©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - PRADEEP PUBLICATION

APPLICATIONS OF INTEGRALS

Example

1. Using integration, find the area enclosed by a
circle of radius a.
(D) Watch Video Solution
2. find the area under the curve $y=\sqrt{3 x+4}$,lying between $x=0$ and $x=4$.

- Watch Video Solution

3. Make a rough sketch of the graph of $y=x^{2}$ and compute the area under the curve, above the x-axis and the line $\mathrm{x}=22$ and $\mathrm{x}=4$.
4. Find the area of region bounded by

The parabola $y^{2}=4 a x$ and its latus rectum

- Watch Video Solution

5. Find the area of the region bounded by the curve $y=x^{2}$ and the line $\mathrm{y}=9$.

D Watch Video Solution

6. Make a rough sketch of the graph of the function $y=3 \sin x, 0 \leq x \leq \pi$ and compute the
area enclosed between the curve and the X -axis.

- Watch Video Solution

7. Using integration, find the area of the region bounded by the lines $y=3 x+2$, the x-axis and the ordinates $\mathrm{x}=-1$ and $\mathrm{x}=1$.

- Watch Video Solution

8. Using the integration, find the area of the triangle whose vertices are
$(-1,6),(1,2)$ and $(5,4)$.

- Watch Video Solution

9. Using the method of integration, find the area of the triangular region whose vertices are (2,-2),(4,3) and $(1,2)$.

- Watch Video Solution

10. Find the area of the smaller region bounded by
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$
11. Find the smaller of the two areas in which the
circle $x^{2}+y^{2}=2 a^{2}$ is divided by the parabola
$y^{2}=a x, a>0$.

- Watch Video Solution

12. Find the smaller of the two areas bounded by
the circles $x^{2}+y^{2}=4,(x-2)^{2}+y^{2}=4$.

- Watch Video Solution

13. (i) Find the area of the region given by:
$\left\{(x, y): x^{2} \leq y \leq|x|\right\}$.

- Watch Video Solution

14. Find the area of the region bounded by $y=x^{2}+1, \mathrm{y}=\mathrm{x}, \mathrm{x}=0$ and $\mathrm{y}=2$.

- Watch Video Solution

15. Find the area bounded by the curve $y=x^{2}-4$
and the lines $\mathrm{y}=0$ and $\mathrm{y}=5$.

- Watch Video Solution

16. Find the area enclosed by the parabola $x^{2}=4 y$ and the lines $x=4 y-2$.

- Watch Video Solution

17. Draw a rough sketch of the curves $y=\sin x$ and $y=\cos x$ as x varies from 0 to $\frac{\pi}{2}$ and find the area enclosed by them find x-axis.

- Watch Video Solution

18. Find the area bounded by the x-axis, part of the
curve $y=1+\frac{8}{x^{2}}$ and the ordinates at $\mathrm{x}=2$ and $\mathrm{x}=$
19. If the ordinate at $x=$ a divides the area into two equal parts, find a.

- Watch Video Solution

19. Find the area bounded by the curve
$y=2 x-x^{2}$, and the line $y=-x$
20. Find the area enclosed between the curve
$\mathrm{y}=\tan x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$,
the x -axis and the tangent to this curve at $x=\frac{\pi}{4}$.

- Watch Video Solution

21. Using integration, find the area of the triangle
formed by positive x-axis and tangent and normal to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$.
22. Find the area bounded by the curves $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$ and $\mathrm{x}=0$ which lies in the first quadrant.

- Watch Video Solution

23. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $y^{2}=4 x$.
24. Sketch the region bounded by the curves:
$y=\sqrt{5-x^{2}}$ and $\mathrm{y}=|\mathrm{x}-1|$ and find its area, using integration.

(Watch Video Solution

25. Find the area enclosed between the curve $y=\sin x$ and $y=\cos x$ that lies between thhe
lines $\mathrm{x}=0$ and $x=\frac{\pi}{2}$.

- Watch Video Solution

26. Find the area bounded by the curve $y=\cos x$ between $x=0, x=2 \pi$.

D Watch Video Solution

27. Prove that the curves $y^{2}=4 x, x^{2}=4 y$, divide
the area of the square bounded by $x=0, x=4, y=4, y=0$ into three equal parts.

D Watch Video Solution

1. Using integration, find the region bounded by

 the line $2 y=-x+8$, x-axis, and the lines $x=2$ and $x=4$.
D Watch Video Solution

2. Using integration, find the area of the region
bounded by the line $y-1=x$, the x-axis and the ordinates $x=-2$ and $x=3$.

- Watch Video Solution

3. Make a rough sketch of the graph of the
function

$$
f(x)=9-x^{2}, 0 \leq x \leq 3 \quad \text { and }
$$

determine the area enclosed between the curve and the axes.

- Watch Video Solution

4. Sketch the rough graph of
$y=4 \sqrt{x-1}, 1 \leq x \leq 3$ and complete the area between the curve, x-axis and the line $x=3$.

- Watch Video Solution

5. Draw rough sketch of the function $y=2 \sqrt{1-x^{2}}, x \in[0,1]$ and evaluate the area
enclosed between the curve and the x-axis.

- Watch Video Solution

6. Find the area enclosed between the curve $y^{2}=8 x$ and the line $x=2$.

- Watch Video Solution

7. Find the area of the regionn bounded by the
curve $y^{2}=x$, the x -axis and the lines $\mathrm{x}=1, \mathrm{x}=4$ and which lies above x-axis.
8. Make a rough sketch of the functionn $y=x^{2}, 0 \leq x \leq 3$ and determine the area enclosed between the curve, the x-axis and the line $x=3$.

- Watch Video Solution

9. Find the area of the regionn bounded by the curve $x^{2}=4 y$, the y-axis the lines $\mathrm{y}=2, \mathrm{y}=4$ and which lies in the first quadrant.
10. Make a rough sketch of the graph of the function $y=4-x^{2}, 0 \leq x \leq 2$ and determine the area enclosed between the curve and the lines $x=0, x=2$ and x-axis.

D Watch Video Solution

11. Sketch the graph of the curve $y=\sqrt{x}+1$ in the interval $[0,4]$ and determine the area of the region enclosed by the curve, the x-axis and the lines $x=0$ and $x=4$.
12. Make a rough sketch of the curve
$y=2 \sin x, 0 \leq x \leq \pi$, and determine the area of the region enclosed between the curve and the x axis.

- Watch Video Solution

13. (ii) Draw the graph of $\mathrm{y}=\cos 3 \mathrm{x}, 0 \leq x \leq \frac{\pi}{6}$ and find the area between the curve and the axes.

- Watch Video Solution

14. (i) Make a rough sketch of the graph of the
function $\mathrm{y}=\sin \mathrm{x}, 0 \leq x \leq \frac{\pi}{2}$ and determine the area enlosed between the curve, the, the x-axis and the line $x=\frac{\pi}{2}$.

D Watch Video Solution

15. Make a rough sketch of the graph of the function $y=\cos ^{2} x, 0 \leq x \leq \frac{\pi}{2}$ and determine the area inclosed between thhe curve and the axes.
16. Using integration find the area of the region bounded by the triangle whose vertices are (1,0), (3,
6) and (5, 2). Also draw the rough sketch of bounded region.

- Watch Video Solution

17. Using integration find the area of region bounded by the triangle where vertices are : $(2,5)$,
$(4,7)$ and (6,2)
18. Using integration find the area of region bounded by the triangle whose vertices are (1, 0),
$(2,2)$ and $(3,1)$.

- Watch Video Solution

19. Using integration find the area of region bounded by the triangle where vertices are : (-1,2),
$(1,5)$ and $(3,4)$

- Watch Video Solution

20. Using integration find the area of the circle $x^{2}+y^{2}=r^{2}$.

- Watch Video Solution

21. Sketch the region $\left\{(x, y): 4 x^{2}+9 y^{2}=36\right\}$ and find its area using integration.

- Watch Video Solution

22. Make a rough sketch of the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and find
the area under the curve above the x-axis.

- Watch Video Solution

23. Make a rough sketch of the curve
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and find
the area enclosed by the curve above the x-axis.

- Watch Video Solution

24. Find the area between the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the x -axis between $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$. Draw a rough sketch of the curve also.

- Watch Video Solution

25. Calculate the area enclosed by the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

- Watch Video Solution

26. Triangle $A O B$ is in the first quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $\mathrm{OA}=\mathrm{a}$ and $\mathrm{OB}=\mathrm{b}$.

Find the area enclosed between the chord $A B$ and the $\operatorname{arc} A B$ of the ellipse.
27. Find the area of smaller region bounded by the
ellipse $\quad \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \quad$ and \quad straight \quad line
$\frac{x}{3}+\frac{y}{2}=1$.

D Watch Video Solution

28. Using integration, find the area of the region represented
$\left\{(x, y): \frac{x^{2}}{9}+\frac{y^{2}}{4} \leq 1 \leq \frac{x}{3}+\frac{y}{2}\right\}$.

- Watch Video Solution

29. AOBA is the part of the ellipse $9 x^{2}+y^{2}=36$ in the first quadrant such that $O A=2$ and $O B=6$. Find the area between the arc $A B$ and the chord $A B$.

D Watch Video Solution

30. Find the area of the region by the curve
$x y-3 x-2 y-10=0, \quad \mathrm{X}$-axis and the line $x=3, x=4$.
31. Find the area of the region bounded by two parabolas $y=x^{2}$ and $y^{2}=x$.

- Watch Video Solution

32. Find the area of the region included between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y, a>0$.

D Watch Video Solution

33. Find the area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$.

- Watch Video Solution

34. find the area of the region
$\left\{(x, y): x^{2}+y^{2} \leq 4, x+y \geq 2\right\}$

- Watch Video Solution

35. Find the area bounded by the curve $y^{2}=4 a x$ and the lines $y=2 a$ and y-axis.

- Watch Video Solution

36. Sketch the region bounded by the curve $y=2 x-x^{2}$ and the x-axis and find its area, by using integration.

- Watch Video Solution

37. Find the area bounded by curves

$$
(x-1)^{2}+y^{2}=1 \text { and } x^{2}+y^{2}=1
$$

- Watch Video Solution

38. Find the area of the region in the first quadrant enclosed by the x-axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.

- Watch Video Solution

39. Find the smaller of the two areas enclosed by
the curves $x^{2}+y^{2}=4$ and $y^{2}=3(2 x-1)$.

- Watch Video Solution

40. Using integration, find the area of the region given below. $\left\{(x, y): 0 \leq y \leq x^{2}+1,0 \leq y \leq x+1,0 \leq x \leq 2\right\}$

- Watch Video Solution

41. Find the area enclosed by the parabola
$4 y=3 x^{2}$ and the line $2 y=3 x+12$

D Watch Video Solution
42. Find the area of the region bounded by the curve $y=x^{2}+2, y=x, x=0$ and $x=3$

- Watch Video Solution

43. Sketch the region lying in the first quadrant and bounded by $y=9 x^{2}, \mathrm{x}=0, \mathrm{y}=1$ and $\mathrm{y}=4$. find the area of this regionn using integration.
44. Draw a rough sketch of the curve
$y^{2}=4 a^{2}(x-1)$ and find the area by curve and the lines $x=1$ and $y=4 a$

- Watch Video Solution

45. Find the area lying in the first quadrant bounded by the curves $x^{2}+y^{2}-2 a x=0$ and $y^{2}=a x$.
46. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$.

- Watch Video Solution

47. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

48. Find the area included between the curves

$$
y=x^{2} \text { and } x^{2}+4(y-1)=0
$$

- Watch Video Solution

49. Find the area of the region bounded by the curves $y=6 x-x^{2}$ and $y=x^{2}-2 x$.

- Watch Video Solution

50. Find the area bounded by the curve $y^{2}=2 y-x$ and the Y -axis.

- Watch Video Solution

51. Find the area of the regionn bounded by $y=-1, y$
$=2, x=y^{3}$ and $\mathrm{x}=0$.

- Watch Video Solution

52. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$
53. Using integration, find the area of the region:
$\left\{(x, y):|x-1| \leq y \leq \sqrt{5-x^{2}}\right\}$.

- Watch Video Solution

54. Find the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the ordinates $x=0$ and $x=a e$, where $b^{2}=a^{2}\left(1-e^{2}\right)$ and $e<1$.
55. Using the method of integration, find the area
of the region bounded by the lines : $3 x-2 y+1=0$,
$2 x+3 y-21=0$ and $x-5 y+9=0$.

- Watch Video Solution

56. Using the method of integration find the area

$$
\begin{aligned}
& \text { of the region bounded by lines: } \\
& 2 x+y=4,3 x-2 y=6, x-3 y+5=0
\end{aligned}
$$

57. (a) Using integration, find the area of the region bounded by the triangle whose sides are : (i) $3 x-y-$ $3=0,2 x+y-12=0, x-2 y-1=0$.

- Watch Video Solution

58. Prove that the curves $y^{2}=4 x, x^{2}=4 y$, divide the area of the square bounded by $x=0, x=4, y=4, y=0$ into three equal parts.
59. Compute the area enclosed by the curves
$y=2^{x}$ and $y=\log _{2} x$ between the lines $x=\frac{1}{2}$ and $x=2$.

- Watch Video Solution

60. Compute the area enclosed by the curves
$y=e^{x}$ and $y=\log _{e} x$ between the lines $x=1$
and $x=2$.

- Watch Video Solution

61. Find the area enclosed by the lines $y=0, y=x, x=$ $1, x=2$.

- Watch Video Solution

62. Compute the area shown shaded in the figure.

63. Find the area enclosed by the curves $x=\sqrt{y}$,
$\mathrm{y}=0$ and $x=\sqrt{2}$.

- Watch Video Solution

64. Compute the area shown shaded in the figure.

(D) Watch Video Solution

65. Find the area bounded by the curves
$y=\sqrt{1-x^{2}}$ and $\mathrm{y}=0$.

- Watch Video Solution

66. Find the area bounded by the lines $x=0, y=0$ and $\mathrm{x}+\mathrm{y}=1$.

- Watch Video Solution

67. Find the area shown shaded in the figure

- Watch Video Solution

68. Find the area shown shaded in the figure

- Watch Video Solution

69. Find the area bounded by the curves $y=e^{x}, \mathrm{x}=$
$0, y=0, x=1$.

- Watch Video Solution

70. Find the area bounded by the curves $y=\log _{e} x$, $x, y=0$ and $x=e$.

- Watch Video Solution

71. Find the area enclosed between the curve $y=\sqrt{x-1}$, the x-axis and the line $x=5$.

D Watch Video Solution

72. Find the area enclosed betweenn $y=\sin x$ and the x -axis from $\mathrm{x}=0$ to $x=\pi$.

- Watch Video Solution

73. (i) Determine the area under the curve $y=\sqrt{a^{2}-x^{2}}$ included between the lines $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$.

- Watch Video Solution

74. Find the area of the region bounded by the curve $y=x$, and the lines $x=1, x=4$ and the x axis.
75. Find the area of the region bounded by
$y^{2}=9 x, \mathrm{x}=2, \mathrm{x}=4$ and the x -axis in the first quadrant.

- Watch Video Solution

76. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.
77. Find the area of region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

- Watch Video Solution

78. Find the area of region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

- Watch Video Solution

79. Find the area of the region in the first quadrant enclosed by x-axis, line $x=(\sqrt{3}) y$ and the circle
$x^{2}+y^{2}=4$.

- Watch Video Solution

80. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

- Watch Video Solution

81. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
82. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$.

- Watch Video Solution

83. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$.
84. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

- Watch Video Solution

85. Area lying in the first quadrant and bounded by
the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is :
А. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer:

- Watch Video Solution

86. Area of the region bounded by the curve
$y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

- Watch Video Solution

87. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.

- Watch Video Solution

88. Find the area bounded by curves

$$
(x-1)^{2}+y^{2}=1 \text { and } x^{2}+y^{2}=1
$$

89. Find the area of the region bounded by the curve $y=x^{2}+2, y=x, x=0$ and $x=3$

- Watch Video Solution

90. Using integration find the area of regeion bounded by the triangle whose vertices are ($-1,0$),
$(1,3)$ and (3,2)

D Watch Video Solution
91. Using integration find the area of triangle whose sides are given by the equations

$$
y=2 x+1, y=3 x+1, x=4
$$

- Watch Video Solution

92. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $2(\pi+2)$

Answer:

- Watch Video Solution

93. Area lying between the curve $y^{2}=4 x$ and the line $y=2 x$ is:
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

- Watch Video Solution

94. Find the area under the given curves and given
lines: $y=x^{2}, x=1, x=2$ and x -axis

D Watch Video Solution

95. Find the area under the given curves and given
lines: $y=x^{4}, x=1, x=5$ and x-axis.

- Watch Video Solution

96. Find the area between the curves $y=x$ and $y=x^{2}$

- Watch Video Solution

97. Find the area of the region lying in the first quadrant and bounded by
$y=4 x^{2}, x=0, y=1, y=4$

- Watch Video Solution

98. Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}(|x+3| d x$.
-6

- Watch Video Solution

99. Find the area bounded by the curve $y=\sin x$
between $x=0$, and $x=2 \pi$

- Watch Video Solution

100. Find the area enclosed between the parabola
$y^{2}=4 a x$ and the line $y=m x$

- Watch Video Solution

101. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$

- Watch Video Solution

102. Find the area of smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and straight line $\frac{x}{3}+\frac{y}{2}=1$.

- Watch Video Solution

103. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ (using integration)

- Watch Video Solution

104. Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and the x -axis.

- Watch Video Solution

105. Using the method of integration find the area bounded by the curve $|x|+|y|=1$

D Watch Video Solution

106. Find the area bounded by curves
$\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

- Watch Video Solution

107. Using integration, find the area of the triangle
$A B C$, co ordinate of whose vertics are $A(2,0), B(4,5)$
and $C(6,3)$.

- Watch Video Solution

108. Using the method of integration find the area
of the region bounded by lines:
$2 x+y=4,3 x-2 y=6, x-3 y+5=0$

- Watch Video Solution

109. Make a rough sketch of the region given below and find its area, using integration

$$
\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}
$$

- Watch Video Solution

110. Area bounded by the curve $y=x^{3}$, the x -axis and the ordinates $x=-2, x=1$ is:
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer:

111. The area bounded by the curve $y=x|x|, \mathrm{x}$-axis and the ordinates $x=-1, x=1$ is given by:
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer:
112. (a) (i)Find the area of the circle $x^{2}+y^{2}=16$, which is exterior to the parabola $y^{2}=6 x$.

$$
\begin{aligned}
& \text { A. } \frac{4}{3}(4 \pi-\sqrt{3}) \\
& \text { B. } \frac{4}{3}(4 \pi+\sqrt{3}) \\
& \text { C. } \frac{4}{3}(8 \pi-\sqrt{3}) \\
& \text { D. } \frac{4}{3}(8 \pi+\sqrt{3})
\end{aligned}
$$

Answer:
113. The area bounded by the y-axis, $y=\cos x$ and

$$
y=\sin x, 0 \leq x \leq \frac{\pi}{4} \text { is }
$$

A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer:
114. Area bounded by the curve $y=x^{3}$, the x -axis and the ordinates $x=-2, x=1$ is:

- Watch Video Solution

115. Fill in the blanks

The area of the region bounded by the curve $x=y^{2}, \mathrm{y}$-axis and the lines $\mathrm{y}=3, \mathrm{y}=4$ is........ .
116. Fill in the blanks

Area bounded by the curve $y=\sqrt{x-3} 1<\mathrm{x}<4$ in
first quadrant is equal to.

- Watch Video Solution

117. Fill in the blanks

Area of the region enclosed by the curve $y=\tan x$,
the x -axis and the line $x=\frac{\pi}{3}$ is.

- Watch Video Solution

118. Fill in the blanks

Area enclosed by the curve $y=x-x^{2}$ and the x axis, is

- Watch Video Solution

119. Fill in the blanks

The area of the region bounded by the curve $y=x^{2}+x$, the x -axis and the lines $\mathrm{x}=2, \mathrm{x}=5$ is
120. Fill in the blanks

The area under the curve $y=\sqrt{x}$ from $\mathrm{x}=0$ to $\mathrm{x}=4$ is

- Watch Video Solution

121. Fill in the blanks

The area enclosed between the x-axis, the graph of
$y=|x|$ and the ordinates $x=-2$ and $x=1$ is.

- Watch Video Solution

122. Fill in the blanks

Area enclosed between the y-axis, graph of $x=\sqrt{y}$ and the line $\mathrm{y}=4$ is.

- Watch Video Solution

123. Fill in the blanks

Area enclosed by the curve $y=x^{1 / 3}$, the x -axis and the lines $x=1$ and $x=8$ is
124. Fill in the blanks

The area enclosed by the curves,$y=\cos x$, X -axis and the line $x=\frac{\pi}{2}$ and which lies on the left of this line is.

- Watch Video Solution

125. Fill in the blanks

The are bounded by the axes and the line $y=x+1$ is.

- Watch Video Solution

126. Fill in the blanks

Area bounded by the curves $y=x^{2}-1$ and $y=-x^{2}+1$ is.

- Watch Video Solution

127. In case of each of the following statements, state whether it is true or false:

The area enclosed by the x-axis, the graph of $y=x^{3}$ and the lines $\mathrm{x}=-1, \mathrm{x}=1$ is twice the area lying in the first quadrant and bounded by the curves $y=x^{3}, \mathrm{y}=0$ and $\mathrm{x}=1$.
128. In case of each of the following statements, state whether it is true or false:

The area bounded by curves $y=\sqrt{x}$ and $y=x^{2}$ is equal to $\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x$.

- Watch Video Solution

129. In case of each of the following statements, state whether it is true or false:

The area enclosed by the curve $4 x^{2}+4 y^{2}=9$ is

$$
9
$$

equal to $\frac{9}{4} \pi$ square units.

- Watch Video Solution

130. Evaluate
$\int(\cos x-\sin x) \frac{d x}{\sin x+\cos x}$

- Watch Video Solution

131.

The area enclosed between the graph of $y=x$, the
x -axis and the ordinates $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}(\mathrm{a}<\mathrm{b})$

- Watch Video Solution

132. The area of the circle $x^{2}+y^{2}=a^{2}$ is:

- Watch Video Solution

133. In case of each of the following statements, state whether it is true or false:

The area under the curve $y=\sqrt{1-x^{2}}$ is equal to
$\int^{1} \sqrt{1-x^{2}} d x$
-1

- Watch Video Solution

134. In case of each of the following statements, state whether it is true or false:

The area enclosed between the curves $y=x^{2}$ and
$x=y^{2}$ is eqaul to $\int_{0}^{1}\left(x^{2}-\sqrt{x}\right) d x$.

- Watch Video Solution

135. In case of each of the following statements, state whether it is true or false:

The area bounded by curves $y=\sqrt{x}$ and $y=x^{2}$ is equal to $\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x$.
136. In case of each of the following statements, state whether it is true or false:

The area bounded by curves $y=\sqrt{x}$ and $y=x^{2}$ is
equal to $\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x$.

- Watch Video Solution

137. In case of each of the following statements,
state whether it is true or false:

The area bounded by the curve $y=x^{2}$ and the
lines $y=1$ and $y=4$ is equal to $\int^{4} \sqrt{y} d y$.
1

- Watch Video Solution

138. In case of each of the following statements, state whether it is true or false:

The area bounded by $y^{2}=x$ and the lines $\mathrm{x}=4$ and
$\mathrm{x}=9$ is equal to $\int_{4}^{9} \sqrt{x} d x$.

- Watch Video Solution

139. Match the statements in column I with those

given in column II.

Column I

1. Area of the ellipse $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ is
2. Area under the curve $y=x^{2}$ between the ordinates $x=1$ and $x=3$ is
3. Area enclosed between the curves $y=\sin x$ and $y=\cos x$ from $x=\frac{\pi}{4}$ to $x=\frac{5 \pi}{4}$.
4. Area enclosed between the x-axis and the curve $y=x^{2}-1$ is,
5. Area enclosed between the x-axis, y-axis and the curve $y^{2}=x+1$ and which lies above the x-axis is equal to
6. Area of the region represented by $((x, y):|x|+|y| \leq 1)$ is
7. Area bounded by the curve $y^{2}=x$, the y-axis and the lines $y=1, y=2$ is

Column II

(p) $\frac{2}{3}$ square units
(q) $\frac{4}{3}$ squareunits
(r) 2 square units
(s) $\frac{7}{3}$ square units
(t) $\pi a b$ square units
(u) $2 \sqrt{2}$ square units
(v) $\frac{26}{3}$ square units

- Watch Video Solution

140. The area enclosed between $y=x, x=1, x=3$ and

the x-axis is

A. 2
B. $\frac{9}{2}$
C. 4
D. none of these

Answer:

D Watch Video Solution

141. If graph of $y=f(x)$ is continous between $x=a$ and $x=b, a<b$, then area enclosed between the x-axis, graph of $y=f(x)$ and the ordinates $x=a$ and $x=b$ is
A. $\int_{a}^{b} f(x) d x$
B. $\int_{a}^{b}|f(x)| d x$
C. $\left|\int_{a}^{b} f(x) d x\right|$
D. none of these

Answer:

- Watch Video Solution

142. The area enclosed between the graph of $y=2 x-x^{2}$ and the x-axis is
A. $\frac{8}{3}$
B. 4
C. 8
D. $\frac{4}{3}$

Answer:

- Watch Video Solution

143. The area enclosed between the graph of
$y=\cos x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and the x-axis is
A. 2
B. 1
C. π
D. $\frac{\pi}{2}$

Answer:

- Watch Video Solution

144. Find the area of the region bounded by the curve $y=2 \sqrt{1-x^{2}}$ and x-axis.
A. 8π square units
B. 20π square units
C. 16π square units
D. 256π square units

Answer:

- Watch Video Solution

145. Find the area enclosed by the circle $x^{2}+y^{2}=2$
A. 4π square units
B. $2 \sqrt{2} \pi$ square units
C. $4 \pi^{2}$ square units

D. 2π square units

Answer:

- Watch Video Solution

146. The area bounded by the curve $y=\sin x, \pi \leq x \leq 2 \pi$ and the x -axis is
A. -2
B. $-\pi$
C. π
D. 2

- Watch Video Solution

147. Area enclosed between thhe graph of $y=x^{2}$
x-axis and the lines $x=-1, x=1$ is
A. 0
B. $\frac{1}{4}$
C. 1
D. $\frac{2}{3}$
148. The area enclsoed between the graph of $y=x^{3}$ and the lines $\mathrm{x}=0, \mathrm{y}=1, \mathrm{y}=8$ is
A. $\frac{45}{4}$
B. 14
C. 7
D. none of these

Answer:

149. Find the area of the region in the first quadrant enclosed by the x -axis, the line $y=x$, and the circle $x^{2}+y^{2}=32$.
A. 16π square units
B. 4π square units
C. 32π square units
D. 24 square units

Answer:

150. Area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ is:
A. $\pi^{2} a b$
B. $\pi a b^{2}$
C. $\pi a^{2} b$
D. $\pi a b$

Answer:

- Watch Video Solution

151. The area of the region bounded by the curve $y=x^{2}$ and the line $\mathrm{y}=16$ is:
A. $\frac{32}{3}$
B. $\frac{256}{3}$
C. $\frac{64}{3}$
D. $\frac{128}{3}$

Answer:

- Watch Video Solution

152. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.
A. 2
B. $2^{4 / 3}$
C. $2^{5 / 3}$
D. none of these

Answer:

- Watch Video Solution

153. The area enclosed between $\mathrm{y}=\mathrm{x}$ and $y^{2}=x$ is
given by

$$
\text { A. } \int_{0}^{1}\left(x-x^{2}\right) d x
$$

$$
\begin{aligned}
& \text { B. } \int_{0}^{1}(x-\sqrt{x}) d x \\
& \text { C. } \int_{0}^{1}\left(x^{2}-x\right) d x \\
& \text { D. } \int_{0}^{1}(\sqrt{x}-x) d x
\end{aligned}
$$

Answer:

- Watch Video Solution

154. The area enclosed between $\mathrm{y}=\mathrm{x}$ and $y^{2}=x$ is
given by

$$
\text { A. } \int_{0}^{1}\left(x^{2}-x d x\right.
$$

В. $\int_{0}^{1}\left(x-x^{2}\right) d x$
C. $\int_{0}^{1}(x-\sqrt{x}) d x$
D. none of these

Answer:

- Watch Video Solution

155. The area of the region bounded by the curve $y=\cos x$ between $\mathrm{x}=0$ and $x=\pi$ is
A. 2 square units
B. 4 square units
C. 3 square units
D. 1 square units

Answer:

- Watch Video Solution

156. Find the area enclosed by the straight line
$y=x+2$ and the curve $x^{2}=y$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{4}-1$
C. $1-\frac{\pi}{4}$
D. none of these

Answer:

- Watch Video Solution

157. The area of the region bounded by the curve $x=$
$2 y+3$ and the lines $y=1, y=-1$ and y-axis is
A. 4 square units
B. $\frac{3}{2}$ square units
C. 6 square units
D. 8 square units

Answer:

- Watch Video Solution

158. The area of the region bounded by the curve y
$=x+1$ and the lines $x=2, x=3$ and the x-axis is
A. $\frac{7}{2}$ square units
B. $\frac{9}{2}$ square units
C. $\frac{11}{2}$ square units
D. $\frac{13}{2}$ square units

- Watch Video Solution

159. the area of the region bounded by the parabola $y^{2}=x$ and the straight line $2 \mathrm{y}=\mathrm{x}$ is
A. $\frac{2}{3}$ square units
B. 1 square units
C. $\frac{4}{3}$ square units
D. $\frac{1}{3}$ square units
160. The area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$ is

> A. $4 \pi-\frac{32}{3}$
> B. $4 \pi+\frac{32}{3}$
> С. $8 \pi-\frac{32}{3}$
D. none of these

Answer:

161. The area of the circle $x^{2}+y^{2}=8 x$, lying above x-axis and interior to the parabola $y^{2}=4 x$ is
A. $4 \pi-\frac{32}{3}$
B. $4 \pi+\frac{32}{3}$
С. $8 \pi+\frac{32}{3}$
D. none of these

Answer:

162. The area of the region bounded by the curve y
$=\sin \mathrm{x}$ between the ordinates $\mathrm{x}=0, x=\frac{\pi}{2}$ and the
x-axis is

- Watch Video Solution

