©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Product of two Vectors

Example

1. if $\vec{b}=2 \vec{i}+3 \vec{j}-\vec{k}$ and $\vec{c}=\vec{i}+4 \vec{j}+5 \vec{k}$ then find a vector \vec{a} such that $\vec{b} \cdot \vec{a}=0$ and $\vec{c} \cdot \vec{a}=0$. Also find the unit vector along \vec{a}.
(Watch Video Solution
2. If \vec{a}, \vec{b} and \vec{c} are three unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ prove that $\vec{a}= \pm 2(\vec{b} \times \vec{c})$.

D Watch Video Solution

3. $A_{1}, A_{2}, \ldots, A_{n}$ are the vertices of a regular plane polygon with n sides and O as its centre. Show that $\sum_{i=1}^{n-1} \overrightarrow{O A}_{i} \times \overrightarrow{O A}_{i+1}=(1-n)\left(\overrightarrow{O A}_{2} \times \overrightarrow{O A}_{1}\right)$

D Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that \vec{a} is perpendicular to the plane \vec{b} and \vec{c} and angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, than value of $|\vec{a}+\vec{b}+\vec{c}|$ is

- Watch Video Solution

5. Let $\vec{A}=2 \vec{i}+\vec{k}, \vec{B}=\vec{i}+\vec{j}+\vec{k}$. Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \vec{A}=0$.

- Watch Video Solution

6. The vectors $\overrightarrow{A B}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\overrightarrow{B C}=-\hat{i}+2 \hat{k}$ are the adjacent sides of a parallelogram $A B C D$ then the angle between the diagonals is

- Watch Video Solution

7. The position vectors of the points A and B are $\vec{i}+2 \vec{j}+3 \vec{k}$ and $2 \vec{i}-\vec{j}-\vec{k}$ respectively. Find the projection of $\overrightarrow{A B}$ on the vector $\vec{i}+\vec{j}+\vec{k}$. Also find the resolved part of $\overrightarrow{A B}$ in that direction.

- Watch Video Solution

8. Show that the altitude of $\triangle A B C$ through a vertex A is
equal to $\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{b}-\vec{c}|}$ where the position vectors of A, B, and C are respectively \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

1. For any vector \vec{r}, prove that $\vec{r}=(\vec{r} \dot{\hat{i}}) \hat{i}+(\vec{r} \dot{\hat{j}}) \hat{j}+(\vec{r} \dot{\hat{k}}) \hat{k}$.

D Watch Video Solution

2. If $|\vec{a}+\vec{b}||=|\vec{a}-\vec{b}|$ then show that \vec{a} and \vec{b} are perpendicular to each other.

- Watch Video Solution

3. Let \widehat{a}, \hat{b} be two unit vectors and θ be the angle between them.

What is $\sin \left(\frac{\theta}{2}\right)$ equal to ?
4. Prove that $|\vec{a}+\vec{b}|=\sqrt{|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}}$.

- Watch Video Solution

5. Prove that,
$(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$

(D) Watch Video Solution

6. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ then show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$
7. Find the angle between the vectors $\vec{a}=2 \vec{p}+4 \vec{q}$ and $\vec{b}=\vec{p}-\vec{q}$ where \vec{p} and \vec{q} are unit vectors forming an angle of 120°.

(D) Watch Video Solution

8. If $|\vec{a}|=1=|\vec{b}|$ and $|\vec{a}+\vec{b}|=\sqrt{3}$ then evaluate $(2 \vec{a}-\vec{b}) \cdot(3 \vec{a}+\vec{b})$.

- Watch Video Solution

9. Find λ such that the scalar product of the vector $\vec{i}+\vec{j}+\vec{k}$ with the unit vector parallel to the sum of
the vectors $2 \vec{i}+4 \vec{j}-5 \vec{k}$ and $\lambda \vec{i}+2 \vec{j}+3 \vec{k}$ is equal to 1.

- Watch Video Solution

10. The set of values of x for which the angle between the vectors $\vec{a}=x \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=2 x \hat{i}+x \hat{j}-\hat{k}$ acute and the angle between the vector \vec{b} and the axis of ordinates is obtuse, is

- Watch Video Solution

11. Let $\vec{a}, \vec{b}, \vec{c}$ be vectors of length $3,4,5$ respectively. Let \vec{a} be perpendicular to $\vec{b}+\vec{c}, \vec{b}$ to $\vec{c}+\vec{a}$ and \vec{c} to $\vec{a}+\vec{b}$. Then $|\vec{a}+\vec{b}+\vec{c}|$ is :

Watch Video Solution

12. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}=\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and $\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angel between $a a n d b$ is $\frac{19}{5 \sqrt{43}}$ b. $\frac{19}{3 \sqrt{43}}$ c. $\frac{19}{2 \sqrt{45}}$ d. $\frac{19}{6 \sqrt{43}}$

- Watch Video Solution

13. The pth, qth and rth terms of a GP are the positive numbers a,b and c respectively. Show that the vectors $\vec{i} \log _{e} a+\vec{j} \log _{e} b+\vec{k} \log _{e} c$ and
$\vec{i}(q-r)+\vec{j}(r-p)+\vec{k}(p-q) \quad$ are mutually perpendicular.
14. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude, show the vectors $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

15. A line makes angles $\alpha, \beta, \gamma \operatorname{and} \delta$ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

(Watch Video Solution

16. \vec{a}, \vec{b} and \vec{c} are the position vectors of points A, B and C respectively, prove that
$\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is vector perpendicular to the plane of triangle $A B C$.

- Watch Video Solution

17. Given the vectors \vec{A}, \vec{B}, $a n d \vec{C}$ form a triangle such that $\vec{A}=\vec{B}+\vec{C}$. find a, b, c, andd such that the area of the triangle is 56 where $\vec{A}=a \hat{i}+b \hat{j}+c \hat{k}$ $\vec{B}=d \hat{i}+3 \hat{j}+4 \hat{k} \vec{C}=3 \hat{i}+\hat{j}-2 \hat{k}$

- Watch Video Solution

18. If $A C$ and $B D$ are the diagonals of a quadrilateral $A B C D$, prove that its area is equal to $\frac{1}{2}|\overrightarrow{A C} \times \overrightarrow{B D}|$.
19. $A, B, C a n d D$ are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

20. If the angle between the vectors $x \vec{i}+\vec{j}-\vec{k}$ and $\vec{i}+x \vec{j}+\vec{k}$ is equal to $\frac{\pi}{3}$ then $\mathrm{x}=$

- Watch Video Solution

21. If the vector $\vec{a}=x \vec{i}+y \vec{j}+2 \vec{k}$ is perpendicular to the vector $\vec{b}=\vec{i}-\vec{j}+\vec{k}$ and the scalar product of \vec{a}
and $\vec{c}=\vec{i}+2 \vec{j}$ is equal to 4 then $\mathrm{x}=$
\qquad -

(D) Watch Video Solution

22. If \vec{a} is a vector of magnitude 50 and parallel to $\vec{b}=6 \vec{i}-8 \vec{j}-\frac{15}{2} \vec{k}$ and makes an acute angle with the z-axis then $\vec{a}=$ \qquad

(Watch Video Solution

23. If \vec{a}, \vec{b}, and \vec{c} are unit vectors such that
$\vec{a}+\vec{b}+\vec{c}=0$, then find the value of
$\vec{a} \overrightarrow{\vec{b}}+\vec{b} \vec{c}+\vec{a}$.
24. Prove that,
$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=\overrightarrow{0}$

(D) Watch Video Solution

25. If \vec{a} and \vec{b} are vectors, each of magnitude 3 then $|\vec{a}+\vec{b}|^{2}+|\vec{a}-\vec{b}|^{2}=\ldots \ldots$.

- Watch Video Solution

26. If $\vec{A}=(1,1,1), \vec{C}=(0,1,-1)$ are given vectors, then prove that a vector \vec{B} satisfying the equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$ is $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$.

- Watch Video Solution

27. Find a unit vector perpendicular to the plane determined by the points $(1,-1,2),(2,0,-1) \operatorname{and}(0,2,1)$.

- Watch Video Solution

28. Let $\beta=4 \hat{i}+3 \hat{j}$ and $\vec{\gamma}$ be two vectors perpendicular to each other in the XY plane. Find all the vectors in the same plane having the projections 1 and 2 along $\vec{\beta}$ and $\vec{\gamma}$ respectively.
29. If $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$ and $\vec{a}+\vec{b}+\vec{c}=0$ then angle between \vec{a} and \vec{b} is

- Watch Video Solution

30. The conditions under which the vector $\vec{P}+\vec{Q}$ and $\vec{P}-\vec{Q}$ will be at right angles to each other is

Watch Video Solution

31.

Let
$\vec{O} A-\vec{a}, \widehat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, AandC
are non-collinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of
parallelogram with $O A a n d O C$ as adjacent sides. If $p=k q$, then find k.

- Watch Video Solution

32. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x -axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$.

- Watch Video Solution

33. A vector a has components a_{1}, a_{2}, a_{3} in a right handed rectangular cartesian coordinate system $O X Y Z$ the coordinate axis is rotated about z axis through an angle $\frac{\pi}{2}$.

The components of a in the new system

Watch Video Solution

34. If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ then
A. $\vec{a}=0$
B. $\vec{b}=\vec{c}$
C. $\vec{a} \perp(\vec{b}-\vec{c})$
D. all of these

Answer: D

- Watch Video Solution

35. If $\vec{A}+\vec{B}+\vec{C}=0$ then $\vec{A} \times \vec{B}$ is
A. $\vec{c} \times \vec{a}$
B. \vec{c}
C. $\vec{b} \times \vec{c}$
D. $\vec{a} \times \vec{c}$

Answer:

(Watch Video Solution

36. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$ then which one is true where k is a suitable scalar?
A. $\vec{a}+\vec{b}=k \vec{c}$
B. $\vec{a}+\vec{c}=k \vec{b}$
C. $\vec{b}+\vec{c}=k \vec{a}$

D. none of these

Answer: B

- Watch Video Solution

37. A, B, C and D are four points in a plane with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d}, respectively, such that $(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0$

Then point D is the of triangle $A B C$
A. incentre
B. circumcentre
C. orthocentre
D. centroid

(D) Watch Video Solution

38. If $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a} \times \vec{b}|=1$ then
A. $\vec{a}|\mid \vec{b}$
B. $\vec{a} \perp \vec{b}$
C. $\vec{a} \cdot \vec{b}=1$
D. none of these

Answer: B
(D) Watch Video Solution
39. The vector $\vec{b}=3 j+4 k$ is to be written as the sum of a vector \vec{b}_{1}, parallel to $\vec{a}=i+j$, and a vector \vec{b}_{2}, perpendicular to \vec{a}, then \vec{b}_{1}, equals
A. $\frac{3}{2}(\vec{i}+\vec{j})$
B. $\frac{2}{3}(\vec{i}+\vec{j})$
C. $\left(\frac{1}{2}(\vec{i}+\vec{j})\right.$
D. none of these

Answer:

- Watch Video Solution

40.

$\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$
be three vectors. A vector in the plane of \vec{b} and \vec{c} whose length of projection on \vec{a} is of $\sqrt{\frac{2}{3}}$ is
A. $2 \vec{i}+3 \vec{j}-3 \vec{k}$
B. $2 \vec{i}+3 \vec{j}+3 \vec{k}$
C. $-2 \vec{i}-\vec{j}+5 \vec{k}$
D. $2 \vec{i}+j+5 \vec{k}$

Answer:

- Watch Video Solution

41. If $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$, show that the angle between \vec{a} and \vec{b} is 60°.

$$
\text { A. } \frac{\pi}{3}
$$

B. $5 \frac{\pi}{3}$
C. $2 \frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer:

(D) Watch Video Solution

42. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$ then which one of the following is correct ?
A. $\vec{a}|\mid \vec{b}$
B. $\vec{a} \perp \vec{b})$
C. $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$
D. none of these

Answer:

(Watch Video Solution

43. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{j}+4 \hat{k}$, then find the component of \vec{a} and \vec{b}.
A. $\left(\frac{9}{5 \sqrt{3}}(3 \vec{j}+4 \vec{k})\right.$
B. $\frac{18}{25}$
C. $\frac{18}{25}(3 \vec{j}+4 \vec{k})$
D. $\frac{18}{\sqrt{13}}(3 \vec{j}+4 \vec{k})$

Answer:
44. In each of the following, fill in the blank so that the resulting statement is correct. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a}=\lambda \vec{b}+\mu \vec{c} \quad$ an
$\vec{a} \cdot \vec{b}=0, \vec{a} \cdot \vec{c}=\frac{1}{2}$ then $|\vec{b} \cdot \vec{c}|=$

- Watch Video Solution

45. If $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$, then the angle between $A \rightarrow B$ is

(Watch Video Solution

46.

Find
a unit
vector
\vec{c} if $-\vec{i}+\vec{j}-\vec{k}$ bisectstheanglebetween \vec{c} and 3
$\hat{i}+4 \hat{j}$.

- Watch Video Solution

47. If θ is the angle between the unit vectors \hat{a} and \hat{b} then $\cos \left(\frac{\theta}{2}\right)$ is equal to
A. $|\widehat{a}+\hat{b}|$
B. $\frac{1}{2}|\widehat{a}-\hat{b}|$
C. $\frac{1}{2}|\widehat{a} \cdot \hat{b}|$
D. $\frac{1}{2}|\widehat{a}+\hat{b}|$

Answer: D
48. In each of the following, one or more options are correct. Choose the correct option(s). If $|\vec{a}|=|\vec{b}|$ then $\vec{a}+\vec{b}$ is perpendicular to the vector
A. $(\vec{a} \cdot \vec{b}) \vec{a}$
B. $\vec{a}-\vec{b}$
C. $\vec{a} \times \vec{b}$
D. $(\vec{a} \cdot \vec{b}) \vec{b}$

Answer: B, C

