

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Product of two Vectors

1. if $\overrightarrow{b} = 2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{c} = \overrightarrow{i} + 4\overrightarrow{j} + 5\overrightarrow{k}$ then find a vector \overrightarrow{a} such that $\overrightarrow{b} \cdot \overrightarrow{a} = 0$ and $\overrightarrow{c} \cdot \overrightarrow{a} = 0$. Also find the unit vector along \overrightarrow{a} .

2. If $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are three unit vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c} = 0$ and angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$ prove that $\overrightarrow{a} = \pm 2\left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

Watch Video Solution

3. $A_1, A_2, ..., A_n$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n-1} \overrightarrow{OA}_i \times \overrightarrow{OA}_{i+1} = (1-n) \left(\overrightarrow{OA}_2 \times \overrightarrow{OA}_1 \right)$

D Watch Video Solution

4. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are unit vectors such that \overrightarrow{a} is perpendicular to the plane \overrightarrow{b} and \overrightarrow{c} and angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$, than value of $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$ is

5. Let
$$\overrightarrow{A} = 2\overrightarrow{i} + \overrightarrow{k}, \overrightarrow{B} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
. Determine a vector \overrightarrow{R} satisfying $\overrightarrow{R} \times \overrightarrow{B} = \overrightarrow{C} \times \overrightarrow{B}$ and $\overrightarrow{R} \overrightarrow{A} = 0$.

6. The vectors
$$\overrightarrow{AB} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$
 and $\overrightarrow{BC} = -\hat{i} + 2\hat{k}$
are the adjacent sides of a parallelogram ABCD then the
angle between the diagonals is

7. The position vectors of the points A and B are $\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$ and $2\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ respectively. Find the projection of \overrightarrow{AB} on the vector $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$. Also find the resolved part of \overrightarrow{AB} in that direction.

Watch Video Solution

8. Show that the altitude of $\ riangle ABC$ through a vertex A is

equal to $\frac{\left|\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}\right|}{\left|\overrightarrow{b} - \overrightarrow{c}\right|}$ where the

position vectors of A,B, and C are respectively $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} .

1. For any vector
$$\overrightarrow{r}$$
 , prove that
 $\overrightarrow{r} = \left(\overrightarrow{r}\hat{i}\right)\hat{i} + \left(\overrightarrow{r}\hat{j}\right)\hat{j} + \left(\overrightarrow{r}\hat{k}\right)\hat{k}$.
Vatch Video Solution

2. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
 then show that \overrightarrow{a} and \overrightarrow{b} are

perpendicular to each other.

Watch Video Solution

3. Let \widehat{a}, \widehat{b} be two unit vectors and heta be the angle between

them.

What is
$$\sin\!\left(rac{ heta}{2}
ight)$$
 equal to ?

4. Prove that
$$\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{\left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{b}\right|^2 + 2\overrightarrow{a} \cdot \overrightarrow{b}}.$$

Watch Video Solution

5. Prove that,

$$\left(\overrightarrow{a} imes\overrightarrow{b}
ight)^2+\left(\overrightarrow{a}.\overrightarrow{b}
ight)^2=\left|\overrightarrow{a}
ight|^2\left|\overrightarrow{b}
ight|^2$$

Watch Video Solution

6. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ then show that $\overrightarrow{a} - \overrightarrow{d}$ is parallel to $\overrightarrow{b} - \overrightarrow{c}$

7. Find the angle between the vectors $\overrightarrow{a} = 2\overrightarrow{p} + 4\overrightarrow{q}$ and $\overrightarrow{b} = \overrightarrow{p} - \overrightarrow{q}$ where \overrightarrow{p} and \overrightarrow{q} are unit vectors forming an angle of 120° .

Watch Video Solution

8. If
$$\left|\overrightarrow{a}\right| = 1 = \left|\overrightarrow{b}\right|$$
 and $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$ then evaluate $\left(2\overrightarrow{a} - \overrightarrow{b}\right) \cdot \left(3\overrightarrow{a} + \overrightarrow{b}\right)$.

Watch Video Solution

9. Find λ such that the scalar product of the vector $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ with the unit vector parallel to the sum of

the vectors
$$2\overrightarrow{i}+4\overrightarrow{j}-5\overrightarrow{k}$$
 and $\lambda\overrightarrow{i}+2\overrightarrow{j}+3\overrightarrow{k}$ is equal

to 1.

Watch Video Solution

10. The set of values of x for which the angle between the vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ acute and the angle between the vector \vec{b} and the axis of ordinates is obtuse, is

Watch Video Solution

11. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be vectors of length 3, 4, 5 respectively. Let \overrightarrow{a} be perpendicular to $\overrightarrow{b} + \overrightarrow{c}$, \overrightarrow{b} to $\overrightarrow{c} + \overrightarrow{a}$ and \overrightarrow{c} to $\overrightarrow{a} + \overrightarrow{b}$. Then $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$ is :

12. Vectors $3\overrightarrow{a} - 5\overrightarrow{b}and2\overrightarrow{a} = \overrightarrow{b}$ are mutually perpendicular. If $\overrightarrow{a} + 4\overrightarrow{b}and\overrightarrow{b} - \overrightarrow{a}$ are also mutually perpendicular, then the cosine of the angel between *aandb* is $\frac{19}{5\sqrt{43}}$ b. $\frac{19}{3\sqrt{43}}$ c. $\frac{19}{2\sqrt{45}}$ d. $\frac{19}{6\sqrt{43}}$ Watch Video Solution

13. The pth, qth and rth terms of a GP are the positive numbers a,b and c respectively. Show that the vectors $\overrightarrow{i} \log_e a + \overrightarrow{j} \log_e b + \overrightarrow{k} \log_e c$ and $\overrightarrow{i} (q-r) + \overrightarrow{j} (r-p) + \overrightarrow{k} (p-q)$ are mutually

perpendicular.

14. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitude, show the vectors $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} .

Watch Video Solution

15. A line makes angles α , β , $\gamma and \delta$ with the diagonals of a cube. Show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = 4/3$.

Watch Video Solution

16. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are the position vectors of points A, Band C respectively, prove that : $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$ is vector perpendicular to

the plane of triangle ABC_{\cdot}

Watch Video Solution

17. Given the vectors \overrightarrow{A} , \overrightarrow{B} , $and\overrightarrow{C}$ form a triangle such that $\overrightarrow{A} = \overrightarrow{B} + \overrightarrow{C}$. find a, b, c, andd such that the area of the triangle is 56 where $\overrightarrow{A} = a\hat{i} + b\hat{j} + c\hat{k}$ $\overrightarrow{B} = d\hat{i} + 3\hat{j} + 4\hat{k}\overrightarrow{C} = 3\hat{i} + \hat{j} - 2\hat{k}$

Watch Video Solution

18. If AC and BD are the diagonals of a quadrilateral ABCD, prove that its area is equal to $\frac{1}{2} \left| \overrightarrow{AC} \times \overrightarrow{BD} \right|$.

19. A, B, CandD are any four points in the space, then prove that $\left| \overrightarrow{A}B \times \overrightarrow{C}D + \overrightarrow{B}C \times \overrightarrow{A}D + \overrightarrow{C}A \times \overrightarrow{B}D \right| = 4$ (area of ABC .)

Watch Video Solution

20. If the angle between the vectors $x \overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{i} + x \overrightarrow{j} + \overrightarrow{k}$ is equal to $\frac{\pi}{3}$ then x=____.

Watch Video Solution

21. If the vector $\overrightarrow{a} = x \overrightarrow{i} + y \overrightarrow{j} + 2 \overrightarrow{k}$ is perpendicular to the vector $\overrightarrow{b} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ and the scalar product of \overrightarrow{a}

22. If \overrightarrow{a} is a vector of magnitude 50 and parallel to $\overrightarrow{b} = 6\overrightarrow{i} - 8\overrightarrow{j} - \frac{15}{2}\overrightarrow{k}$ and makes an acute angle with the z-axis then $\overrightarrow{a} = _$ _____.

Watch Video Solution

23. If
$$\overrightarrow{a}, \overrightarrow{b}, and \overrightarrow{c}$$
 are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, then find the value of $\overrightarrow{a}, \overrightarrow{b}, + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c} = \overline{a}$.

24. Prove that,

$$\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) + \overrightarrow{b} \times \left(\overrightarrow{c} + \overrightarrow{a}\right) + \overrightarrow{c} \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = \overrightarrow{0}$$

Watch Video Solution

25. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are vectors, each of magnitude 3 then $\left|\overrightarrow{a} + \overrightarrow{b}\right|^2 + \left|\overrightarrow{a} - \overrightarrow{b}\right|^2 = ____$.

Watch Video Solution

26. If $\overrightarrow{A} = (1, 1, 1), \overrightarrow{C} = (0, 1, -1)$ are given vectors, then prove that a vector \overrightarrow{B} satisfying the equations $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C}$ and $\overrightarrow{A} \cdot \overrightarrow{B} = 3$ is $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$.

28. Let $\beta = 4\hat{i} + 3\hat{j}$ and $\overrightarrow{\gamma}$ be two vectors perpendicular to each other in the XY plane. Find all the vectors in the same plane having the projections 1 and 2 along $\overrightarrow{\beta}$ and $\overrightarrow{\gamma}$ respectively.

29. If
$$\left|\overrightarrow{a}\right| = 3$$
, $\left|\overrightarrow{b}\right| = 5$, $\left|\overrightarrow{c}\right| = 7$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$
then angle between \overrightarrow{a} and \overrightarrow{b} is

Watch Video Solution

31. Let $\overrightarrow{O}A - \overrightarrow{a}, \widehat{O}B = 10\overrightarrow{a} + 2\overrightarrow{b}and\overrightarrow{O}C = \overrightarrow{b}, whereO, AandC$ are non-collinear points. Let p denotes the areaof quadrilateral OACB, and let q denote the area of

parallelogram with OA and OC as adjacent sides. If p = kq,

then findk.

Watch Video Solution

32. Vector $\overrightarrow{O}A = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4\hat{i} - \hat{j} - \hat{k}}{\sqrt{2}}$. Watch Video Solution

33. A vector a has components a_1, a_2, a_3 in a right handed rectangular cartesian coordinate system OXYZ the coordinate axis is rotated about z axis through an angle $\frac{\pi}{2}$. The components of a in the new system

34. If
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{c}$$
 then

A.
$$\overrightarrow{a} = 0$$

B. $\overrightarrow{b} = \overrightarrow{c}$
C. $\overrightarrow{a} \perp \left(\overrightarrow{b} - \overrightarrow{c}\right)$

D. all of these

Answer: D

35. If
$$\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C} = 0$$
 then $\overrightarrow{A} \times \overrightarrow{B}$ is

A.
$$\overrightarrow{c} \times \overrightarrow{a}$$

B. \overrightarrow{c}
C. $\overrightarrow{b} \times \overrightarrow{c}$
D. $\overrightarrow{a} \times \overrightarrow{c}$

Answer:

36. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq \overrightarrow{0}$$
 then which one is true

where k is a suitable scalar?

A.
$$\overrightarrow{a} + \overrightarrow{b} = k\overrightarrow{c}$$

B. $\overrightarrow{a} + \overrightarrow{c} = k\overrightarrow{b}$
C. $\overrightarrow{b} + \overrightarrow{c} = k\overrightarrow{a}$

D. none of these

Answer: B

> Watch Video Solution

37. A, B, C and D are four points in a plane with position vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and \overrightarrow{d} , respectively, such that $\left(\overrightarrow{a} - \overrightarrow{d}\right). \left(\overrightarrow{b} - \overrightarrow{c}\right) = \left(\overrightarrow{b} - \overrightarrow{d}\right). \left(\overrightarrow{c} - \overrightarrow{a}\right) = 0$

Then point D is the of triangle ABC

A. incentre

B. circumcentre

C. orthocentre

D. centroid

Answer:

38. If
$$\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = 1$$
 and $\left| \overrightarrow{a} \times \overrightarrow{b} \right| = 1$ then
A. $\overrightarrow{a} \mid \mid \overrightarrow{b}$
B. $\overrightarrow{a} \perp \overrightarrow{b}$
C. $\overrightarrow{a} \cdot \overrightarrow{b} = 1$

D. none of these

Answer: B

39. The vector $\overrightarrow{b} = 3j + 4k$ is to be written as the sum of a vector \overrightarrow{b}_1 , parallel to $\overrightarrow{a} = i + j$, and a vector \overrightarrow{b}_2 , perpendicular to \overrightarrow{a} , then \overrightarrow{b}_1 , equals

A.
$$\frac{3}{2} \left(\stackrel{\rightarrow}{i} + \stackrel{\rightarrow}{j} \right)$$

B. $\frac{2}{3} \left(\stackrel{\rightarrow}{i} + \stackrel{\rightarrow}{j} \right)$
C. $\left(\frac{1}{2} \left(\stackrel{\rightarrow}{i} + \stackrel{\rightarrow}{j} \right)$

D. none of these

Answer:

40. Let
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - \hat{k} \ ext{and} \ \overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$$

be three vectors . A vector in the plane of \overrightarrow{b} and \overrightarrow{c} whose

length of projection on \overrightarrow{a} is of $\sqrt{rac{2}{3}}$ is

A.
$$2\overrightarrow{i} + 3\overrightarrow{j} - 3\overrightarrow{k}$$

B. $2\overrightarrow{i} + 3\overrightarrow{j} + 3\overrightarrow{k}$
C. $-2\overrightarrow{i} - \overrightarrow{j} + 5\overrightarrow{k}$
D. $2\overrightarrow{i} + j + 5\overrightarrow{k}$

Watch Video Solution

Answer:

41. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$, show that the angle between \overrightarrow{a} and \overrightarrow{b} is 60^0 .

A.
$$\frac{\pi}{3}$$

B.
$$5\frac{\pi}{3}$$

C. $2\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer:

Watch Video Solution

42. If
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ then which one of the

following is correct ?

A.
$$\overrightarrow{a} \mid | \overrightarrow{b}$$

B. $\overrightarrow{a} \perp \overrightarrow{b}$
C. $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$

D. none of these

Answer:

43. If
$$\overrightarrow{a} = 4\hat{i} + 6\hat{j}and\overrightarrow{b} = 3\hat{j} + 4\hat{k}$$
, then find the component of \overrightarrow{a} and \overrightarrow{b} .

A.
$$\left(\frac{9}{5\sqrt{3}}\left(3\overrightarrow{j}+4\overrightarrow{k}\right)\right)$$

B. $\frac{18}{25}$
C. $\frac{18}{25}\left(3\overrightarrow{j}+4\overrightarrow{k}\right)$
D. $\frac{18}{\sqrt{13}}\left(3\overrightarrow{j}+4\overrightarrow{k}\right)$

Answer:

44. In each of the following, fill in the blank so that the resulting statement is correct. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three unit vectors such that $\overrightarrow{a} = \lambda \overrightarrow{b} + \mu \overrightarrow{c}$ an $\overrightarrow{a} \cdot \overrightarrow{b} = 0, \ \overrightarrow{a} \cdot \overrightarrow{c} = \frac{1}{2}$ then $\left|\overrightarrow{b} \cdot \overrightarrow{c}\right| =$ _____.

Watch Video Solution

45. If $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{B} \times \overrightarrow{A}$, then the angle between $A \to B$

is

$$\hat{i}+4\hat{j}$$
 .

Watch Video Solution

47. If θ is the angle between the unit vectors \hat{a} and \hat{b} then $\cos\left(\frac{\theta}{2}\right)$ is equal to A. $\left|\hat{a} + \hat{b}\right|$

Answer: D

48. In each of the following, one or more options are correct. Choose the correct option(s). If $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$ then $\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to the vector

A.
$$\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{a}$$

B. $\overrightarrow{a} - \overrightarrow{b}$
C. $\overrightarrow{a} \times \overrightarrow{b}$
D. $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{b}$

Answer: B, C

