (I) Reaction		Column (II) Product		
(b)		(q)	G G	
(e)	$\begin{array}{c} & \xrightarrow{\text{CHCl}_2\text{Br}} \\ & \xrightarrow{\text{KOH}, \Delta} \end{array}$	(r)	Br	

(d)	$ \begin{array}{c} $	(s)		
-----	--	-----	--	--

