©゙’doubtnut

MATHS

BOOKS - PRADEEP PUBLICATION

PROBABILITY

Example

1. If E_{1} and E_{2} are two independent events associated with an
experiment, then show that
E_{1}^{c} and E_{2}^{c} are alos independent.

- Watch Video Solution

2. If E_{1} and E_{2} are two independent events associated with an experiment, then show that
$P\left(E_{1} \cup E_{2}\right)=1-P\left(E_{1}^{c}\right) P\left(E_{2}^{c}\right)$

- Watch Video Solution

3. Given $P(A+B)=\frac{5}{6}, P(A B)=\frac{1}{3}$ and $P\left(B^{c}\right)=\frac{1}{2}$. Determine $P(A)$ and $P(B)$ and show that A and B are independents events.

- Watch Video Solution

4. If $\mathrm{P}(\mathrm{A})=0.8, \mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.4$ find $P(A / B)$
5. If A and B are two events such that $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{1}{4}$, then find $P(B / A)$

- Watch Video Solution

6. If A and B are two events such that $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{1}{4}$, then find
$P(A / B)$

- Watch Video Solution

7. If A and B are two events such that $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{1}{4}$, then find $P\left(A^{\prime} / B^{\prime}\right)$
8. If A and B are events such that $P\left(\frac{A}{B}\right)=P\left(\frac{B}{A}\right)$, then

- Watch Video Solution

9. Events A and B are such that $P(A)=\frac{1}{2}, P(B)=\frac{7}{12}$ and $\mathrm{P}($ not A or not B$)=\frac{1}{4}$. State whether A and B are independent.

- Watch Video Solution

10. If $P(A)=\frac{7}{13}, P(B)=\frac{9}{13} \quad$ and $\quad P(A \cap B)=\frac{4}{13} \quad$, evaluate $P(A \mid B)$
11. If E_{1} and E_{2} are independent events associated with an experiment such that $P\left(E_{1}\right)=P_{1}$ and $P\left(E_{2}\right)=P_{2}$. Find $P\left(E_{1}\right.$ and $\left.E_{2}\right)$.

(D) Watch Video Solution

12. If E_{1} and E_{2} are independent events associated with an experiment such that $P\left(E_{1}\right)=P_{1}$ and $P\left(E_{2}\right)=P_{2}$. Find $P\left(E_{1}\right.$ but not $\left.E_{2}\right)$.

- Watch Video Solution

13. If E_{1} and E_{2} are independent events associated with an experiment such that $P\left(E_{1}\right)=P_{1}$ and $P\left(E_{2}\right)=P_{2}$. Find $P\left(E_{1}\right.$ and $\left.E_{2}\right)$.
14. If E_{1} and E_{2} are independent events associated with an experiment such that $P\left(E_{1}\right)=P_{1}$ and $P\left(E_{2}\right)=P_{2}$. Find $P\left(E_{1}\right.$ and $\left.E_{2}\right)$.

- Watch Video Solution

15. If E_{1} and E_{2} are independent events associated with an experiment such that $P\left(E_{1}\right)=P_{1}$ and $P\left(E_{2}\right)=P_{2}$. Find $P\left(E_{1}\right.$ or $\left.E_{2}\right)$.

- Watch Video Solution

16. If A and B are independent events s.t.
$P(A)=0 \cdot 35$ and $P(A \cup B)=0 \cdot 60$. Find $\mathrm{P}(\mathrm{B})$.

Watch Video Solution

17. 10% of the bulbs produced in a factory are red colour and 2% are red and defective. If one bulb is picked up at random, determine the probability of its being defective if it is red.

- Watch Video Solution

18. A card is drawn from a well shuffled pack of 52 cards. The outcome is noted and the pack is again reshuffled without replacing the card. Another card is then drawn. What is the probability that the first card is a spade and the second is a black king?
19. The odds against a certain event are 5 to 2 , the odds in favour of another event independent of the former are 6 to 5 .
find the probability that at least one of the events happens.

- Watch Video Solution

20. A coin is tossed thrice and all eight outcomes are assumed equally likely. In which of the following cases are the events A and B independent? A : "the first throw results in head" B :"the last throw results in tail"

- Watch Video Solution

21. A coin is tossed thrice and all eight outcomes are assumed equally likely. In which of the following cases are the events A
and B independent? A : " the number of heads is two" B :"the last throw results in head"

- Watch Video Solution

22. A coin is tossed thrice and all the eight outcomes are assumed to be equally likely. In which of the following cases are the events E_{1} and E_{2} independent?
E_{1} : 'the number of heads is odd E_{2} : 'the number of tail is odd'.

- Watch Video Solution

23. For a biased dice, the probabilities of outcomes are given as
under

$$
P(1)=P(2)=0.2, P(3)=P(5)=P(6)=0.1 \text { and } P(4)=0.3
$$

The die is tossed two times. Let A and B the events, same number each time and a total score is 10 or more respectively. Determine whether or not A and B are independent.

- Watch Video Solution

24. In part (ii), For a loaded die,the probabilities of outcomes are given as under : $P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$.the die is thrown two times.Let A and B be the events, same number each times, and a total score is 10 or more, respectively.Determine if the dice were fair, whether or not the events A and B would be independent.

- Watch Video Solution

25. A die is thrown. If E is the event 'the number appearing is a multiple of 3 ' and F be the event 'the number appearing is even' then find whether E and F are independent ?

- Watch Video Solution

26. An unbiased die is thrown twice. Let the event A be 'odd number on the first throw' and B the event 'odd number on the second throw'. Check the independence of the events A and B.

- Watch Video Solution

27. The probability of student A passing an examination is $\frac{3}{5}$ and of student B pasing is $\frac{4}{5}$. Assuming the two events: 'A
passes', 'B passes', as independent find the probability of: both students passing the examination.

- Watch Video Solution

28. The probability of student A passing an examination is $\frac{3}{5}$ and of student B pasing is $\frac{4}{5}$. Assuming the two events: 'A passes', 'B passes', as independent find the probability of: both students passing the examination.

- Watch Video Solution

29. The probability of student A passing an examination is $\frac{3}{5}$ and of student B pasing is $\frac{4}{5}$. Assuming the two events: 'A passes', 'B passes', as independent find the probability of:
neither of the two passing the examination.

D Watch Video Solution

30. The probability of student A passing an examination is $\frac{3}{5}$ and of student B pasing is $\frac{4}{5}$. Assuming the two events: 'A passes', 'B passes', as independent find the probability of: neither of the two passing the examination.

- Watch Video Solution

31. A university has to select an examiner from a list of 50 persons, 20 of them are women and 30 men, 10 of them knowing Hindi and 40 not, 15 of them being teacher and the remaining 35 not. What is the probability of the two university selecting a Hindi knowing women teacher?
32. A committee of 4 students is selected at random from a group consisting 8 boys and 4 girls. Given that there is at least one girl in the committee, calculate the probability that there are exactly 2 girls in the committee.

- Watch Video Solution

33. In a school, there are 1000 students, out of which 430 are girls. It is known that out of $430,10 \%$ of the girls study in class
XII. What is the probability that a student chosen randomly studies in Class XII given that the chosen student is a girl?

- Watch Video Solution

34. Find the probability of drawing a diamond card in each of two consecutive draws of a single card from a well shuffled pack of cards if
the first card is replaced before the second one is taken out.

- Watch Video Solution

35. Find the probability of drawing a diamond card in each of two consecutive draws of a single card from a well shuffled pack of cards if
the first one is not replaced.

- Watch Video Solution

36. Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and the third card drawn is an ace?

- Watch Video Solution

37. Find the chance of drawing 2 white balls in succession from a bag containing 3 red and 5 white balls, the balls drawn first not being replaced.

- Watch Video Solution

38. An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement.

What is the probability that both drawn balls are black?

- Watch Video Solution

39. A bag contains 5 red marbles and 3 black marbles. Three marbles are drawn one by one without replacement. What is the probability that at least one of three marbles drawn be black if the first marble is red?

- Watch Video Solution

40. A bag contains 4 white and 6 black balls. One ball is drawn and laid aside without noticing it colour. Another ball is then drawn. What is the probability that the second balls is black?

- Watch Video Solution

41. A bag contians 4 white balls and 2 black balls. Another bag contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that one is white and one is black.

- Watch Video Solution

42. A bag contains 4 white balls and 2 black balls. Another bag
contains 3 white balls and 5 black balls. If one ball is drawn from
each bag, find the probability that
both are white.

- Watch Video Solution

43. Two balls are drawn from an urn containing 2 white, 3 red and 4 black balls one by one without replacement. What is the probability that
both the balls are of same colour?

- Watch Video Solution

44. Two balls are drawn from an urn containing 2 white, 3 red and 4 black balls one by one without replacement. What is the probability that
atleast one ball is red?

- Watch Video Solution

45. A bag contains 4 yellow and 5 red balls and another bag contains 6 yellow and 3 red balls. A ball is drawn from the first bag and without seeing its colour, it is put into the second bag.

Find the probabilty that if now a ball is drawn from the second bag, it is yellow in colour.

- Watch Video Solution

46. A problem is given to three children, whose chances of solving it are $\frac{1}{3}, 1 / 5$ and $1 / 6$, what is the probability that : At least one of them may solve. it.

- Watch Video Solution

47. An urn contains 25 balls numbered 1 to 25 . suppose an odd number if considered a success. Two balls drawn from the urn with replacement. Find the probability of getting two success.

D Watch Video Solution

48. An urn contains 25 balls numbered 1 to 25 . suppose an odd number if considered a success. Two balls drawn from the urn with replacement. Find the probability of getting exactly one success.

- Watch Video Solution

49. An urn contains 25 balls numbered 1 to 25 . suppose an odd number if considered a success. Two balls drawn from the urn with replacement. Find the probability of getting atleast one success.

D Watch Video Solution

50. An urn contains 25 balls numbered 1 to 25 . suppose an odd number if considered a success. Two balls drawn from the urn with replacement. Find the probability of getting two success.

- Watch Video Solution

51. Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3 , what is the probability that it is an even number?

- Watch Video Solution

52. A speaks truth in 60% of the cases, while B in 90% of the cases. In what percentage are they likely to contradict each other in stating the same fact? In the case of contradiction do
you think, the statement of B will carry more weight as he speaks truth in more number of case than A ?
53. A speaks truth in 70% of the cases and B in 80% of the cases. In what percent of cases are they likely to agree in stating the fact ? Do you think, when they agree mean both are speaking truth ?

(D) Watch Video Solution

54. Let $E_{1}, E_{2}, E_{3} \ldots \ldots \ldots \ldots, E_{n}$ be independent events with respective probability $P_{1}, P_{2}, P_{3}, \ldots \ldots \ldots \ldots, P_{n}$ find the probability that none of them occurs.

- Watch Video Solution

55. Let $E_{1}, E_{2}, E_{3} \ldots \ldots \ldots \ldots, E_{n}$ be independent events with respective probability $P_{1}, P_{2}, P_{3}, \ldots \ldots \ldots \ldots, P_{n}$ find the probability that none of them occurs.

- Watch Video Solution

56. Two persons throw a dice alternately till one of them gets a 'six' and wins the game. Find their respective probabilities of winning.

- Watch Video Solution

57. A coin is tossed once. If the shows head, it is tossed again and if it shows tail, then a dice is tossed. Let E_{1} be the event
with first toss results into a tail and E_{2}, the event: the dice shows a number greater than 4. find $P\left(E_{2} / E_{1}\right)$.

- Watch Video Solution

58. A die is thrown three times. Events A and B are defined as below: A: 4 on the third throw $B: 6$ on the first and 5 on the second throw Find the probability of A given that B has already occurred.

- Watch Video Solution

59. A bag contains 3 red and 4 black balls and another bag has 4 red and 2 black balls. One bag is selected, each of the two bags being equally likely to be selected. From the selected bag, a ball is drawn, each ball is the bag being equally likely to be drawn.

Let E_{1} be the event: 'the first bag is selected, E_{2}, the event the second bag is selected and E_{3}, the event: 'a red balls is drawn. find $P\left(E_{1}\right), P\left(E_{2}\right), P\left(E_{3} / E_{1}\right)$ and $\left(E_{3} / E_{2}\right)$.

- Watch Video Solution

60. A and B are two independent events. The probability that both A and B occur is $\frac{1}{6}$ and is probability that neither of them occurs is $\frac{1}{3}$. Find the probability of the occurrence of A.

- Watch Video Solution

61. If A and B are two independent events such that : $P(\bar{A} \cap B)=\frac{2}{15}$ and $P(A \cap \bar{B})=\frac{1}{6}, \quad$ then \quad find $P(A)$ and $P(B)$.
62. A box containing 2 Black, 4 White and 3 Red balls. One ball is drawn at random from the box and kept aside. From the remaining balls in the another ball is drawn and kept besite the first. Thr process is repeated till all the balls are drawn from the box The probability that the balls drawn from the box are in the sequence 2 Black, 4 White and 3 Red, is

- Watch Video Solution

63. Urn A contains 6 red and 4 white balls and urn B contains 4 red and 6 white balls. One ball is drawn at random from urn A and placed in urn B. Then a ball is drawn from urn B and placed in urn A. Now, if one ball is drawn from urn A, the probability that it is red, is
64. A bag contains 3 white and 5 black balls. A ball is drawn at random. Find the chance that it is a black ball.

- Watch Video Solution

65. In a multiple choice questions there are four alternative answers, of which one or more correct. A candidate will get marks in the question only if the ticks all the correct answers.

The candidate decides to tick answers at random. If the is allowed upto three chances to answer the question, find the probability that he will get marks in the questions.
66. Two persons throw a dice alternately till one of them gets a 'six' and wins the game. Find their respective probabilities of winning.

- Watch Video Solution

67. A and B throw a pair of dice alternately. A wins the game if he gets a total of 6 and B wins if he gets a total of 7 . If A starts the game, find the probability of winning the game by A in third row of pair of dice.

D Watch Video Solution

68. An anti-air craft gun can take maximum four at an enemy plane, moving away from it. The probabilities oh hitting the
plane at first, second, third and fourth shot are $0.4,0.3,0.2$ and 0.1 respectively. What is the probability that the gun hits the plane? Do you agree with us that the success will raise the morale of Indian Army?

- Watch Video Solution

69. A coin is tossed twice, what is the probability that:
one head and one tail occurs?

- Watch Video Solution

70. In a purse there are 10 coins, all shillings except one, which is a sovereign in another purse, there are 10 coins, all shilings.

Nine coins are taken from the former purse and put into the
latter, and then nine coins are taken from the latter and put
into the former. find the chance that the sovereign is still in the first purse.

- Watch Video Solution

71. A bag contains 4 red and 3 black balls. A second bag contains

2 red and 4 black balls. One bag is selected at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is red.

- Watch Video Solution

72. Bag I contains 4 black and 6 red balls, bag II contains 7 black and 3 red balls and bag III contains 5 black and 5 red balls. One bag is chosen at random and a ball is drawn from it which is
found to, be red. Find the probability that the ball is drawn from bag II.

- Watch Video Solution

73. A person has undertaken a construction job. The probabilities are 0.65 that there will be strikes 0.80 , that the construction job will be completed on time if there is no strike, and 0.32 that the construction job will be completed on time if there is a strike. Determine the probability that the construction job will be completed on time.

- Watch Video Solution

74. A company has two plants to manufacture scooters. Plant-1 manufactures 70% of the scooters and Plant-2 manufactures
30%. At plant-1, 80% of the scooters are rated of standard quantity and at plant-2, 90% of the scooters are rated of standard quality. A scooter is choosen at random and is found to be of standard quality. find the probability that it has come from plant-2.

- Watch Video Solution

75. Suppose that the reliability of a HIV test is specified as follows: Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of people free of HIV, 99% of the test are judged HIV-ive but 1% are diagnosed as showing HIV+ive. From a large population of which only 0.1% have HIV, one person is selected at random, given the HIV test, and the pathologist reports him/her as HIV+ive. What is the probability that the person actually has HIV?
76. Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from Bag II.

- Watch Video Solution

77. Coloured balls are distributed in four boxes as shown in the following table:

Box	Colour			
	Black	White	Red	Blue
I	3	4	5	6
II	2	2	2	2
III	1	2	3	1
IV	4	3	1	5

A box is selected at random and then a ball is randomly drawn
from the selected box. The colour of the ball is black. What is the probability that ball drawn is from box III?

- Watch Video Solution

78. A pack of playing cards was found to contain only 51 cards. If the first 13 cards which are examined are all red, what is the probability that the missing card is black.

- Watch Video Solution

79. A card from a pack of 52 playing cards is lost. From the remaining cards of the pack, three cards are drawn at random(without replacement) and re found to be all spades.

Find the probability that the lost card being a spade.
80. A man is known to speak the truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

D Watch Video Solution

81. A factory has three machines X, Y and Z producing 1000, 2000
and 3000 bolts per day respectively. The machine X produces 1% defective bolts, Y produces 1.5% and Z produces 2% defective bolts. At the end of a day, a bolt is drawn at random and is found defective. what is the probability that the defective bolt is produced by the machine X ?

- Watch Video Solution

82. In a factory which manufactures bolts, machines A, B and C manufacture respectively $30 \%, 50 \%$ and 20% of the bolts. Of there outputs 3,4 , 1 percent respectively are defective bolts. A bolt is drawn at random from the product and is found to be defective. Find the probability that this is not manufactured by machine B.

- Watch Video Solution

83. Give three identical boxes I, II and III, each containing two coins. In box I both coins are gold coins, in box II both are silver coins and in box III there is one gold and one silver coin. A person chooses a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the box is also of gold ?
84. There are three coins. One of the two headed coin another is a biased coin that comes up heads 75% of the times and the third is also a biased coin tht comes up tails 40% of the times.

One of the three coins is chosen at random and tossed, and it shows head. what is the probability that it is a two headed coin?

- Watch Video Solution

85. In a set of 10 coins, 2 coins with heads on both sides. A coin is selected at random from this set and tossed five times. Of all the five times, the result was head, find the probability that the selected coin had heads on both sides.

- Watch Video Solution

86. A bag contains 2 red and 3 black balls. One ball is drawn and then put back in the bag. The process is repeated three times.

Every time the ball drawn happens to be red we say that the
saw has resulted in a success. Let X denote the number of
success recorded in 3 draws. show that X can be considered as random variable and exhibit it as a function one the sample space of the experiment.

(D) Watch Video Solution

87. A person plays a game of tossing a coin thrice. For each head he is given Rs 2 by the organiser of the game and for each tail he has to give Rs 1.50 to the organiser. Let X denote the amount gained or lost by the person. Show that ' X ' is a random variable and exhibit it as a function on the sample space of the experiment.

(Watch Video Solution

88. A dice is tossed twice. A success is getting an even number on a toss. Find the probability distribution of the number of success. Also draw the table of this probability distribution.

- Watch Video Solution

89. Three cards are drawn successively with replacement from well- shuffled deck of 52 cards. A random variable X denotes the number of spades in three cards. Determine the probability distribution of X.

- Watch Video Solution

90. Find the probability distribution of the random variable X which denotes the number of ites 'a total of 9 ' appears in two thros of a pair of dice. Sketch its graph.

- Watch Video Solution

91. Find the probability distribution of number of doublets in 2 throws a pair of dice.

- Watch Video Solution

92. A box contains 12 bulbs of which 3 are defective. A sample of

3 bulbs is selected from the box. Let X denotes the number of
defective bulbs in the sample, find the probability distribution of X.
93. Let X denotes the number of hours you study during a randomly selected schoold day. The probabildity X can take the value of x is given by
$P(X=x)=\left\{\begin{array}{ll}0.1 & \text { if } x=0 \\ k x & \text { if } x=1 \text { or } 2 \\ k(5-x) & \text { if } x=3 \text { or } 4 \\ 0 & \text { otherwise }\end{array}\right.$,
where k is some unknown constant

Find the value of k.

- Watch Video Solution

94. Let X denotes the number of hours you study during a randomly selected schoold day. The probabildity X can take the value of x is given by
$P(X=x)=\left\{\begin{array}{ll}0.1 & \text { if } x=0 \\ k x & \text { if } x=1 \text { or } 2 \\ k(5-x) & \text { if } x=3 \text { or } 4 \\ 0 & \text { otherwise }\end{array}\right.$,
where k is some unknown constant

What is the probability that you study for
atleast two hours?

D Watch Video Solution

95. Let X denotes the number of hours you study during a randomly selected schoold day. The probabildity X can take the value of x is given by
$P(X=x)=\left\{\begin{array}{ll}0.1 & \text { if } x=0 \\ k x & \text { if } x=1 \text { or } 2 \\ k(5-x) & \text { if } x=3 \text { or } 4 \\ 0 & \text { otherwise }\end{array}\right.$,
where k is some unknown constant

What is the probability that you study for
exactly two hours?

- Watch Video Solution

96. Let X denotes the number of hours you study during a randomly selected schoold day. The probabildity X can take the value of x is given by
$P(X=x)=\left\{\begin{array}{ll}0.1 & \text { if } x=0 \\ k x & \text { if } x=1 \text { or } 2 \\ k(5-x) & \text { if } x=3 \text { or } 4 \\ 0 & \text { otherwise }\end{array}\right.$,
where k is some unknown constant

What is the probability that you study for atmost two hours?

- Watch Video Solution

97. Find the mean and variance of the random variable X, whose probability distribution is given by the following table:

\mathbf{X}	-2	-1	0	1	2	3
$\mathbf{P}(\mathbf{X})$	0.10	0.20	0.30	0.20	0.15	0.05

- Watch Video Solution

98. A discrete random variable X has the following the probability distribution:

Determine the value of k .

- Watch Video Solution

99. A discrete random variable X has the following the probability distribution:

Determine the mean of the distribution.

- Watch Video Solution

100. The probability distribution of a random variable X is given as under:

X	1	2	4	$2 k$	$3 k$	$5 k$
$\mathbf{P}(\mathrm{X})$	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{3}{25}$	$\frac{1}{10}$	$\frac{1}{25}$	$\frac{1}{25}$

Calculate the value of k if $\mathrm{E}(\mathrm{X})=2.94$.
101. The probability distribution of a random variable X is given as under:

given $E(x)=2.94$ Calculate variance of X.

D Watch Video Solution

102. Two cards are drawn with replacement from a well shuffled deck of 52 cards. Find μ and σ for the numebr of aces.

- Watch Video Solution

103. Two cards are drawn simultaneously (or successively without replacement) from a well shuffled pack of 52 cards. Find the mean, variance and standard deviation of the number of kings.

- Watch Video Solution

104. Find the mean and standard deviation of the probability distribution of the number obtained when a card is drawn at random from a set of 7 cards numbered 1 to 7 .

- Watch Video Solution

105. There are 5 cards numbered 1 to 5 , one number on one
card. Two cards are drawn at random without replacement. Let
X denote the sum of the numbers on the two cards drawn. Find the mean and variance of X.

- Watch Video Solution

106. A dice is thrown thrice. Find the mean and variance of the number of times a 'six' is obtained.

- Watch Video Solution

107. Find the probability distribution of the number of heads when three coins are tossed.

Also find the mean number of heads in the above case.

- Watch Video Solution

108. A pair of dice is rolled twice. Let X denote the number of times, 'a total of 9 is obtained'. Find the mean and variance of the random variable X.

- Watch Video Solution

109. Find the probability distribution of the maximum of the two scores obtained when a dice is thrown twice. Determine also the mean of the distribution.

- Watch Video Solution

110. Two numbers are selected at random from first six positive integers. Let X denote the larger of the two numbers obtained.

Find the probability distribution of X. find the mean and variance of this distribution.

- Watch Video Solution

111. On one of 8 identical slips of paper, it is written 0 , on the other it is written 3 , on three of them it is written 1 on the top of the remaining three it is written 2 . slips are folded and mixed throughly. One slip is drawn at random. If X is the number on the slip, find the probability distributoin of X. also find the mean and variance.

- Watch Video Solution

112. Suppose 10000 tickets are sold in a lottery each for Rs.1. first prize is of Rs. 3000 and the second prize is of Rs. 2000. There
are three 3rd prizes of Rs. 500 each. If you buy one ticket, what is your exception?

- Watch Video Solution

113. Determine the binomial distribution whose mean is 10 and whose standard deviation is $2 \sqrt{2}$.

D Watch Video Solution

114. A pair of dice is thrown 200 times. If getting a sum of 9 is considered a success, find the mean and the variance of the number of success.
115. A dice is thrown 3 times. If getting 'six' is considered a success, find the probability of

3 successes.

D Watch Video Solution

116. A die is thrown 3 times. If getting an multiple of 3 is considered a success, find the probability of at least 2 successes.

- Watch Video Solution

117. Two dice are thrown 6 times. 'A total of 7 ' is considered as success. Find the probability of atleast 4 successes.
118. If eight fair coins are tossed, what is the probability that there are
exactly 3 heads.

- Watch Video Solution

119. If eight fair coins are tossed, what is the probability that there are
not more than 3 heads?

D Watch Video Solution

120. If a fair coin is tossed 10 times, find the probability of: exactly six heads
121. An unbiased coin is tossed 10 times. Find by using binomial distribution, the probability of getting atleast six heads.

- Watch Video Solution

122. An unbiased coin is tossed 10 times. Find by using binomial distribution, the probability of getting atmost six heads.

- Watch Video Solution

123. A pair of dice is thrown 5 times. If getting a doublet is considered a success, find the probability of 2 successes.
124. There are 6% defective items in a large bulk of items. Find the probability that a sample of 8 items will include not more than one (or less than two) defective item.

- Watch Video Solution

125. Ten eggs are drawn successively with replacement from a lot containing 10% defective eggs. Find the probability that there is at least one defective egg.

- Watch Video Solution

126. From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the
probability distribution of the number of defective bulbs. Hence, find the mean of the distribution.

- Watch Video Solution

127. A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.

- Watch Video Solution

128. Four cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that all the four cards are spades?

(D) Watch Video Solution

129. Four cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that only 3 cards are spades?

D Watch Video Solution

130. Five cards are drawn successively with replacemnet form a well shuffled deck of 52 cards. What is the probability that none is a spade?

- Watch Video Solution

131. A coin is tossed 5 times. What is the probability that head appears on odd number of times?
132. A bag contains 7 red, 4 white and 5 black balls. If four balls are drawn one by one the replacement, what is the probability that
atleast one is white?

D Watch Video Solution

133. A bag contains 7 red, 4 white and 5 black balls. If four balls are drawn one by one the replacement, what is the probability that
only two are white?

- Watch Video Solution

134. A bag contains 7 red, 4 white and 5 black balls. If four balls are drawn one by one the replacement, what is the probability that
only two are white?

- Watch Video Solution

135. A bag contains 7 red, 4 white and 5 black balls. If four balls are drawn one by one the replacement, what is the probability that
atleast one is white?

- Watch Video Solution

136. Five dice are thrown 729 times. How many times do you except that atleast four dice to show five or six?

- Watch Video Solution

137. An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.

- Watch Video Solution

138. A coin is thrown 10 times and getting a head is considered
a success. Find the mean and the standard deviation of the number of success.
139. If the sum of the mean and variance of a binomial distribution of 5 trials is $\frac{35}{16}$, find the distribution.

- Watch Video Solution

140. The sum of mean and variance of a binomial distribution is

15 and their product is 54 . find the distribution.

- Watch Video Solution

141. For 6 trials of an experiment. Let X be a binomial variate which satisfies the relation $9 P(X=4)=P(X=2)$

Find the probability of success.
142. True/False:

The probability of losing a game is 0.7 . The probability of winning the game is 0.3 .

- Watch Video Solution

143. One hundred identical coins, each with probability p of showing up a head are tossed once. if $0<p<1$ and the probability of heads showing on 50 coins is equal to that of showing on 51 coins, then find the value of p.

- Watch Video Solution

144. How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80% ?
145. Find the minimum number of tosses of a pair of a dice, so that the probability of getting the sum of the digits on the dice equal to 7 on atleast one toss, is greater than 0.95 . (Given $\left.\left(\log _{10}\right) 2=0.3010,\left(\log _{3}\right) 3=0.4771\right)$

- Watch Video Solution

146. The probability of a shooter hitting a target is $\frac{3}{4}$. How many minimum number of times must he/she fire so that the probability of hitting the target at least once is more than 0.99 ?
147. A man takes a step forward with probability 0.4 and backwards with probability 0.6 find the probability that at the end of eleven steps he is one step away from the starting point.

(D) Watch Video Solution

148. Describe the distribution $B\left(4, \frac{1}{3}\right)$. Also find the mean and variance.

- Watch Video Solution

Exercise

1. A dice is rolled twice in succession. Find the probability of a number greater than 4 on each throw.
2. There are two independent events E_{1} and E_{2} and $P\left(E_{1}\right)=0.30, P\left(E_{2}\right)=0.60$ find the probability that both E_{1} and E_{2} occur.

- Watch Video Solution

3. There are two independent events E_{1} and E_{2} and $P\left(E_{1}\right)=0.30, P\left(E_{2}\right)=0.60$ find the probability that both E_{1} and E_{2} occur.
4. There are two independent events E_{1} and E_{2} and $P\left(E_{1}\right)=0.30, P\left(E_{2}\right)=0.60$ find the probability that one and only one event happens.

- Watch Video Solution

5. There are two independent events E_{1} and E_{2} and $P\left(E_{1}\right)=0.30, P\left(E_{2}\right)=0.60$ find the probability that at least one of E_{1} and E_{2} happens.

- Watch Video Solution

6. Let E_{1} and E_{2} be two independent events such that $P\left(E_{1}\right)=\rho_{1}$ and $P\left(E_{2}\right)=\rho_{2}$. Describe in words, the events
probabilities are
$\rho_{1} \rho_{2}$.

- Watch Video Solution

7. Let E_{1} and E_{2} be two independent events such that $P\left(E_{1}\right)=\rho_{1}$ and $P\left(E_{2}\right)=\rho_{2}$. Describe in words, the events probabilities are
$\rho_{1} \rho_{2}$.

- Watch Video Solution

8. Let E_{1} and E_{2} be two independent events such that $P\left(E_{1}\right)=\rho_{1}$ and $P\left(E_{2}\right)=\rho_{2}$. Describe in words, the events probabilities are
$1-\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)$

D Watch Video Solution

9. Let E_{1} and E_{2} be two independent events such that $P\left(E_{1}\right)=\rho_{1}$ and $P\left(E_{2}\right)=\rho_{2}$. Describe in words, the events probabilities are
$\rho_{1}+\rho_{2}-2 \rho_{1} \rho_{2}$.

- Watch Video Solution

10. A bag contains 5 red, 7 green and 4 white balls. Three balls are drawn one after another without replacement. Find the probability that the balls drawn are white, red and green in this very order.
11. A bag contains 5 red, 7 green and 4 white balls. Three balls are drawn one after another without replacement. Find the probability that the balls drawn are white, red and green in this order.

- Watch Video Solution

12. A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one without replacement, what is the probability that all are white?

- Watch Video Solution

13. If A and B are two independent events such that
$P(A \cup B)=0.6$ and $P(A)=0.2$ find $\mathrm{P}(\mathrm{B})$.
14. If A and B are two independent events such that $P(A \cup B)=0.5, P(B)=0.2$ find $\mathrm{P}(\mathrm{A})$.

D Watch Video Solution

15. Two dice are thrown together and the total score is noted.

The events E, F and G are respectively, a total of 4, a total of 9 or more, and 'a total divisible by 5 ' calculate $P(E), P(F)$ and $P(G)$ and decide which pair of events, if any, are indepenent.

- Watch Video Solution

16. Three events A, B and C have probabilities $\frac{2}{5}, \frac{1}{3}$ and $\frac{1}{2}$, respectively. Given that $P(A \cap C)=\frac{1}{5}$ and $P(B \cap C)=\frac{1}{4}$,
find the values of $\mathrm{P}(\mathrm{C} \mid \mathrm{B})$ and $P\left(A^{\prime} \cap C^{\prime}\right)$

(D) Watch Video Solution

17. A coin is tossed successively three times. Determine the probability of getting exactly two heads.

D Watch Video Solution

18. Three coins are tossed once. Find the probability of getting at least two heads.

- Watch Video Solution

19. Three coins are tossed. Find the probability of : atmost two heads

- Watch Video Solution

20. A coin and a dice are thrown. What is the probability of getting "a head or an even number"?

D Watch Video Solution

21. Two dice are tossed. Find whether the following two events A and B are independent:

$$
\mathrm{A}=\{(x, y): x+y=11\}, \mathrm{B}=\{(x, y): x \neq 5\} \text {, where }(\mathrm{x}, \mathrm{y}) \text { denotes }
$$

a typical sample point.

- Watch Video Solution

22. Two dice are thrown together. Let A be the event 'getting 6 on the first dice' and B be the event getting 2 on the second dice. Are the events A and B independent?

D Watch Video Solution

23. An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.

- Watch Video Solution

24. An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.

(D) Watch Video Solution

25. An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.

- Watch Video Solution

26. A husband and his wife appear for an interview for two parts. The probability of husband's selection is $\frac{1}{7}$ and that of wife's selection is $\frac{1}{5}$. What is probability that both of them will be selected?

- Watch Video Solution

27. A husband and his wife appear for an interview for two parts. The probability of husband's selection is $\frac{1}{7}$ and that of wife's selection is $\frac{1}{5}$. What is probability that only one of them is selected?

D Watch Video Solution

28. A husband and his wife appear for an interview for two parts. The probability of husband's selection is $\frac{1}{7}$ and that of wife's selection is $\frac{1}{5}$. What is probability that none of them will be selected?

- Watch Video Solution

29. In a family, the husband tells in a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.

- Watch Video Solution

30. A speaks truth in 75% of the cases. While B in 90% of the cases. In what percent of cases are they likely to contradict each other in stating in the same fact? Do you think that statement of B is true?

- Watch Video Solution

31. Three cards are drawn with replacement from a well shuffled pack of cards. Find the probability of cards drawn are a king, a
queen and a jack.

- Watch Video Solution

32. From a pack of 52 cards, 3 cards are drawn at random. Find the probability of drawing exactly two aces.

- Watch Video Solution

33. A problem in satistics is given to three students whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ or $\frac{1}{4}$ respectively. What is the probability that only one of them solve it correctly.
34. Two cards are drawn from a well shuffled of 52 cards. One after another without replacement. Find the probability that one of these is a red card and the other a black card.

- Watch Video Solution

35. A and B appeared for an interview for two posts. Probability of A selection is $\frac{3}{5}$ and that of B is selection is $\frac{3}{7}$. Find the probabilit that only one of them is selected.

(D) Watch Video Solution

36. Ramesh appears for an interview for two posts A and B for which selection is independent. The probability of his selection
for post A is $\frac{1}{6}$ and for post B is $\frac{1}{7}$. Find the probability that Ramesh is selected for at least one of the posts.

- Watch Video Solution

37. Tickets are numbered from 1 to 10 . two tickets are drawn one
after the other at random. Find the probability that the number
on one of the tickets is a multiple of 5 and on the other a multiple of 4.

- Watch Video Solution

38. A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?
39. If a dice is thrown 3 times in succession. What is the probability that
all throws are alike?

- Watch Video Solution

40. If a dice is thrown 3 times in succession. What is the probability that
all throws are alike?

- Watch Video Solution

41. What is the chance of throwing an ace in only in first of two successive throws with an ordinary dice?
42. In a thrown of three dice, find the probability that atleast one dice shows up 1.

- Watch Video Solution

43. A bag contains 5 white and 3 black balls. Four balls are successively drawn out without replacement . What is the probability that they are alternately of different colours ?

- Watch Video Solution

44. A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the three balls are blue.

- Watch Video Solution

45. A bag contains 8 red, 3 white and 9 blue balls. If three balls are drawn at random, determine the probability that all the balls are of different colour.

- Watch Video Solution

46. A dice is thrown 3 times and the sum of the 3 numbers thrown is 15 . The probability htat the first thrown was a four, is

D Watch Video Solution

47. Two drawings, each of 3 balls, are made from a bag containing 5 white balls and 8 black balls, the balls not being
replaced before the second trial. Find the probability that the first drawing will give three white, and the second three black balls.

D Watch Video Solution

48. Two drawings each of 3 balls, are made from a bag containing 5 white and 8 black balls, the balls being replaced before the second trial. Find the chance that the first drawing will give 3 white, and the second 3 black balls.

- Watch Video Solution

49. In three throws with a pair of dice, find the chance of throwing doublet at least once.
50. In four throws with a pair of dice, what is probability of throwing doublet at least twice .

D Watch Video Solution

51. An anti-air craft gun can take maximum four at an enemy plane, moving away from it. The probabilities oh hitting the plane at first, second, third and fourth shot are $0.4,0.3,0.2$ and 0.1 respectively. What is the probability that the gun hits the plane? Do you agree with us that the success will raise the morale of Indian Army?

(D) Watch Video Solution

52. A card is drawn from a well shuffled deck of 52 cards. The outcome is noted. The card is replaced and the deck reshuffled.

Another card is then drawn form the deck. What is the probability that both the cards are of the same suit?

- Watch Video Solution

53. A card is drawn from a well shuffled deck of 52 cards. The outcome is noted. The card is replaced and the deck reshuffled.

Another card is then drawn form the deck. What is the probability that both the cards are aces?
54. A card is drawn from a well shuffled deck of 52 cards. The outcome is noted. The card is replaced and the deck reshuffled.

Another card is then drawn form the deck. What is the probability that
the first card is an ace and the second card is a red queen?

- Watch Video Solution

55. A card is drawn from a well shuffled deck of 52 cards. The outcome is noted. The card is replaced and the deck reshuffled.

Another card is then drawn form the deck. What is the probability that both are face cards?

- Watch Video Solution

56. A bag contains 4 white and 7 black and 5 red balls. 4 balls are drawn one by one with replacelment. What is the probability that at least two are white?

- Watch Video Solution

57. A bag contains 17 balls marked with the numbers 1 to 17 . a ball is drawn and replaced. A second drawing is then made.

What is the probability that the first ball is drawn is even numbered and the second odd numbered?

- Watch Video Solution

58. A bag contains 3 red and 5 black balls and second bag contains 6 red and 4 black balls. A ball is drawn from each bag .

Find the probability that one is red and other is black.

- Watch Video Solution

59. A bag contains 4 white balls and 2 black balls. Another bag contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that both are white.

- Watch Video Solution

60. A bag contians 4 white balls and 2 black balls. Another bag contains 3 white balls and 5 black balls. If one ball is drawn from
each bag, find the probability that
both are black.
61. A bag contians 4 white balls and 2 black balls. Another bag contains 3 white balls and 5 black balls. If one ball is drawn from each bag, find the probability that one is white and one is black.

- Watch Video Solution

62. In bag A, there are 5 white and 8 red balls, in bag B, 7 white and 6 red balls and in bag C, 6 white and 5 red balls. One ball is taken out a random from each bag. Find the probability that all the three balls are of the same colour.

- Watch Video Solution

63. One bag contains 5 white and 6 black balls. Another bag contains 7 white and 3 black balls. One ball at random is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.

- Watch Video Solution

64. one bag contains 6 white and 5 black balls. Another bag contains 5 white and 3 black balls. One ball at random is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.

- Watch Video Solution

65. A bag contains 4 white and 5 black balls. Another bag contains 9 white and 7 black balls. A ball is transferred from the first bag to the second and then a ball is drawn at random from the second bag. Find the probability that the ball drawn is white.

- Watch Video Solution

66. A dice is so biased that it is twice as likely to show an even number as an odd number when thrown. It is thrown twice.

What is the probability that he sum of the two numbers thrown is even.

- Watch Video Solution

67. A and B take turn in throwing two dice. The first to throw 9 being awarded. Show that if A has the first throw, their chances of winning are in the ratio 9:8.

- Watch Video Solution

68. A and B throw a pair of dice alternately, till one of them gets
a total of 10 and wins the game. Find their respective probabilities of winning if A starts first.

- Watch Video Solution

69. In a single throw of three dice, find the probability of getting a total of 5
70. In a single throw of three dice, find the probability of getting a total of 5

D Watch Video Solution

71. One card is drawn at random from a well shuffled deck of 52
cards. In which of the following cases are the events E and F independent ? E : 'the card drawn is a king or queen' F : 'the card drawn is a queen or jack.

- Watch Video Solution

72. One card is drawn from a pack of 52 cards to that each card is equally likely to be selected. In which of the following cases are the events E_{1} and E_{2} independent?
E_{1} : 'the card drawn is a diamond'
E_{2} :'the card drawn is a queen'.

- Watch Video Solution

73. One card is drawn from a pack of 52 cards to that each card is equally likely to be selected. In which of the following cases are the events E_{1} and E_{2} independent?
E_{1} : 'the card drawn is red'
E_{2} : 'the card drawn is a jack'.

- Watch Video Solution

74. State which of the following events are independent. Give reasons for your answer:
E_{1} : 'an even number on first throw'
E_{2} : 'a number multiple of 3 on second throw' in two successive throws of a dice.

- Watch Video Solution

75. State which of the following events are independent. Give reasons for your answer:
E_{1} : '2 tails on first throw'
E_{2} : '2 heads on second throw' in two successive throws of two coins.

D Watch Video Solution

76. State which of the following events are independent. Give reasons for your answer:
E_{1} : 'a total of 9 on first throw'
E_{2} : 'a total of 9 on second throw' in two successive throws of a pair of dice.

- Watch Video Solution

77. Two natural numbers r, s and drawn one at a time, without replacement from the set $S=\{1,2,3, \ldots, n\}$. Find the $P\left[r \leq \frac{p}{s} \leq p\right]$, where $p \in S$.

- Watch Video Solution

78. There are 2 bag, one of which contains 3 black and 4 white balls, while the other contains 4 black and 3 white balls. A die is
cast. If the face 1 or 3 turns up a ball is taken out from the first bag and if any other face turns up, a ball is taken from the second bag. The probability of choosing a black ball, is

D Watch Video Solution

79. An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replace into urn, otherwise it is replaced along with another ball of the same colour. The proccess is repeated, find the probability that the third ball drawn is black.

- Watch Video Solution

80. A family has two children. What is the probability that both the children are boys given that at least one of them is a boy?

- Watch Video Solution

81. A couple has two children, find the probability that both children are females, if it is known that the elder childis a female.

- Watch Video Solution

82. Consider the experiment of tossing a coin. If the coin shows head, toss it again but if it shows tail, then throw a die. Find the conditional probability of the event that the die shows a number greater than 4 , given that there is at least one tail.

- Watch Video Solution

83. A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at
random from one of the two purses, what is the probability that it is a silver coin?

- Watch Video Solution

84. Bag I contains 3 black and 2 white balls, Bag II contains 2 black and 4 white balls. A bag and then a ball is selected at random. Determine the probability of selecting a black ball.

- Watch Video Solution

85. Find the probability of drawing one rupee coin from a purse
with two compartments one of which contains 3 fifty paise coins
and 2 one rupee coins and the other contains 2 fifty paise coins and 3 one rupee coins.
86. Three bags A, B and C contain 6 red, 4 black and 5 red, 5 black balls and 4red, 6black balls respectively. A bag is selected at random (each of the three bags being equally liekly to be selected and from the the selected bag, a ball is drawn at random. If this ball s found to be red, find the probability that it is drawn from the bag A.

- Watch Video Solution

87. There are three urns containing 2 white and 3 black balls, 3
white and 2 black balls, and 4 white and 1 black balls respectively. There is an equal probability of each urn being chosen. A ball is drawn at random from an urn chosen at random and is found to be white. find the probability that the ball has bee drawn from the second urn.

(Watch Video Solution

88. There are two bags I and II. Bag I contains 4 white and 3 red balls while another Bag II contains 3 white and 7 red balls. One ball is drawn at random from one of the bags and it is found to be white. Find the probability that it was drawn from Bag I.

- Watch Video Solution

89. A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y .
90. The contents of three bags A, B and C are as follows:

Bag A: 1 white, 2 black and 3 red balls, Bag B: 2 white, 1 black and 1 red balls.

Bag C: 4 white, 5 black and 3 red balls.

A bag is selected at random. Two balls are drawn from the selected bag. if these found to be white and red, find the probability that they have been drawn from bag A.

- Watch Video Solution

91. The contents of three bags A, B and C are as follows:

Bag A: 1 white, 2 black and 3 red balls, Bag B: 2 white, 1 black and 1 red balls.

Bag C: 4 white, 5 black and 3 red balls.

A bag is selected at random. Two balls are drawn from the selected bag. if these found to be white and red, find the probability that they have been drawn from bag B.

(D) Watch Video Solution

92. In a bolt factory, machines A, B and C manufacture respectively $25 \%, 35 \%, 40 \%$ of the total. Of their output 5,4 and 2% are defective. A bolt is drawn at random from the product.

What is the probability that the bolt drawn is defective?

D Watch Video Solution

93. In a tape recorder factory, three machines A, B and C produced $25 \%, 35 \%$ and 40% respectively. The percentage of
defective output of these machines are $5 \%, 4 \%$ and 2% respectively. A tape recorder is selected at random and is found to defective. Find the probability that tape recorder is produced by machine B.

- Watch Video Solution

94. In a bolt factory, machines A, B and C manufacture respectively $25 \%, 35 \%, 40 \%$ of the total. Of their output 5,4 and 2% are defective. A bolt is drawn at random from the product.

What is the probability that the bolt drawn is defective?

- Watch Video Solution

95. An item is manufacture by three machines A, B and C. out of the total number of items manufactured during a specified
period, 50% are manufactures on $\mathrm{A} .30 \%$ on B and 20% on C. 2% on the items produced on A and 2% of items produced on B are defective, and 3% of these produced on C are defective. All the items are stored at one godown. One item is drawn at random and is found to be defective. what is the probability that it is manufactured on machine A ?

- Watch Video Solution

96. Three machines E_{1}, E_{2}, E_{3} in a certain factory produce 50%, 25% and 25% respectively of the total daily output of electric tubes. It is known that 4% of the tubes produced by each of machines E_{1} and E_{2} are defective, and that 5% of those produced on E_{3} are defective. If one tube is picked up at random from a day's production, calculate the probability that it is defective.
97. Three machines E_{1}, E_{2}, E_{3} in a certain factory produce 50%, 25% and 25% respectively of the total daily output of electric tubes. It is known that 4% of the tubes produced by each of machines E_{1} and E_{2} are defective, and that 5% of those produced on E_{3} are defective. If one tube is picked up at random from a day's production, calculate the probability that it is defective.

- Watch Video Solution

98. An insurance company insured 3000 scooters, 4000 cars and

5000 trucks. The probabilities of an accident involving a scooter, a car and a truck are $0.02,0.03,0.04$ respectively. One of the
insured vehicles meets with an accident. Find the probability that it is a car.

- Watch Video Solution

99. An insurance company insured 3000 scooters, 4000 cars and

5000 trucks. The probabilities of an accident involving a scooter, a car and a truck are $0.02,0.03,0.04$ respectively. One of the insured vehicles meets with an accident. Find the probability that it is a car.

- Watch Video Solution

100. An insurance company insured 3000 scooters, 4000 cars
and 5000 trucks. The probabilities of an accident involving a scooter, a car and a truck are $0.02,0.03,0.04$ respectively. One of
the insured vehicles meets with an accident. Find the probability that it is a car.

- Watch Video Solution

101. Three bags contains a balls as shown in the following table:

Bag	Number of		
	White balls	Black balls	Red balls
I	1	2	3
II	2	1	1
III	4	3	2

A bag is selected at random and two balls are drawn. They
happen to the white and red. What is the probability that they come from the third bag.
102. Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black

- Watch Video Solution

103. A car manufacturing factory has to plant $s \mathrm{X}$ and Y . Plan X manufacturers 70% of the cars plant Y manufactures $30 \% .80 \%$ of the cars at plant X and 90% of the cars at plant Y are rated of standard quality. A car is chosen at random and is found to be of standard quality what is the probability that it comes from plant X
104. Suppose you have two coins which appear identical in your pocket. You know that one coin is fair and the other is 2 handed. If you take out one coin, toss it and get and a head, what is the probability that it is a fair coin?

(D) Watch Video Solution

105. A bag contains $(2 n+1)$ coins. It is known that n of these coins have a head on both side whereas the rest of the coins are fair A coin is plaked up at random from the bag and is tossed. If the probability that the toss results in a head is $\frac{31}{42}$, deter8mine the value of n.

- Watch Video Solution

106. A letter is known to have come from TATANAGAR or from CALCUTTA. On the envelope, just two consecutive letter. TA are visible. What is the probability that the letter had cone from

TATANAGAR?

- Watch Video Solution

107. Suppose that 6% of the perons with blood group O are left handed and 10% of those with other blood groups are left handed. It is given that 30% of the persons have blood group 0 .
if a left handed person is selected at random. What is the probability that the person has blood group O .
108. By examining the chest X-ray, the probabilsity that $T B$ is detected when a person is actually suffering is 0.99 . the probability of a healthy person diagonosed to have TB is 0.001 . In a certain city, 1 in 1000 persons suffer from TB. A perons is selected at random and is diagonosed to have TB. what is the probability that the actual suffers from TB?

- Watch Video Solution

109. A doctor is to visit a patient. From the past experience, it is known that the probabilities that he will come by train, bus, scooter or by other means of transport are respectively $\frac{3}{10}, \frac{1}{5}, \frac{1}{10}$ and $\frac{2}{5}$. The probabilities that he will be late are $\frac{1}{4}, \frac{1}{3}, \frac{1}{12}$, if he comes by train, bus and scooter respectively, but if he comes by other means of transport, then he will not be
late. When he arrives, he is late. What is the probability that he comes by train?

- Watch Video Solution

110. A shopkeeper sells three types of flower seeds A_{1}, A_{2} and A_{3}. They are sold as a mixture whereas the proportions are 4:4:2 respectively. The germination rates of the three types of the seeds are $45 \%, 60 \%, 35 \%$. Find the probability of a randomly chosen seed to germinate.

- Watch Video Solution

111. A shopkeeper sells three types of flower seeds
A_{1}, A_{2} and A_{3}. They are sold as a mixture whereas the proportions are 4:4:2 respectively. The germination rates of the
three types of the seeds are $45 \%, 60 \%, 35 \%$. Find the probability that it will be not geminate given that it is of the type A_{3}.

- Watch Video Solution

112. A shopkeeper sells three types of flower seeds A_{1}, A_{2} and A_{3}. They are sold as a mixture whereas the proportions are 4:4:2 respectively. The germination rates of the three types of the seeds are $45 \%, 60 \%, 35 \%$. Find the probability that it is of type A_{2} given that a randomly chosen seed does not germinate.

- Watch Video Solution

113. If a machine is correctly set up, it produces 90% acceptable items. If it is incorrectly set up, it produces only 40% acceptable
items. Past experience shows that 80% of the set ups are correctly done. If after a certain set up, the machine produces 2 acceptable items, find the probability that the machine is correctly setup.

(D) Watch Video Solution

114. A girl throws a die. If she gets 5 or 6 , tosses a coin three times and notes the number of heads. If she gets $1,2,3$ or 4 , she tosses a coin two times and notes the number of heads. If she obtained exactly two heads, what is the probability that she throws $1,2,3$ or 4 with the die.

- Watch Video Solution

115. Find the probability distribution of a random variable X which denotes the number of tails in two tosses of a coin.

- Watch Video Solution

116. Find the mean and variance of the number of heads on the throw of three coins.

- Watch Video Solution

117. A dice is rolled thrice. If getting a four is considered a success, find the mean and the variance of the probability distribution of the number of success.

- Watch Video Solution

118. Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as: number greater than 4

- Watch Video Solution

119. Two dice are thrown simultaneously. If X denotes the numbers of sixes obtained, find probability distribution of X and also is mean and variance.

- Watch Video Solution

120. Two cards are drawn with replacement from a well shuffled deck of 52 cards. Find μ and σ for the numebr of queens drawn.
121. Two cards are drawn one after the other from a well shuffled pack of 52 cards. Find the mean and variance of the number of red cards.

D Watch Video Solution

122. An urn contains 4 white and 3 red balls. Find the probability distribution of the number of red balls in three draws, with replacement from an urn.

- Watch Video Solution

123. Four balls are to be drawn without replacement from a box
containing 8 red and 4 white balls. If X denotes the number of red balls drawn, find the probability distribution of X.
124. Four defective oranges are accidently mixed with 16 good ones and by looking at them it is not possible to differentiate between them. Three oranges are drawn at random from the lot. Find the probability distribution of X, the number of defective oranges.

- Watch Video Solution

125. A bag contains 2 white, 3 red and 4 blue balls. Two balls are drawn at random from the bag. If the random variable X denotes the number of white balls among the two balls drawn, describe the probability distribution of X :
126. Calcuate the mean variance and standard deviation of a number obtained as a result of throwing. an unbiased die.

- Watch Video Solution

127. Calcuate the mean, variance and standard deviation of number of heads in two tosses of a coin.

- Watch Video Solution

128. A die is tossed once. Let a random variable X be defined as $X= \begin{cases}0 & \text { if thediceshowsanodd } 1 \text { mber } \\ 1 & \text { if thediceshowsanevenvmber }\end{cases}$
Find the probability distribution of X. Also find the mean and variance.
129. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

- Watch Video Solution

130. A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.

- Watch Video Solution

131. Two bad eggs are mixed accidently with 10 good ones. Find the probability distribution of the number of bad eggs in 3 eggs drawn at random in succession, without replacement fro a lot.

Find the mean number of bad eggs drawn.

- Watch Video Solution

132. Find the variance of the distribution:

X	0	1	2	3	4	5
$P(X)$	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{2}{9}$	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$

(D) Watch Video Solution

133. Consider the probability distribution of a random variable X:

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	0.1	0.25	0.3	0.2	0.15

Compute

variance (X).

- Watch Video Solution

134. Consider the probability distribution of a random variable X:

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	0.1	0.25	0.3	0.2	0.15

Compute
$V\left(\frac{X}{2}\right)$
135. Two probability distribution of the discrete random variables X and Y are given below:

X	0	1	2	3
$P(X)$	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

Y	0	1	2	3
$\mathrm{P}(\mathrm{Y})$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$	$\frac{1}{10}$

Prove that $E\left(Y^{2}\right)=2 E(X)$.

- Watch Video Solution

136. The probability distribution of a random variable X is given below:

find the value of k.

- Watch Video Solution

137. The probability distribution of a random variable X is given below:

Compute $P(X \leq 2)$
138. The probability distribution of a random variable X is given below:

Determine $P(X>2)$.

- Watch Video Solution

139. The probability distribution of a random variable X is given below:

Calcuate $P(X \leq 2)+P(X>2)$

- Watch Video Solution

140. The random variable X can take the values $0,1,2$ only. Give that $P(X=0)=P(X=1)=p$ and that $E\left(X^{2}\right)=E(X)$, find the value of p.

- Watch Video Solution

141. Two biased dice are thrown together. For the first dice $P(6)=\frac{1}{2}$, the other scores being equally likely while for the second dice, $P(1)=\frac{2}{5}$ and the other scores are equally likely.

Find the probability distribution of the number of ones shows.

- Watch Video Solution

142. A pair of dice is rolled twice. Let X denote the number of times, 'a total of 9 is obtained'. Find the mean and variance of the random variable X.

- Watch Video Solution

143. Let X be a discrete random variable whose probability distribution is defined as follows:
$P(X=x)= \begin{cases}k(x+1) & \text { for }(x=1,2,3,4) \\ 2 k x & \text { for }(x=5,6,7) \\ 0 & \text { otherwise }\end{cases}$
where k is constant, Calculate the vlaue of k .

- Watch Video Solution

144. Let X be a discrete random variable whose probability distribution is defined as follows:

$$
P(X=x)= \begin{cases}k(x+1) & \text { for }(x=1,2,3,4) \\ 2 k x & \text { for }(x=5,6,7) \\ 0 & \text { otherwise }\end{cases}
$$

where k is constant, Calculate $\mathrm{E}(\mathrm{X})$.

- Watch Video Solution

145. Let X be a discrete random variable whose probability distribution is defined as follows:
$P(X=x)= \begin{cases}k(x+1) & \text { for }(x=1,2,3,4) \\ 2 k x & \text { for }(x=5,6,7) \\ 0 & \text { otherwise }\end{cases}$
where k is constant, Calculate Standard deviation of X

(D) Watch Video Solution

146. The probability distribution of a random variable X is given as under:
$P(X=x)=\left\{\begin{array}{ll}k x^{2} & \text { for }(x=1,2,3,4) \\ 2 k x & \text { for }(x=5,6,7) \\ 0 & \text { otherwise }\end{array} \quad\right.$ where $\mathrm{k} \quad$ is a
constant. Calculate
$P(X \geq 4)$

Watch Video Solution

147. The probability distribution of a random variable X is given as under:
$P(X=x)=\left\{\begin{array}{ll}k x 2 & \text { for }(x=1,2,3,4) \\ 2 k x & \text { for }(x=5,6,7) \\ 0 & \text { otherwise }\end{array} \quad\right.$ where k is a constan.
Calculate
$E\left(3 X^{2}\right)$
148. The probability distribution of a random variable X is given as under:
$P(X=x)=\left\{\begin{array}{ll}k x^{2} & \text { for }(x=1,2,3,4) \\ 2 k x & \text { for }(x=5,6,7) \\ 0 & \text { otherwise }\end{array} \quad\right.$ where $\quad \mathrm{k} \quad$ is a constant. Calculate
$P(X \geq 4)$

- Watch Video Solution

149. A discrete random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
value of k.
150. A discrete random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine

Mean X.

- Watch Video Solution

151. A discrete random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
$P(X<3)$

(D) Watch Video Solution

152. A discrete random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
$P(X>6)$

- Watch Video Solution

153. A discrete random variable X has the following probability distribution:

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine

$\mathrm{P}(0<\mathrm{X}<3)$

- Watch Video Solution

154. Three numbers are selected at random (without replacement) from first 6 positive integers. Let X denote the largest of the three numbers obtained. Find the probability distribution of X. Also, find the mean and variance of the distribution.

- Watch Video Solution

155. Three numbers are selected at random (without replacement) from first 6 positive integers. Let X denote the largest of the three numbers obtained. Find the probability
distribution of X. Also, find the mean and variance of the distribution.

- Watch Video Solution

156. A dice is thrown 120 times and getting ' 1 ' or ' 5 ' is considered a success. Find the mean and the variance of the number of success.

- Watch Video Solution

157. Find the mean and the variance of random variable X which is the number of successes in two tosses of a dice, where a success is defined as a number greater than 4.

- Watch Video Solution

158. Find the mean and variance of the number of heads on the throw of three coins.

- Watch Video Solution

159. An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.

- Watch Video Solution

160. An unbiased coin is tossed 4 times. Find the mean and variance of the number of heads obtained.

- Watch Video Solution

161. Ten coins are thrown simultaneously. Find the probability of getting at least 7 heads.

- Watch Video Solution

162. A dice is rolled thrice. If getting a four is considered a success, find the mean and the variance of the probability distribution of the number of success.

- Watch Video Solution

163. Two cards are drawn with replacement from a well shuffled deck of 52 cards. Find μ and σ for the numebr of aces.
164. An urn contains 4 white and 3 red balls. Find the probability distribution of the number of red balls in three draws, with replacement from an urn.

D Watch Video Solution

165. A coin is tossed 5 times. What is the probability that head appears
an even number of times.

- Watch Video Solution

166. A coin is tossed 5 times. What is the probability that head appears on odd number of times?
167. Using binomial distribution find the probability of obtaining "less than 3 heads" when an unbiased coin is tossed 6 times.

- Watch Video Solution

168. The probability of a man hitting a target is $\frac{1}{4}$. If he fires seven times, what is the probability of his hitting the target atleast twice?

- Watch Video Solution

169. In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is $\frac{5}{6}$. What is the probability that he will knock down fewer than 2 hurdles?
170. A bag contains 10 balls each marked with one of the digit is 0 t0 9. If 4 balls are drawn successively with replacement from the bag. What is the probability that none is marked with the digit is 0 ?

- Watch Video Solution

171. Find the probability distribution of the number of doublets in four throws of a pair of dice.

- Watch Video Solution

172. Find the probability distribution of number of doublets in three throws of a pair of dice.
173. Three cards are drawn in succession form a well shuffled pack of 52 cards. Determine the probability distribution of the random variable X which denotes the number of spades in the three cards. Hence find the mean of the distribution.

- Watch Video Solution

174. Determine the binomial distribution whose mean is 10 and whose standard deviation is 8 .

- Watch Video Solution

175. If the sum of mean and variance of a binomial distribution is 4.8 for five trials, find the distribution.

- Watch Video Solution

176. If the sum of the mean and variance of a binomial distribution for 18 trials is 10 , find the distributin.

- Watch Video Solution

177. A lot of 100 watches is known to have 10 defective watches.

If 8 wathces are selected at random, what is the probability that there will be atelast one defective watch?

- Watch Video Solution

178. A pair of dice is thrown 7 times if getting a total of 7 is considered a success, what is the probability of at most 6

- Watch Video Solution

179. A bag contains 7 red, 4 white and 5 black balls. If four balls are drawn one by one the replacement, what is the probability that
only two are white?

- Watch Video Solution

180. If getting ' 5 ' or ' 6 ' in a throw of an unbiased dice is a success and the random variable ' X ' denotes the number of success in six throws of the dice, find $P(X g e 4)$.

- Watch Video Solution

181. A bag contains 4 white and 7 black and 5 red balls. 4 balls are drawn one by one with replacelment. What is the probability that at least two are white?

D Watch Video Solution

182. The sum of mean and variance of a binomial distribution is

18 and sum of their squares is 164 . find the distribution.

- Watch Video Solution

183. A box contains 100 tickets each bearing one of the numbers
from 1 to 100. if 5 tickets are drawn successively with replacement from the box, find the probability that all the tickets bear numbers divisible by 10.
184. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that all will bear ' X ' mark.

- Watch Video Solution

185. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that not more than 2 will bear 'Y' mark.
186. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that the number of balls with ' X ' mark and ' Y ' mark will be equal.

- Watch Video Solution

187. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that at least one ball will bear ' Y ' mark.
188. A factory produces bulbs. The probability that any one bulb is defective is $\frac{1}{50}$ and they are packed in boxes of 10. From a sigle box, find the probability that none of bulb is defective.

- Watch Video Solution

189. A factory produces bulbs. The probability that any one bulb is defective is $\frac{1}{50}$ and they are packed in boxes of 10. From a sigle box, find the probability that
exactly two bulbs are defective.

- Watch Video Solution

190. A factory produces bulbs. The probability that any one bulb is defective is $\frac{1}{50}$ and they are packed in boxes of 10 . From a
sigle box, find the probability that
more than 8 bulbs work properly.

- Watch Video Solution

191. A factory produces bulbs. The probability that any one bulb is defective is $\frac{1}{50}$ and they are packed in boxes of 10. From a sigle box, find the probability that none of bulb is defective.

D Watch Video Solution

192. What is the probability of sure event ?

- Watch Video Solution

193. The probability of an impossible event is

- Watch Video Solution

194. What is the number of sample points in a simple event associated with an experiment?

- Watch Video Solution

195. If E_{1}, E_{2}, E_{3} are mutually exclusive and exhausive events then what is the value of $P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)$?

- Watch Video Solution

196. If E is an event associated with an experiment, find the value of $P(E)+P\left(E^{c}\right)$.
197. A two digit number is selected at random. Find the number selected is an odd number.

(Watch Video Solution

198. A letter from the English alphabet is seleted at random.

Find the chance that it is a vowel.

- Watch Video Solution

199. E_{1} and E_{2} are equally likely events associated with an experiment. If $P\left(E_{1}\right)=p$ what is the probability of E_{2} ?
200. If E_{1} and E_{2} are independent events associated with an experiment and $P\left(E_{1} \cap E_{2}\right)=\lambda P\left(E_{1}\right) P\left(E_{2}\right)$, then what is down the value of λ.

- Watch Video Solution

201. If E_{1} and E_{2} are mutually exclusive, then write down the value of $P\left(E_{1} \cap E_{2}\right)$.

- Watch Video Solution

202. If E_{1} and $E_{2}=\phi$ are any two events associated with an experiment and $\lambda P\left(E_{1} \cap E_{2}\right)=P\left(E_{1} / E_{2}\right)$, then write down the value of λ.
203. A decimal numeral from ($0,1,2,3,4,5,6,7,8,9$) is selected at random. Find the chance it is a prime number.

- Watch Video Solution

204. If $P\left(E_{2}\right)=\frac{1}{9}, P\left(E_{2} / E_{1}\right)=\frac{3}{5}, P\left(E_{1} / E_{2}\right)=\frac{3}{4}$ then find $P\left(E_{1}\right)$.

D Watch Video Solution

205. If E_{1} and E_{2} mutually exclusive, then find $P\left(E_{1} / E_{2}\right)$.

- Watch Video Solution

206. If E_{1} and E_{2} are independent events such that $P\left(E_{1}\right)=\frac{1}{3}$ and $P\left(E_{2}\right)=\frac{1}{6}$ find $P\left(E_{1}^{c} \cap E_{2}^{c}\right)$.

- Watch Video Solution

207. The probability of occurrence of an event A is 0.5 and that of B is 0.3 . If A and B are mutually exclusive events, then the probability of netiher A nor B is:

- Watch Video Solution

208. If X is the numebr of tails in three tosses of a coin, determine the standard deviation of X.

- Watch Video Solution

209. A bag contains 5 red marbles and 3 black marbles. Three marbles are drawn one by one without replacement. What is the probability that at least one of three marbles drawn be black if the first marble is red?

(D) Watch Video Solution

210. Three dice are thrown at the same time. Find the probability of getting three two's, if it is known that the sum of the numbers on the dice was six.

- Watch Video Solution

211. Four cards are successively drawn without replacement
from a deck of 52 playing cards. What is the probability that all the four cards are kings?

- Watch Video Solution

212. A die is thrown 5 times. Find the probability that an odd number will come up exactly three times.

- Watch Video Solution

213. Prove that $\mathrm{P}(\mathrm{A})=P(A \cup B)+P(A \cap B)$, where A and B are any two events associated with an experiment.

- Watch Video Solution

214.

> Prove
that
$P(A \cup B)=P(A \cap B)+P(A \cap \bar{B})+P(\bar{A} \cap B)$, where A
and B are any two events associated with an experiment.

D Watch Video Solution

215. A box has 5 blue and 4 red balls. One ball is drawn and not replaced. It colour is also not noted. Another ball is then drawn at random. What is the probability of second ball being blue.

- Watch Video Solution

216. If $P(A)=\frac{2}{5}, P(C)=\frac{1}{2}$ and $P(A \cap C)=\frac{1}{5}$ then find $P\left(A^{\prime} \cap C^{\prime}\right)$.

- Watch Video Solution

217. Find k, if the probability distribution of a random variable X is as follows:

D Watch Video Solution

218. Find the mean of the following probability distribution of a random variable X

- Watch Video Solution

219. For a Binomial disribution mean is 5 and the number of trials is 50 , find the variance.

- Watch Video Solution

220. For a random variable $\mathrm{X}, \sum X^{2} P(X)=48.25$ and mean
$=6.5$ find the variance of X.

D Watch Video Solution

221. For a random variable $\mathrm{x}, \sum X P(X)=1.5$, find the mean of probability distribution of X.
222. A bag contains 3 white and 5 black balls. A ball is drawn at random. Find the chance that it is a black ball.

- Watch Video Solution

223. For a random variable X, the variance of 6.25 and the mean is 6. find the value of $\sum X^{2} P(X)$ for the probability distribution of X.

- Watch Video Solution

224. If E_{1} and E_{2} are independent events and $P\left(E_{1}\right)=\rho_{1}$,
$P\left(E_{2}\right)=\rho_{2}$ then find $P\left(E_{1} \cup E_{2}\right)$.

- Watch Video Solution

225. If E_{1} and E_{2} are independent events and $P\left(E_{1}\right)=\rho_{1}$, $P\left(E_{2}\right)=\rho_{2}$ then find $P\left(E_{1}^{c} \cap E_{2}^{c}\right)$.

- Watch Video Solution

226. A coin is tossed twice. Let X denotes of the number of times
'head' tunrs up. Write down the probability distribution of X .

- Watch Video Solution

227. A and B are two candidates seeking admission in a college.

The probability that A is selected is 0.7 and the probability that
exactly one of them is selected is 0.6 . find the chance that B is
selected if the admission of one candidate is independent of the other.
228. Two dice are thrown together. Let A be the event 'getting 6 on the first dice' and B be the event getting 2 on the second dice. Are the events A and B independent?

- Watch Video Solution

229. Explain why the experiment of tossing a coin three times is said to have binomial distribution.

- Watch Video Solution

230. In a dice game, a player pays a stake of Rs. 1 for each throw of the dice. He receives Rs. 5 if the dice shows up 3, Rs. 2 if the
dice shows 1 or 6 , and noticing otherwise. What is the player's expected profit per throw over a long series of throws?

- Watch Video Solution

231. A die is thrown thrice. Let X be 'the number of two's seen'.

Find expectation of X.

D Watch Video Solution

232. A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.

- Watch Video Solution

233. Find the standard deviation of the following probability distribution

- Watch Video Solution

234. Given that E and F are events such that
$P(E)=0.6, P(F)=0.3$ and $P(E \cap F)=0.2$ find $P(E \mid F)$
and $P(F \mid E)$

- Watch Video Solution

235. Compute $\mathrm{P}(\mathrm{A} / \mathrm{B})$ if $\mathrm{P}(\mathrm{B})=0.4$ and $P(A \cap B)=0.32$.

- Watch Video Solution

236. If $\mathrm{P}(\mathrm{A})=0.8, \mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.4$ find $P(A \cap B)$

- Watch Video Solution

237. If $\mathrm{P}(\mathrm{A})=0.8, \mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.4$ find $P(A / B)$

- Watch Video Solution

238. If $\mathrm{P}(\mathrm{A})=0.8, \mathrm{P}(\mathrm{B})=0.5$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.4$ find $P(A \cup B)$.
239. Evaluate $P(A \cup B)$, if $2 P(A)=P(B)=\frac{5}{13} \quad$ and $P(A / B)=\frac{2}{5}$.

- Watch Video Solution

240. If $P(A)=\frac{6}{13}$ and $P(B)=\frac{7}{13}$ and $P(A \cup B)=\frac{9}{13}$ find $P(A \cap B)$

- Watch Video Solution

241. If $P(A)=\frac{6}{13}$ and $P(B)=\frac{7}{13}$ and $P(A \cup B)=\frac{9}{13}$ find $P(A / B)$

- Watch Video Solution

242. If $P(A)=\frac{6}{13}$ and $P(B)=\frac{7}{13}$ and $P(A \cup B)=\frac{9}{13}$ find $P(B / A)$

- Watch Video Solution

243. Determine $P(E / F)$

A coin is tossed three times

E : head on third toss

F: heads on first two tosses.

- Watch Video Solution

244. Determine $P(E / F)$

A coin is tossed three times

E: atleast two heads

F: atmost two heads.

- Watch Video Solution

245. Determine $P(E / F)$

A coin is tossed three times

E: atmost two tails

F: atleat one tail.

- Watch Video Solution

246. Determine $P(E / F)$

Two coins are tossed once

E: tail appears on one coin
F: one cooin shows head.

D Watch Video Solution

247. Determine $P(E \mid F)$ if two coins are tossed once, where : E
: no tail appears, F : no head appears

- Watch Video Solution

248. Determine $P(E \mid F)$ if A die is thrown three times, where :

E : 4 appears on the third toss, $F: 6$ and 5 appears respectively on first two tosses

- Watch Video Solution

249. Determine $P(E \mid F)$ Mother, father and son line up at random for a family picture :E : son on one end, F : father in
middle

(D) Watch Video Solution

250. A black and a red dice are rolled :Find the conditional probability of obtaining a sum greater than 9 , given that the black die resulted in a 5.

D Watch Video Solution

251. A black and a red dice are rolled: Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.

- Watch Video Solution

252. A fair die is rolled. Consider events $E=\{1,3,4,5\}, F=\{2,3,6\}$ and $G=\{2,3,4,5\}$. Find
$P(E / F)$ and $P(F / E)$.

- Watch Video Solution

253. A fair die is rolled. Consider events $E=\{1,3,5\}, F=\{2,3\}$ and $G=$
\{2,3,4,5\}. Find
$P(E / G)$ and $P(G / E)$

- Watch Video Solution

254. A fair die is rolled. Consider events $E=\{1,3,5\}, F=\{2,3\}, \quad$ and $\quad G=\{2,3,4,5\} \quad$ find $\quad:$ $P(E \cup F \mid G)$ and $P(E \cap F \mid G)$
255. Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that the youngest is a girl.

- Watch Video Solution

256. Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that at least one is a girl?

- Watch Video Solution

257. An instructor has a question bank consisting of 300 easy

True / False questions, 200 difficult True / False questions, 500
easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple choice question?

- Watch Video Solution

258. Given that the two numbers appearing on throwing two dice are different. Find the probability of the event the sum of numbers on the dice is 8 .

- Watch Video Solution

259. Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes,
toss a coin. Find the conditional probability of the event the coin shows a tail', given that 'at least one die shows a 3'.

- Watch Video Solution

260. If $P(A)=\frac{1}{2}, P(B)=0$ then $P(A \mid B)$ is:
A. 0
B. $\frac{1}{2}$
C. not defined
D. 1

Answer:

261. If A and B are two events such that $A \cap B \neq \phi, P\left(\frac{A}{B}\right)=P\left(\frac{B}{A}\right)$. Then.
A. $A \subset B b u t A \neq B$
B. $A=B$
C. $A \cap B=\phi$
D. $P(A)=P(B)$

Answer:

- Watch Video Solution

262. If $P(A)=\frac{3}{4}$ and $P(B)=\frac{1}{4}$, find $P(A \cap B)$ if A and B are independent events.
263. Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are red.

- Watch Video Solution

264. A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.

D Watch Video Solution

265. A fair coin and an unbiased die are tossed. Let A be the event 'head appears on the coin' and B be the event ' 3 on the die'. Check whether A and B are independent events or not.

- Watch Video Solution

266. Let E and F be events with $P(E)=\frac{4}{5}, P(F)=\frac{4}{10}$ and $P(E \cap F)=\frac{1}{5}$. Are E and F independent?

- Watch Video Solution

267. Given that the events A and B are such that $P(A)=\frac{1}{2}$, $P(A \cup B)=\frac{3}{5}$ and $P(B)=p$. find p if they are mutually exclusive.
268. Given that the events A and B are such that $P(A)=\frac{1}{2}$, $P(A \cup B)=\frac{3}{4}$ and $\mathrm{P}(\mathrm{B})=\mathrm{p}$. find p if they are independent.

- Watch Video Solution

269. Let A and B are be independent events with $P(A)=0.2$ and $P(B)=0.3$ find
$P(A \cap B)$

D Watch Video Solution

270. Let A and B are be independent events with $P(A)=0.2$ and $P(B)=0.3$ find

(D) Watch Video Solution

271. Let A and B are be independent events with $P(A)=0.2$ and $P(B)=0.3$ find
$P(A / B)$

- Watch Video Solution

272. Let A and B are be independent events with $P(A)=0.2$ and
$P(B)=0.3$ find
$P(B / A)$

- Watch Video Solution

273. If A and B are two events such that $P(A)=\frac{1}{4}, P(B)=\frac{1}{2} \quad$ and $\quad P(A \cap B)=\frac{1}{8} \quad$ find $P(\neg A$ and $\neg B)$

- Watch Video Solution

274. Events A and B are such that $P(A)=\frac{1}{2}, P(B)=\frac{7}{12}$ and $P($ not A or not $B)=\frac{1}{4}$. State whether A and B are independent.

- Watch Video Solution

275. Give two independent events A and B such that $P(A)=0.3$,
$P(B)=0.4$. Find
$P(A$ and $B)$
276. Give two independent events A and B such that $P(A)=0.3$, $P(B)=0.4$. Find
$P(A$ and not $B)$

- Watch Video Solution

277. Give two independent events A and B such that $P(A)=0.3$, $P(B)=0.4$. Find
$P(A$ or $B)$

- Watch Video Solution

278. Give two independent events A and B such that $P(A)=0.3$,
$P(B)=0.4$. Find

- Watch Video Solution

279. A die is tossed thrice. Find the probability of getting an odd number atleast once.

- Watch Video Solution

280. Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both balls are red.

- Watch Video Solution

281. Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
first ball is black and second is red.

- Watch Video Solution

282. Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.

- Watch Video Solution

283. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that the problem is solved.

- Watch Video Solution

284. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently find the probability that exactly one of them solve the problem.

D Watch Video Solution

285. One card is drawn at random from a pack of well shuffled deck of 52 cards. IN which of the following cards are the events
E and F independent? : E : the card drawn is spade F : the card drawn is an ace

- Watch Video Solution

286. One card is drawn at random from a well shuffled deck of 52 cards. In which of the following cases are the events E and F independent ? E : 'the card drawn is black' F : 'the card drawn is a king'

- Watch Video Solution

287. One card is drawn at random from a well shuffled deck of 52
cards. In which of the following cases are the events E and F independent ? E : 'the card drawn is a king or queen' F : 'the card drawn is a queen or jack'.

- Watch Video Solution

288. In a hostel, 60% of the students read Hindi news paper, 40\% read English news paper and 20\% read both Hindi and English news papers. A student is selected at random. Find the probability that she reads neither Hindi nor English news papers.

- Watch Video Solution

289. In a hostel, 60% of the students read Hindi newspaper, 40%
read English newspaper and 20\% read both Hindi and English news paper. A student is selected at random. If she reads Hindi newspaper, find the probability that she reads English newspaper.

- Watch Video Solution

290. In a hostel, 60% of the students read Hindi newspaper, 40% read English newspaper and 20\% read both Hindi and English news paper. A student is selected at random. If she reads English newspaper, find the probability that she reads Hindi newspaper.

(Watch Video Solution

291. The probability of obtaining an even prime number on each die, when a pair of dice is rolled is :
A. 0
B. $\frac{1}{3}$
C. $\frac{1}{12}$
D. $\frac{1}{36}$

- Watch Video Solution

292. Two events A and B are said to be independent if
$A . A$ and B are mutually exclusive
B. $P\left(A^{\prime} B^{\prime}\right)=[1-P(A)][1-P(B)]$
C. $P(A)=P(B)$
D. $P(A)+P(B)=0$

Answer:

- Watch Video Solution

293. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red?

- Watch Video Solution

294. A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

- Watch Video Solution

295. Of the students in a college, it is known that 60% reside in hostel and 40\% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20\% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is a hostlier?

- Watch Video Solution

296. In answering a question in a multiple choice test a student either knows the answer or guesses. Let $\frac{3}{4}$ be the probability that he knows the answer and $\frac{1}{4}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{4}$. What is the probability that
a student knows the answer, given that he answered it correctly ?

- Watch Video Solution

297. A laboratory blood test is 99% effective in detecting a certain disease when it is in fact, present. However, the test also yields a false positive result for 0.5% of the healthy person tested (i.e. if a healthy person is tested, then, with probability 0.005 , the test will imply he has the disease). If 0.1 percent of the population actually has the disease, what is the probability that a person has the disease given that his test result is positive ?

- Watch Video Solution

298. There see three coins,one is a two headed coin (having head on both the faces), another is a biased coin that comes up heads 75% of the time and the third is anunbiased coin.One of the three coins is choosen at random and tossed.Of it shows head, what is probability that it was the two headed coin?

- Watch Video Solution

299. An insurance company insured 2000 scooter drivers, 4000
car drivers and 6000 truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver?

- Watch Video Solution

300. A factory has two machines A and B. Past record shows that machine A produced 60% of the items of output and machine B produced 40% of the items. Further, 2% of the items produced by machine A and 1\% produced by machine B were defective. All the items are put into one stockpile and then one item is chosen at random from this and is found to be defective. What is the probability that it was produced by machine B ?

- Watch Video Solution

301. Two groups are competing for the position on the Board of directors of a corporation. The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the
second group wins. Find the probability that the new product introduced was by the second group.

- Watch Video Solution

302. Suppose a girl throws a die. If she gets a 5 or 6 , she tosses a coin three times and notes the numbers of heads. If she gets $1,2,3$, or 4 , she tosses a coin once and notes whether a head or a tail is obtained. If she attained exactly one head what is the probability that she threw $1,2,3$, or 4 with the die?

- Watch Video Solution

303. A manufacturer has three machine operators A, B and C.

The first operator A produces 1% defective items, where as the other two operators B and C pro duce 5% and 7% defective
items respectively. A is on the job for 50% of the time, B is on the job for 30% of the time and C is on the job for 20% of the time. A defective item is produced, what is the probability that it was produced by A?

- Watch Video Solution

304. A card from a pack of 52 cards is lost. From the remaining cards of the pack, two cards are drawn and are found to be both diamonds. Find the probability of the lost card being a diamond.

- Watch Video Solution

305. Probability that A speaks truth is $\frac{4}{5}$. A coin is tossed. A reports that a head appears. The probability that actually there
was head is
A. $\frac{4}{5}$
B. $\frac{1}{2}$
C. $\frac{1}{5}$
D. $\frac{2}{5}$

Answer:

- Watch Video Solution

306. If A and B are two events such that $A \subset B$ and $P(B) \neq 0$, then which of the following is correct?
A. $P(A / B)=\frac{P(B)}{P(A)}$
B. $P(A / B)<P(A)$
C. $P(A / B) \geq P(A)$
D. none of these

Answer:

- Watch Video Solution

307. State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

- Watch Video Solution

308. State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	0.1	0.5	0.2	-0.1	0.3

- Watch Video Solution

309. State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

310. State which of the following are not the probability distribution of a random variable. Give reasons for your answer.

- Watch Video Solution

311. An urn contains 5 red and 5 black balls. Two balls are randomly selected. Let X represent the number of black balls.

What are the possible values of X. is X a random variable?

- Watch Video Solution

312. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed 6 times. What are possible values of X ?

- Watch Video Solution

313. Find the probability distribution of number of heads in two tosses of a coin

- Watch Video Solution

314. Find the probability distribution of number of tails in the simultaneous tosses of three coins.

- Watch Video Solution

315. Find the probability distribution of number of tails in four tosses of a coin.

- Watch Video Solution

316. Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as : number greater than 4

- Watch Video Solution

317. Find the probability distribution of the number of successes
in two tosses of a die, where a success is defined as: six appears on at least one die.
318. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

(D) Watch Video Solution

319. A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.

- Watch Video Solution

320. A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
k ?

- Watch Video Solution

321. A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine

$$
P(X<3) ?
$$

322. A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
$P(X>6)$?

- Watch Video Solution

323. A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
$\mathbf{P}(\mathrm{X})$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
$P(0<X<3) ?$
324. The random variable X has a probability distribution $P(X)$ of the following form, where k is some number : $P(x)=\{(k$, , if, $x=0),(2 k,$, if,,$x=1),(3 k,$, if,, $x=2),(0,,,):$, Determine the value of k .

- Watch Video Solution

325. The random variable X has a probability distribution $P(X)$ of the following form, where k is some number :
$P(X)=\left\{\begin{array}{l}\mathrm{k}, \mathrm{If} x=0 \\ 2 k, \text { if } x=1 \\ 3 k, \text { if } x=2 \\ 0, \text { otherwise }\end{array}\right.$
Find $P(X<2), P(X \leq 2), P(X \geq 2)$

(D) Watch Video Solution

326. Find the mean number of heads in three tosses of a fair coin.

- Watch Video Solution

327. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.

- Watch Video Solution

328. Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find $E(X)$.
329. Let X denote the sum of the numbers obtained when two fair dice are rolled. Find the variance and standard deviation of X.

- Watch Video Solution

330. A class has 15 students whose ages are $14,17,15,14,21,17$,
$19,20,16,18,20,17,16,19$ and 20 years. One student is selected in such a manner that each has the same chance of being chosen and the age X of the selected student is recorded. What is the probability distribution of the random variable X ? Find mean, variance and standard deviation of X.

- Watch Video Solution

331. In a meeting, 70% of the members favour and 30% oppose a certain proposal. A member is selected at random and we take $X=0$ if he opposed, and $X=1$ if he is in favour. Find $E(X)$ and $\operatorname{Var}(X)$.

D Watch Video Solution

332. The mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face is:
A. 1
B. 2
C. 5
D. $\frac{8}{3}$

- Watch Video Solution

333. Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of $E(X)$ is:
A. $\frac{37}{221}$
B. $\frac{5}{13}$
C. $\frac{1}{13}$
D. $\frac{2}{13}$

Answer:

334. A die is thrown 6 times. If 'getting an odd number' is a success, what is the probability of 5 successes?

- Watch Video Solution

335. A die is thrown 6 times. If getting an odd numebr is a succes, what is the probability of atleast 5 successes?

- Watch Video Solution

336. A die is thrown 6 times. If getting an odd numebr is a succes, what is the probability of atmost 5 successes?
337. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability of two successes.

(D) Watch Video Solution

338. There are 5% defective items in a large bulk of items. What is the probability that a sample of 10 items will include not more than one defective item?

D Watch Video Solution

339. Five cards are drawn successively with replacemnet form a well shuffled deck of 52 cards. What is the probability that all the five cards are diamonds?
340. Four cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability that only 3 cards are spades?

(D) Watch Video Solution

341. Five cards are drawn successively with replacemnet form a well shuffled deck of 52 cards. What is the probability that none is a spade?

- Watch Video Solution

342. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 . Find the probability that out of 5
such bulbs none will fuse after 150 days of use.

- Watch Video Solution

343. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 . Find the probability that out of 5
such bulbs not more than one will fuse after 150 days of use.

- Watch Video Solution

344. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 . Find the probability that out of 5 such bulbs more than one will fuse after 150 days of use.
345. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 . Find the probability that out of 5 such bulbs at least one bulb will fuse after 150 days of use.

(D) Watch Video Solution

346. A bag consists of 10 balls each marked with one of the digits 0 to 9 . If four balls are drawn successively with replacement from the bag, what is the probability that none is marked with the digit 0 ?

- Watch Video Solution

347. In an examination, 20 questions of true-false type are asked. Suppose a student tosses a fair coin to determine his
answer to each question. If the coin falls heads, he answers 'true', if it falls tails, he answers 'false'. Find the probability that he answers at least 12 questions correctly.

- Watch Video Solution

348. Suppose X has a binomial distribution $B\left(6, \frac{1}{2}\right)$. Show that $X=3$ is the most likely outcome.

- Watch Video Solution

349. On a multiple choice examination with three possible answers for each of the five questions, what is the probability that a candidate would get four or more correct answers just by guessing ?
350. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize at least once.

(Watch Video Solution

351. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize exactly once.

- Watch Video Solution

352. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the
probability that he will win a prize at least twice?

- Watch Video Solution

353. Find the probability of getting 5 exactly twice in 7 throws of a die.

(D) Watch Video Solution

354. Find the probability of throwing at most 2 sixes in 6 throws of a single die.

- Watch Video Solution

355. If is known that 10% of certain articles manufactured are defective. What is the probability that in a random sample of 12
such articles ,9 are defective?

- Watch Video Solution

356. Binomial distribution is given this name because
A. This distribution was envolved by James Binomial.
B. Each trial has only two outcomes, namely success and failure.
C. Its probability function is obtained by general term of binomial expansion.
D. It is obtained by combining two distribution.

Answer:

357. Which of the following is not a case of Bernoulli's trials:
A. (a) tosses of a coin
B. (b) drawing balls (with replacement)from bag containing 5
white balls only
C. (c) throws of a pair of dice
D. (d) attmepting 10 true false type question on the basis of the outcomes of tosses of a coin.

Answer:

(D) Watch Video Solution

358. A and B are two events such that $P(A) \neq 0$. Find $P(B \mid A)$,if: A is a subset of B

(D) Watch Video Solution

359. A and B are two events such that $P(A) \neq 0$. Find $P(B \mid A)$, if : $A \cap B=\phi$

- Watch Video Solution

360. A couple has two children
find the probability that both children are males if it is known that at least one of the children is male.

- Watch Video Solution

361. A couple has two children, find the probability that both children are females, if it is known that the elder childis a
female.

- Watch Video Solution

362. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired person is selected at random. What is the probability of this person being male? Assume that there are equal number of males and females.

- Watch Video Solution

363. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that all will bear ' X ' mark.

D Watch Video Solution

364. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that not more than 2 will bear ' Y ' mark.

- Watch Video Solution

365. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that at least one ball will bear 'Y' mark.
366. An urn contains 25 balls of which 10 balls bear a mark ' X ' and the remaining 15 bear a mark ' Y '. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that the number of balls with ' X ' mark and ' Y ' mark will be equal.

- Watch Video Solution

367. In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle is $\frac{5}{6}$. What is the probability that he will knock down fewer than 2 hurdles?
368. A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.

- Watch Video Solution

369. If a leap year is selected at random, what is the chance that it will contain 53 tuesdays?

- Watch Video Solution

370. An experiment succeeds twice as often as it fails. Find the probability that in the next six trials, there will be at least 4 successes.
371. How many times must a man toss a fair coin so that the probability of getting at least one head is more than 90% ?

- Watch Video Solution

372. In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins / loses.

- Watch Video Solution

373. Suppose we have four boxes A, B, C and D containing coloured marbles as given below:

Box	Marble colour		
	Red	White	Black
A	1	6	3
B	6	2	2
C	8	1	1
D	0	6	4

One of the boxes has been selected at random and a single marbles is drawn from it. If the marbles is red, what is the probability that it was drawn from box A ? box B ? box C ?

- Watch Video Solution

374. Assume that the chances of a patient having a heart attack is 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the
probability that the patient followed a course of meditation and yoga?

- Watch Video Solution

375. If each element of a second order determinant is either zero or one, what is the probability that the value of the determinant is positive? (Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability $\frac{1}{2}$)

(D) Watch Video Solution

376. An electronic assembly consists of two subsystems, say, A
and B. From previous testing procedures, the following probabilities are assumed to be known : $P(A$ fails $)=0.2, P(\mathrm{~B}$
fails alone $)=0.15, P(A$ and B fail $)=0.15$ Evaluate the following probabilities: $P(A$ fails $\mid B$ has failed)

- Watch Video Solution

377. An electronic assembly consists of two subsystems, say, A
and B. From previ ous testing procedures, the following probabilities are assumed to be known : $P(A$ fails $)=0.2, P(B$ fails alone $)=0.15, P(A$ and B fail $)=0.15$ Evaluate the following probabilities: $\mathrm{P}(\mathrm{A}$ fails alone)

- Watch Video Solution

378. Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls. One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II. The ball so drawn is found
to be red in colour. Find the probability that the transferred ball is black

- Watch Video Solution

379. If A and B are two events such that $P(A) \neq 0$ and $P\left(\frac{B}{A}\right)=1$, then
A. $A \subset B$
B. $B \subset A$
C. $B=\phi$
D. $A=\phi$

Answer:

380. If $P\left(\frac{A}{B}\right)>P(A)$, then which of the following is correct : :
A. $P\left(\frac{B}{A}\right)<P(B)$
B. $P(A \cap B)<P(A) P(B)$
C. $P\left(\frac{B}{A}\right)>P(B)$
D. $P\left(\frac{B}{A}\right)=P(B)$

Answer:

D Watch Video Solution

381. If A and b are any two events such that
$P(A)+P(B)-P(A$ and $B)=P(A)$, then
A. $P(B / A)=1$
B. $P(A / B)=1$
C. $P(B / A)=0$
D. $P(A / B)=0$

Answer:

(D) Watch Video Solution

382. Fill ups

The set $\}$ as a subset space S, associated with an experiment, is called an event.

- Watch Video Solution

383. Fill ups

The set S as a subset of itself, where S is the sample space of an

D Watch Video Solution

384. Two events A and B associated with an experiment are said to be exclusive iff $A \cap B=$

- Watch Video Solution

385. Fill ups

Two events E_{1} and E_{2} associated with an experiment are independent iff $P\left(E_{1} \cap E_{2}\right)=$.

- Watch Video Solution

386. If A and B are such that $\mathrm{P}\left(A^{\prime} \cup B^{\prime}\right)=\frac{2}{3}$ and P $(A \cup B)=\frac{5}{9}$, then $\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}\left(\mathrm{B}^{\prime}\right)=$.

- Watch Video Solution

387. Fill ups

If A and B are two events such that $P(A / B)=p, \mathrm{P}(\mathrm{A})=\mathrm{p}$,
$P(B)=\frac{1}{3}$ and $P(A \cup B)=\frac{5}{9}$ then $\mathrm{p}=$

- Watch Video Solution

388. If E is an event associated with an experiment, find the value of $P(E)+P\left(E^{c}\right)$.
389. If A and B are independent events then $\mathrm{P}(\mathrm{A} \cup B)=1$ \qquad

- Watch Video Solution

390. If A and B are independent events such that $P(A)=p, P(B)=2$
p and P (Exactly one of $\mathrm{A}, \mathrm{B})=\frac{5}{9}$ then find p

- Watch Video Solution

391. If E and F are inedependent events associated with an experiment then $P\left(\frac{E}{F}\right)=$

- Watch Video Solution

392. Fill ups

If the random variable X follows Binomial distribution with parameters $\quad n=5, p$ and $P(X=2)=9 P(X=3), \quad$ then $p=\ldots \ldots \ldots \ldots \ldots \ldots .$.

- Watch Video Solution

393. Fill ups

If E_{1} and E_{2} are independent events associated with an expeirment then $P\left(E_{2}^{c} / E_{1}^{c}\right)=1$ -

- Watch Video Solution

394. Fill ups

If A and B are two events such that $P(A / B)=P(A)$, then A is
B.

- Watch Video Solution

395. Fill ups

For the following distribution, the mean is equal to

- Watch Video Solution

396. Fill ups

If a random variabale X follows Binomial distribution such that
$P(X=20)=P(X=21)$ and number of trials is 40 , then $p=$ \qquad

- Watch Video Solution

397. Let ' X ' be a discrete random variable assuming values $x_{1}, x_{2}, \ldots \ldots \ldots x_{n} \quad$ with \quad probabilities $\quad p_{1}, p_{2}, \ldots \ldots \ldots, p_{n}$ respectively. Then variance of ' X ' is given by :

- Watch Video Solution

398. Fill ups

Mean of probability distribution of a random variable is also known as \qquad .value of the distribution.

- Watch Video Solution

399. Fill ups

If E is any event associated with an experiment, then P (either E or E^{c} occurs)=. \qquad

Watch Video Solution

400. Fill ups

If A is any event associated with an experiment then P (both A and B^{\prime} occur)=. \qquad

(D) Watch Video Solution

401. Fill ups

If A, B, C are three independent events such that $P(A)=P(B)=P($
$C)=p$, then $p($ exactly one of A, B, C occurs $)=$
402. True or false

If E be an event associated with an experiment then $P\left(E^{\prime}\right)=1-P(E)$.

- Watch Video Solution

403. True or false

If A and B are independent events associated with an experiment, then $P(A \cap B)=P(A)+P(B)$.

- Watch Video Solution

404. True or false

If A and B are two events associated with an experiment such
that $P(A)>0$ and also $P(B)>0$, then A and B can be both mutaully exclusive and independent.

- Watch Video Solution

405. If E_{1} and E_{2} are two independent events associated with an experiment, then show that
E_{1}^{c} and E_{2}^{c} are alos independent.

D Watch Video Solution

406. If A, B, C are mutually exclusive and exhausive events associated with an experiment, then $P(A)+P(B)+P(C)=1$.
407. Two independent events are always mutually exclusive.

D Watch Video Solution

408. True or false

Two events E_{1} and E_{2} are said to be mutaully exclusive iff
$E_{1} \cap E_{2}=\phi$

D Watch Video Solution

409. True or false

Two mutually exclusive events are always independent.

- Watch Video Solution

410. True or false

If A and B are two independent events then $P(A$ and $B)=P(A) P(B)$.

- Watch Video Solution

411. True or false

If A and B are independent events then A^{\prime} and B^{\prime} are also independent.

- Watch Video Solution

412. For any two events E_{1} and E_{2} associated with an experiment $P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{1} \cap E_{2}\right)$.
413. True or false

For any two events E_{1} and E_{2} associated with an experiment.
$P\left(E_{1} \cup E_{2}\right)=P\left(E_{1} \cap E_{2}^{\prime}\right)+P\left(E_{1} \cap E_{2}\right)+P\left(E_{1}^{\prime} \cap E_{2}\right)$.

- Watch Video Solution

414. True or false

Another name for the mean of a probability distribution is expected value.

- Watch Video Solution

415. True or false

If A and B are independent events, then $P\left(A^{\prime} \cup B\right)=1-P(A) P\left(B^{\prime}\right)$.
416. True or false

If E_{1}, E_{2}, E_{3} events associated with an experiment, then $P\left(E_{3}\right)=P\left(\frac{E_{3}}{E_{1}}\right) P\left(E_{1}\right) P\left(\frac{E_{3}}{E_{2}}\right) P\left(E_{2}\right)$.

- Watch Video Solution

417. True or false

If A and B are two events such that $P(A)>0$ and $P(A)+P(B)>1$, then
$P\left(\frac{B}{A}\right) \geq 1-\frac{P\left(B^{\prime}\right)}{P(A)}$.

D Watch Video Solution
418. True or false
$P(A \cap B \cap C)=P(A) P(B) P(C)$.

- Watch Video Solution

419. True or false

If $E_{1}, E_{2}, \ldots \ldots \ldots, E_{n}$ are mutually exclusive events associated with an experiment and E is any event associated with the same experiment, then $P(E)=\sum_{i=1}^{n} P\left(\frac{E}{E_{i}}\right) P\left(E_{i}\right)$.

- Watch Video Solution

420. True or false

If A and B are independent then P (exacttly one of A and B occurs $)=P(A) P\left(B^{\prime}\right)+P\left(A^{\prime}\right) P(B)$.
421. One of the condition of Bernoulli trials is that the trails are independent of each other.

- Watch Video Solution

422. True or false

When a fair dice is rolled once, then the mean of the random variable X, which denotes the number appearing the upper most face of the dice is 7 .

- Watch Video Solution

423. Find the mean number of heads in three tosses of a fair coin.
424. True or false

If A, B and C are three independent events such that $P(A)=P(B)=P(C)=p$, then $P($ atleast two of A, B and C occur $)=$ $3 p^{2}-2 p^{2}$

- Watch Video Solution

425. True or false

If a coin is tossed 5 times and X denote the number of heads shows then $P(X=2)=P(X=3)$.

- Watch Video Solution

426. True or false

Mean and variance of a binomial distribution are respectively np

- Watch Video Solution

427. Match the statement in column I with those given in

column II.

COLUMN I

1. The probability of getting atleast 8 heads, when 10 coins are tossed, is
2. If A and B are two events such that $P(A)=0.4, P(B)=0.2$ and $P(A \cup B)=0.6$, then $P(A \cap B)=$
3. Probability of throwing a total of 7 in a single throw of a pair of dice is
4. If A and B are two events such that $P(A)=0.6, P(B)=0.2$ and $P(A / B)=0.5$, then $\mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}^{\prime}\right)$ is equal to
5. Variance of the random variable X, which denotes the number of tails in three tosses of a coin, is equal to
6. Value of k if the probability distribution of a random variable X is

X	0.5	1	1.5	2
$\mathrm{P}(\mathrm{X})$	k	k^{2}	$2 k^{2}$	k

7. If A and B be two events such that $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$ and $P(A \cap B)=\frac{1}{4}$. then $P(A / B)+P(B / A)$ is equal to

COLUMN II
(p) $\frac{1}{6}$
(q) $\frac{5}{4}$
(r) $\frac{3}{4}$
(s) $\frac{1}{3}$
(t) $\frac{7}{128}$
(i) $\frac{3}{8}$
(v) 0

D Watch Video Solution

428. Events A and B associated with an experiment are said to be independent iff
A. $P(A \cap B)=P(A)+P(B)$
B. $P(A \cap B)=P(A) P(B)$
C. $P(A \cap B)=\phi$
D. none of these

Answer:

- Watch Video Solution

429. Events A and B are said to be mutually exclusive iff
A. $P(A \cap B)=P(A)+P(B)$
B. $P(A \cap B)=P(A)+P(B)$
C. $P(A \cap B)=\phi$
D. none of these

Answer:

- Watch Video Solution

430. If A and B are independent events then which of the following is not true.
A. $P(A / B)=P(A)$
B. $P(B / A)=P(B)$
C. $P(A / B)=P(B / A)$
D. none of these

Answer:

431. Let A and B be two events. If
$P(A)=0.6, P(B)=0.2, P\left(\frac{A}{B}\right)=0.5$, then $P(A \cap B)$ is equal to :
A. $\frac{1}{10}$
B. $\frac{3}{10}$
C. $\frac{3}{8}$
D. $\frac{6}{7}$

Answer:

432. If $P(A)=\frac{3}{10}, P(B)=\frac{2}{5}$ then $P(A \cup B)=\frac{3}{5}$, then $P(B / A)+P(A / B)$ equals
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{5}{12}$
D. $\frac{7}{12}$

Answer:

(D) Watch Video Solution

433. The event A and B are independent if
A. $P(A \cap B)=P\left(\frac{A}{B}\right) P(B)$
B. $P(A \cap B)=P\left(\frac{B}{A}\right) P(A)$
C. $P(A \cap B)=P(A)+P(B)$
D. $P(A \cap B)=P(A) P(B)$

Answer:

- Watch Video Solution

434. For a biased dice, the probabilities of the different faces to turn up are

Face	1	2	3	4	5	6
P	0.10	0.32	0.21	0.15	0.05	0.17

the dice is tossed and it is told that either the face 1 or face 2
has shows up, then the probability that it is face 1 is
A. $\frac{16}{21}$
B. $\frac{1}{10}$
C. $\frac{5}{16}$
D. $\frac{5}{21}$

Answer:

- Watch Video Solution

435. If $P(A)=\frac{2}{5}, P(B)=\frac{3}{10}$ and $P(A \cap B)=\frac{1}{5}$, then $P\left(A^{\prime} / B^{\prime}\right)+P\left(B^{\prime} / A^{\prime}\right)$ is equal to
A. $\frac{5}{6}$
B. $\frac{5}{7}$
C. $\frac{65}{42}$
D. 1

Answer:

436. If $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.8$ and $\mathrm{P}(\mathrm{B} / \mathrm{A})=0.6$ then $P(A \cup B)=$.
A. 0.24
B. 0.3
C. 0.48
D. 0.96

Answer:

- Watch Video Solution

437. A and B are events such taht $P(A)=0.4, P(B)=0.3$ and $P(A$
$\cup \mathrm{B})=0.5$. Then $\mathrm{P}(\mathrm{B} \cap A)$ equals
A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. $\frac{3}{10}$
D. $\frac{1}{5}$

Answer:

- Watch Video Solution

438. If $P(A \cap B)=0.15, \mathrm{P}(\mathrm{B})=0.10$ then $\mathrm{P}(\mathrm{A} / \mathrm{B})=$
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. none
D. $\frac{1}{5}$

(D) Watch Video Solution

439. In $Q .10 P(A)=0.4, P(B)=0.3 P(A \cap B)=0.2, P\left(B / A^{\prime}\right)$ is equal to
A. $\frac{1}{4}$
B. $\frac{3}{10}$
C. $\frac{5}{6}$
D. $\frac{1}{6}$

Answer:

- Watch Video Solution

440. If $P(B)=\frac{3}{5}, \mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{1}{2}$ and $P(A \cup B)=\frac{4}{5}$ then $P\left(A \cup B^{\prime}\right)+P\left(A^{\prime} \cup B\right)=$
A. $\frac{1}{5}$
B. $\frac{4}{5}$
C. $\frac{1}{2}$
D. 1

Answer:

- Watch Video Solution

441. Let $P(A)=\frac{5}{13}, P(B)=\frac{9}{13}$ and $P(A \cap B)=\frac{5}{13}$, then $P(A / B)$ is equal to
A. $\frac{6}{13}$
B. $\frac{4}{13}$
C. $\frac{5}{9}$
D. $\frac{5}{9}$

Answer:

- Watch Video Solution

442. If A and B are two independent events with $P(A)=\frac{3}{5}$ and $P(B)=\frac{4}{9}$, then $P\left(A^{\prime} \cap B^{\prime}\right)$ equals
A. $\frac{4}{15}$
B. $\frac{8}{45}$
C. $\frac{2}{9}$
D. $\frac{1}{3}$

- Watch Video Solution

443. If two events are independent then
A. they must be mutually exclusive
B. the sum of their probabilities must be equal to .
C. both(a) and (b) are correct
D. none of the above is correct.

Answer:

444. If A and B are independent events such that 0 $<P(A)<1$ and $0<P(B)<1$ then which of the followingis not correct ?
A. A and B mutually exclusive.
B. A and B' are independent
$C . A^{\prime}$ and B are independent
D. A^{\prime} and B^{\prime} are independent.

Answer:

- Watch Video Solution

445. Let A and B be two events such that $P(A)=\frac{3}{8}$,
$P(B)=\frac{5}{8}$ and $P(A \cup B)=\frac{3}{4} \mathrm{P}(\mathrm{A} / \mathrm{B}) \mathrm{P}\left(\mathrm{A}^{\prime} / \mathrm{B}\right)$ is equal to
A. $\frac{2}{5}$
B. $\frac{3}{8}$
C. $\frac{3}{20}$
D. $\frac{6}{25}$

Answer:

- Watch Video Solution

446. Two events E and F are independent. If $P(E)=0.3, P(E$
$\cup F)=0.5$ then $\mathrm{P}(\mathrm{E} \mid \mathrm{F})-\mathrm{P}(\mathrm{F} \mid \mathrm{E})$ equals
A. $\frac{2}{7}$
B. $\frac{3}{35}$
C. $\frac{1}{70}$
D. $\frac{1}{7}$

Answer:

- Watch Video Solution

447. A bag contains 5 red and 3 blue balls. If 3 balls are drawn at
random without replacement, the probability of getting exactly one red balls
A. A) $\frac{45}{196}$
B. B) $\frac{135}{392}$
C. C) $\frac{15}{56}$
D. D) $\frac{15}{29}$
448. In reference $Q .20$ above,the probability that exactly two of the three balls are red, the first balls being red is
A. $\frac{1}{3}$
B. $\frac{4}{7}$
C. $\frac{15}{28}$
D. $\frac{5}{28}$

Answer:

D Watch Video Solution

449. Three persons A, B and C fire at a target in turn, starting with A. their probabilities of hitting the target are $0.4,0.3$ and

0.2 respectively. The probability of two hits is

A. 0.024
B. 0.188
C. 0.336
D. 0.452

Answer:

- Watch Video Solution

450. Three distinguisable balls are distributed in three cells. The probability that all three occupy the same cell, given that atleast two of them are in the same cell, is
A. $\frac{1}{7}$
B. $\frac{1}{9}$
C. $\frac{1}{6}$
D. none of these

Answer:

- Watch Video Solution

451. Suppose X is a binomial variate $B(5, p)$ and $P(X=2)=P(X=3)$, then p is equal to
A. $\frac{1}{5}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer:

452. A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number on the die and a spade card is
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer:

- Watch Video Solution

453. A box contains 3 orange balls, 3 green and 2 blue balls. Three balls are drawn at random from the box wihout replacement. The probability of drawing 2 green balls and one blue ball is
A. $\frac{2}{21}$
B. $\frac{3}{28}$
C. $\frac{1}{28}$
D. $\frac{167}{168}$

Answer:

- Watch Video Solution

454. A flashlight has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, the
probability that both are dead is
A. $\frac{33}{56}$
B. $\frac{9}{24}$
C. $\frac{1}{14}$
D. $\frac{3}{28}$

Answer:

- Watch Video Solution

455. Two dice are thrown. If it is known that the sum of the number on the dice is less than 6 , the probability of a getting a sum is 3
A. $\frac{1}{18}$
B. $\frac{2}{5}$
C. $\frac{1}{5}$
D. $\frac{5}{18}$

Answer:

D Watch Video Solution

456. Two cards are drawn from a well shuffled deck of 52 playing
cards with replacement. The probability that both cards are queen, is :
A. $\frac{1}{13} \times \frac{1}{13}$
B. $\frac{1}{13}+\frac{1}{13}$
C. $\frac{1}{13} \times \frac{1}{17}$
D. $\frac{1}{13} \times \frac{4}{51}$

- Watch Video Solution

457. The mean and variance of a random variable X having a binomial distribution are 4 and 2 respectively, then $P(X=1)$ is
A. $\frac{1}{4}$
B. $\frac{1}{32}$
C. $\frac{1}{16}$
D. $\frac{1}{8}$

Answer:

458. Two numbers are selected randomly from the set $S=\{1,2,3,4,5,6\}$ without replacement one by one. The probability that minimum of the two numbers is less than 4 is a.

1/15 b. $14 / 15$ c. $1 / 5$ d. $4 / 5$
A. $\frac{4}{5}$
B. $\frac{1}{15}$
C. $\frac{1}{5}$
D. $\frac{14}{15}$

Answer:

- Watch Video Solution

459. Which one is not a requirement of a binomial distribution?
A. There are 2 outcomes for each trials
B. There is a fixed number of trails.
C. The outcomes must be dependent on each other.
D. The probability of success must be same for each trial.

Answer:

- Watch Video Solution

460. The probability distribution of a discrete random variable X
is given below:

The value of k is
A. 8
B. 32
C. 16
D. 48

Answer:

- Watch Video Solution

461. Let X be a random variable. The probability distribution of X
is given below:

The $\mathrm{E}(\mathrm{X})$ is equal to
A. 6
B. 4
C. 3
D. -5

Answer:

- Watch Video Solution

462. Let ' X ' be a discrete random variable assuming values
x_{1}, x_{2},
with
probabilities $\quad p_{1}, p_{2}$,
p_{n}
respectively. Then variance of ' X ' is given by :
A. $E\left(X^{2}\right)$
B. $E\left(X^{2}\right)+E(X)$
C. $E\left(X^{2}\right)-[E(X)]^{2}$
D. $\sqrt{E\left(X^{2}\right)-\left\{E(X)^{2}\right\}}$

Answer:

- Watch Video Solution

463. For the following probability distribution

\mathbf{X}	-4	-3	-2	-1	0
$\mathbf{P}(\mathbf{X})$	0.1	0.2	0.3	0.2	0.2

$E(X)$ is equal to
A. 0
B. -1
C. -2
D. -1.8

Answer:

- Watch Video Solution

464. For the following probability distribution

$E\left(X^{2}\right)$ is equal to
A. 3
B. 5
C. 7
D. 10

- Watch Video Solution

465. Suppose that a random variabe X follows Binomial distribution with parameters n and p ,
where $0<p<1$. If $\frac{P(X=r)}{P(X=n-r)}$ is independent of n and r , then p is equal to
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{5}$
D. $\frac{1}{7}$

Answer:

466. In a college 30% students fall in physics 25% fall in mathematics and 10% fall in both one student is chosen at random, the probability that the student falls in Physics if he she has fallled in mathematics is
A. $\frac{1}{10}$
B. $\frac{2}{5}$
C. $\frac{9}{20}$
D. $\frac{1}{3}$

Answer:

467. A and B are two students. Their chances of solving a problem correctly are $\frac{1}{3}$ and $\frac{1}{4}$ respectively if the probability of their making a common error is $\frac{1}{20}$ and they obtain the same answer then the probability of their answer to be correct is
A. $\frac{1}{12}$
B. $\frac{1}{40}$
C. $\frac{13}{40}$
D. $\frac{10}{13}$

Answer:

- Watch Video Solution

