

CHEMISTRY

BOOKS - MS CHOUHAN

GENERAL ORGANIC CHEMISTRY

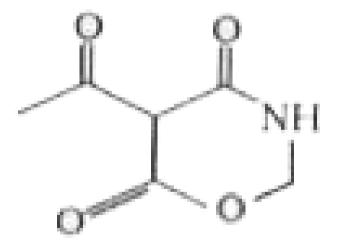
1. How many 2° Hydrogen atoms are present in the given following

compound ?

A. 2

B. 5

C. 7


D. 8

Answer: C

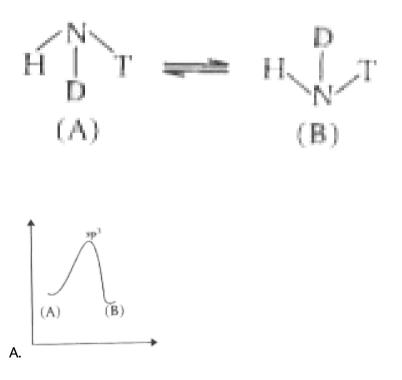
Watch Video Solution

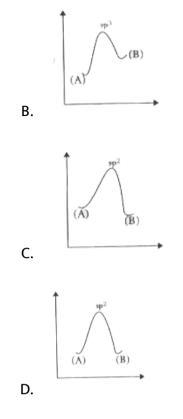
2. Identify which functional group is Not present in the given following

compound ?

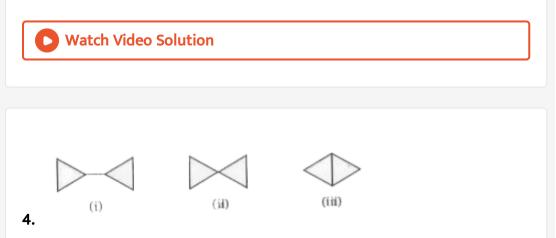
A. Ketone

B. Ester


C. Amide

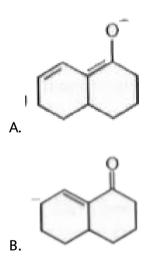

D. Ether

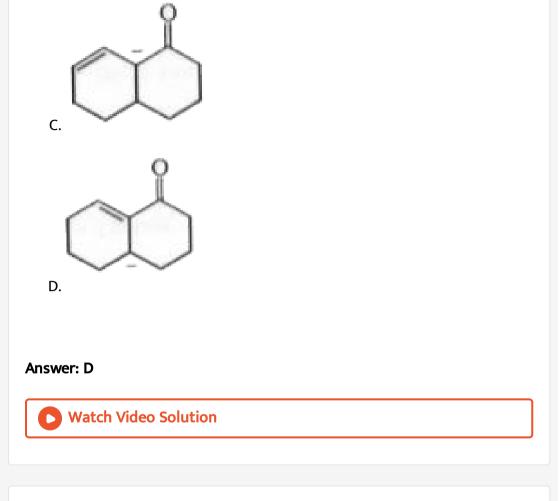
Answer: D


Watch	Video	Solution
valui	video	Joiution

3. Correct energy profile for amine inversion and hybridization of nitrogen in transition state is:

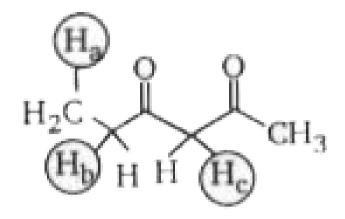
Answer: D


Correct order of the heats of combustion of above compounds is:


A.
$$(i) > (ii) > (iii)$$

B. $(i) > (iii) > (ii)$
C. $(ii) > (i) > (iii)$
D. $(ii) > (iii) > (i)$

Answer: A



5. Which of the following is not a resonance structure of the others ?

6. Rank the hydrogen atoms (H_a, H_b, H_c) present in the following molecule in decreasing order of their acidic strength.

A. a > b > c

 $\mathsf{B}.\, b > a > c$

 $\mathsf{C}.\,b>c>a$

 $\mathsf{D}.\,c>b>a$

Answer: D

7.
$$CH_3 - \overset{O}{\overset{||}{C}}_{a} - \overset{O}{\overset{-}{a}}_{b} CH_3$$
 ,

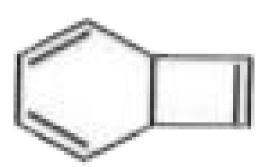
The correct relation between the bond lengths a and b is:

A. a = b

 $\mathsf{B}. b > a$

 $\mathsf{C}.\, b < a$

D. Impossible to predict

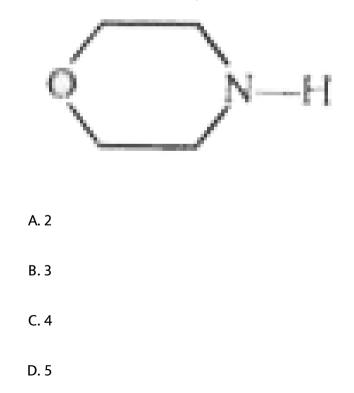

Answer: B

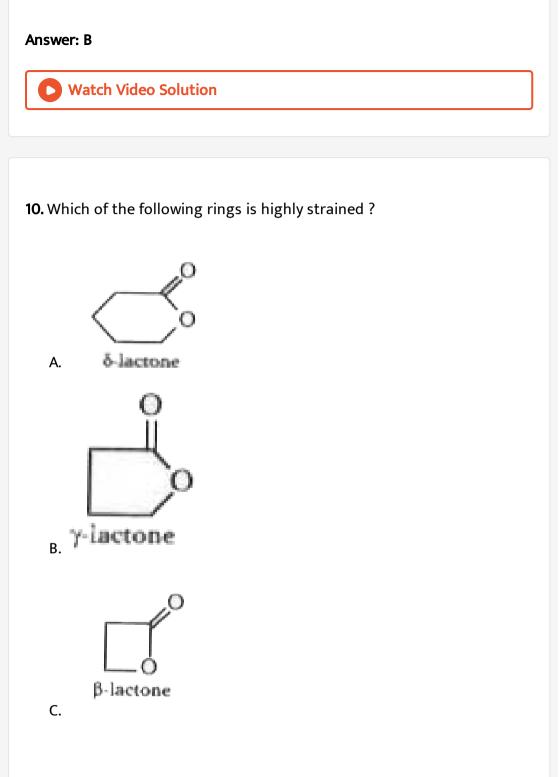
:

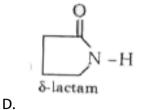
8. The number of $sp^2 - sp^2$ sigma bonds in the compound given below is

15

Β.	3

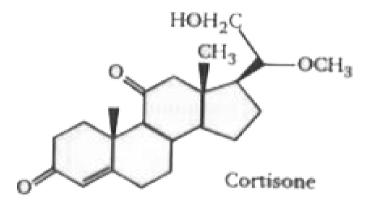

C. 4


D. 5


Answer: C

Watch Video Solution

9. The total number of lone pair of electrons in the given molecule is :



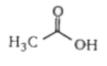
Answer: C

Watch Video Solution

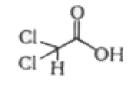
11. The functional groups present in Cortisone are :

A. ether, alkene, alcohol

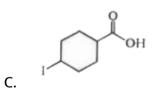
B. alcohol, ketone, alkene, ether

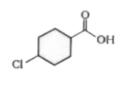

C. alcohol, ketone, amine

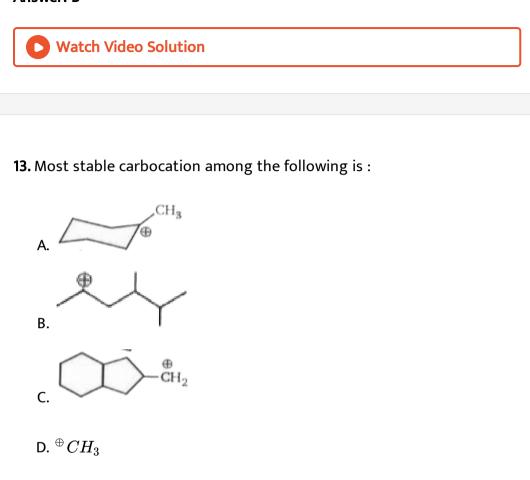
D. ether, amine, ketone


Answer: B

12. Select the acid with the highest Ka (i.e., lowest pK_a)




A.


Β.

D.

Answer: B

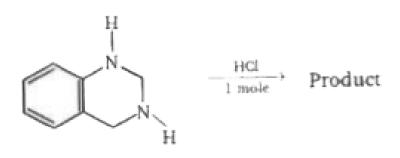
Answer: A

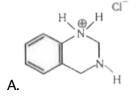
14. Arrange the following in increasing order of their pK_a values.

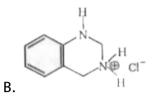
(x)
$$CH_3 - S_{\substack{||\\ O}}^{O} = O - H$$
 (y) $CH_3 - C - O - H$ (z) $CH_3 - OH$

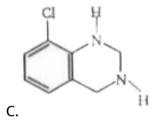
A. y < x < z

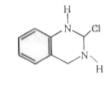
 $\mathsf{B.}\, x < y < z$

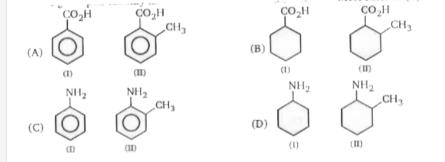

 $\mathsf{C}.\, y < z < x$


D. x < z < y


Answer: B


Watch Video Solution

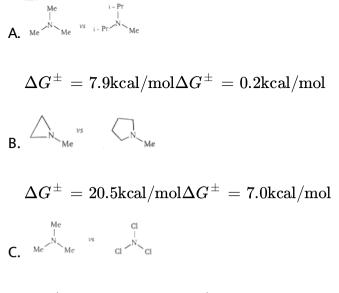

15. Which is the major product of the following reaction ?


Answer: B

D.

16. In the given pair identify most acidic compound in (A) and (B). Most

basic in (C) and (D).



A. A - I, B - II, C - I, D - IIB. A - II, B - I, C - I, D - IIC. A - II, B - II, C - II, D - IID. A - I, B - II, C - I, D - I

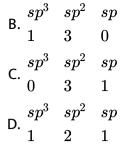
Answer: B

Watch Video Solution

17. Several factors (steric, electronic, orbital interactions etc.) can affect the inversion barrier of an amine. In the given pair which data is correctly placed ?

 $\Delta G^{\pm} = 7.9 \mathrm{kcal/mol} \Delta G^{\pm} = 22.9 \mathrm{kcal/mol}$

D. All of these

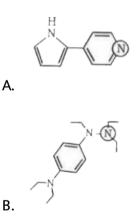

Answer: D

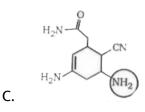
Watch Video Solution

18. Select the response that correctly identifies the number of carbon atoms of each type of hybridization in the compound given below

$$H_2C = C = CH - CH = O$$

A.
$${sp^3 \over 2} {sp^2 \over 2} {sp \over 0}$$

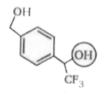



Answer: C

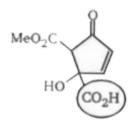
Watch Video Solution

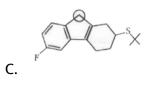
19. Circle represents most basic atoms in these molecule. Which of the

following is correct representation ?


D. All of these

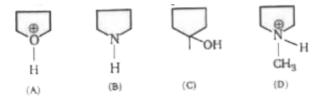
Answer: D




20. Circle represent most acidic hydrogens in these molecules. Which of

the following is correct representation ?

A.

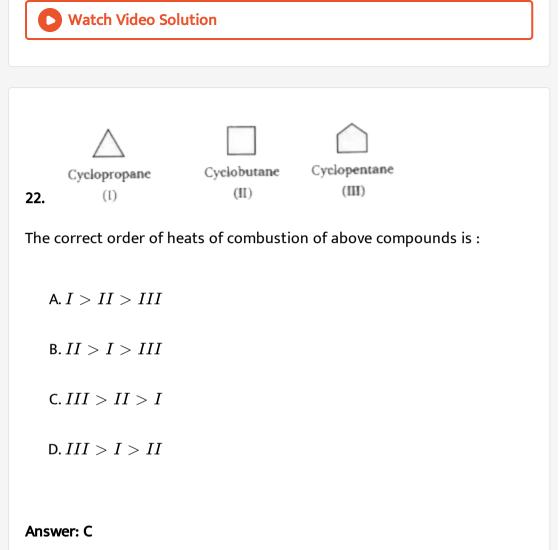


D. All of these

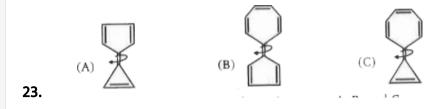
Answer: D

Watch Video Solution

21. Arrange the following in decreasing order of their acidic strengths.


A. A > C > B > D

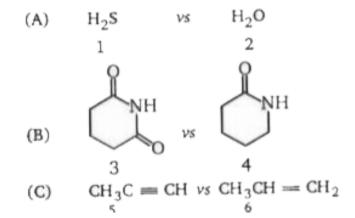
 $\mathsf{B.}\, A > D > B > C$


 $\mathsf{C}.A > D > C > B$

 $\mathsf{D}.\, D > A > C > B$

Answer: C

Watch Video Solution


Compare carbon-carbon bond rotation across A, B, and C

- A. A > B > CB. A > C > BC. B > A > C
- $\mathsf{D}.\,B>C>A$

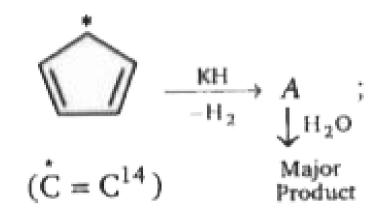
Answer: C

Watch Video Solution

24. Which of the following acids would have a STRONGER CONJUGATE BASE ?

(C) $CH_3C\equiv CH~~{
m vs}~~CH_3CH=CH_2$

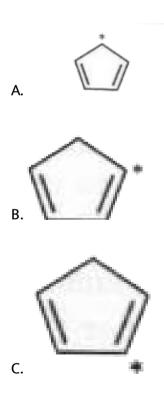
A. 2,4,6

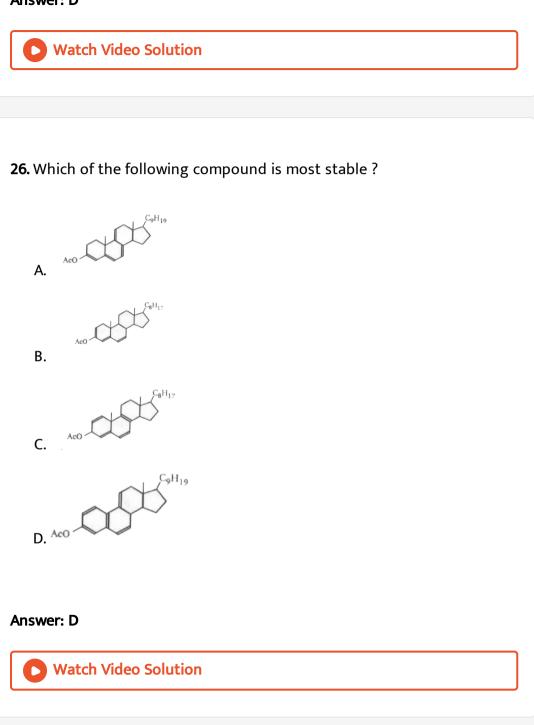

B. 1,3,5

C. 2,3,5

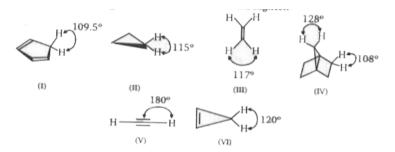
D. 1,3,6

Answer: A


Watch Video Solution


, Major

products of the reaction is (are):



D. both (b)& (c)

Answer: D

27. Selected bond angles for six hydrocarbons are shown below. Arrange these hydrocarbons according to their pK_a values, from the lowest to the highest.

A. V < I < VI < II < III < IV

 $\mathsf{B}.\,IV < I < II < III < V < VI$

 $\mathsf{C}.\,II < IV < I < VI < V < III$

 $\mathsf{D}.\, I < V < IV < III < II < VI$

Answer: D

Watch Video Solution

28. Which statement about the following equilibrium is true ?

$$O^- K^+ + H_2O$$
 \longrightarrow $OH + K^+ OH^-$
t-butoxide $pK_a = 15.7$ $pK_a = 18$

A. The equilibrium favours the products

B. t-Butoxide is the dominant anionic species in the equilibrium

C. Water is the weaker acid

D. t-Butoxide is stabilized by resonance

Answer: A

29. Consider the following reaction involving two acids shown below :

formic acid and HF.

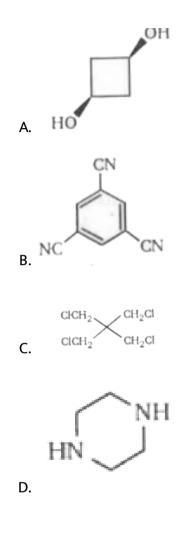
$$K^+F^- + H^-_{pK_a = 3.8} \longrightarrow H^-_{O^-K^+} + H^-_{pK_a = 3.2}$$

Which of the following statements about this reaction are true ?

- (A) Formic acid is the strongest Bronsted acid in the reaction
- (B) HF is the strongest Bronsted acid in the reaction
- (C) KF is the strongest Bronsted base in the reaction
- (D) KO_2 CH is the strongest Bronsted base in the reaction
- (E) The equilibrium favours the reactants
- (F) The equilibrium favours the products
- (G) Formic acid has a weaker conjugate base
- (H) HF has a weaker conjugate base

A. A, D and F

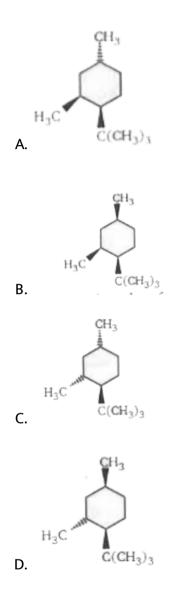
B. B, D, and H


C. A, C, and H

D. B, D, E and H

Answer: D

Watch Video Solution


30. Which one of the following compounds has non zero dipole moment?

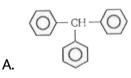
Answer: A

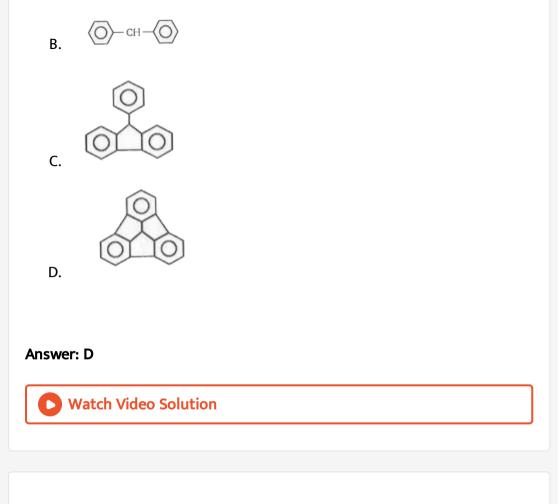
Watch Video Solution

31. Which one of the following has the smallest heat of combustion ?

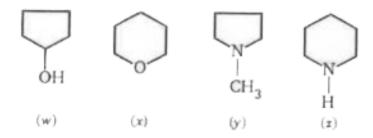
Answer: C

32. Rank the following substances in order of decreasing heat of combustion (maximum \rightarrow minimum).




- A. 1 > 2 > 4 > 3
- ${\rm B.}\,3>4>2>1$
- ${\sf C}.\,2>4>1>3$
- ${\sf D}.\,1>3>2>4$

Answer: C

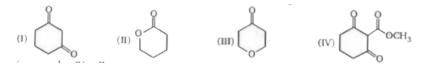

33. Which of the following has lowest pK_a value ?

34. Arrange the following (w, x, y, z) in decreasing order of their boiling

points:

A. w > x > z > y

B. w > x > y > z


 $\mathsf{C}.\,w>z>y>x$

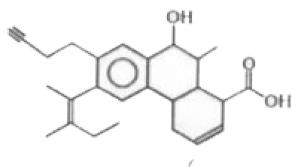
 $\mathsf{D}.\, w > z > x > y$

Answer: D

35. Arrange the following in increasing order of their acidic strength.

A. III < I < IV < II

 ${\rm B.}\,II < I < IV < III$

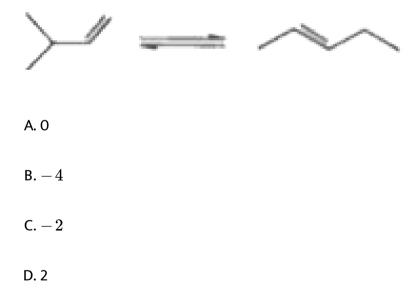

 $\mathsf{C}.\, I < III < IV < II$

 $\mathsf{D}.\,II < III < I < IV$

Answer: D

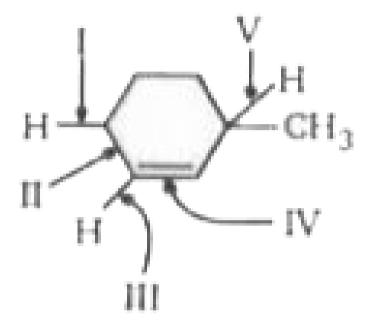
36. How many degrees of unsaturation are there the following compound?

A. 6


B. 7

C. 10

D. 11

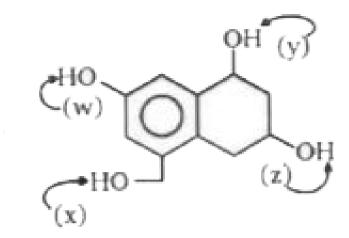

Answer: D

37. The heat of hydrogenation for 3-methylbutene and 2-pentene are -30 kcal/mol and -28 kcal/mol respectively. The heats of combustion of 2-methylbutane and pentane are - 784 kcal/mol and -782 kcal/mol respectively. All the values are given under standard conditions. Taking into account that combustion of both alkanes give the same products, what is ΔH (in kcal/mol) for the following reaction under same conditions?

Answer: B

38. Which of the following o-bonds participate in hyperconjugation ?

A. I and II


B. I and IV

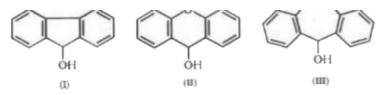
C. II and V

D. III and IV

Answer: B

39.

Decreasing order of acidic strength of different (-OH) groups is :


A. w > x > y > zB. w > z > x > yC. z > w > x > yD. z > x > w > y

Answer: A

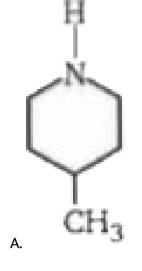
Watch Video Solution

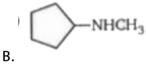
40. Arrange the following alcohols in decreasing order of the ease of

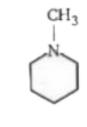
ionization under acidic conditions.

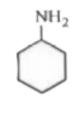
A. I > III > II

 ${\rm B.}\,I>II>III$


C. II > III > I

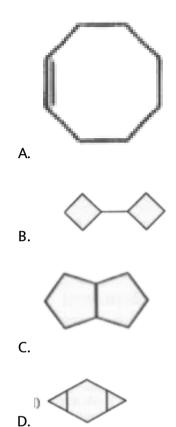

 $\mathsf{D}.\,II>I>III$


Answer: C


Watch Video Solution

41. Among the isomeric amines select the one with the lowest boiling point.

Answer: C


D.

C.

Watch Video Solution

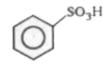
42. Which one of the compounds shown below, is not an isomer of the

others ?

Answer: D

Watch Video Solution

43. Arrange the anions (p) $\overline{C}H_3$, (q) $\overline{N}H_2$, (r) OH^- , (s) F^- , in decreasing order of their basic strength.


A. p>q>r>sB. q>p>r>sC. r>q>p>sD. r>p>q>s

Answer: A

Watch Video Solution

44. One among the following compounds will not give effervescence with sodium carbonate:

A. $C_6H_5CO_2H$

$\mathsf{C.}\, C_6H_5OH$

D. 📄

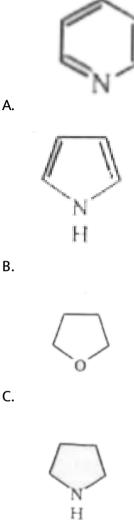
Answer: C

Watch Video Solution

45. The carboxylic acid which has maximum solubility in water is:

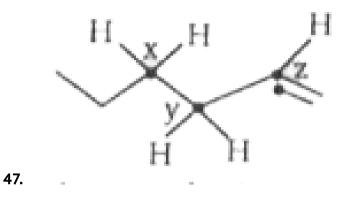
A. phthalic acid

B. succinic acid


C. malonic acid

D. salicylic acid

Answer: C


Watch Video Solution

46. Among the following compounds, the most basic compound is :

D.

Answer: D

Arrange the (C-H) bonds x, y and z in decreasing order of their bond dissociation energies in homolysis.

A. y > x > zB. z > x > yC. z > y > x

D. y>z>x

Answer: B

View Text Solution

48. 23 g of sodium will react with methyl alcohol to give :

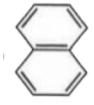
A. one mole of oxygen

B. $22.4 dm^3$ of hydrogen gas at NTP

C. 1 mole of H_2

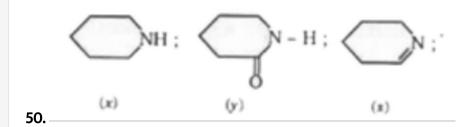
D. 11.2 L of hydrogen gas at NTP

Answer: D


Watch Video Solution

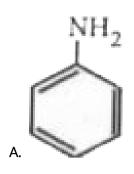
49. Which of the following is most polar?

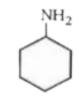
Β.


C.

D.

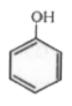
Answer: B


The correct order of decreasing basic strengths of x,y and z is :

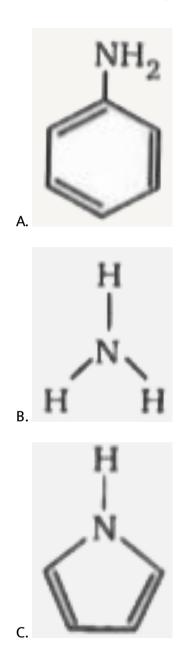

A. x > y > zB. x > z > yC. y > x > zD. y > z > x

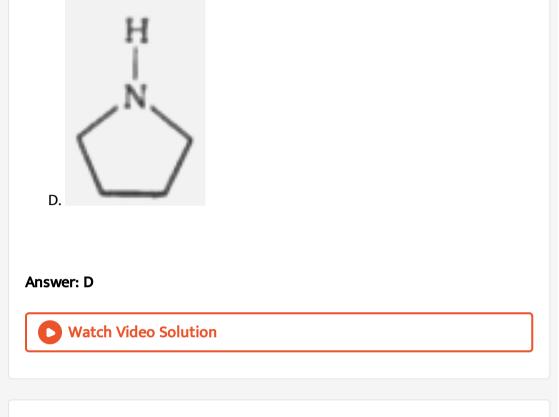
Answer: B




51. Which of the following is the strongest Bronsted acid ?

Β.




D.

Answer: D

D Watch Video Solution

52. Which of the following is the strongest Bronsted base ?

53. Which of the following is polar aprotic solvent ?

A. DMSO

B. Crown ether:

C. DMG

D. All of these

Answer: D

54. Some pairs of acids are given below. Select the pair in which second acid is stronger than first

A. CH_3CO_2H and CH_2FCO_2H

B. CH_2FCO_2H and CH_2ClCO_2H

 $C. CH_2ClCO_2H$ and CH_2BrCO_2H

D. $CH_3CH_2CHFCO_2H$ and $CH_3CHFCH_2CO_2H$

Answer: A

Watch Video Solution

55. $H-C\equiv C\,aC\equiv C\,bCH_3$,

Compare the bond lengths a and b:

A. a = b

 $\mathsf{B.}\,a>b$

 $\mathsf{C}.\,b>a$

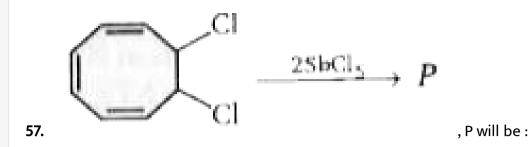
 $\mathsf{D}.\,a>\,>\,>\,b$

Answer: C

Watch Video Solution

56. Which (isomeric) amine has lowest boiling point ?

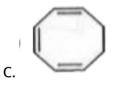
A. 1° amine


B. 2° amine

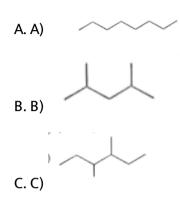
C. 3° amine

D. cannot predict

Answer: C


Watch Video Solution

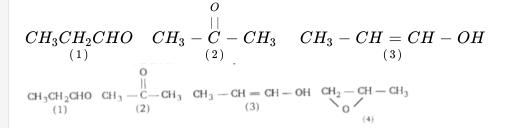
A.


D. mixture of (a) and (b)

Answer: B

58. Which of the following substances is not an isomer of 3-ethyl 2-methyl

pentane ?



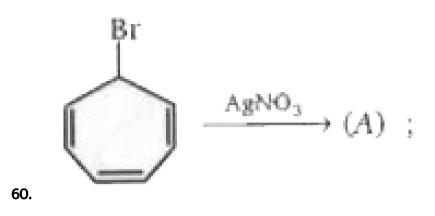
D. D) all are isomers

Answer: B

Watch Video Solution

59. Which of the following is an isomer of compound 1?

A. A) 2


B. B) 4

C. C) 2 and 3

D. D) all are isomers

Answer: D

Watch Video Solution

Which statement is incorrect in respect of the above reaction ?

A. Product is aromatic

B. Product has high dipole moment

C. Product has less resonance energy

D. Product is soluble in polar solvent

Answer: C

61. Some pairs of ions are given below. In which pair, first ion is more

stable than second?

A.
$$CH_3 - \overset{\oplus}{C}H - CH_3$$
 and $CH_3 - \overset{\oplus}{C}H - OCH_3$
B. $CH_3 - CH_2 - \overset{\oplus}{C}H - CH_3$ and $CH_2 = CH - CH_2 - \overset{\oplus}{C}H_2$
c. $\overset{\oplus}{\bigcirc}^{CH_2}_{and} \overset{\oplus}{\bigcirc}^{CH_2}_{CH_2}$
 $CH_3 - CH - CH_3 \qquad CH_3 - N - CH_3$
D. $|$ and $|$
 $CH_2 - C_{\oplus} - CH_3 \qquad CH_3 - C^{\oplus} - CH_3$

Answer: B

Watch Video Solution

62. Among the given pairs in which pair, first compound has higher boiling point than second ?

A.
$$CH_3 - CH_2OCH_3$$
 and $CH_3 - CH - CH_3$
 \downarrow_{OH}
B. $CH_3 - CH_2 - CH_2 - CH_3$ and $CH_3 - CH_2 - CH_3$
C.

 $CH_3-CH_2-CH_2-CH_2-CH_3 \hspace{0.1 cm} ext{and} \hspace{0.1 cm} CH_3-\overset{CH_2-CH_3}{\overset{}{ ext{}}} = CH_2-CH_2-CH_2$

$$\mathsf{D}.\,CH_3-CH_2-CH_2-CH_3 \,\,\,\mathrm{and}\,\,\,CH_3-CH_2-CH_2-Cl$$

Answer: B

63. Which of the following alcohols is the least soluble in water ?

A. Ethanol

B. 1-Propanol

C. 1-Butanol

D. 1-Pentanol

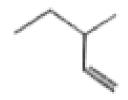
Answer: D

64. Which of the following alcohols is expected to have a lowest pK_a value

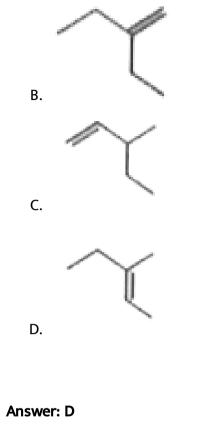
A. Ethanol

?

B. 1-propanol

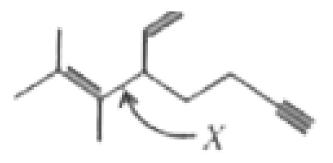

C. 2, 2, 2-trifluorethanol.

D. 2-chloroethanol


Answer: C

Watch Video Solution

65. Which of the following alkenes is the most stable ?

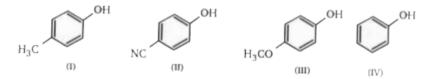


A.

66. Bond X is made by the overlap of which type of hybridized orbitals ?

A. sp and sp^3

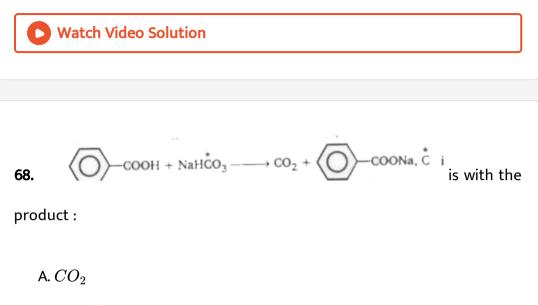
B. sp and sp^2

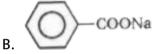

 $\mathsf{C}. sp^2$ and sp^3

D. none of these

Answer: C

67. Increasing order of acidic strength of given compounds is :

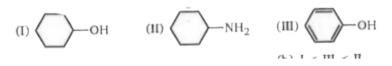

A. III < I < IV < II


 $\mathsf{B}.\,II < I < IV < III$

 $\mathsf{C}.\, I < III < IV < II$

 $\mathsf{D}.\, I < III < II < IV$

Answer: A


C. both

D. none of these

Answer: A

69. Rank in the order of increasing acidity.

- A. III < I < II
- $\mathsf{B}.\, I < III < II$
- $\mathsf{C}.\,III < II < I$
- D. II < I < III

Answer: D

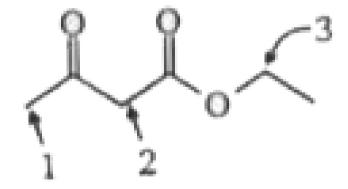
Watch Video Solution

70. Which compound has the highest value of pk_a ?

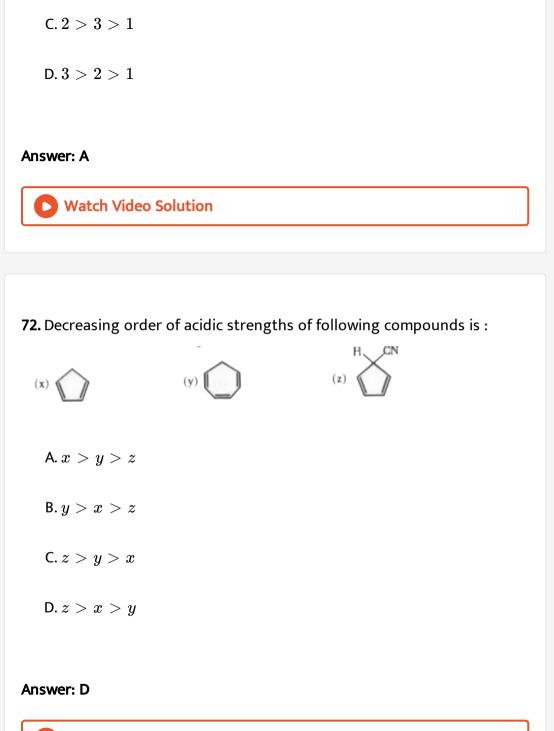
A. $Cl - CH_2 - CH_2 - COOH$

 $\mathsf{B.}\,CH_3-CH_2-COOH$

 $\begin{array}{c} \mathsf{C}.\,CH_3-CH-COOH \\ | \\ Cl \end{array}$

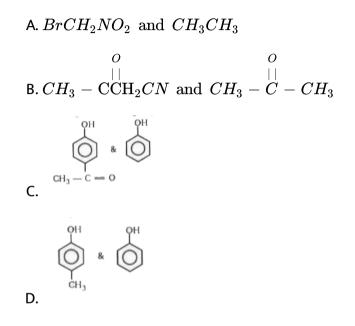

D.
$$CH_3 - \overset{Cl}{\overset{|}{\underset{l}{Cl}}} - COOH$$

Answer: B


71. Consider the hydrogen atoms attached to three different carbon atoms (labeled 1, 2 & 3).

Rank the attached hydrogen atoms in order from most acidic to least acidic.

A. 2>1>3


 $\mathsf{B}.\,1>2>3$

Watch Video Solution

73. Among the given pairs, in which pair second compound is more acidic

than first ?

Answer: D

74. Which of the underlined atoms in the molecules shown below have sp-hybridization ?

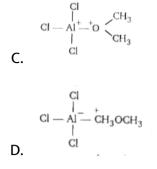
(u) $\underline{C}H_2CHCH_3$ (v) $CH_2\underline{C}$ CHCl (w) $CH_3\underline{C}H_2^+$ (x) $H-C\equiv C-H$

(y) $CH_3\underline{C}N$ (z) $(CH_3)_2C\underline{N}\mathrm{NH}_2$

A. A) x and z

B. B) x, y and z

C.C) u, w and x

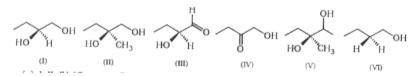

D. D) v ,x and y

Answer: D

Watch Video Solution

75. Which of the following, is the product of the reaction between $AlCl_3$ and CH_3OCH_3 ?

B. CI - AI - O⁺ CH₃ CH



Answer: A

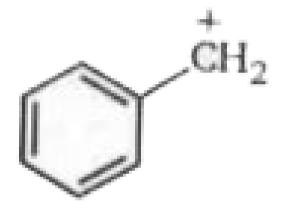
76. Which of the following compounds contain at least one secondary

alcohol?

A. I, II , IV , VI

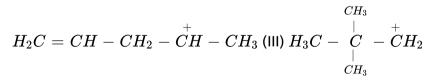
B.I,III

C. I , II , III ,V


D.I,III,V

Answer: D Watch Video Solution 77. Which of the following has the most negative heat of hydrogenation ? A. Β. C. D.

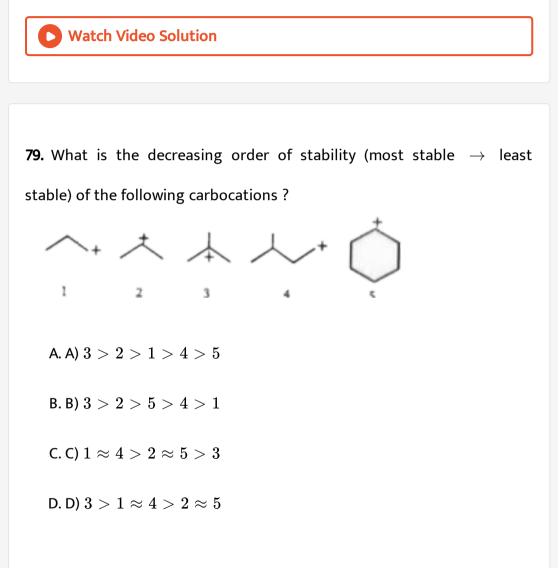
Answer: A



78. Which of the following options is the correct order of relative stabilities of cations I, II and III as written below (most stable first) ?

(I)

(II)


A. I > II > III

 ${\rm B.}\,II>III>I$

 $\mathsf{C}.\,III>I>II$

$\mathrm{D.}\,I > III > II$

Answer: A

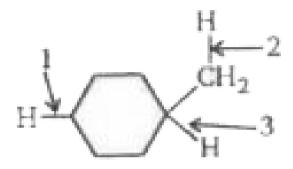
Answer: B

80.

hydrogen indicated by arrow will be easily removed as :

the

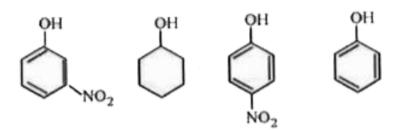
A. $H^{\,+}$


 $\mathsf{B}.\,H^{\,\Theta}$

$\mathsf{C}.\,H^{\,\cdot}$

D. $H^{\,-\,2}$

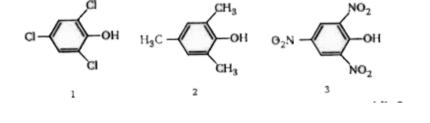
Answer: A


81. Rank the bond dissociation energies of the bonds indicated with the arrows. (from smallest to largest).

- A. A) 1 < 2 < 3
- B. B) 3 < 2 < 1
- $\mathsf{C}.\,\mathsf{C})2<3<1$
- D. D) 3 < 1 < 2

Answer: D

82. Rank the following compounds in order of decreasing acid strength (most acidic \rightarrow least acidic).


- A. 2 > 4 > 1 > 3
- ${\rm B.1}>3>4>2$
- ${\sf C.3}>1>2>4$
- ${\sf D}.\,3>1>4>2$

Answer: D

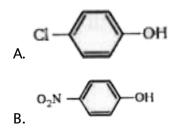
83. Rank the following compounds in order of increasing acidity (weakest

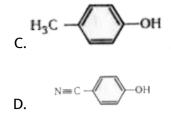
acid first).

A. 2 < 3 < 1

B. 3 < 1 < 2

 ${\sf C}.\,1<2<3$


 $\mathsf{D.}\, 2 < 1 < 3$


Answer: D

Watch Video Solution

84. Which of the following phenols has the largest pKa value (i.e., is least

acidic) ?

Answer: C

Watch Video Solution

85. Among the given sets, which represents the resonating structures ?

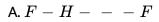
A.
$$H - C \equiv \overset{+}{N} - \overset{-}{O}:^{-}$$
 and $H - \overset{-}{O} - C \equiv N$:
B. $H - \overset{+}{O} = C\overset{-}{N}:^{-}$ and $H - \overset{-}{O} - C \equiv N$:
c. $H - C \equiv \overset{+}{N} - \overset{-}{O}:$ and $H - \overset{-}{C} - \overset{-}{N}:$
D. $H - \overset{-}{O} - C \equiv N:^{-}$ and $H - \overset{-}{N} = C = \overset{-}{O}:$

Answer: B

86. Identify each species in the following equilibrium according to the code:

SA = stronger acid , SB = stronger base , WA = weaker acid , WB = weaker base.

The pK_a of $(CH_3)_2NH$ is 36, the pK_a of CH_3OH is 15.2.


 $CH_3OH + (CH_3)_2NH \Leftrightarrow CH_3 - O^- + CH_3 - \overset{+}{NH} - CH_3 \ ert_H$

A. $\frac{1}{WA}$ $\frac{2}{WB}$ B. $\frac{1}{WB}$ $\frac{2}{WA}$ C. $\frac{1}{SA}$ $\frac{2}{SB}$ D. $\frac{1}{SB}$ $\frac{2}{SA}$

Answer: A

Watch Video Solution

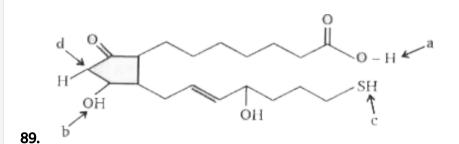
87. The hydrogen bonding is strongest in which one of the following set ?

- $\mathsf{B}.\,O-H-\,-\,S$
- C. S H - F
- $\mathsf{D}.\,F-H-\,-\,O$

Answer: A

88. Intermolecular hydrogen bonding is strongest in :

A. methylamine


B. phenol

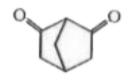
C. formaldehyde

D. methanol

Answer: B

Identify most acidic hydrogen in given compound.

A. a B. b C. c

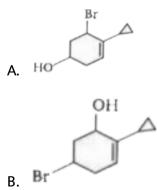

D. d

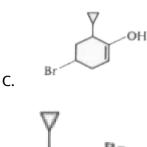
Answer: A

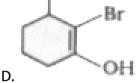
90. Which of the following compounds would you expect to be strongest

carbon acid ?

- $C. CH_2(CO_2Et)_2$
- D. $CH_3COCH_2COOC_2H_5$


Answer: D


A.


Β.

Watch Video Solution

91. 5-Bromo-2-cyclopropyl cyclohex-2-enol have correct structure is:

Answer: B

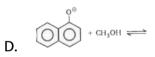
D Watch Video Solution

92. Rearrange the following in the increasing order of acidic strength.

(i) benzoic acid (ii) p-methoxybenzoic acid (iii) o -methyoxybenzoic acid

A. i < ii < iiiB. iii < i < iiC. ii < i < iiiD. iii < ii < i

Answer: C


93. In the following acid-base reaction, in which can backward reaction if

favoured?

 $\mathsf{B}.\,K\!H + EtOH \Leftrightarrow$

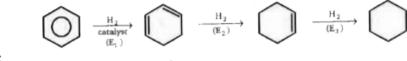
$$Me_3CO^{\ominus} + H_2O$$

C.

Answer: D

94. Which compound posses highest dipole moment ?

A. naphthalene


B. phenanthrene

C. anthracene

D. azulene

Answer: D

Watch Video Solution

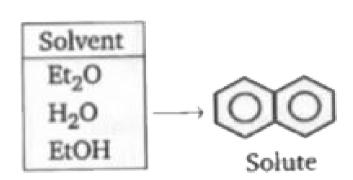
95.

(E = activation energy)

Relation between activation energies of above reactions is :

A. $E_2 > E_1 > E_3$

B. $E_3 > E_1 > E_2$


C. $E_3 > E_2 > E_1$

D. $E_1 > E_2 > E_3$

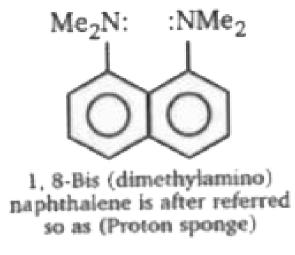
Answer: D Watch Video Solution

96. Rank the following solvents in decreasing order of ability to dissolve

given compound.

A. $\operatorname{Et}_2 O > H_2 O > \operatorname{EtOH}$

 $\mathsf{B}.\,H_2O>\mathrm{EtOH}>\mathrm{Et}_2O$


 $\mathsf{C}.\,H_2O>\mathrm{Et}_2O>\mathrm{Et}\mathrm{OH}$

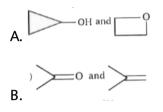
 $\mathsf{D}.\,\mathrm{Et}_2O>\mathrm{EtOH}>H_2O$

Answer: D

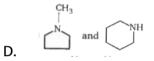
97.

Its basic strength is 10^{10} more than 1-dimethyl amino naphthalene. Reason for high basic strength is :

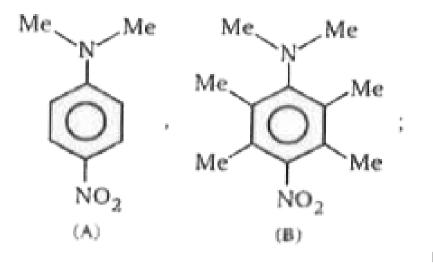
A. resonance


B. steric inhibitation of resonance

C. ortho effect


D. hyperconjugation

Answer:


98. In the given pair of compounds, in which pair second compound has higher boiling point than first compound ?

 $C.HO - CH_2 - CH_2 - OH$ and $CH_3 - CH_2 - CH_2 - OH$

Answer: D

99.

moments of given compound will be :

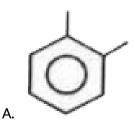
Answer: A

Watch Video Solution

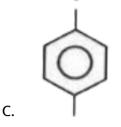
Dipole

100. Order of decreasing basic strengths of halides is :

A.
$$F^{\,-} > Cl^{\,-} > I^{\,-} > Br^{\,-}$$


B.
$$F^{\,-}>Cl^{\,-}>Br^{\,-}>I^{\,-}$$

- C. $I^{\,-} > Br^{\,-} > CI^{\,-} > F^{\,-}$
- D. $I^{\,-} > Cl^{\,-} > Br^{\,-} > F^{\,-}$


Answer:

Watch Video Solution

101. Among the xylenes, which is thermodynamically most stable ?

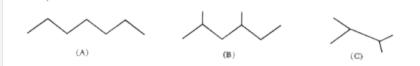
D. All are equally stable

Answer:

102. Heat of combustion of two isomer x and y are 17 kJ/mol and 12 kJ/mol respectively. From this information it may be concluded that :

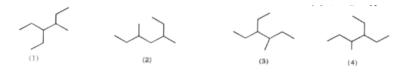
A. isomer x is 5 kJ/mol more stable

B. isomer y is 5 kJ/mol less stable


C. isomer y has 5 kJ/mol more potential energy

D. isomer x is 5 kJ/mol less stable

Answer: D



103. Rank the following substances in decreasing order of heat of combustion (most exothermic \rightarrow least exothermic)

- A. B > A > C
- $\mathsf{B}.\, A > B > C$
- $\mathsf{C}.\, C > A > B$
- $\mathsf{D}.\, C > B > A$

Answer: A

104.

Choose the statement that best describes given compounds.

A. 1, 3, 4 represent same compound

B. 1 and 3 are isomer of 2 and 4

C. 1,4 are isomer of 2 and 3

D. All the structure represent the same compound

Answer: A

Watch Video Solution

105. Decreasing order of acid strengths is :

$$Ph \mathop{-}_{(A)} OH, \quad Ph \mathop{-}_{(B)} CH_2 \mathop{-}OH, \quad Ph \mathop{-}_{(C)} CO_2 H, \quad Ph \mathop{-}_{(D)} CH_2 \mathop{-}_{(D)} N\overset{ au}{H}_3,$$

 $\mathsf{A}.\,B > A > C > D$

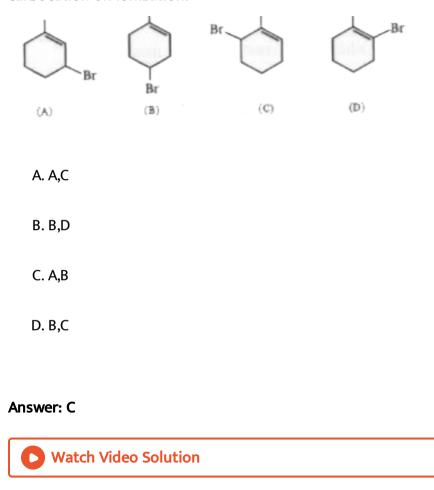
 $\operatorname{B.} C > A > B > D$

C. C > A > D > B

 $\mathsf{D}.\, C > B > A > D$

Answer: C

Watch Video Solution


106. Rank the following in decreasing order of basic strength is :

- (A) $CH_3-CH_2-C\equiv C^-$ (B) $CH_3-CH_2-S^-$
- (C) $CH_3 CH_2 CO_2^-$ (D) $CH_3 CH_2 O^-$
 - A. B > A > D > C
 - B. D > A > B > C
 - C.A > D > B > C
 - $\mathsf{D}.\, A > D > C > B$

Answer: C

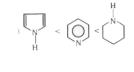
107. Among the given compound choose the two that yield same carbocation on ionization.

Oxalic acid pK_1 **108.** Malonic acid pK_2 Heptanedioic acid pK_3

where pK_1, pK_2, pK_3 are first ionization constants. Correct order is :

A. $pK_1 > pK_2 > pK_3$ B. $pK_1 < pK_2 < pK_3$ C. $pK_3 > pK_2 = pK_q$ D. $pK_3 > pK_1 > pK_2$

Answer: B

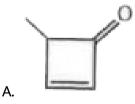

Watch Video Solution

109. In sets a - d, only one of the set is incorrect regarding basic strength.


Select it :

A.

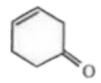
(a)
$$Ph - NH - Ph_1 < Ph - NH_2 < (strong base)$$



Answer: C

B.

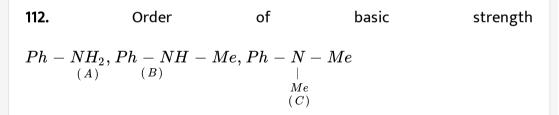
Watch Video Solution

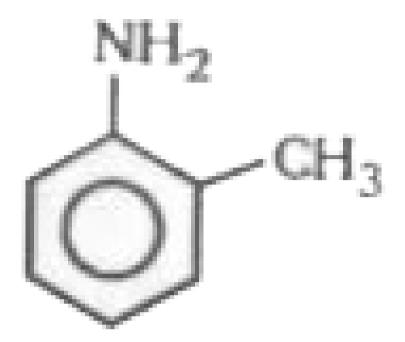

110. Dipole moment of which ketone is maximum ?

D.

C.

Answer: C


111. Correct order of basic strengths of given amines is :


A.
$$Me_2NH > MeNH_2 > Me_3N > NH_3$$
 (Protic solvent) $1^\circ_2 > 1^\circ_1 > 3^\circ_3$

B. $Et_2NH > Et_3H > Et_NH_2 > NH_3$ (Protic solvent) 2° 3° 1° 1° C. $Me_3N > Me_2NH > Me - NH_2 > NH_3$ (Gas phase)

D. All are correct

Answer: D

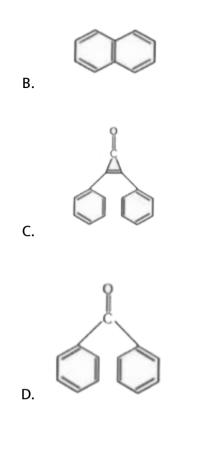
A. A > B > C > DB. B > A > C > DC. C > B > A > DD. C > B > D > A

Answer: C

113. Carbon-carbon double bond length will be maximum in which of the following compounds ?

A.
$$CH_3 - CH = CH_2$$

B. $CH_3 - CH = CH - CH_3$
C. $CH_3 - C = C - CH_3$
 $|_{CH_3} - C_{H_3} = C - CH_3$
D. $CH_2 = CH_2$


Answer: C

Watch Video Solution

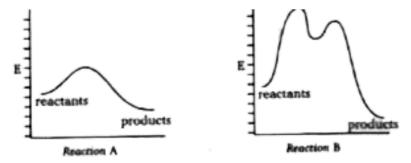
114. Which has maximum dipole moment?

A.

Answer: C

Watch Video Solution

115. (i) Et_3N


Compare the basic strengths of compounds given:

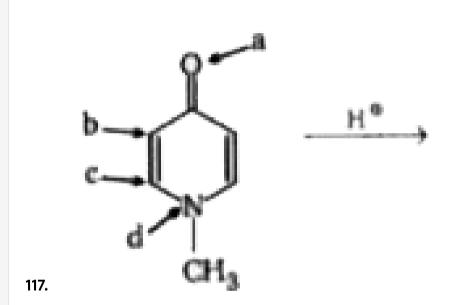
A.
$$(i) > (ii) > (iii)$$

B. $(ii) > (i) > (iii)$
C. $(ii) > (ii) > (i)$
D. $(iii) > (ii) > (i)$

Answer: C

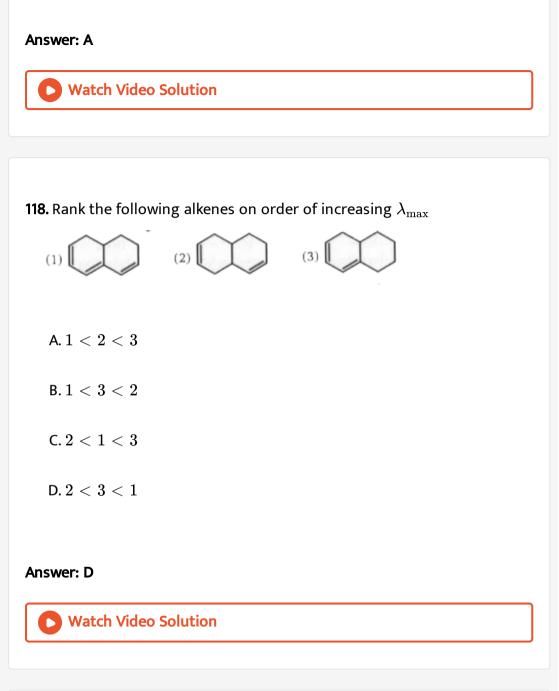
116. For the following two reactions, which statement is true ?

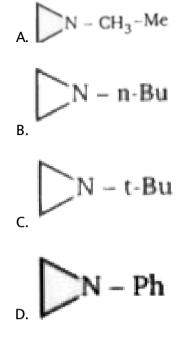
A. Reaction A is faster and less exergonic than B


B. Reaction B is faster and more exergonic than A

C. Reaction A is faster and less endergonic than B

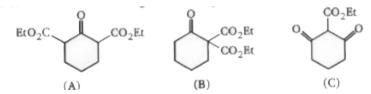
D. Reaction B is faster and more endergonic than A


Answer: A



Identify the site, where attack of $H^{\,+}\,$ is most favourable.

A. a B. b C. c D. d


119. Which of the following cyclic amine has lowest ΔG^* for inversion ?

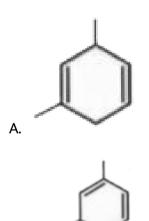
Answer: C

120. Rank in the order of increasing acidic strength:

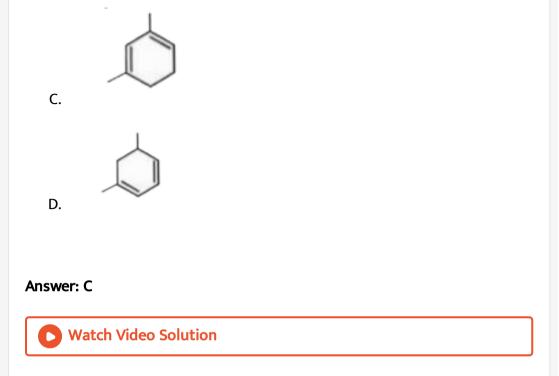
A. A < B < C

 $\mathsf{B}.\, A < C < B$

 $\mathsf{C}.\,B < A < C$


 $\mathsf{D}.\,B < C < A$

Answer: C


Watch Video Solution

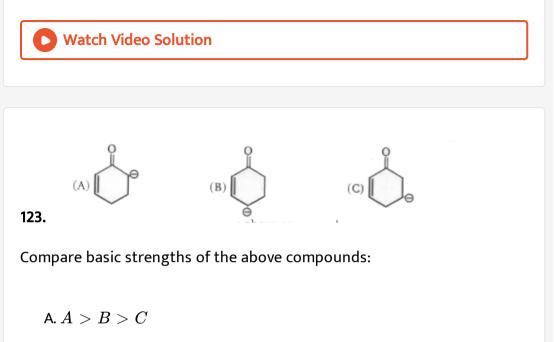
121. Which one of the following dienes would you expect to be the most

stable ?

Β.

122. Which metal catalyzed reaction would release the maximum amount

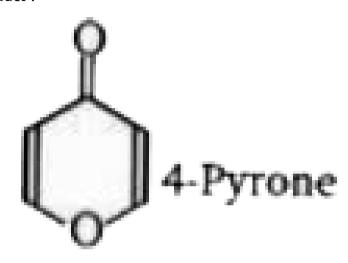
of heat per CH_2 unit ?

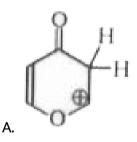

A. cyclopropane $+H_2
ightarrow$ propane

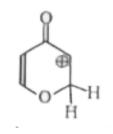
B. cyclobutane $+H_2
ightarrow$ butane

C. cyclopentane $+H_2
ightarrow$ pentane

D. cyclohexane $+H_2
ightarrow hexane$

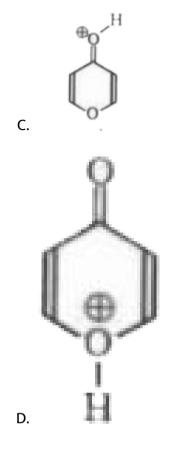

Answer: A



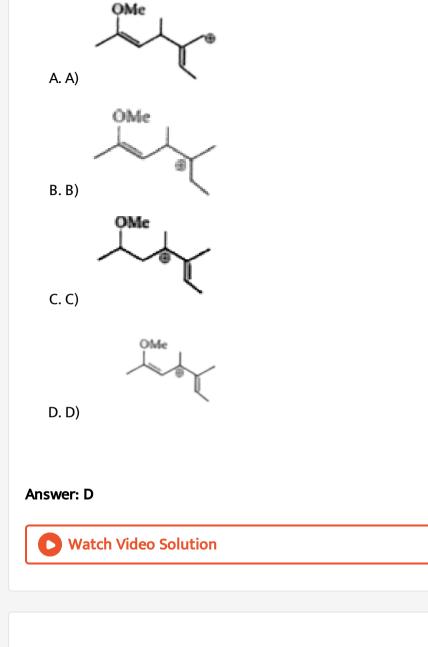

- $\operatorname{B.} B > A > C$
- $\mathsf{C}.\, C > A > B$
- $\mathsf{D}.\, C > B > A$

Answer: C

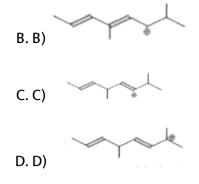
124. On reaction with acid, 4-pyrone gives a very stable cationic product. Which of the following structures shows the protonation site in that product ?



Β.


ь.

Answer: C


125. Which of the following is the most stabilized carbocation ?

126. Which carbocation is the most stable ?

T,

A. A)

Answer: B

127. Consider a positively charged C_2H_3 species in which the positively charged carbon is sp - hybridized, the uncharged carbon is sp^2 - hybridized and an empty p-orbital is perpendicular to the i system. What it the best description of this cation ?

A. vinyl

B. allenyl

C. alkyl

D. allyl

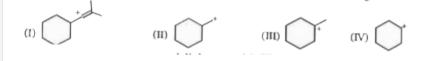
Answer: A

128. Which of the following reactions is not exothermic ?

A.
$$CH_3 - Cl + CH_3 - CH_2
ightarrow CH_4 + CH_3 - CH_2 - Cl$$

B.
$$CH_3-Cl+(CH_3)_3C-H
ightarrow CH_4+(CH_3)_3$$
– $C-Cl$

C.


 $CH_3 - Cl + CH_2 = CH - CH_3 \rightarrow CH_4 + CH_2 = CH - CH_2 -$

$$\mathsf{D.}\,CH_3-Cl+CH_2=CH_2\rightarrow CH_4+CH_2=CHCl$$

Answer: D

Watch Video Solution

129. List the following carbocations in order of decreasing stabilization energies.

A. II, III, I, IV

B. III, IV, II, I

C. III, IV, I, II

D. I, II, IV, III

Answer: B

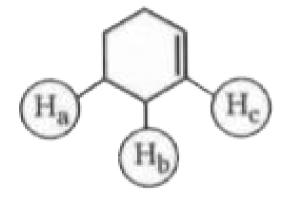
Watch Video Solution

130. For the following two acid-base reactions, which statement is true ?

$$\begin{array}{l} \text{(I)} CH_3CH_2^- + CH_3NH_2 \Leftrightarrow CH_3CH_3 + CH_3NH^- \\ \\ \text{(II)} F^- + H_2O \Leftrightarrow HF \\ pK_a=15.7 \Leftrightarrow HF \\ pK_a=3.2 \end{array}$$

A. I is favoured to the right, II is favoured to the left

B. I is favoured to the left, II is favoured to the right


C. I is favoured to the right, II is favoured to the right

D. I is favoured to the left, II is favoured to the left

Answer: A

131. Rank the hydrogen atoms (H_a, H_b, H_c) in the following molecules according to their acidic strengths

e - 10 - 10

A. a > b > c

 $\mathsf{B}.\, b > a > c$

 $\mathsf{C}.\,b>c>a$

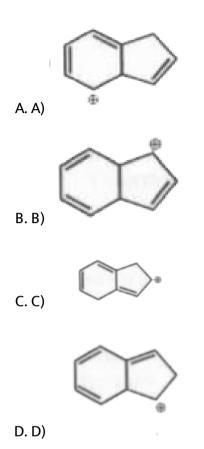
 $\mathsf{D}. a > c > b$

Answer: C

132. In which of the following reactions, backward reaction is favoured ?

A.

 $H-C\equiv H+Li+^-CH_2CH_3 \Leftrightarrow H-C\equiv C, \ ^\Theta Li^++H_3C-CH_3$

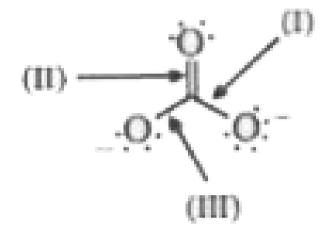

B. $F_{3C} \xrightarrow{O}_{OH} + \xrightarrow{O}_{OCH_2CH_3} \rightleftharpoons F_{3C} \xrightarrow{O}_{OC} + HOCH_2CH_3$

C.

 $CH_{3}CH_{2}\overset{+}{S}H_{2} + CH_{3}CH_{2}OH \Leftrightarrow CH_{3}CH_{2}SH + CH_{3}CH_{2}\overset{\oplus}{O} - H$

Answer: D

133. Which carbocation is the most stabilized ?

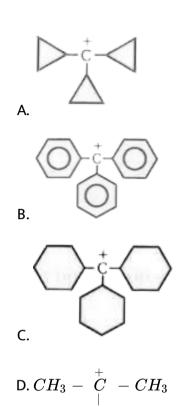


Answer: C

134. Taking into account of hybridization and resonance effects, rank the

following bonds in order of decreasing bond length.

A. I > II = III

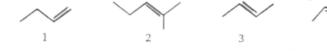

 $\mathsf{B}.\,II>III>I$

 $\mathsf{C}.\,I>III>II$

 $\mathsf{D}.\,II=III=I$

Answer: D

135. Which one among the following carbocations has the longest half-life



Answer: A

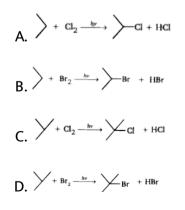
 CH_3

136. Rank the following alkenes in order of decreasing heats of hydrogenation (largest first)

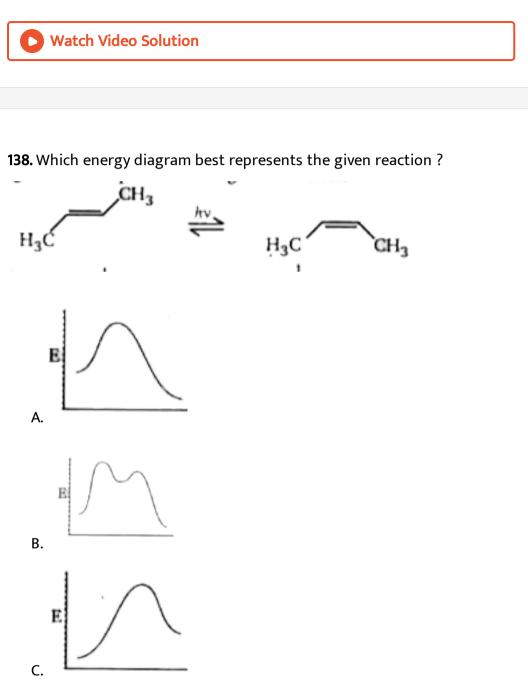
4

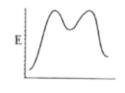
A. 2 > 3 > 4 > 1

 ${\sf B.2}>4>3>1$


 ${\sf C}.\,1>3>4>2$

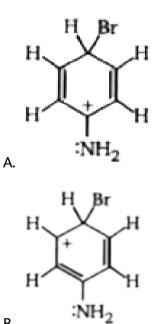
 ${\sf D}.\,1>4>3>2$


Answer: D

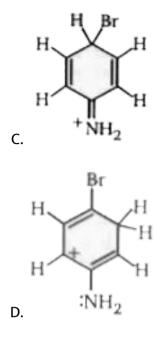

Watch Video Solution

137. Which of the following reactions is most exothermic?

Answer: C



D.


Answer: D

Watch Video Solution

139. Which one of the following is most stable ?

Β.

Answer: C

140. Which of the following is strongest acid ?

$$A. H - N^{+} - H$$

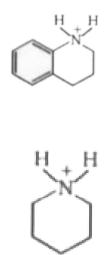
$$H$$

$$H$$

$$H$$

$$H$$

$$H$$

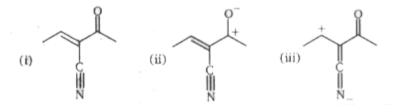

$$H$$

$$H$$

$$H$$

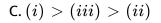
$$H$$

р.

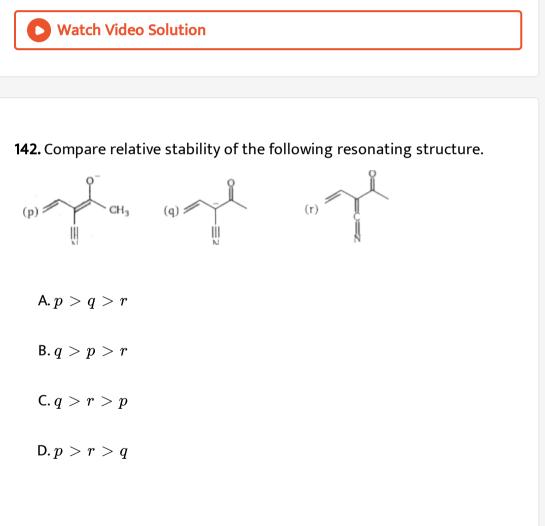

D.

C.

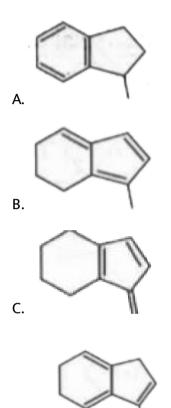
Answer: C



141. Compare relative stability of the following resonating structure.

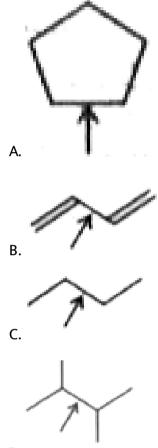

A.
$$(i) > (ii) > (iii)$$

 $\mathsf{B.}\left(ii\right)>\left(i\right)>\left(iii\right)$


$$\mathsf{D}.\left(ii
ight)>\left(iii
ight)>\left(i
ight)$$

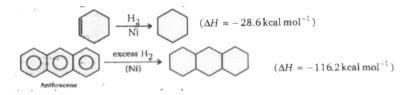
Answer: A

Answer: D


143. Which of the following isomeric hydrocarbons is most acidic ?

D.

Answer: B


144. Which of the following has the lowest barrier to rotation about the indicated bond ?

D.

Answer: C

145. Use the following data to answer the question below.

Calculate the resonance energy of anthracene:

A. A) 84 kcal/mol

B. B) 100 kcal/mol

C. C) 110 kcal/mol

D. D) 116 kcal/mol

Answer: A

Watch Video Solution

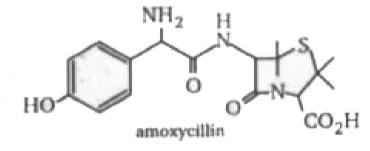
146. How many double bond equivalents does a compound of molecular

formula $C_6H_{12}O_6$ possess?

A. A) 0

B. B) 1

C. C) 2


D. D) 3

Answer: B

Watch Video Solution

147. How many double bond equivalents does amoxycillin (shown below)

possess ?

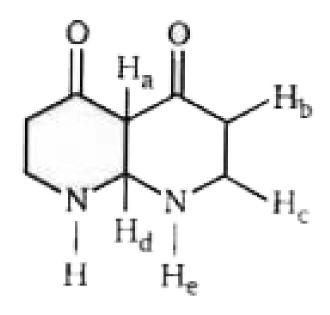
A. A) 5

B. B) 6

C. C) 7

Answer: D

148. What is the oxidation state of osmium in 7B and 7C, respectively?

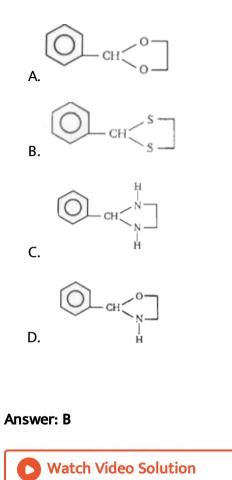

A. A) 6,8

B. B) 8,6

C. C) 6,6

D. D) 8,8

Answer: B


Identify most acidic hydrogen present in the above compound:

A. a B. b C. c D. d

149.

Answer: A

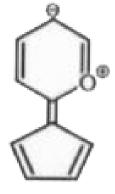
150. Which of the following compounds has most acidic hydrogen ?

151. Acetic acid, (CH_3COOH) , has a pKa, of 4.8. Ethanol (CH_3CH_2OH) , has a pK_a of 16.0. What are the major species present, when acetic acid and ethanol are added to water and the pH is adjusted to 7.0 ?

A. CH_3CO_2H and CH_3CO_2OH

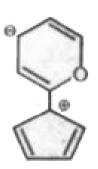
 $\mathsf{B.}\, CH_3CH_2O^- \ \text{ and } \ CH_3CO_2OH$

C. CH_3CO_2H and $CH_3CH_2O^-$


 $\mathsf{D.}\, CH_3CO_2^- \ \text{and} \ CH_3CH_2OH$

Answer: D

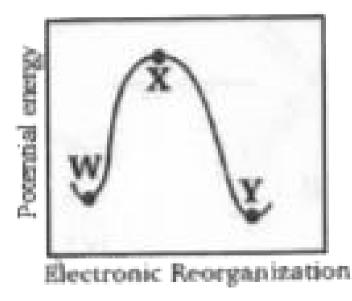
152.


The most stable canonical structure of given molecule is:

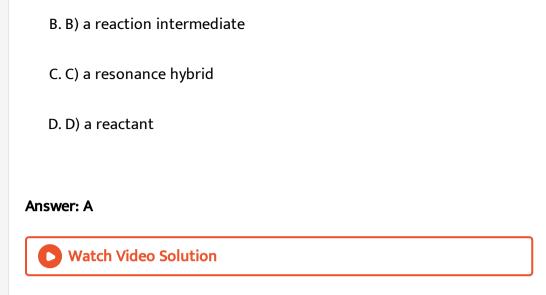
A.

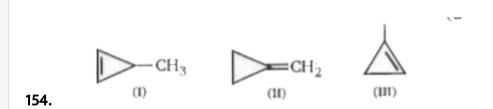
Β.

C.



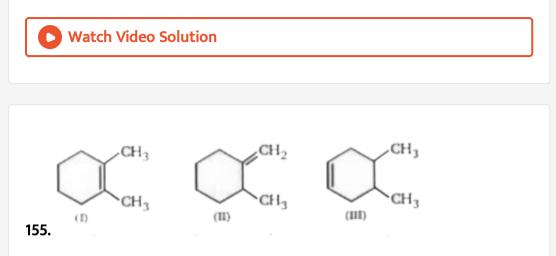
D.


Answer: B


Watch Video Solution

153. In the potential energy diagram to the right, the point X represents :

A. A) a transition state



Which of the following orders is correct for heat of hydrogenation of these compounds ?

A. A) I > III > IIB. B) III > II > IC. C) III > I > IID. D) II > I > III

Answer: A

Which of the following orders is correct for heat of hydrogenation of these compounds ?

A. I > II > III

 $\mathsf{B}.\,III>II>I$

 $\mathsf{C}.\,II>III>I$

 $\mathsf{D}.\,III>I>II$

Answer: C

156.
$$CH_2 = O \leftrightarrow {}^{\oplus}CH_2 - O^{\Theta} \leftrightarrow {}^{\Theta}CH_2 - O^{\oplus}_{(III)}$$

Which of these structures is practically not a valid canonical structure for

formaldehyde ?

A. A) I

B. B) II

C. C) III

D. D) None of these

Answer: C

Watch Video Solution

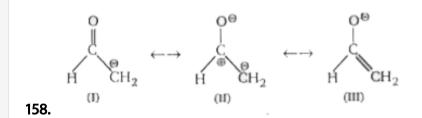
157.

$$CH_2=CH-CH_{(I)}=CH-{}^\oplus NH_3, \qquad {}^\oplus CH_2-CH=CH-{}^\Theta CH-{}^\Theta CH-{}^\Theta CH$$

$${}^\oplus CH_2 - CH = {CH \atop {(III)}} - CH = NH_3$$

Which of these structures is not a valid canonical structure ?

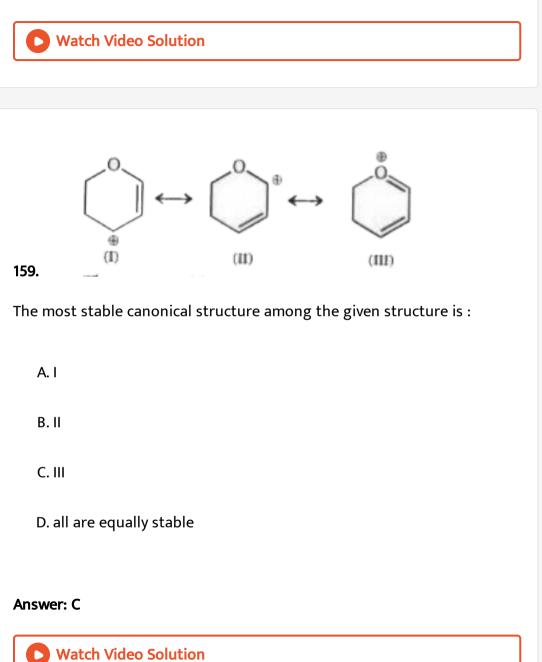
A. A) I


B.B) II

C. C) III

D. D) none of these

Answer: C


Watch Video Solution

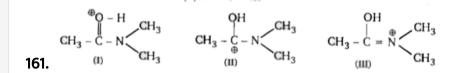
The correct order of stability for the given canonical structures is :

A. A) I > III > IIB. B) III > I > IIC. C) II > III > ID. D) II > I > III

Answer: B

For the given compounds the correct order of resonance energy is :

A. III > I > II


 $\mathsf{B}.\,II>I>III$

 $\mathsf{C}.\,I>II>III$

 $\mathsf{D}.\,III>II>I$

Answer: C

Watch Video Solution

The correct stability order of the given canonical structures is :

A. A)I > II > III

B. B) III > I > II

C. C) I > III > II

D. D) II > III > I

Answer: B

162.

In the above compound, how many sites are available for the attack of CH_3O^- ?

A. 1

B. 2

C. 3

D. 4

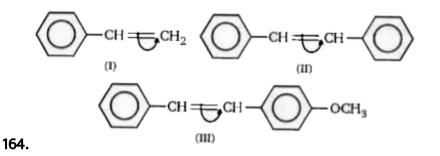
Answer: C

Watch Video Solution

$$CH_2 \bigoplus CH_2 CH_3 O - CH \bigoplus CH_2 CH_3 O - CH \bigoplus CH_2 CH_3 O - CH \bigoplus CH - C - OEt$$
(I)
(II)
(III)

Which of the following orders of rotation barrier about the C = C bond, as

indicated, is correct?

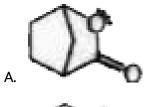

A. I > II > III

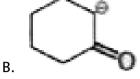
 ${\rm B.}\,III>II>I$

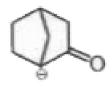
 $\mathsf{C}.\,III>I>II$

 $\mathsf{D}.\,II>I>III$

Answer: A


Which of the following orders of rotation barrier about the C=C bond, as indicated, is correct?


A. I > II > IIIB. III > II > IC. III > I > IID. II > I > III


Answer: A

Watch Video Solution

165. Which of the following compound is not resonance stabilized ?

C.

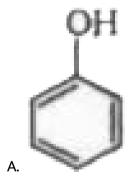
D.

Answer: C

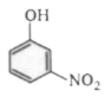
166. Homologous compound have same:

A. General formula

B. Emperical formula


C. Structural formula

D. Molecular formula


Answer: A

Watch Video Solution


167. Most acidic is:

C.

D.

Answer: D

168. Which of the following substituents will decrease the acidic strength

of phenol?

A. $-NO_2$

 $\mathsf{B.}-CN$

 $C. - CH_3$

 $\mathsf{D.}-CHO$

Answer: C

Watch Video Solution

169. Which of the following structures possesses a cross-conjugated system?

A.
$$CH_2 = CH - CH = CH - CH_2$$

B. $CH_2 = CH - CH_2 = CH_2$
 CH_2CH_3
C. $CH_2 = CH - CH - CH = CH_2$
 $CH = CH_2$
D. $CH_2 = CH - C = CH_2$
 $CH = CH_2$

Answer: D

170. Examine the following resonating structures of formic acid for their individual stability and then answer the question given below.

$$H - C_{I}^{O} - O_{I}^{O^{-}} = O_{I}^{O^{-}} + O_{I}^{O^{-}} + O_{I}^{O^{+}} + O_{I}^{O^{+}} = O_{I}^{O^{+}} + O_{I}^{O^{+}$$

A. A) II > I > III > IV

B. B) I > II > III > IV

C. C) IV > III > I > II

D. D) IV > III > I > II

Answer: B

Watch Video Solution

171. Which of the following is not resonating structure of each other?

A.
$$CH_3 - N = C = S$$
 and $CH_3 - S - C \equiv N$

B.
$$CH_3 - \overset{+}{C} = O$$
 and $CH_3 - C \equiv \overset{+}{O}$
C. $CH_3 - \overset{O}{\overset{-}{C}} - OH$ and $CH_3 - \overset{O}{\overset{-}{C}} = \overset{+}{O} - H$
D. $CH_2 = CH - C \equiv N$ and $\overset{+}{CH_2} - CH = C = N^-$

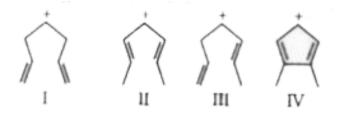
Answer: A

Watch Video Solution

172. In the molecule $CH_3C\equiv ext{C-CH}=CH_2$, the maximum number of

carbon atoms arranged linearly is

A. 2

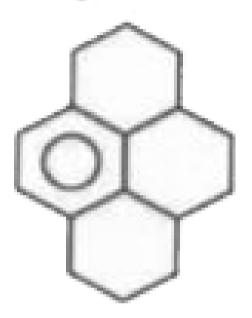

B. 3

C. 4

D. 5

Answer: C

173. The stability order of the following carbocations is:



A. II > IV > III > I

- $\mathsf{B}.\,IV>II>III>I$
- $\mathsf{C}.\,II>III>I>IV$
- $\mathsf{D}.\, I > III > II > IV$

Answer: C

174. Total number of oc-hydrogen in given compound is:

A. A) 4

B. B) 5

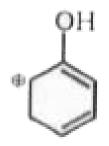
C. C) 6

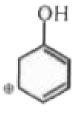
D. D) 7

Answer: C

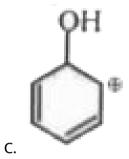
175. In which pair second ion is more stable than first?

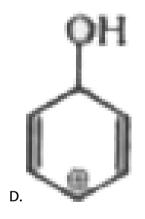
A. A) (i) and (ii)


- B. B) (ii) and (iii)
- C. C) (ii) and (iv)
- D. D) (iii) and (iv)


Answer: B

A.


Watch Video Solution

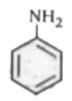

176. Which one is the most stable cation in the following ?

Β.

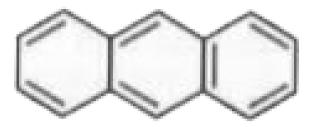
Answer: B

Watch Video Solution

177. The most reactive amine towards dilute hydrochloric acid is _____


A. A)

B. B)


C. C)

D. D)

Answer: C

178. How many resortance structures are there for anthracene

A. A) 6

B. B) 5

C. C) 4

D. D) 2

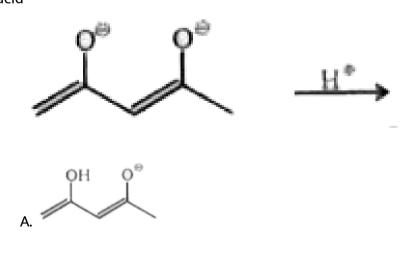
Answer: C

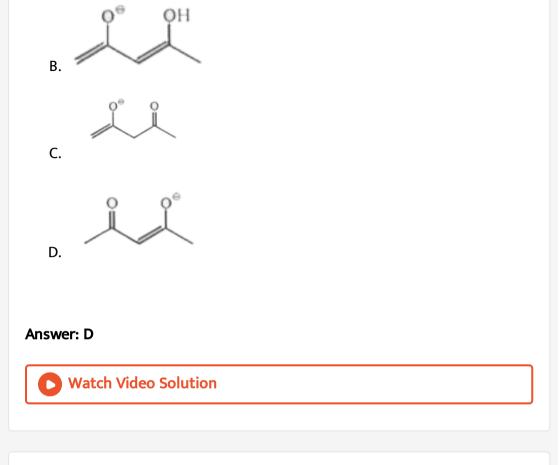
179. Which base is strong enough to convert $(CH_3)_3COH$ into $(CH_3)_3$

CONain a reaction that goes to completion ?

A. A) $NaNH_2$

B. B) CH_3CH_2Na


C. C) NaOH


D. D) More than one of the above

Answer: D

Watch Video Solution


180. Based upon an understanding of product stability, predict the product formed when the following dianion reacts with one equivalent of acid

181. Rank the following alkyl radicals in order of increasing stability (least

<< < most).

A. A) 4 < 2 < 1 < 3

B. B) 3 < 1 < 2 < 4

C. C) 1 < 3 < 4 < 2

D. D) 2 < 4 < 3 < 1

Answer: C

Watch Video Solution

182. Among the given cations, the most stable carbonium ion is?

A. A) sec-butyl

B. C) tert-butyl

C.C) n-butyl

D. D) None of these

Answer: B

183. Cyclohexadiene contains ___vinylic and ____ allylic hydrogen atoms ?

A. A) 2 and 2 respectively

B. B) 4 and 4 respectively

C. C) 2 and 4 respectively

D. D) 4 and 2 respectively

Answer: B

184. The dipole moments of halo compounds are in the order

A. $CHCl_3 > CCl_4 > CHCl_2 > cis - CHCI = CHCI$

 $\mathsf{B.\,cis} > CHCl = CHCl > CHCl_3 > CH_2Cl > \mathrm{CCl}_4$

 $\mathsf{C.} \operatorname{cis} - CHCI = CHCI > CH_2Cl_2 > CHCl_3 > \ \mathsf{CCI}$

 $\mathsf{D}. CHCl_3 > CHCl_2 > \operatorname{cis} - CHCl = CHCl > \mathrm{CCl}_4$

Answer: C

Watch Video Solution

185. The pka value in H_2O of picric acid, acetic acid and phenol are in the order :

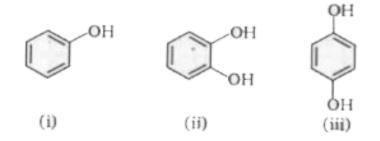
A. A) Picric acid 0.4, acetic acid 4.75, phenol 10.0

B. B) Acetic acid 0.4, picric acid 4.75, phenol 10.0

C. C) Picric acid 0.4 phenol 4.75, acetic acid 10.0

D. D) Phenol 0.4, acetic acid 4.75 picric acid 10.0

Answer: A Watch Video Solution 186. The preferred sites of protonation in the following compounds are: CH3-NHCH3 H_2 (i) 10 A. 1 and 3

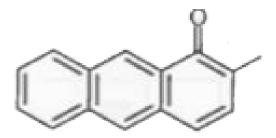

B. 2 and 4

C. 1 and 4

D. 2 and 3

Answer: A

187. Among i-iii


the boiling point follows the order

A.
$$(ii) < (i) < (iii)$$

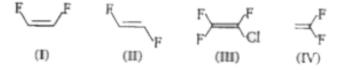
B. $(iii) < (ii) < (i)$
C. $(i) < (ii) < (iii)$
D. $(ii) < (iii) < (i)$

Answer: A

188. The number of C-Csigma bonds in the compound

A. 16

B. 14


C. 18

D. 11

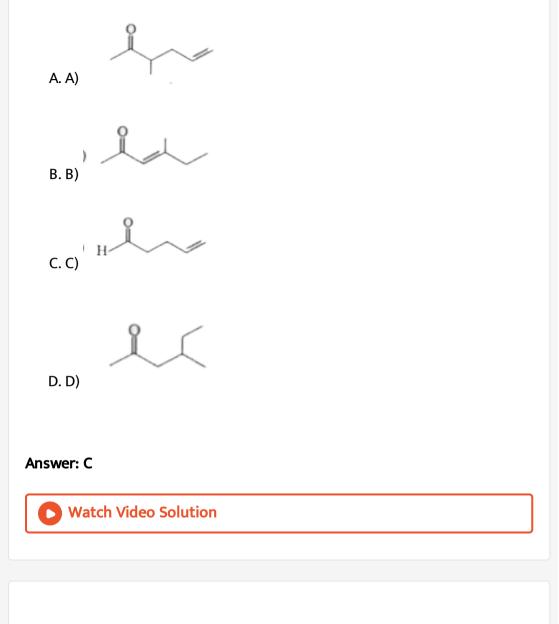
Answer: B

189. The correct order of dipole moment for the following molecules is

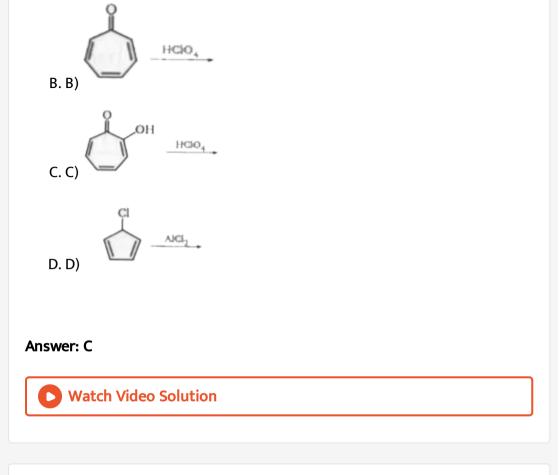
A. A) IV > I > III > II

B. B) I > IV > III > II

C. C) III > I > II > IV

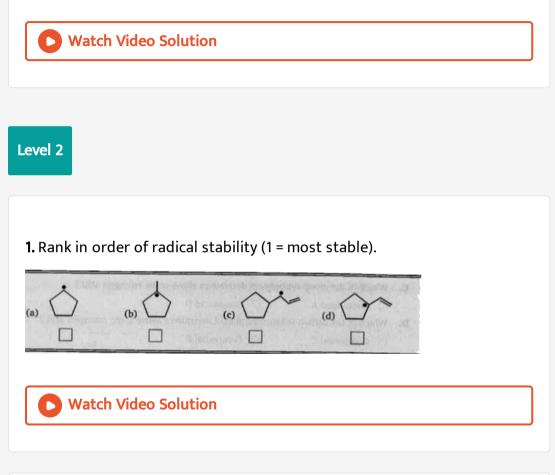

D. D) II > III > IV > I

Answer: B


190. Curved arrows are used in Organic Chemistry to show the movement of electrons in the mechanism of a reaction. The correct product of the following reaction is

191. Which of the following will form carbocation most readily?

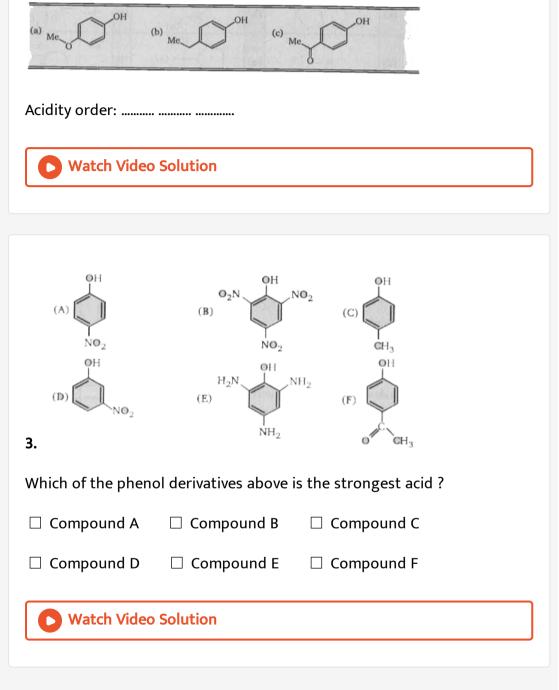
HCIO₄ A. A)

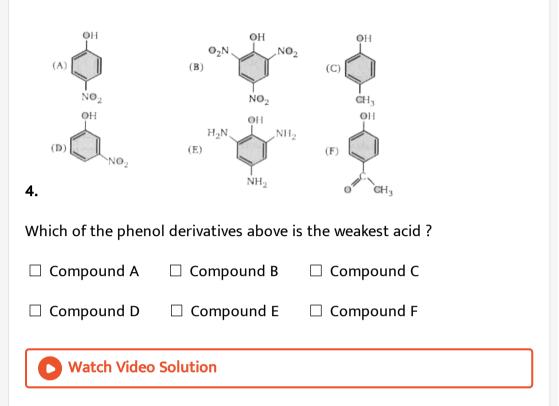


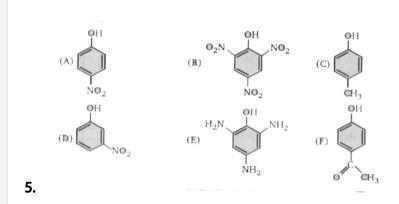
192. Observed heat of hydrogenation for cyclohexa-1,4-diene and cyclo hexa-1,3-diene is x & y kcal/mol respectively, calculate the resonance energy of cyclohexa-1,3-diene :

A. A)
$$\frac{3x}{2} - y$$

B. B) $\frac{2x}{2} - y$
C. C) $\frac{3y}{2} - y$


D. D)
$$rac{2y}{2}-x$$

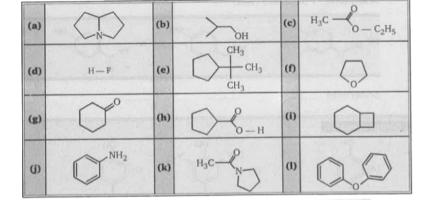

Answer: B



2. Predict the acidity order for the three phenols shown below :

Acidity order : 1 (most) to 3 (least)

Which of the mono-nitrophenol derivatives above is the strongest acid ?


 $\hfill\square$ Compound A $\hfill\square$ Compound D

watch video Solution
(A) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
$(\mathbf{D}) \underbrace{\mathbf{N}}_{\mathbf{N}} \underbrace{\mathbf{N}} \underbrace{\mathbf{N}} \underbrace{\mathbf{N}} \underbrace{\mathbf{N}} \underbrace{\mathbf{N}} \underbrace{\mathbf{N}} \underbrace{\mathbf{N}} \underbrace$
6. NH ₂ O ^C CH ₃
Which of the carbon-substituted phenol derivatives above is the
strongest acid ?
Compound C Compound F

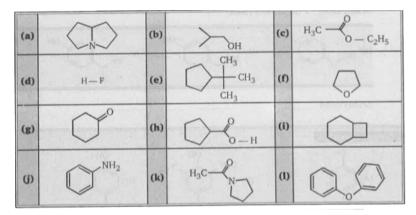
7. The following questions refer to the twelve compounds given below.

You may enter as many as six choices in each answer box.

Which compound may serve only as H-bond acceptors?

Watch Video Solution	

8. The following questions refer to the twelve compounds given below.


H₃C (c) (a) (b) C₂H₅ OH CH₃ CH₃ (f) (e) H-F (d) CH₃ .0 (i) (h) (g) - H NH2 H₃C (1) (k) (j)

You may enter as many as six choices in each answer box.

Which may serve both as H-bond donors and acceptors?


Watch Video Solution

9. The following questions refer to the twelve compounds given below.

You may enter as many as six choices in each answer box.

Which compounds will not participate in H-bonding ?

10. Consider the following compounds and answer A and B.

Which of the compounds is the strongest Bronsted acid ?

B. II

C. III

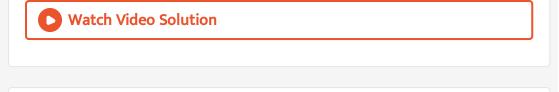
D. IV

Answer: D

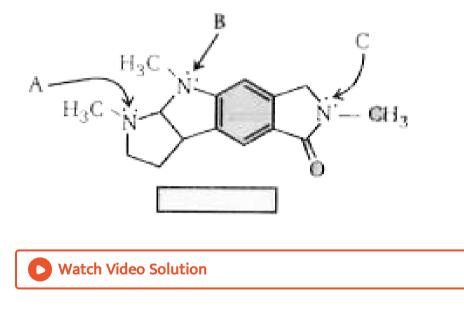
Watch Video Solution

11. Consider the following compounds and answer A and B.

Which of the compounds is the strongest Lewis base ?

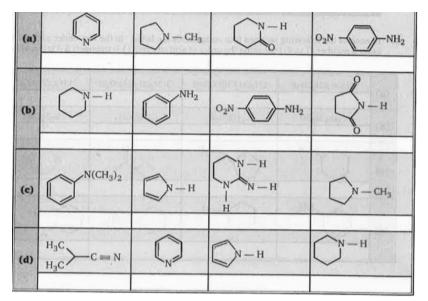

A. I

B. II


C. III

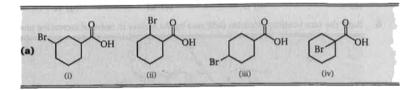
D. IV

Answer: A

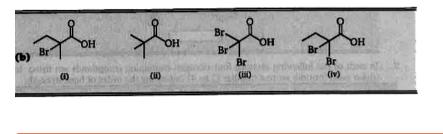


12. Rank the non-bonding electrons indicated by the arrows in order of increasing energy.

13. In each of the following sections four nitrogen containing compounds are listed. In the box under each formula write a number (1 to 4)


indicating the order of base strength.

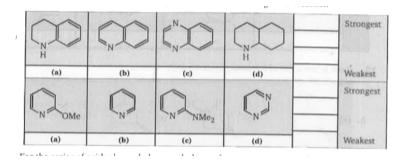
Watch Video Solution


14. For the two sets of acids shown below, rank their acidity most acidic to

least acidic.

15. For the two sets of acids shown below, rank their acidity most acidic to

least acidic.

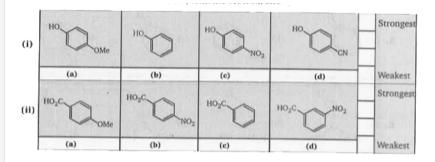

16. In each of the following sections four compounds are listed. In the box under each formula enter a number (1 to 4) indicating the order of acid strength (1 is strongest & 4 is weakest).

(a)	CH3CH2CH2CO2H	CH3CH2CHBrCO2H	CICH2CH2CH2CO2H	CH3CCl2CO2H
(b)	C6H5CH2OH	C ₆ H ₅ CO ₂ H	C ₆ H ₅ OCH ₃	C ₆ H ₅ OH
(c)	ОЧ	CO ₂ H	×	\sim
(d)	NH2	Ом-н	○ N − CH ₃	С М-н

Watch Video Solution

17. In the two questions below, you are asked to rank the relative strengths of illustrated acids and bases. Use your knowledge of resonance and inductive to answer this.

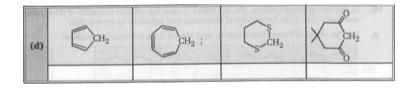
For the series of bases shown below, rank the set from strongest to weakest.

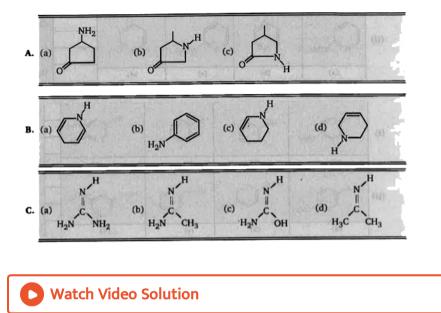


Watch Video Solution

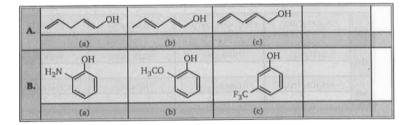
18. In the two questions below, you are asked to rank the relative strengths of illustrated acids and bases. Use your knowledge of resonance and inductive to answer this.

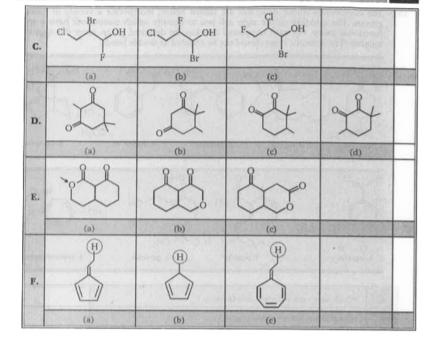
For the series of acids shown below, rank the set from strongest to


weakest.

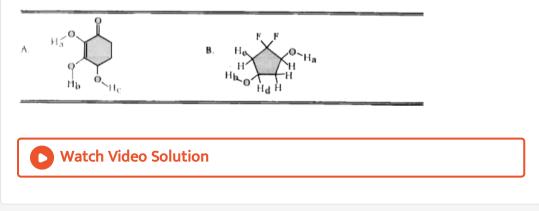

Watch Video Solution

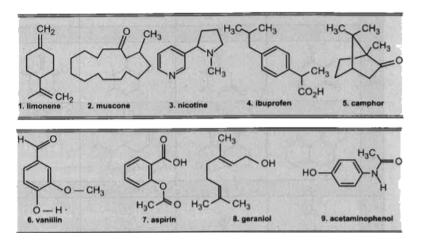
19. In each of the following sections four compounds are listed.(Decreasing order of acidic strength, 1 is strongest & 4 is weakest).


(a)	CH2(CO2C2H5)2	CH3COCH2CO2C2H5	(CH ₃ CO) ₂ CH ₂	RC == CH
(b)	RCH2NO2	RSO ₂ CH ₃	(C ₆ H ₅) ₃ CH	RCOCH ₃
(c)	$CH_2(C == N)_2$	CH ₂ (NO ₂) ₂	HC == N	RCH2CO2C2H5



20. Rank in the order of increasing basic strength.

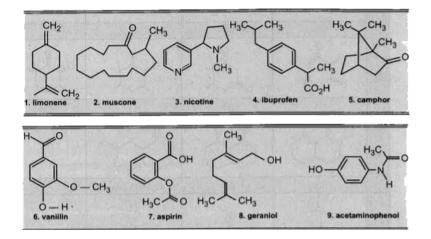

21. Compare acidic strength of the following (Write your answer in box).



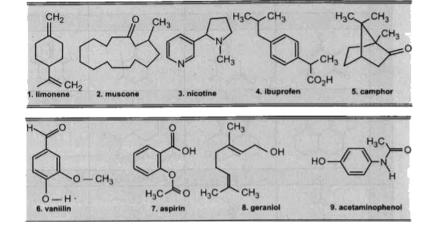
Watch Video Solution

22. Arrange the hydrogens in increasing order of their acidic strengths.

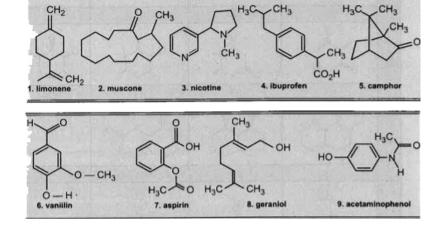
23. The compounds whose structures are shown below, incorporate a variety of functional groups. The question on the right ask you to identify which compounds have a specific functional group. For each compound that has the designed group, enter the appropriate number. The aromatic rings should not be counted as double bonds.



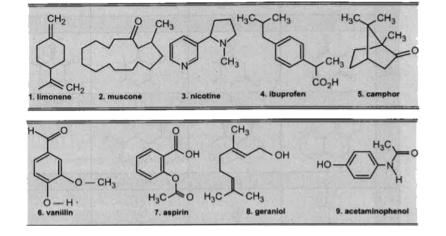
Which have carbon-carbon double bonds ?

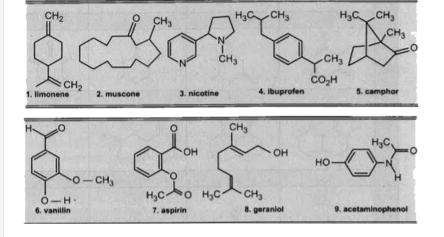

24. The compounds whose structures are shown below, incorporate a variety of functional groups. The question on the right ask you to identify which compounds have a specific functional group. For each compound

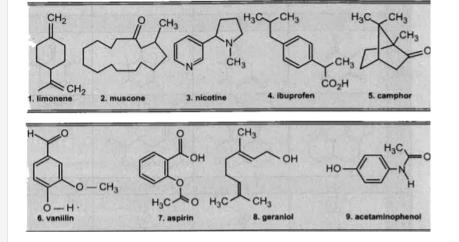
that has the designed group, enter the appropriate number. The aromatic rings should not be counted as double bonds.

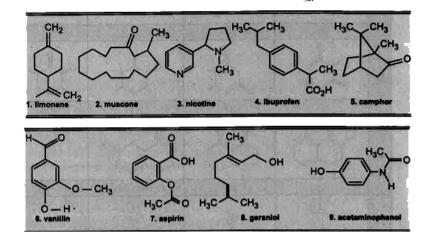

Which have a ketone carbonyl group ?

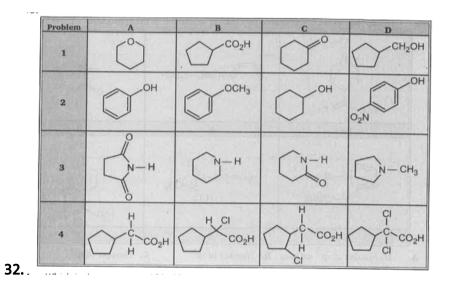
Which have an aldehyde carbonyl group?


Which have aromatic rings ?


Which have a hydroxy group ?

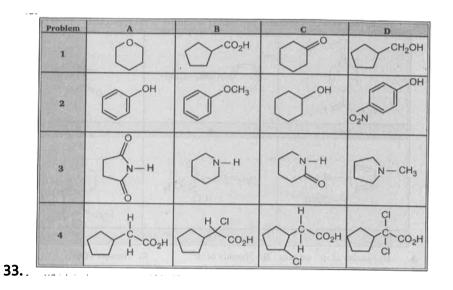

Which have ether groups ?


Which have an ester group?


Which have an amide group?

Which have a carboxylic acid group ?

Watch Video Solution



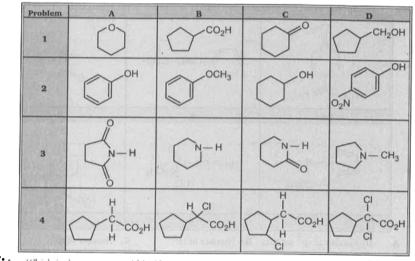
Which is the strongest acid in 1?

A. A	
B. B	
C. C	
D. D	

Answer: B

Watch Video Solution

Which is weakest acid in 1?


B. B

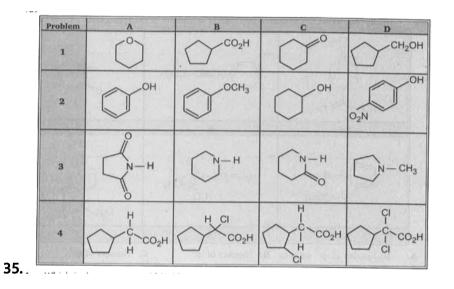
C. C

D. D

Answer: A

34.

Which is the strongest acid in 2?


B.B

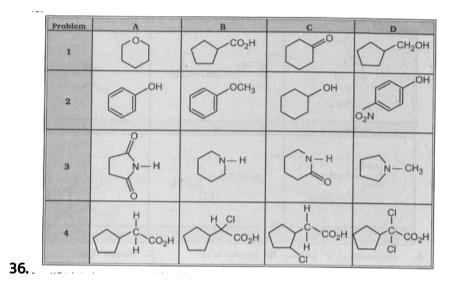
C. C

D. D

Answer: D

Watch Video Solution

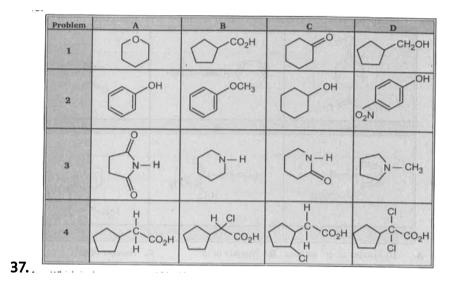
Which is weakest acid in 2?


A. A

В. В

C. C

Answer: B

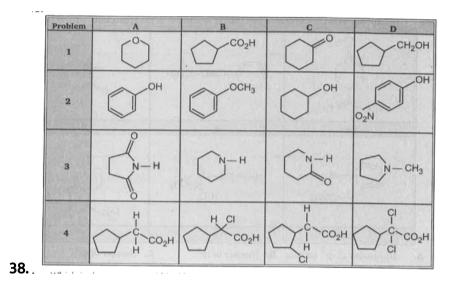


Which is the strongest acid in 4 ?

A. A B. B C. C

Answer: A

Which is weakest acid in 4?

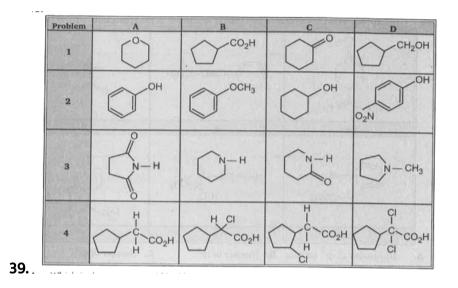

A. A

В. В

C. C

Answer: D

Which is the strongest acid in 4?


A. A

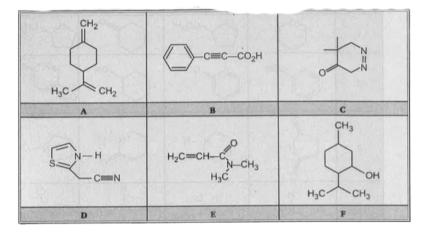
B. B

C. C

Answer: D

Which is weakest acid in 4?

A. A


В. В

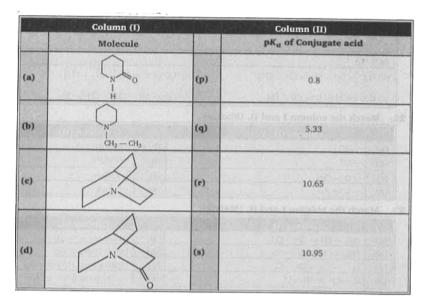
C. C

Answer: A

40. For each of the six structural formulae (A through F), shown below, five questions are posed. The answer to each is a number that should be entered in the appropriate answer box.

A	(i) Number of sp^3 carbons:	B.	Number of sp^3
			carbons:
	(ii) Number of sp^2 carbons:		Number of sp^2 carbons:
	(iii) Number of sp carbons:		Number of sp carbons:
	(iv)Number of carbon - carbon		Number of carbon - carbon
	$\sigma-\mathrm{bonds}$.		σ – bonds:
	$({\rm v}) {\rm Number \ of} \pi - {\rm bonds \ to}$		Number of π – bonds to
	carbon:		carbon:
D	(i) Number of sp^3 carbons:	E.	Number of sp^3
			carbons:
	(ii) Number of sp^2 carbons:		Number of sp^2 carbons:
			carbons:
	(iii) Number of sp carbons:		Number of sp carbons:
			•••••
	(iv)Number of carbon - carbon		Number of carbon - carbon
	$\sigma-\mathrm{bonds}{:}$		$\sigma-\mathrm{bonds}$
	$({ m v}){ m Number} { m of} \pi - { m bonds} { m to}$		Number of π – bonds to
	carbon:		carbon:

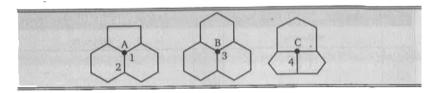
C.


F.

Watch Video Solution

41. Match the column (I) and (II). (Matrix)

	Column (1)	olumn (I) Column (II)	
	Molecule		Property
(a)		(p)	cis-compound
Sugar and		(q)	trans-compound
(c)	\square	(r)	Highest heat of combustion
(d)	\bigcirc	(5)	lowest heat of combustion


Watch Video Solution

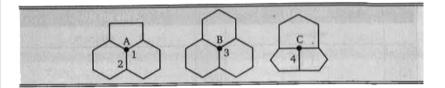
42. Match the column (I) and (II).

Watch Video Solution

43. The junctures centred on atoms A, B and C on the given structure.

Which juncture has the greatest deviation from planarity ?

B.B


C. C

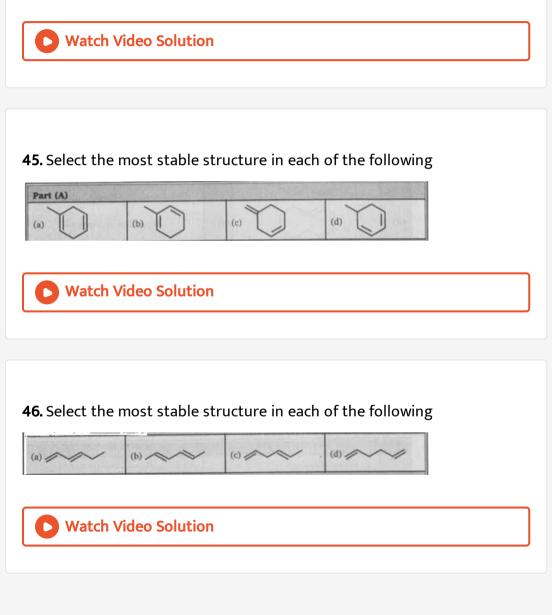
D. Cannot be predicted

Answer: C

Watch Video Solution

44. The junctures centred on atoms A, B and C on the given structure.

Of the carbon-carbon bonds, (shown above) numbered from 1 to 4, which


represent the most favourable site for H_2 addition ?

A. 1

B. 2

C. 3

Answer: D

47. Select the most stable structure in each of the following

(a) $H_2C = CH - CH = CH - CH_3$	(b) $H_2C = C = CH - CH_2 - CH_3$
(c) $H_3C - CH = C = CH - CH_3$	$(\mathbf{d}) \operatorname{H}_2 C = \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH} = \operatorname{CH}_2$

A.
$$H_2C = CH - CH = CH - CH_3$$

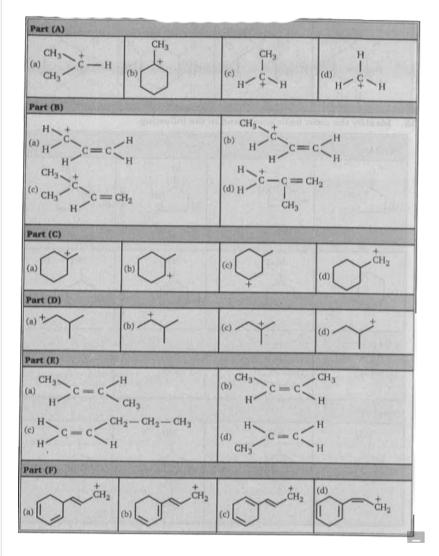
- B. $H_2C = C = CH CH_2 CH_3$
- $\mathsf{C}.\,H_3C-CH=C=CH-CH_3$
- D. $H_2C = CH CH_2 CH = CH_2$

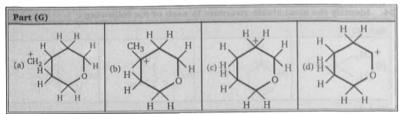
Answer: A

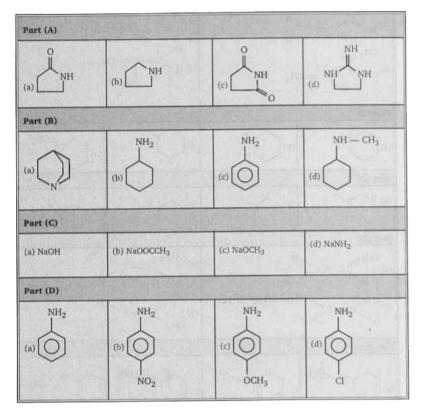
Watch Video Solution

48. Match the column I and II. (Matrix)

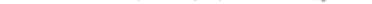
	Column (I)		Column (II)	
(a)	-NO2	(p)	- m effect	
(b)	-0-	(q)	+ m effect	
(c)	-0-CH3	(r)	+ I effect	
(d)	-C = N	(s)	-I effect	

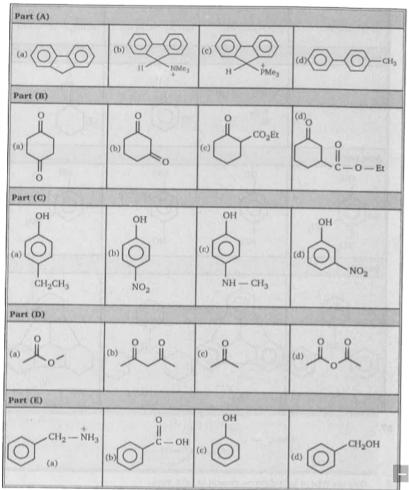


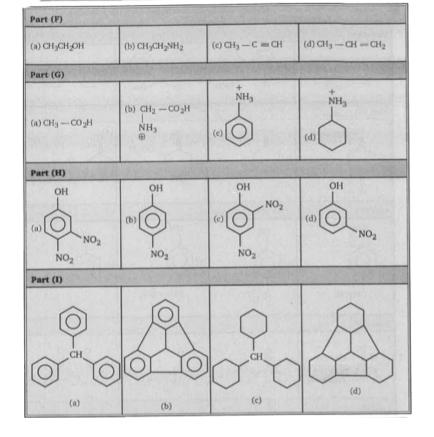

49. Match the column I and II. (Matrix)


Column (I)			Column (II)	
(a)	$H_3C - CH = CH - CH_3$	(p)	Dipole (cis > trans)	
(b)	$H_3C - CH = CH - CN$	(q)	Dipole (trans > cis)	
(c)	$H_3C - CH = CH - Cl$	(r)	Melting point ((trans > cis)	
(d)	CI - CH = CH - CI	(s)	Boiling point (cis > trans)	

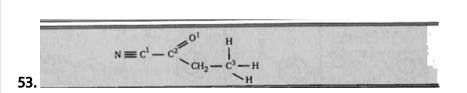
50. Identify the most stable structure in each of the following:



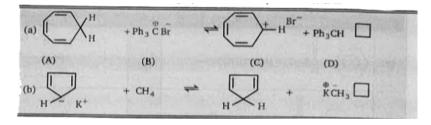



51. Identify the most basic compound in the following.

Watch Video Solution


52. Identify the most acidic hydrogen containing compound from the following.

Watch Video Solution


Give the type of hybridization present at each atom.

(i) N - (ii) C_1- (iii) C_2 -

(iv) ${\cal O}_1$ - (v) CH_2 - (vi) ${\cal C}_3$ -

54. Predict the direction of the following equilibrium. Write your answer

in the box given below.

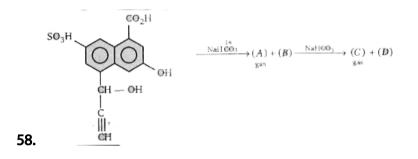
Watch Video Solution

55. Match the column I and II. (Matrix)

	Column (I)		Column (II)
(a)	NaHCO ₃ will react with	(p)	O OH O Squaric acid
(b)	Na will react with	(q)	О С - о - н
(c)	NaOH will react with	(r)	О-он
(d)	NaNH2 will react with	(s)	

56. Match the column I and II.

Column (I) Acid		Column (II)	
			pK _a
(a)	CH ₃ — CO ₂ H	(p)	5.69
(b)	(CH ₃) ₃ [®] NCH ₂ CO ₂ H	(q)	4.27
(c)	(CH ₃) ₃ N(CH ₂) ₄ CO ₂ H	(r)	1.83
(d)	0 ₂ C - CH ₂ - CO ₂ H	(s)	4.80


Watch Video Solution

57. Match the column I and II.

-16	Column (I)		Column (II)
(a)	$ \bigcirc \bigcup_{\substack{I \\ I_4}}^{O} \longrightarrow \bigcup_{I_4}^{O} \longrightarrow H + NaHCO_3 \longrightarrow $	(p)	NH3
(b)	$ \bigcirc 0 \qquad \qquad 14 \\ C - O - H + NaHCO_3 \longrightarrow $	(q)	¹⁴ CO ₂
(c)	$\langle \bigcirc \downarrow \bigcirc \bigcirc \square \\ C - O - H + Na \rightarrow $	(r)	co2
(d)	$ \underbrace{\bigcirc}_{0}^{O} \underbrace{\overset{O}{\parallel}_{s-O-H+NaNH_2}}_{0} \\ \underbrace{\bigcirc}_{0}^{O} \underbrace{\overset{O}{\parallel}_{s-O-H+NaNH_2}}_{O} \\ \underbrace{\overset{O}{\sqcup}_{s-O-H+NANH_2}}_{O} \\ \underbrace{\overset{O}{\amalg}_{s-O-H+N}}_{O} \\ \underbrace{\overset{O}{\amalg}_{s-O-H+NA}}_{O} \\ \underbrace{\overset{O}{\sqcup}_{s-O-H+NA}}_{O} \\ \underbrace{\overset{O}{\sqcup}_{s-O-H+N}}_{O} \\ \underbrace{\overset{O}{\sqcup}_{s-O-H+N}}_{O} \\ \underbrace{\overset{O}{\amalg}_{s-O-H+N}}_{O} \\ \underbrace{\overset{O}{\sqcup}_{s-O-H+N}}_{O} \\ \underbrace{\overset{O}{$	(s)	. Н2

Sum of molecular mass of gas (A + C) is :

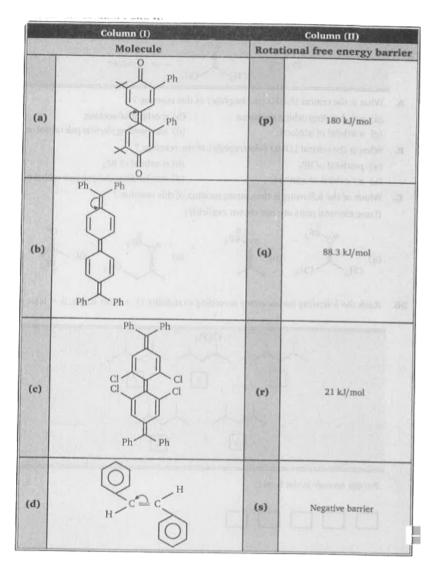
A. 88

B. 90

C. 92

D. 40

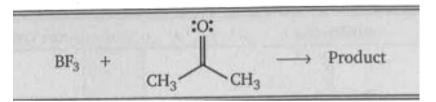
Answer: B



$$egin{aligned} & O \ & ert ert \ \mathbf{59.} \ Ph - \overset{O}{C} & -O - H \ \stackrel{NaHCO_3}{\longrightarrow} (A) \ \mathsf{gas} \ & Ph - C \equiv CH \ \stackrel{Na}{\longrightarrow} (B) \ \mathsf{gas} \ & Ph - OH \ \stackrel{NaNH_2}{\longrightarrow} (C) \ \mathsf{gas} \ & R - O - H \ \stackrel{NaH}{\longrightarrow} (D) \ \mathsf{gas} \ & \end{pmatrix}$$

Sum of molecular mass of gas (A + C) is :

Watch Video Solution


60. Match the column I and II.

Watch Video Solution

61. Consider the following reaction of boron trifluoride (BF_3) and

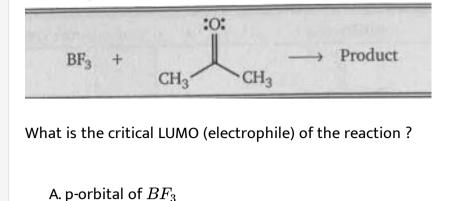
acetone:

What is the critical HOMO (nucleophile) of this reaction ?

A. A) non-bonding orbital on boron

B. B) σ -orbital of acetone

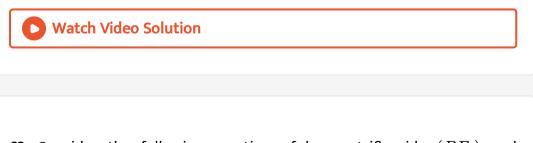
C. C) π -orbital of acetone


D. D) non-bonding electron pair orbital on oxygen

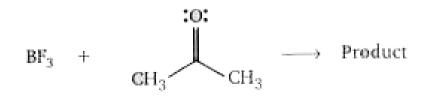
Answer: D

62. Consider the following reaction of boron trifluoride (BF_3) and

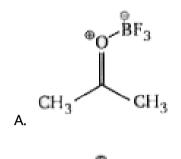
acetone:

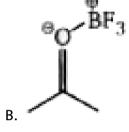


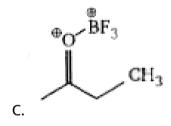
B. σ -orbital of BF_3

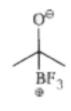

C. π^* orbital of acetone

D. non-bonding electron pair orbital on oxygen

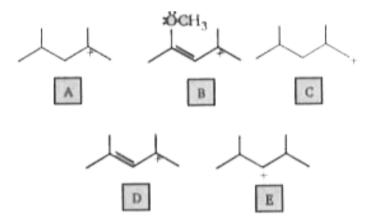

Answer: A




63. Consider the following reaction of boron trifluoride (BF_3) and acetone:

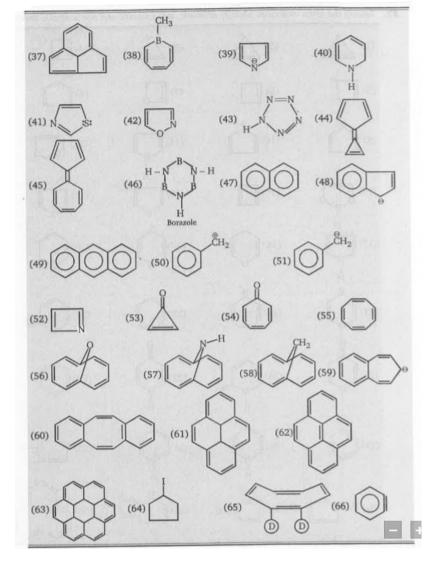


Which of the following is the correct product of this reaction ? (Lone electron pairs are not shown explicitly).

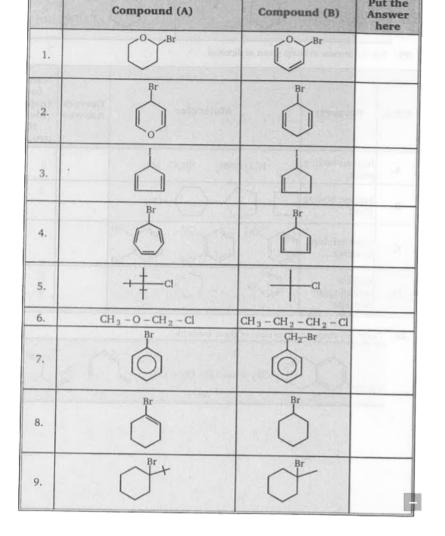


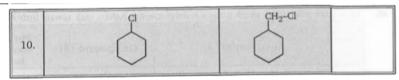
D.

Answer: A


64. Rank the following carbocations according to stability (1 = most stable, 5 = least stable).

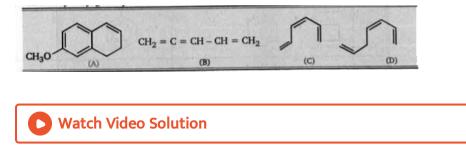
Put the answer in the boxes.




65. Among the given molecules, identify aromatic, anti-aromatic and non-aromatic molecules.

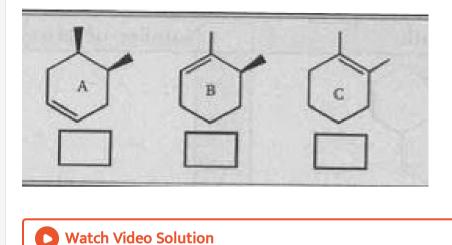
Watch Video Solution

66. Among the given pairs, which is more reactive towards $AgNO_3$ (or) toward hydrolysis.



67. Put the answer in boxes given as directed.

S.No.	Property	Molecules	Correct Answer	Name of force responsi ble for the property
А.	highest boiling point	NCl ₃ CINH ₂ NH ₄ Cl NH ₃		_
в.	highest boiling point			
c.	most soluble in water	OH COH COSH		
D.	highest solubility in benzene	NH NH		


Watch Video Solution

68. Circle any conjugated portions of these molecules.

69. Arrange in the order as directed -

The given alkenes in the order of their stability (1- most stable, 3-least stable).

70. Arrange in the order as directed -

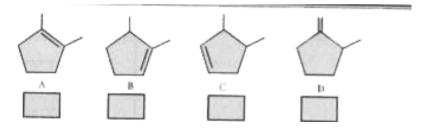
Arrange the following in the order of their acidic strength (1-most acidic,

4-least acidic)

71. Arrange in the order as directed -

Arrange the following molecules in order of expected boiling point.

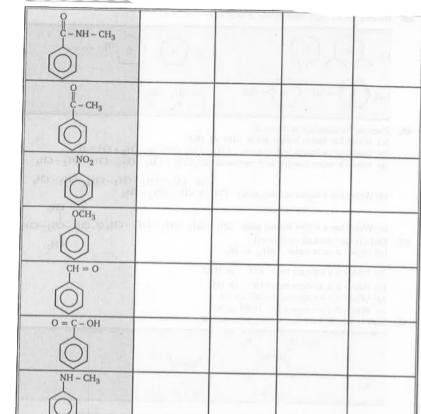
(1=highest bpt , 4=lowest bpt.)



72. Arrange in the order as directed -

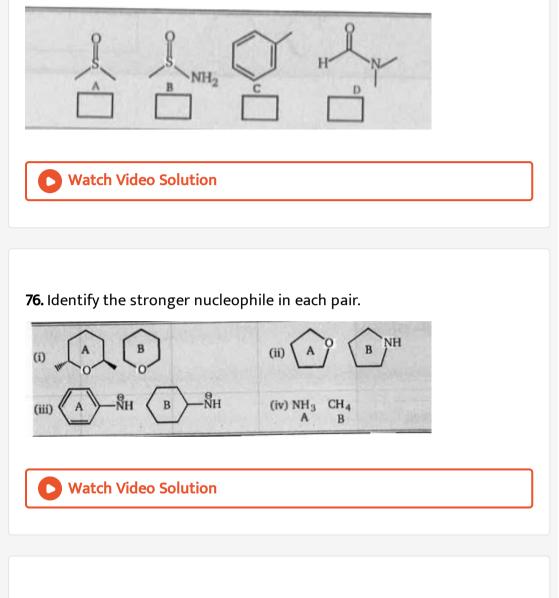
Arrange the following alkenes in order of their stability. (1 = most stable, 5

= least stable).


73. Match the column. (Matrix)

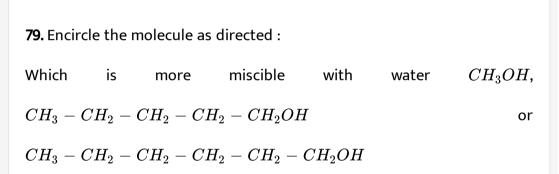
Column (I) Compounds		Column (II)		
		Number of Benzylic hydrogen		
(a)	Ŷ	(p)	2	
(њ)	CH2-CH3 CH3 CH3	(q)	3	
(c)		(r)	4	
(d)		(s)	5	

Watch Video Solution


74. Identify (+M) mesomeric & (-M) group of following.

	+M	-M	-I	+1
\cap				
N	100	-		
$\widehat{\mathbf{O}}$				
\square				
N- O				
[O]				

Watch Video Solution


75. Identify the following solvents as polar protic (PP), polar aprotic (PA), non-polar protic (NPP) or non-polar aprotic (NPA).

Which has higher boiling point : HBr or HCl

Which has a higher boiling point : CH_3-CH_2-OH or $CH_3-CH=O$

Watch Video Solution

80. Encircle the molecule as directed :

higher melting point : CH_4 or $CH_3 - CH_2 - CH_3$

Which has a higher boiling point : $CH_3 - CH_2 - CH_2 - CH_2 - CH_3$

or
$$CH_3 - egin{pmatrix} CH_3 \ dots \ CH_3 - CH_3 \ dots \ CH_3 \ \$$

Watch Video Solution

82. Encircle the molecule as directed :

Which is more stable : BH_3 or BF_3

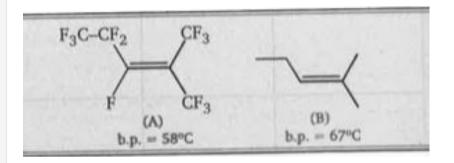
83. Encircle the molecule as directed :

Which is a stronger base : HO^- or H_2O

Which is a stronger base : HO^- or HS^-

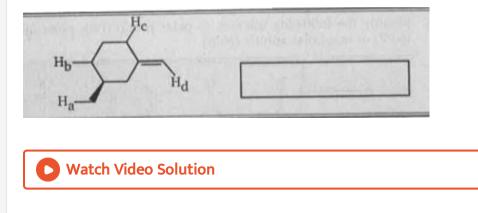
85. Encircle the molecule as directed :

Which is a stronger acid : HCl or HI

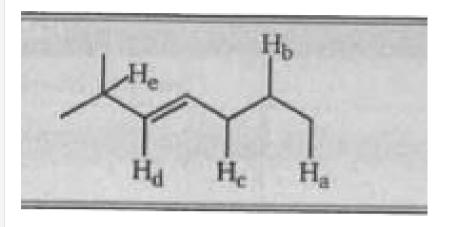

Watch Video Solution

86. Encircle the molecule as directed :

Which is a stronger acid : HOCI or HCI

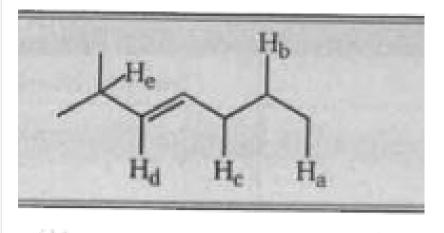


87. Explain why A has lower boiling point than B?



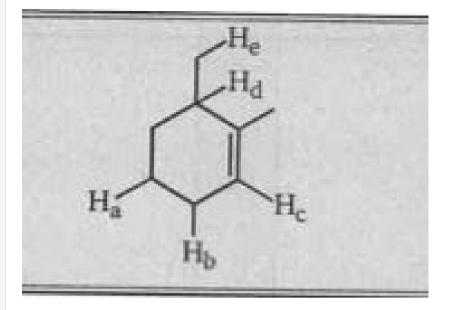
88. Arrange the protons shown in the decreasing order of their approximate bond energies.

89. Consider the H-atoms in the molecule given below and answer the


following.

Identify the type (1 $^\circ, 2^\circ$ or 3° alkyl, vinyl, allyl etc.) of these H-atoms.

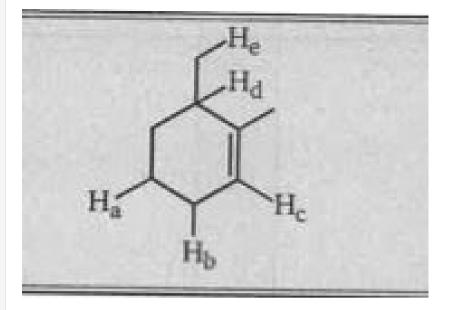
90. Consider the H-atoms in the molecule given below and answer the following.


Arrange them in the decreasing order of their case of abstraction (easiest

first)

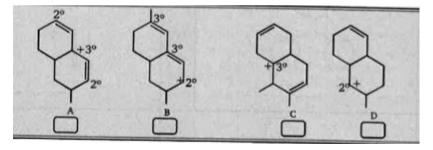
Watch Video Solution

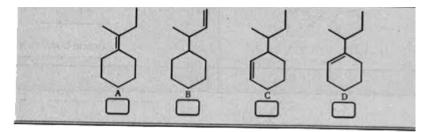
91. Consider the molecule shown below and answer with respect to


 $H_a
ightarrow H_e$

Identify the type of H-atom ($1^\circ, 2^\circ, 3^\circ$ alkyl, vinyl or allyl)

Watch Video Solution

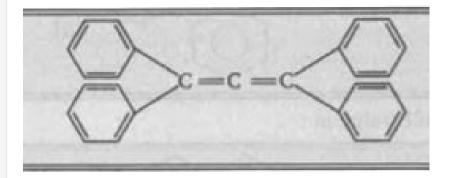

92. Consider the molecule shown below and answer with respect to $H_a
ightarrow H_e$


Arrange them in decreasing order of their bond energy.

Watch Video Solution

93. Rank the following carbocations in order of stability (1 = most stable).

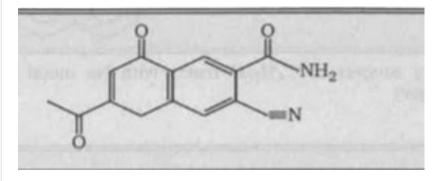
94. Rank the following alkenes according to energy (1 = lowest energy).


95. Match the column:

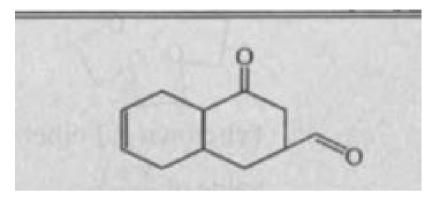
Column (l) (Compounds)			Column (II)		
		(Double bond equivalent value)			
(a)		And and and and	 (7) bistorie 11 · type (7) ·		
(b)		(q)	12		
(c)	for	in the states	13 13		
(d)	R	(s)	14		
		(t)	15		

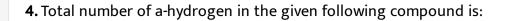
Watch Video Solution

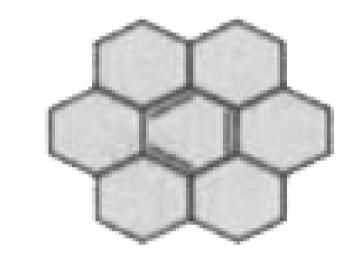
Level 2 Subjective Problems


1. How many 2° carbon in the following ?

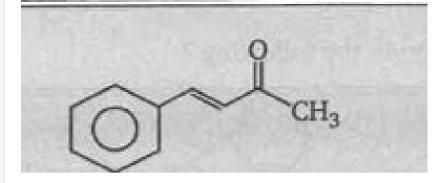
2. Find out the double bond equivalent (DBE) value of the given following

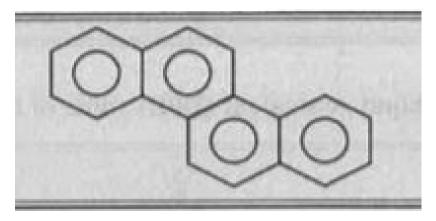

compound:




3. Total number of functional groups present in the given following

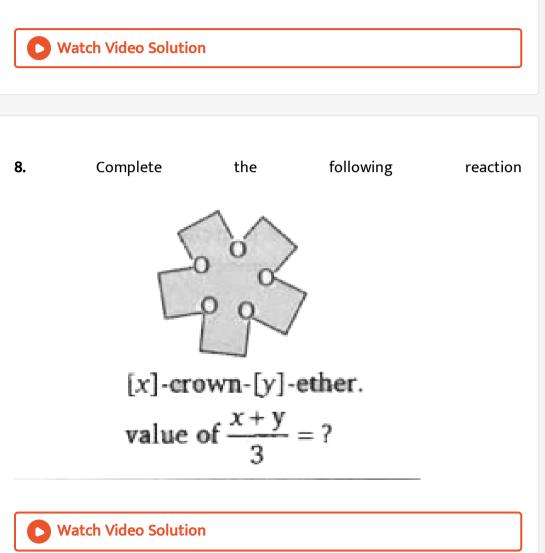
compound :

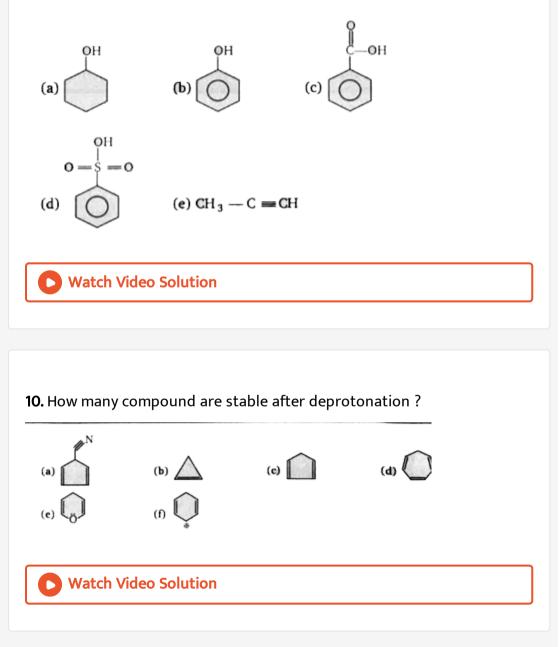


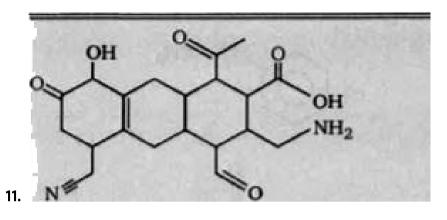


5. How many carbon atom present in the parent chain in the given following compound?

Watch Video Solution

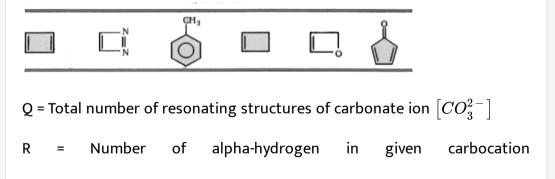

6. Total number of DBE value in :

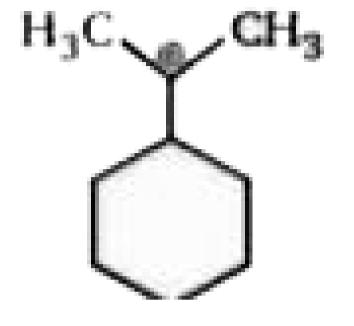



7. How many isomers of $C_4 H_{10} O$ reacts with Na metal to evolve H_2 gas ?

(excluding stereoisomer)

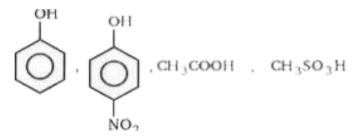
9. Which of the given following compound will react with $NaHCO_3$ or soluble in $NaHCO_3$?



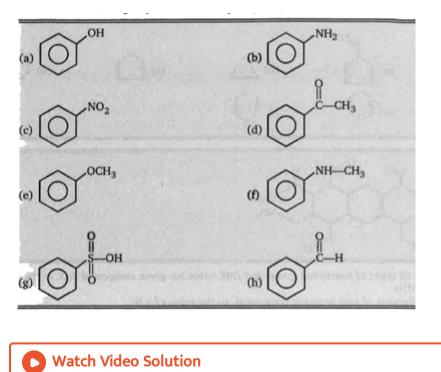

Sum of types of functional group and DBE value for given compound is X

so the value of X-10 is

Watch Video Solution


12. P = Number of anti-aromatic compound, so the value of x is :

S = Total number of geometrical isomers of $CH_3-CH=CH-CH=CH_2$


T = Number of compound more acidic then CH_3CH_2OH

Sum of (P+Q+R+S+T) - is :

13. X = number of(+M) group attached with phenyl ring, so the value of x

is.

