

CHEMISTRY

BOOKS - MS CHOUHAN

HYDROCARBONS (ALKENES)

1. (R)-3-bromocyclopentene (shown below) reacts with Br_2/CCl_4 to form two products, Y and Z, Y is not optically active (does not rotate planepolarized light). What is the structure of Y?

D.

Answer: C

reactant (A)

can be :

2.

Β.

D. All of these

Answer: D

3.

major

product of the reaction is :

Β.

A.

C.

D.

Answer: C

4.

Which of the following products cannot be obtained in ozonolysis of oxylene?

$$CHO \\ A. | \\ CHO \\ B. CH3 - C - C - H \\ C. CH3 - C - C - H \\ C. CH3 - C - C - C - CH3 \\ O \\ D. CH3 - C - C - C - CHO \\ C - CH0 \\ C - C$$

Answer: D

(A) of the reaction is :

- A. $CH_3 CH_3$
- $\mathsf{B.}\,CH_2=CH_2$
- $\mathsf{C}.\,CH_3-CH=CH_2$
- D. None of these

Answer: B

) of the reaction is :

C.

D.

Answer: C

Answer: C

Watch Video Solution

9. The reaction of propene with H_3O^+ will proceed with which of the following intermediates ?

A. $CH_3 - CH_2 - CH_2$ $H_3 - CH_2 - CH_3$ $H_3 - CH_3 - CH_3$ $H_3 - CH_3 - CH_3$

Answer: C

Watch Video Solution

10. Which of the following bromides is the major product of the reaction shown below, assuming that there are no carbocation rearrangement ?

Β.

A.

Answer: D

11. Which of the following reactions results in the formation of a pair of

diastereomers ?

Answer: B

12. What is a likely product of the reaction shown ?

Answer: D

13. Which of the following, when undergoing addition of HBr, will form

ONLY a pair of diastereomers ?

Answer: C

14. How many transition states and intermediates will be formed during

the course of following reaction ?

A. 3 transition states and 3 intermediates

- B. 4 transition states and 3 intermediates
- C. 3 transition states and 2 intermediates
- D. 5 transition states and 4 intermediates

Answer: B

15. Product of which of the following reactions, is racemic mixture ?

A.

B.

C.

16. The product(s) of the following reaction can best be described as :

A. a racemic mixture

B. a single enantiomer

C. a pair of diasteriomers

D. an achiral molecule

Answer: C

17. Taking into account the stability of various carbocations and, as well as the rules governing mechanisms of carbocation rearrangements, which reaction is most likely to occur during the given reaction ?

18. Consider the following reaction in which the intermediate carbocation

loses H+ to give the final product

Which of the following energy profiles best represents the overall reaction ?

Answer: D

19. Methyl vinyl ether, $H_2C = CH - OCH_3$, reacts with Br_2/CH_3OH . If methanol is reacting as water would, and if this reaction follows a typical mechanism of electrophilic addition, what would be the expected product

20. 2, 4-hexadiyne (C6H6) is allowed to react with Li in NH3(liq). The product obtained is treated with 1 equivalent of Cl_2 in $\mathbb{C}l_4$. Which of the following constitutional isomers are possible products ?

A. I and II

B. II and III

C. I and V

D. I and III

Answer: D

Watch Video Solution

21. Which of the following is the best stereochemical representation when reaction between 1-methylcyclohexene and NBS react in aqueous dimethyl sulfoxide ?

D. None of these

Answer: B

Watch Video Solution

22. Which of the following is among the major products of the reaction of (E)-3-methyl-2-pentene with BH_3 in THF followed by the addition of H_2O_2/HO^- ?

A.

Answer: A

D.

23. Compare rate of dehydration of (i), (ii) and (iii) by conc. H_2SO_4

$$\mathsf{D}.\left(ii
ight)>\left(iii
ight)>\left(i
ight)$$

Answer: B

25.

Product (A) of the reaction is:

D.
$$CH_3 - CH - CH_2 - CH = CH_2$$

Watch Video Solution

27. Predict the product (A) of the following reaction

D.

A.

Β.

C.

Answer: D

28.

product (A) is:

Β.

D.

Answer: B

29. Di-imide (N_2H_4) is used to reduce double bond of:

A.
$$-C = O$$

- $\mathsf{B.}-C=N$
- $C. -NO_2$
- $\mathsf{D}.-CH=CH-$

Answer: D

Watch Video Solution

End product of the reaction is :

D.

C.

Answer: B

31.

Product (A) is :

D.

Answer: C

32.

Product (A) is :

Β.

C.

Product (X) will be :

Answer: A

D.

C.

Watch Video Solution

Product (C) is :

Β.

A.

C.

$$\mathsf{D}. Ph - C = C - Ph$$

Answer: B

 $\mathsf{MMPP} \rightarrow \mathsf{Magnesium} \mathsf{mono} \mathsf{ peroxy} \mathsf{ phthalate. Product}$ (X) is :

Answer: B

D.

(P) is :

D. None of these

Answer: B

37.

(A) is :

C.

Answer: B

Watch Video Solution

$$(no ring substitution)$$
38.

substitution) product (A) is :

- A. $Ph CH_2 Cl$
- $\mathsf{B.}\,Ph-CH_2-Br$
- $\mathsf{C.}\,Ph-CH_2-CCl_3$
- D. $Ph-CH_2-CBrCl_2$

Answer: B

Answer: B

40. The major product of the following reaction sequence is :

41. Which one of the following compounds gives acetone $(CH_3)_2C=O$

as one of the product of its ozonolysis ?

Answer: D

42. Addition of HCI to 3,3-dimethyl-1-butene yields two products, one of which has a rearranged carbon skeleton. Among the following carbocations, select the possible intermediates in that reaction ?

 $(CH_3)_3C\dot{C}HCH_2CI \quad (CH_3)_3C\dot{C}HCH_3 \quad (CH_3)_2C\dot{C}(CH_3)_2 \quad (CH_3)_2\dot{C}CH(CH_3)_2$ CI $1 \qquad 2 \qquad 3 \qquad 4$

A. 1,2

B. 1,3

C. 2,4

D. 2,3

Answer:

43. Conversion of cyclohexene to cyclohexanol can be conveniently achieved by :

A. $NaOH + H_2O$

B. $Br_2 - H_2O$

C. hydroboration, oxidation

D. hydroboration hydrolysis

Answer: C

Watch Video Solution

44. Trans-cyclohexane-1,2-diol can be obtained by the reaction of cyclohexene with:

A. $KMnO_4$

 $\mathsf{B.}\,OsO_4$

C. peroxy formic acid $/H_3O^+$

 $\mathsf{D.}\,SeO_2$

Answer: C

Watch Video Solution

45. Bromination of (E)-2-butenedioic acid gives

A. (2R, 3S)-2, 3-dibromosuccinic acid

B. (2R, 3R)-2, 3-dibromosuccinic acid

C. a mixture of (2R, 3R) and (2S, 3S)-2, 3-dibromosuccinic acid

D. (2S, 3S)-2, 3-dibromosuccinic acid

Answer: A

46. The major product formed during the reaction of 1-methyl cyclopentene with CH_3CO_3H is

D.

Answer: C

 $\begin{array}{c} CH - CO_2H \\ \textbf{47.} \quad || & \xrightarrow[(\mathrm{two\ mole})]{} (A) \xrightarrow[(\mathrm{two\ mole})]{} (B), \text{ Product (B) of the} \\ CH - CO_2H \end{array}$

reaction is :

A. $CH_3 - CH_3$

B. $H_2C = CH_2$

 $\mathsf{C}.\,H-C\equiv C-H$

$$\mathsf{D}.\,CH_2=CH-CH=CH_2$$

Answer: C

A.

C.

D.

Answer: B

49.

Product

(P) is :

D.

Answer: B

50. What is the major product expected from the following reaction ?

D.

Answer: B

51.
$$CH_3-CH=CH_2 \stackrel{Br_2/hv}{\underset{(\mathrm{low\ conc.})}{\longrightarrow}} (A)$$
, Product (A) of the reaction is :

A.
$$CH_3 - CH - CH_2 - Br$$

$$\mathsf{B}.\,H_2C=CH-CH_2Br$$

$$\mathsf{C}.\,CH_3-\mathop{C}_{|}_{\mathop{Br}}=CH_2_{\mathop{Br}}$$

D.
$$Br-CH_2-CH_2-CH_2-Br$$

Answer: B

A. O_3 / $Zn(H_2O)$

 $\mathsf{B}.\,HIO_4$

 $C. CrO_3$

D. Cold dil $KmnO_4$

Answer: A

Watch Video Solution

53.

Product of the reaction is:

A.

Β.

Answer: B

D.

Watch Video Solution

54. Which compound is a possible product from addition of Br2 to 1-butene?

Answer: D

55. Addition of Br_2 to cis-2-butene would give a product which is:

A. achiral

B. racemic

C. meso

D. optically active

Answer: B

D. optically active

Answer: C

Watch Video Solution

57. Addition of OsO_4 to cyclopentene would give a product which is:

A. achiral

B. racemic

C. meso

D. optically active

Answer: C

Watch Video Solution

58. Addition of BH_3 followed by H_2O_2 to trans-2-butene would give a

product which is:

A. achiral

B. racemic

C. meso

D. optically active

Answer: B

..., Reagent A

may be :

59.

A. $H_2O\,/\,H^{\,+}$

B. $BH_3THF/H_2O_2-OH^{-1}$

C. $Hg(OCOCH_3)_2$. $H_2O/NaBr$. NaOH

D. All are possible

Answer: C

Watch Video Solution

60. The major product of the following reaction is :

 $CH_3-CH=CH_2+HBr \xrightarrow{\left(\ C_6H_5CO
ight)_2O_2 ext{peroxide}}$

A.
$$CH_3 - CH_2 - CH_2 - Br$$

B.
$$CH_3CH(Br) - CH_3$$

$$\mathsf{C}. BrCH_2 - CH = CH_2$$

Answer: A

61.

Identify (B):

A. $(CH_2)_5 - CO_2H$

Answer: B

View Text Solution

62. Which of the following is a major product of the reaction shown below?

63. In methyl alcohol solution, bromine reacts with ethylene (ethene) to yield $BrCH_2$, CH_2OCH_3 in addition to 1, 2-dibromoethane because

A. the methyl alcohol solvates the bromine

B. the ion formed initially may react with $Br^{\,-}\,$ or CH_3OH

C. this is a free radical reaction

D. the reaction follows Markovnikov's rule

Answer: A

Watch Video Solution

64. Which of the following compound was the starting material for the oxidation shown below?

Answer: B

65. Which series of reactions will achieve the following transformation ?

A. $1-Cl_2/CCl_4=2-Br_2$

 $\mathsf{B.}\,1-HBr=2-Cl_2\,/\,CCl_4$

 $\mathsf{C.}\,1-Cl_2\,/\,CCl_4-2-NBS\,/\,hv$

D. $1-NBS/hv=2-Cl_2/CCl_4$

Answer: D

Watch Video Solution

66. Taking into account the stability of various cycloalkanes and carbocations, as well as the rules governing mechanisms of carbocation rearrangements, what is the most likely product of this reaction ?

A.

Β.

Answer: B

D.

67. A triene is treated with ozone followed by zinc in acetic acid to give

the following three products. What is the structure of the triene ?

Answer: D

68. Which of the following compound would yield trialkylborane shown below when treated with BH_3/THF ?

A. 2-methylbut-1-ene

B. 2-methylbut-2-ene

C. 3-methylbut-1-ene

D. 3-methylbut-1-yne

Answer: A

69. If the following compound is treated with Pd/C in excess of hydrogen gas, how many stereoisomers of the product will be obtained ?

A. 1

B. 2

C. 3

D. 4

Answer: C

70. Which is the most precise designation of stereochemistry for the products formed in the electrophilic addition of DBr to 1-methylcyclohexene ? ($D = {}^{2}H$, an isotope of hydrogen)

Β.

C.

A.

D. Both (a) and (b)

Answer: D

71. Consider the addition of HBr to 3,3-Dimethyl-1-butene shown below. What is the best mechanistic explanation for the formation of the observed product ?

A. Protonation of the alkene followed by a hydride shift and addition

of bromide to the carbocation

B. Double bond shift in the alkene following by the protonation and

addition of bromide to the carbocation

C. Addition of bromide to the alkene followed by a double bond shift

and protonation

D. Protonation of the alkene followed by a methyl shift and addition of

bromide to the carbocation

Answer: D

Watch Video Solution

72. Propene $CH_3CH = CH_2$ can be converted into 1-propanol by oxidation. Indicate which sets of reagents amongst the following is ideal to effect the above conversion ?

A. $KMnO_4$ (alkaline)

B. Osmium tetroxide (OsO_4/CH_2Cl_2)

C. B_2H_6 and alk. H_2O_2

D. O_3/Zn

Answer: C

73. Which is the most suitable reagent among the following distinguish

compound (3) from the others ?

(1) $CH_3C\equiv C-CH_3$

(2) $CH_3CH_2 - CH_2 - CH_3$

(3) $CH_3CH_2C\equiv CH$

 $(4)CH_3CH = CH_2$

A. Bromine in carbon tetrachloride

B. Bromine in acetic acid solution

C. Alk. $KMnO_4$

D. Ammonical silver nitrate

Answer: D

74. The principal organic product formed in the reaction given below is :

 $CH_2 = CH(CH_2)_8 COOH + HBr \xrightarrow{\text{peroxide}}$

A. $CH_3 - CHBr(CH_2)_8COOH$

 $\mathsf{B}. CH_2 = CH(CH_2)_8 COBr$

C. $CH_2BrCH_2(CH_2)_8COOH$

 $D. CH_2 = CH(CH_2)_7 CHBrCOOH$

Answer: C

Watch Video Solution

75. When 2-butyne is treated with $H_2/Pd - BaSO_4$, the product formed

will be :

A. cis-2-butene

B. trans-2-butene

C. 1-butene
D. 2-hydroxy butane

Answer: A

Watch Video Solution

76.
$$CH_3C\equiv CCH_3 \xrightarrow{(i)\,X} H_3C - \begin{array}{c} C - C - CH_3 \\ \hline (ii)\,H_2O\,/\,Zn \end{array} H_3C - \begin{array}{c} C - C - CH_3 \\ \hline 0 & O \end{array}$$

In the above reaction X is

A. HNO_3

 $\mathsf{B.}\,O_2$

 $\mathsf{C}.O_3$

D. $KMnO_4$

Answer: A

77. Which of the following alkene on catalytic hydrogenation given cis and

trans-isomer ?

D. all of these

Answer: D

78. In the reaction of hydrogen bromide with an alkene (in the absence of

peroxides), the first step of the reaction is the to the alkene.

A. fast addition of an electrophilic

B. slow addition of an electrophile

C. fast addition of a nucleophilic

D. slow addition of a nucleophile

Answer: B

Watch Video Solution

79. Which of the following alcohols cannot be prepared from hydration of

an alkene ?

Answer: D

80. Which of the species shown below is the most stable form of the intermediate in the electrophilic addition of Cl_2 in water to cyclohexene to form a halohydrin ?

.

Answer: D

Watch Video Solution

81. The reaction, ${(CH_3)}_2C=CH_2+Br^{+}
ightarrow {(CH_3)}_2\dot{C}-CH_2Br$ is an

example of a/an step in a radical chain reaction.

A. initiation

B. termination

C. propagation

D. heterolytic cleavage

Answer: C

82. Which of the following most accurately describes the first step in the

reaction of hydrogen chloride with 1-butene?

Answer: B

83. Which of the following best describes the flow of electrons in the acid-

catalyzed dimerization of $(CH_3)_2 C = CH_2$?

Answer: A

Watch Video Solution

84. Hydroboration of 1-methylcyclopentene using B_2D_6 , followed by treatment with alkaline hydrogen peroxide, gives

Β.

Answer: A

D.

The correct statements with respect to the above pair of reactions are that (I) the reactions are stereospecific (II) (X) is erythro and (Y) is threoisomer (III) (X) is threo and (Y) is erythro isomer (IV) each of (P) and (Q) gives a mixture of (x) and (Y)

A. I and II

B. I and III

C. I and IV

D. II and IV

Answer: A

86. Identify .Q. in the following sequency of reactions :

Answer: D

87. 4-Pentenoic acid when treated with I_2 and $NaHCO_3$ gives :

- A. 4,5-diiodopentanoic acid
- B. 5-iodomrthyl-dihydrofuran-2-one
- C. 5-iodo-tetrahydropyran
- D. 4-pentenolyiodide

Answer: B

Watch Video Solution

88.

(B) of the reaction is:

Β.

D.

Answer: B

Watch Video Solution

A. $Ph-C\equiv CNa$

- $\mathsf{B}.\,Ph-CH_2-C\equiv CH$
- $\mathsf{C}. Ph C \equiv C CH_3$

 $\mathsf{D}.\, Ph-CH=C=CH_2$

Answer: C

90. Which of the following will give a mixture of cis and trans-1,4-dimethyl

cyclohexane, when undergo catalytic hydrogenation ?

A.

Β.

D. Both (a) and (b)

Answer: D

91. An optically active compound A with molecular formula C_8H_{14} undergoes catalytic hydrogenation to give meso compound, the structure of (A) is :

A.

Β.

C.

Answer: B

D.

How many products will be formed in above reaction ?

A. 2		
B.4		
C. 3		
D. 6		

Answer: B

Watch Video Solution

93.

Product of the reacion is :

A. Racemic

B. Diastereomers

C. Meso

D. Pure enantiomers

Answer: A

Rate of reaction towards reduction using (H_2/Pt) :

A. a b

- B. a = b
- C. b a
- D. Reduction of given molecule is not possible

Answer: A

of the above reaction is :

A.
$$R-\overset{O}{\overset{||}{C}}-R$$

- $\mathsf{B.}\,R'-CHO$
- $C.R CO_2H$
- D. Both (a) and (b)

Answer: D

 $MCPBA
ightarrow \,$ Metachloroperbenzoic acid

D.

Answer: B

the reaction is :

Β.

Answer: A

D.

O Watch Video Solution

99.
$$CH_3-CH=CH_2 \xrightarrow[(2)CH_3CO_2T]{(2)CH_3CO_2T} (A)$$
 Product (A) of the above

reaction is:

- A. $CH_3 CHD CH_2D$
- $\mathsf{B.}\,CH_3-CHT-CH_2T$
- $C. CH_3 CHD CH_2T$
- D. $CH_3 CHT CH_2D$

Answer: C

100. Optically active isomer (A) of (C_5H_9Cl) on treatment with one mole of H2 gives an optically inactive compound (B) compound (A) will be :

$$egin{aligned} \mathsf{A}.\,CH_3 &-\,CH_{} &-\,CH_{} &= CH_2 \ &CH_2Cl \ \end{aligned}$$
 $egin{aligned} \mathsf{B}.\,Cl_{} &-\,CH_{} &= CH_{} &-\,CH_3 \ &CH_3 &-\,CH_{} &-\,CH_2 &-\,CH_{} &= CH_2 \ &Cl \ \end{aligned}$ $egin{aligned} \mathsf{C}.\,CH_3 &-\,CH_{} &-\,CH_2 &-\,CH_{} &= CH_2 \ &Cl \ \end{aligned}$ $egin{aligned} \mathsf{D}.\,CH_3 &-\,CH_2 &-\,CH_{} &-\,CH_{} &= CH_2 \ &Cl \ \end{aligned}$

Answer: D

Watch Video Solution

101. An organic compound C_4H_6 on ozonolysis give $HCHO, CO_2, CH_3CHO$. Compound will be:

A. $H_2C = CH - CH = CH_2$

 $\mathsf{B.}\,CH_3-CH=C=CH_2$

 $\mathsf{C}.\,CH_3-C=C-CH_3$

D.

Answer: B

Watch Video Solution

102.

A.

major

product of this reaction is :

D.

Answer: B

$$\textbf{103.} \ CH_3 - \overset{CH_3}{\underset{CH_3}{\overset{|}{\overset{}}}} \overset{KmnO_4}{\underset{CH_3}{\overset{}}} (A) \xrightarrow[]{\overset{H^+}{\overset{}}} (B) \xrightarrow[]{\overset{HBr}{\underset{ROOR}{\overset{}}}} (C)$$

Product (C) in the above reactions is :

A.
$$CH_3 - \displaystyle egin{smallmatrix} H \ dots \ CH_3 - Br \ dots \ CH_3 \ \end{pmatrix}$$

$$ert \stackrel{|}{\overset{CH_3}{\overset{}}}$$
B. $CH_3-\overset{|}{\overset{C}{\overset{}}}_{CH_3}-Br$ C. $CH_3-\overset{C}{\overset{}}_{CH_2-Br}H-H$

D.

Answer: D

Watch Video Solution

104.
$$CH_3 - \stackrel[]{U}{C} - CH_2 + (CH_3)_2 CHCH_3 \xrightarrow{HF}{273K} C_8 H_{18}(A)$$
Unknown (A)

in the above reaction is :

A. 2, 2, 3-trimethyl pentane

B. 2, 2, 4-trimethyl pentane

C. 2,2-dimethyl hexane

D. n-octane

Answer: B

Answer: B

$$\bigcup_{OH} \xrightarrow{H^*} (A) \xrightarrow{\text{coid dil.}} (B) \xrightarrow{\text{CrO}_3} (C)$$

106.

Product (C) of the reaction is:

Β.

D.

Answer: C

107. What is the major product expected from the following reaction ?

Answer: B

108. Choose the correct product of this reaction :

Β.

C.

D. 📄

Answer: B

Watch Video Solution

 $\xrightarrow{1. \text{ BH}_3/\text{ THF}} A;$ 2. H₂O₂/OH⁻

A, Product

109.

A is:

Β.

Answer: D

Answer: D

111. Choose the correct product of the following reactions :

Answer: C

112. How many stereoisomeric tetrabromides will be formed in the following reaction ?

113. How many stereoisomeric pentabromides will be formed in the following reaction ?

A. 2

B. 3

C. 4

D. None of these

Answer: A

Answer: B

$$CH_{3} \longrightarrow CH \longrightarrow CO_{2}K \xrightarrow{electrolysis} (A) (Major)$$

$$CH_{3} \longrightarrow CH \longrightarrow CO_{2}K$$
115.

major product (A) of the above reaction :

Β.

116.

(only one enantiomer is taken) Which of the following statement is correct about A and B ?

A. A and B are mixture of diastereomers

B. A and B are mixture of enantiomer

C. A and B are optically active

D. B is racemic mixture

Answer: A

D.

Answer: B

Watch Video Solution

Product (Y) of the above reaction is :

Answer: B

Watch Video Solution

119. In the reaction
$$Me-C\equiv C-Et \stackrel{Na/lig\,.\,NH_3}{\longrightarrow} P \stackrel{Br_2}{\xrightarrow{CCl_4}}$$
 (Q), then Q is :

A. A pure compound which is optically inactive due to internal

compensation

- B.A binary mixture which is optically inactive due to external compensation
- C. A binary mixture which is optically active
- D. A pure compound which is optically inactive due to absence of

chiral centre

Answer: B

Which (π -bond) will reduce first, when above compound undergoes catalytic hydrogenation ?

A. a

B.b

C. c

D. d

Answer: D

121. Compound A, which is a degradation product of the antibiotic vermiculine has following structure

Major product (A) is :

Answer: C

Β.

123. In the reaction given below, the product would be :

$$CH_3-CH=CH-CH_3 \stackrel{H_3O^+}{\longrightarrow} CH_3-CH_2-\stackrel{OH}{CH}-CH_3$$

A. a mixture of diastereomers

B. optically active

- C. optically pure enantiomer
- D. a racemic mixture

Answer: A

Watch Video Solution

124. Surprisingly, the reaction shown below goes through classical carbocation. What is the major product of this reaction ?

A. trans-1, 3-dibromocyclohexane

B. cis-1, 3-dibromocyclohexane

C. trans-1, 2-dibromocyclohexane

D. cis-1, 2-dibromocyclohexane

Answer: B

125. The major product of the reaction given below is :

A. (i) and (ii)

B. (iii) and (iv)

C. (v) and (vi)

D. none of these

Answer: C

126. Which reaction will occur at the fastest rate ?

Answer: D

Above

127.

reaction is known as:

A. Wurtz reaction

B. Fittig reaction

C. Wurtz fittig reaction

D. Kolbe electrolysis

Answer: C

128.
$$CH_3 - CH_2 - \overset{O}{\overset{||}{C}} - H \xrightarrow{RedP + HI} A$$

Product A is :

A. propane

B. propanol

C. prapanoic acid

D. propene

Answer: A

Watch Video Solution

129. Which of the following compound give diastereomers when treated

with Br_2 in CCl_4 ?

B. I-Methylcyclopentene

C. 3-Methylcyciopentene

Answer: D

130. A mixture of C_2H_6 , C_2H_4 and C_2H_2 is bubbled through alkaline solution of copper (I) chloride, contained in Woulf's bottle. The gas coming out is

A. original mixture

B. $C_2 H_6$

C. C_2H_6 and C_2H_4 mixture

D. C_2H_4 and C_2H_2

Answer: C

A. 2,4

B. 3,5

C. 3,6

D. 3,4

Answer: B

Watch Video Solution

132. Select the incorrect statement :

A. Bromine is more selective and less reactive

B. Chlorine is less selective and more reactive

C. Benzyl free radical is more stable than 2° free radical

D. Vinyl free radical more stable than allyl free radical

Answer: D

Watch Video Solution

133. Which of the following compound does not evolve CO_2 gas, when

undergo oxidative ozonolysis ?

 $\mathsf{C}.\,H_2C=CH-CH=CH_2$

Answer: D

Watch Video Solution

134. cis-3-hexene $\xrightarrow{(a)}$ meso 3,4-hexanediol trans-3-hexene $\xrightarrow{(b)}$ meso

3,4-hexanediol. Choose pair of reagent (a, b) for above conversions.

A. Cold $KmNO_4, OsO_4$

B. cold $KmnO_4$, RCO_3H/H_3O^{O+}

C. $RCO_{3}H/H_{3}O^{O+}$ cold $KmnO_{4}$

D. None of these

Answer: B

Watch Video Solution

$$(A) \xrightarrow{O_3} (B) \xrightarrow{Ph_3P=CH_2(2mole)} (C)$$

Product (C) of the above reaction is :

A. 1,3-hexadiene

B. 1,4-pentadiene

C. 1,3-butadiene

D. 1,3-heptadiene

Answer: B

Watch Video Solution

136. How many carbon-hydrogen bond orbitals are available for overlap

with the vacant p-orbital in ethyl carbocation ?

A. 0

B. 3

C. 5

D. 6

Answer: B

Watch Video Solution

To achieve above conversion, the reagents used will be :

A. O_3 / $H_2O_2,$ HO^- / Δ

B. $Hbr, alcKOH, O_3, LiAIH_4, H^+/\Delta$

C. $HBr, t-buOK, O_3, KMnO_4, \Delta$

D. $HCl,\,KMnO_3$ (cold) $,\,H^{\,+}\,/\,\Delta$

Answer: B

Watch Video Solution

$$\xrightarrow{\text{Hig}(\text{OAc})_2}_{\text{AcOH}} X \text{ (major); Product } (X) \text{ is:}$$

138.

C.

D.

Answer: B

139. Decreasing order of heat evolved upon catalytic hydrogenation of

given reactants with a H_2 (Pd/C) is :

$\mathsf{D}.\,c > b > c > d$

Answer: B

Answer: C

Watch Video Solution

Product (A) of the above reaction is :

C.

D.

Answer: B

Product (A) is :

Β.

D.

Answer: A

Watch Video Solution

143. What is the product of 1, 4-addition in the reaction shown below?

Answer: B

145.

What is stereochemistry of product ?

A. Racemic mixture

B. Optically inactive

C. Diastereomers

D. Meso product

Answer: A

Watch Video Solution

End product formed in the above reaction is :

A. Optically active

B. Racemic

C. Meso

D. Diastereomer

Answer: D

Watch Video Solution

147. How many moles of BH_3 are needed to react completely with 2 mole

of 1-pentene in hydroboration-oxidation reaction ?

A. 2 mole

B. 3 mole

C. 2/3 mole

D. 3/2 mole

Answer: C

Watch Video Solution

Product (B) in the above reaction is :

B.

C.

Answer: C

149.
$$H_2 \overset{14}{C} = CH - CH_3 \xrightarrow[]{\text{low conc of } Br_2}{} (?)$$

Product of the above reaction is :

A.
$$H_2 \overset{14}{C} = CH - CH_2 - Br$$

B. $H_2 C = CH - \overset{14}{CH_2} - Br$
C. $\overset{14}{CH_2} - CH - CH_3$
 $| Br & Br \\ | Br & Br \\ |$

D. Both (a) and (b)

Answer: B

150. In which of the following reactions 1,3-butadiene will be obtained as a

major product ?

$$\begin{array}{l} \mathsf{A.} \ Br - CH_2 - CH_2 - CH_2 - CH_2 - Br \xrightarrow{(CH_3)_3 COK(2 \text{ mole})} \\ \hline \\ (CH_3)_2 COH \end{array} \\ \\ \mathsf{B.} \ HO - CH_2 - CH_2 - CH_2 - CH_2 - OH \xrightarrow{concH_2SO_4} \end{array}$$

C.
$$H_2C=CH\equiv CH rac{H_{21}\,{
m mole}}{Ni_2B}$$

D. All of these

Answer: B

Watch Video Solution

Identify A.

$$\begin{array}{c} \mathsf{B}.\,CH_3-\underset{|CH_3}{C}H-CHO\\ \\ & 0\\ \mathsf{C}.\,CH_3-\underset{|CH_3}{C}-cH_2CH_3\end{array}$$

$$\mathsf{D}.\,CH_3-\stackrel{|}{C}=CH_2$$

Answer: B

Product (A) is :

Bromination take place at :

В	•	b

C. c

D. d

Answer: A

Watch Video Solution

154. Which is incorrect statement about heats of combustion ?

 $extsf{D}.\,n-Hexa
eq \ < n-Hep an e < n-Oc an e$

Answer: C

Watch Video Solution
155. Predict the major product of the reaction.

$$CH_{3} - C = C - CH_{2} - CH = CH_{2} \xrightarrow{CI \longrightarrow 0}_{H^{+}} (Product)$$

$$\begin{array}{c} CH_3 & CH_3 \\ CH_3 - C = & C \\ CH_2 - CH_2 - CH_2 - CH_2 - CH_2 \\ O \\ A. \end{array}$$

$$\mathbf{B.}^{\mathbf{CH}_3 \quad \mathbf{CH}_3} \mathbf{CH}_3 - \mathbf{CH}_2 - \mathbf{CH}_2 - \mathbf{CH}_2 - \mathbf{CH}_2 = \mathbf{CH}_2$$

$$\begin{array}{c} \operatorname{CH}_3 \operatorname{CH}_3 \\ | \\ \operatorname{CH}_3 - \operatorname{C} - \operatorname{C} - \operatorname{CH}_2 - \operatorname{CH} = \operatorname{CH}_2 \\ | \\ \operatorname{OH} \operatorname{OH} \end{array}$$

Answer: B

of the reaction is :

- A. Meso compound
- B. Enantiomeric pair
- C. Diastereomers
- D. Optically pure enantiomer

Answer: B

Product (A) of above reaction is:

A.
$$CH_{3}O CH_{-}CH_{2} - CH_{2} - CHO$$

 CO_{2H}
B. $CH_{3}O - CH_{2} - CH_{2} - CH_{2} - CO_{2}H$
C. $CH_{3}O - CH_{2} - CH_{2} - CH_{2} - CO_{2}H$
D. $CH_{3}O - CH_{-}CH_{2} - CH_{2} - CH_{2} - CH_{2} - CHO$

Answer: D

158.

Products,

Comment up on optical activity of products.

A. Diastereomers

B. Racemic mixture

C. Meso

D. Optically pure enantiomer

Answer: B

Addition of a mineral acid to an olefin bond leads to major product, Identify it:

In polyenes that contain differently substituted (C=C) double bonds, it is possible to hydrogenate chemeselectively one (C=C) double bond. Product is :

C.

MCPBA \rightarrow meta-chloro perbenzoic acid) Stereochemistry of the product of above reaction is :

A. Meso

B. Racemic

C. Diastereomers

D. Optically inactive due to absence of chiral center.

Answer: B

p

162.

Identify product (P).

C.

D.

Answer: B

A isomerise to B on addition of traces of acid H_2SO_4 . Compound (B) is :

Β.

Answer: C

D. None of these

Answer: B

Watch Video Solution

165.

Product

(A) is :

166. Which of the following reactions do not represent the major product of given Birch reductions ?

A. (i), (iii), (vi)

B. (iv), (vi), (vii)

C. (iv), (v), (vi)

D. (i), (ii), (v), (vii)

Answer: B

167. Product (A) is:

Product (A) is:

168.

Correct statement about above reaction is:

A. A =cis-2-chlorocyclohexanol,

B. A = trans-2-chloro cyclohexanol,

C. A = trans-2-chlorocyclohexanol,

D. A = cis-2-chlorocyclohexanol,

Β.

D.

(A) is :

Β.

D.

product of the reaction is :

Answer: B

172.

stereochemistry of the product is:

A. Diastereomers

B. Racemic mixture

C. Meso

D. Pure Enantiomers

Answer: A

173.

A. Diastereomers

B. Meso

C. Racemic

D. Optically pure enantiomers

Answer: B

Watch Video Solution

Product/s

(x) is :

Β.

Answer: B

175.
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - OH \xrightarrow[CH_3]{H^+} A_{(major)}$$

product (A) is :

$$\begin{array}{l} {\sf A.} \, CH_3 - CH_2 - CH_2 - CH_2 - C \\ \downarrow \\ CH_3 \end{array} = CH - CH_3 \\ \\ {\sf B.} \, CH_3 - CH_2 - CH_2 - CH_2 - C \\ \downarrow \\ CH_3 \\ CH_3 \end{array} = CH_2 \\ \\ {\sf C.} \, CH_3 - CH_2 - CH - CH_2 - C \\ \downarrow \\ CH_3 \end{array} \\ \begin{array}{l} {\sf C.} \, CH_3 - CH_2 - CH_2 - CH_2 \\ \downarrow \\ CH_3 \end{array} \\ \end{array}$$

D. `none

Answer: B

Watch Video Solution

176. $CH_3 - CH = CH - CH_3 \xrightarrow[R_2O_2\Delta(Anti-Markownikoff's addition)]}$

Comment on optical activity of the products:

A. Racemic

- B. Diastereomer
- C. Meso

D. Optically pure enantiomer

Answer: A

Watch Video Solution

(al is :

Β.

D.

Answer: B

178. Alkene (A) will be :

Alkene (A) will be :

A. cis-2-pentene

B. cis-2-hexene

C. cis-4-octene

D. trans-2-hexene

Answer: C

Answer: B

Watch Video Solution

180. In which of the following reactions, two products will be formed other than phosphonium ylide $(POPh_3)$

A.
$$Ph_3P = CH_2 \longrightarrow$$

Watch Video Solution

181. To carry out the given conversions, select the correct option:

$$\begin{array}{c} \begin{array}{c} & & & \\ R_1 & & \\ R_2 & \\ \end{array} \begin{array}{c} & & \\ & &$$

A.
$$a=Ag_2O, b=Zn/CH_3CO_2H, C=LiAlH_4$$

B. $a=H_2O_2, b=CH_3-S-CH_3, c=NaBH_4$

C. Both (a) and (b

D. None of these

Answer: C

182. The product (A) of given alkoxymercuration de-mercuration is :

Answer: B

Watch Video Solution

$$\textbf{183.} \ CH_3 - \overset{ONa}{\overset{}{C}} = CH_2 \xrightarrow{HC = CH} \overset{H^+}{\longrightarrow} \xrightarrow{H^+} \overset{A_{l_2O_3}}{\overset{}{pd - BaSO_4}} \xrightarrow{\Delta}$$

End product of the reaction is :

A.
$$H_2C=CH- egin{array}{cc} C&-CH_2\ ert \ CH_3\end{array}$$

 $\mathsf{B}.\,CH_3-CH=CH-CH=CH_2$

 $\mathsf{C}.\,H_2=CH-cH=cH_2$

D.
$$H_2C = CH - CH_2 - CH = CH_2$$

Answer: A

184. Major product of the given reaction is :

 $H_2C = CH - CH_2 - I \xrightarrow{\mathrm{HI}\,(\mathrm{excess})}_{CCl_4}$

A.
$$CH_3 - CH - CH_2$$

 $| I I$
B. $CH_3 - CH - CH_3$
 $| I$
C. $CH_3 - CH_2 - CH_2 - I$

D.
$$I-CH_2-CdH_2-CH_2-I$$

Answer: B

185. The rate constant for a reaction can be increased by a the stability of the reactant or by b the stability of the transition state. Select the correct choice for a and b.

A. decreasing, decreasing

B. increasing, decreasing

C. decreasing, increasing

D. increasing, increasing

Answer: C

Watch Video Solution

186. Major product of the given reaction is :

$$H_2C = CH_2 + \sum CH_2 \qquad \xrightarrow{H'}{\Lambda}$$
 Product

C.

 CH_3 D. $H_2C=C-\stackrel{|}{C}H_2-CH_2-CH_3$

Answer: C

Watch Video Solution

Major product (A) is :

Major product (A) is :

Answer: C

188. In the given reaction, only one alkene undergo preferential oxidation

by electrophilic ozone. Identify product (P) of the given reaction:

Answer: B

(P) is:

D.

Answer: D

product of the reaction is :

B.

Answer: B

D.

Product

191.

(B) is :

A.
$$Ph - \overset{OH}{CH} - CH = CH - CH_2 - \overset{O}{\overset{||}{C}} - H$$

 $\mathsf{B}. Ph - CH = CH - CHO$

 $\mathsf{C.}\, Ph - (CH = CH)_2 - CHO$

$$\mathsf{D}. Ph - (CH = CH)_3 - CHO$$

Answer: C

192. Isobutene, in the presence of H_2SO_4 , forms a mixture of two isomeric alkene (C_8H_{16}) . The major alkene is :

$$\begin{array}{c} \begin{array}{c} CH_{3} & CH_{3} \\ H_{3} - CH_{3} - CH_{3} \\ H_{3} - CH_{3} \\ CH$$

Answer: B

193. An unknown alkene (A) reacts with 3 mole of H_2 gas in presence of

platinum catalyst to form 1-isopropyl-4-methyl cyclohexane. When

unknown alkene (A) is ozonized and reduced, following product are obtained

The alkene (A) is :

A. Β.

C.

Answer: B

194.
$$(1) \xrightarrow{(1) \text{NBS}} (A) \xrightarrow{(1) - C - CH} (B) \xrightarrow{(CH_3)} (B) \xrightarrow{(1) - CH_2 - BC} (C)$$

Product (C) is :

D. Both (a) and (b)

Answer: B

C.

195. The following reaction take place in high yields.

Use your knowledge of alkene chemistry to predict a product even though you have never seen this reaction before

A.

Β.

C.

Answer: B

What is the ratio of glyoxal to pyrualdehyde obtained in the above reaction ?

A. 1:3

B.3:1

C. 1: 2

D. 2:3

Answer: C

Which of the following product cannot be obtained in above reaction ?

$$A. H - \overset{O}{C} - CH_2 - \overset{O}{C} - H$$

$$B. CH_3 - \overset{O}{C} - CH_2 - \overset{O}{C} - H$$

$$C. CH_3 - CH_3 - \overset{O}{C} - H_3 - \overset{O}{C} - H_3$$

D. None of these

Answer: C

Watch Video Solution

$$CH_{3} \xrightarrow{CH_{3}} C = C \xrightarrow{CH_{3}} + (CH_{3})_{3} \xrightarrow{N} -O + H_{2}O \xrightarrow{OsO_{4}(10^{-4} \text{ mole})} A + (CH_{3})_{3} N$$

$$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} (0.034 \text{ moles}) \xrightarrow{MAO} A + (CH_{3})_{3} N$$

$$IQ8 \qquad 2.3 \text{ dimethyl-2-butane}$$

Product (A) is :

$$\overset{CH_3}{\underset{CH_3}{\leftarrow}} \overset{C-C}{\underset{O}{\leftarrow}} \overset{CH_3}{\underset{CH_3}{\leftarrow}}$$

$$\mathsf{B}. CH_3 - \overset{CH_3}{\overset{|}{C}} - \overset{CH_3}{\overset{|}{C}} - CH_3$$
$$\overset{OH}{\overset{OH}{OH}} OH$$
$$\mathsf{C}. CH_3 - \overset{OH}{\overset{C}{C}} - CH_3$$
$$\overset{O}{\overset{|}{C}} - CH_3$$

D.
$$CH_3 - \overset{\scriptscriptstyle o }{C} - C(CH_3)_3$$
 .

Answer: B

Product (A) of the reaction is :

А.

Β.

D. None of these

Answer: A

200.

Product (A) is :

Answer: B

Watch Video Solution

Arrange the above in the decreasing order of reactivity towards HBr :

A. a gtbgtc

B. b gtagtc

C. b gtcgta

D. a gtcgtb

Answer: B

Watch Video Solution

202. Which reaction has the lowest ΔG^+ or (Activation-Energy)?

Answer: D

204. Which of the following is most likely to undergo a favorable hydride

shift ?

Answer: A

205. Energy profile diagram for dehydration of 2-butanol using conc. H_2SO_4 is given below:

Product (b) of above reaction is :

A. 1-butene

B. cis-2-butene

C. trans-2-butene

D. iso-butene

Answer: B

206. How many alkene on catalytic hydrogenation given isopentane as a

product ?

A. A) 2

- B. B) 3
- C. C) 4

D. D) 5

Answer: B

Watch Video Solution

207. Which of the following would not rearrange to a more stable form?

208. Consider the following reaction.

$$\operatorname{BrCH}_2\operatorname{CH}_2\operatorname{F} + \operatorname{SbF}_5 \xrightarrow[-60^{\circ}C]{} \operatorname{CH}_2 \xrightarrow{} \operatorname{CH}_2 + \operatorname{SbF}_6^-$$

In this reaction SbF_5 acts as:

A. an acid

B. a base

C. a nucleophile

D. an electrophile

Answer: D

Watch Video Solution

Product (Z) is:

A.

Β.

Answer: C

Relation between (B) and (C) is:

A. Enantiomer

B. Diastereomer

C. Geometrical isomer

D. Meso

Answer: B::C

Watch Video Solution

211. The reaction of HBr with the following compound would produce :

Answer: B

A. Nucleophilic addition

- B. Nucleophilic substitution
- C. Electrophilic substitution
- D. Electrophilic addition

Answer: C

Watch Video Solution

213. Olefins can be hydrogenated by :

A. A) Zinc and HCl

B. B) Nascent hydrogen

C. C) Raney Ni and H

D. D) Lithium hydride in ether

Answer: C

Watch Video Solution

214. What are the products obtained on hydroboration-oxidation of the

given alkene

A. I and III

B. II and IV

C. II and VI

D. III and V

Answer: D

CH₃CH₂CH = CH₂

$$\begin{array}{c} HBr \\ CCl_4 \\ HBr \\ R_2O_2 \\ \end{array} (B) \\ \begin{array}{c} HBr \\ HBr \\ R_2O_2 \\ \end{array} (C) \\ CH_3CH_2C = CH \\ H_2O_2/OH^{\textcircled{0}} (D) \\ H_2O_2/OH^{\textcircled{0}} (D) \end{array}$$

Relation between A and B, C and D are :

A. Position, chain

B. Position, Functional

C. Chain, Identical

D. Metamer, Functional

Answer: B

216. In which reaction syn addition doesn't take place.

Answer: D

Watch Video Solution

217. Number of olefin (X) of $C_4H_8 \xrightarrow{HBr}$ Number of Markonikow product (y) (including stereo) x+y is :

A. 5

B. 6

C. 7

Answer: C

Level 2

		Reagents	
A. HCl	B. Br ₂	C. Hg(OAc) ₂ in H ₂ O	D. B ₂ H ₆ (BH ₃) in ether
E. H ₂ O ₂	F. KMnO4 in H2O	G. HOBr	H. NaBH ₄

In each reagent box write a letter designating the best reagent and

condition selected from the above list of reagents.

Reactant	Rea	gent	Product		
A Same	(i)		(CH ₃) ₂ CHCH(Cl)CH ₃ 2-Chloro-3-methyl butane		
	(ii)		(CH ₃) ₂ CHCHBrCH ₂ Br 1,2-dibromo-3-methyl butane		
$(CH_3)_2CHCH = CH_2$ 3-methyl 1-butene	(iii)		(CH ₃) ₂ CHCHOHCH ₂ Br 1, bromo-3-methyl 2-butanol		
	(iv)		(CH ₃) ₂ CHCH(OH)CH ₃ 3-methyl-2-butanol		
	(v)		(CH ₃) ₂ CHCH(OH)CH ₂ OH 3-methyl-1, 2-butanediol		

2. Propene $(CH_3 - CH = CH_2)$ can be transformed to compounds (a to j) listed in the left-hand column. Write letter designating the reagent, you believe will achieve desired transformation. In the case of a multi step sequence write the reagent in the order they are to be used.

	Desired Product	No. of Steps	Write options		Reagent List
a.	CH ₃ CHBrCH ₂ Br	one		Α.	Hg(OAc) ₂ in H ₂ O
b.	(CH ₃) ₂ CHOH	two		в.	B ₂ H ₆ in THF

c.	CH ₃ CH ₂ CH ₂ OH	two	с.	NaBH ₄ in alcohol
d.	CH3COCH3	three	D.	Br ₂ in CH ₂ Cl ₂
e.	CH ₃ CH ₂ CHO	three	Е.	H_2O_2 in aqueous base
f.	CH ₃ CH(OH)CH ₂ Br	one	F.	HOBr (NBS in aqueous acetone)
g.	(CH ₃) ₂ CHBr	one	G,	HBr in CH ₂ Cl ₂
h, k.	CH ₃ CH(OH) CH ₂ OH	two	н.	OsO_4 in ether
i.	$\mathrm{CH}_3-\mathrm{CH}_2-\mathrm{CH}_2-\mathrm{Cl}$	three	I.	Thionyl chloride (SOCl ₂)
j.	$CH_3 - C = CH$	two	Ј.	NaHSO ₃ in aqueous acetone
			к.	NaOH in alcohol and reflux
	and the second s		L.	NaNH ₂ (strong base)

3. In each reaction box write a single letter designating the best reagent and condition selected from the list at bottom of the page. (F.S., \rightarrow first step, S.S \rightarrow second step, T.S. \rightarrow third step)

Seaction		Reactant	Options		Product		
1.	1.			ES. □ S.S. □		OH CH ₃ OCH ₃	
2.	CCH3			ES. □ S.S. □ TS. □		CCC ^{CH3}	
3.	3.			ES OH		OH OH	
4.	. () [°]		-	<u></u>		C) ^{ph}	
5.	5.				6	CC Ph	
A. NaBH ₄ /alcohol B. Ph – CO ₃ H/ CH		² Cl ₂ C. PCC			D. CH ₃ ONa/CH ₃ OH		
E. B_2H_6 in THF F. H_2O_2/aq . NaOF		G. H_3PO_4 & heat		heat	H. $AlCl_3/C_6H_6$		
I. O_3 in CH_2Cl_2 J. Br_2 in CH_2Cl_2		J. Br ₂ in CH ₂ Cl ₂	K. 20% KOH & 1		& heat	L. Ph – Li/ether	

View Text Solution

4. Match the reagents a-j with products A-J. There is one best product for

each reaction.

The molecule (x) is the starting material for all reactions in problem. Do
the ones you know first and then tackle the rest by deductive reasoning

Products		Reagents	Option
Br Br	(a)	H ₂ O heat, pH 7	
	(b)	F3C OH	
OH (c)		tBuOK, polar aprotic solvent	
Br A St	(d)	(1) O ₃ , ether (2) H ₂ O, NaOH, H ₂ O ₂	
	(e)	Br ₂ , CCl ₄	
Br Br	(f)	NBS, hv, CCl ₄	
Br Br	(g)	(1) H ₃ O(+) (2) NaOH, H ₂ O	
OH Br Br	(h)	(1) BH ₃ , ether (2) H ₂ O ₂	1
Br Br Br Br	(i)	(1) OsO ₄ (2) NaOH, H ₂ O	
	(j)	H ₂ /Pd/C(EtOH)	

View Text Solution

5. Match the column :

	Column (I)		Column (II)
(a)	$CH_3 - C = C - CH_3$	(p)	cis-product with H_2/Pd - $BaSO_4$
(b)	$CH_3 - CH_2 - C = CH$	(q)	Trans-product with Na/liq. NH3
(c)	$CH_3 - C = CH$	(r)	White with amm. AgNO ₃
(d)	CH3-C=C-Et	(s)	H ₂ gas with Na

Watch Video Solution

6. Match the column I with column II and with column III (Matrix).

Column-I			Column- II	Column- III	
	Reaction	Nature of product formed		Number of chiral center present in product. (Consider only one isomer in case of racemic mixture or Diastereomer)	
(a)	$\overbrace{\substack{A^{r_{1}} \\ CH_{3}}}^{H_{r_{1}}}H \xrightarrow{Br_{2}} CCI_{4} \rightarrow$	(p)	Racemic mixture	(w)	0
(b)	CH ₃	(q)	Meso	(x)	1.
(c)	$\overbrace{CH_3}^{\text{Br}_2} \xrightarrow{\text{CCI}_4}$	(r)	Diastereomer	(y)	2
(d)	$\begin{array}{c} CH_{3} \\ H \end{array} C = C \begin{array}{c} H \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{Br_{2}} CCI_{4} \end{array}$	(s)	Vicinal dihalide	(z)	3

7. Match the column I and II.

8. Sum of molecular mass of A, B, C, D (i.e. A+B + C + D) is equal to :

Watch Video Solution

9.
$$C_2FClBrl \xrightarrow[(all isomers)]{H_2} (A)$$
 (exclude stereoisomer)

(2) $C_4H_8(\text{alkene}) \xrightarrow[Ni]{H_2}{Ni} (B)$ (exclude stereoisomer) Total number of

products (A) and (B) is equal to:

How many

products are formed by sum of P,Q,R,S?

11. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t-electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

Which of the following is most reactive toward Markovnikov addition ?

D.

Answer: B

Watch Video Solution

12. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t-electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

What is the energy profile for the given reaction ?

Answer: C

13. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t-electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the

hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

In which of following reactions carbocation rearrangement is possible ?

A.
$$(CH_3)_2 CH - CH = CH_2 \xrightarrow{HCl}{O^\circ C}$$

B. $(CH_3)_3 C - CH = CH_2 \xrightarrow{HBr}{0^\circ C / Cl_4}$
C. $ph - CH_2 - CH - CH_2 \xrightarrow{HBr}{CCl_4}$

D. All of these

Answer: D

14. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t-

electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

Identify the major products r_1 , r_2 , and r_3 in the given reactions.

Answer: B

Watch Video Solution

15. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t-electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

In which of the following reactions, product is racemic mixture ?

D. All of these

Answer: D

16. Vladimir Markovnikov rule : Alkenes undergo electrophilic addition reactions. It is triggered by the acid acting as a electrophile toward t-electrons of the double bond. Markovnikov's rule states that when an unsymmetrically substituted alkene reacts with a hydrogen halide, the hydrogen atom adds to the carbon that has the greater number of hydrogen, e.g.,

In which of the following reactions, diastereomers will be formed ?

D. All of these

Answer: D

17.

$$CH_3-CH_2-CH=CH_2+CH_2OH \stackrel{H^{\oplus}}{\longrightarrow} CH_3-CH_2- CH_1-CH_3 \ ert_{OCH_3}$$

A. $\overset{\oplus}{C}H_3$ B. H^{\oplus} C. $CH_3 - CH_2 - \overset{\oplus}{C}H - CH_3$

D. HO^{\oplus}

Answer: B

18.

$$CH_3-CH_2-CH=CH_2+CH_2OH \stackrel{H^{\oplus}}{\longrightarrow} CH_3-CH_2- CH_1-CH_3 \ ert_{OCH_3}$$

What is nucleophile in first step?

A. CH_3OH

B. 1-butene

 $\mathsf{C}.\,H_2O$

 $\mathsf{D}.\,CH_3-O-CH_3$

Answer: B

Watch Video Solution

19.

$$CH_3-CH_2-CH=CH_2+CH_2OH \stackrel{H^{\oplus}}{\longrightarrow} CH_3-CH_2- CH_1-CH_3 \ ert_{OCH_3}ert_{OCH_3}$$

What is electrophile in second step ?

A.
$$CH_3-CH_2-\overset{\oplus}{C}H-CH_2$$

B.
$$H^{\,\oplus}$$

C.
$$CH_3 - CH_2 - \overset{\oplus}{CH} - CH_2$$

D. $CH_3 - CH_2 - CH_2 - \overset{\oplus}{CH}_2$

Answer: C

Watch Video Solution

20.

$$CH_3-CH_2-CH=CH_2+CH_2OH \stackrel{H^{\oplus}}{\longrightarrow} CH_3-CH_2- CH_1-CH_3 \ ert_{OCH_3}$$

What is nucleophile in second step ?

A. $CH_3 - CH_2 - CH = CH_2$

B. CH_3OH

 $\mathsf{C}. H_2 O$

D. $CH_3 - O - CH_3$

Answer: B

21.

 $CH_3-CH_2-CH=CH_2+CH_2OH \stackrel{H^{\oplus}}{\longrightarrow} CH_3-CH_2- CH_1-CH_3 \ ert_{OCH_3}ert_{OCH_3}$

Which step is rate determining step ?

A. attack of nucleophile CH_3OH

B. attack of electrophile H^{\oplus}

C. attack of nucleophile H_2O

D. attack of electrophile $\overset{\oplus}{C}H_3$

Answer: B

22. Match the column I and II :

Column (I)			Column (II)		
	Conversion	133	Reagent		
(a)	$ \begin{array}{c} CH_3 \\ \bigcirc \\ \longrightarrow \\ Br \end{array} \end{array} $	(p)	SO ₂ Cl ₂ / hv (2 equivalent)		
(b)	$ \overset{CH_3}{\longrightarrow} \overset{CH_2-Cl}{\bigcirc} \overset{Cl}{\bigcirc} \overset{Cl}{\odot} \overset{Cl}{ } $	(q)	NBS (2 equivalent)		
(c)		(r)	NBS then SO ₂ Cl ₂ /hv		
(d)	$\xrightarrow{\operatorname{CH}_3} \xrightarrow{\operatorname{CH}_2 - \operatorname{Cl}} \xrightarrow{\operatorname{Br}}$	(s)	$SO_2 Cl_2 / hv$ then NBS		