© 「'doubtnut

India's Number 1 Education App

MATHS

BOOKS - PRADEEP PUBLICATION

RELATIONS AND FUNCTIONS

Example

1. Let $A=\{1,2,3,4\}$ and $B=\{x, y, z\}$. Consider the subset $R=\{1, x),(1, y),(2, z),(3, x)\}$ of $A \times B$. Is R , a relation from A to B ? If yes, find domain and range of R . Draw arrow diagram of R.

- Watch Video Solution

2. Let $A=(2,3,4,5,6,7,8,9)$. Let R be the relation on A defined by $(x, y): x \in A$, $\mathrm{y} \in \mathrm{A}$ and x divides y . Find R
3. Let $A=(2,3,4,5,6,7,8,9)$. Let R be the relation on A defined by $(x, y): x \in A$, $y \in A$ and x divides y. Find domain of R

- Watch Video Solution

4. Let $A=(2,3,4,5,6,7,8,9)$. Let R be the relation on A defined by $(x, y): x \in A$, $\mathrm{y} \in \mathrm{A}$ and x divides y . Find range of R^{-1}

- Watch Video Solution

5. Let A be a family of sets and let R be the relation on A defined by X is disjoint from Y . State whether or not R is reflexive on A

- Watch Video Solution

6. $R=\{(b, c)\}$ is defined on set $A=\{a, b, c\}$. State whether or not R is symmetric

- Watch Video Solution

7. $R=\{(b, c)\}$ is defined on set $A=\{a, b, c\}$. State whether or not R is transitive

- Watch Video Solution

8. Consider the set $A=\{a, b, c\}$. Give an example of a relation R on A. which is : reflexive and symmetric but not transitive.

- Watch Video Solution

9. Consider the set $A=\{a, b, c\}$. Give an example of a relation R on A. which is : Symmetric and transitive but not reflexive.

- Watch Video Solution

10. Consider the set $A=\{a, b, c\}$. Give an example of a relation R on A. which is : reflexive and transitive but not symmetric.

- Watch Video Solution

11. Give an example of a relation. Which is: Symmetric but neither reflexive nor transitive.

- Watch Video Solution

12. Give an example of a relation. Which is: Transitive but neither reflexive nor symmetric.

- Watch Video Solution

13. Give an example of a relation, which is Reflexive, but neither Symmetric nor Transitive.
14. Consider the set $A=\{a, b, c\}$. Give an example of a relation R on A. which is : reflexive and symmetric but not transitive.

- Watch Video Solution

15. Consider the set $A=(a, b, c)$. Give an example of a relation R on A which is an equivalent relation.

- Watch Video Solution

16. For the set $A=(1,2,3)$ define a relation R on the set A as follows:
$R=(1,1),(2,2),(3,3),(1,3)$. Write the ordered paris to be added to R to make it the smallest equivalence relation.

- Watch Video Solution

17. Let $A=(a, b, c)$ and R be the relation defined on A as follows $R=(a, a)$, (b,c), (a,b) Write minimum number of ordered pairs to be added to R to make R reflexive and transitive.

- Watch Video Solution

18. Show that the number of equivalence relation in the set $\{1,2,3\}$ containing $(1,2)$ and $(2,1)$ is two.

- Watch Video Solution

19. Check whether the relation R defined in the set $(1,2,3,4,5,6)$ as $R=\{(a$, b) : $\mathrm{b}=\mathrm{a}+1)\}$ is reflexive, symmetric or transitive ?

- Watch Video Solution

20. Check whether the relation R in R , defined by $R=\left\{(a, b): a \leq b^{3}\right)$ is reflexive, symmetric or transitive?

- Watch Video Solution

21. Let A be the set of human beings living in a town at a particular time and R be the relation on A defined by $R=(x, y): x$ is exactly 7 cm taller than y). Check whether the relation R is reflexive, symmetric or transitive on A.

- Watch Video Solution

22. Show that the relation R defined by
$(a, b) R(c, d) \Rightarrow a+d=b+c$ in the set N is an equivalence relation.

- Watch Video Solution

23. If R is a relation in $N \times N$, show that the relation R defined by (a, b) R (c, d) if and only if ad = bc is an equivalence relation.

- Watch Video Solution

24. Let N denote the set of all natural numbers and R be the relation on $N x N$ defined by $(a, b) R(c, d) \ll>a d(b+c)=b c(a+d)$. Check whether R is an equivalence relation on $N \times N$.

- Watch Video Solution

25. Let L be the set of all lines in a plane and R be the relation on L defined as $R=(I, m): \mid$ is perpendicular to $m)$. Check whether R is reflexive, symmetric or transitive.

- Watch Video Solution

26. Show that the relation R, defined by the set A of all triangles as : $R=\left\{\left(T_{1}, T_{2}\right)=T_{1}\right.$ is similar to $\left.T_{-} 2\right\}$ is an equivalence relation. Consider three right-angled triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides $6,8,10$.

- Watch Video Solution

27. Let $f: X \rightarrow Y$ be an function. Define a relation R in X given by $: \mathrm{R}=$ $\{(a, b): f(a)=f(b)\}$. Examine, if R is an equivalence relation.

- Watch Video Solution

28. For complex numbers $Z_{1}=x_{1}+I y_{1}$ and $z_{2}=x_{2}+i y_{2}$ we write $z_{1} \cap z_{2} \quad$ if $\quad x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$
Then for all complex number z with $1 \cap z$, show that we have $\frac{1-z}{1+z} \cap 0$

- Watch Video Solution

29. For complex numbers $Z_{1}=x_{1}+I y_{1}$ and $z_{2}=x_{2}+i y_{2}$ we write $z_{1} \cap z_{2} \quad$ if $\quad x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$

Show that the relation 'nn' is reflexive and transitive on the set C of complex numbers.

- Watch Video Solution

30. For complex numbers $Z_{1}=x_{1}+I y_{1}$ and $z_{2}=x_{2}+i y_{2}$ we write $z_{1} \cap z_{2} \quad$ if $\quad x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$

Is \cap symmetric?

- Watch Video Solution

31. Let R be a relation on the set A of ordered pairs of positive integers defined by $R,(x, y) R(u, v)$, if and only if $x v=y u$. Show that R is an equivalence relation.
32. Let m be a fixed non-zero integer. For integer a,b, we say that they are congruent modulo m iff $\mathrm{a}-\mathrm{b}$ is divisible by m . We write this as $\mathrm{a} \equiv \mathrm{b}(\bmod$ $m)$. Let R be the relation on the set Z of integers defined by $a R b$ iff $a \equiv b$ ($\bmod m$). Show that R is an equivalence relation on Z.

- Watch Video Solution

33. If R is a relation on a set A , prove that R is symmetric iff $R^{-1}=\mathrm{R}$.

- Watch Video Solution

34. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation

- Watch Video Solution

35.

$N_{7}=\{1,2,3,4,5,6,7\}$, doesthefollow \in gpartitiongiverise $\rightarrow a n \equiv a \leq$
Why?A_1 $=(1,2,5,6)$, A_2 $^{2}=\{3\}, A_{-} 3=\{4,6\}$

- Watch Video Solution

36. If $\mathrm{A}=(1,2,3,4,5,6,7)$, which of the following is a partition giving rise to an equivalence relation? If yes, write the equivalene relation and if no, give reason.
'B_1= (1,2,5,7), B_2 (3), B_3 = (4,6)

- Watch Video Solution

37.

$N_{7}=\{1,2,3,4,5,6,7\}$, doesthefollow \in gpartitiongiverise $\rightarrow a n \equiv a \leq$
Why?A_1 $=(1,2,5,6)$, A $_{2} 2=\{3\}, A_{_} 3=\{4,6\}$
38. If A and B are finite sets containing respectivley m and n elements, then find the number of relatiosn that can be defined form A to B.

- Watch Video Solution

39. If A and B are finite sets containing respectivley m and n elements, then find the number of relatiosn that can be defined form A to B.

- Watch Video Solution

40. If $A=\{1,2,3\}$ and f, g are relations corresponding to the subset of $A \times A$ indicated against them, which of f, g, is a function? Why? $\mathrm{F}(1,3),(2,3)$, $(3,2), \mathrm{g}=(1,2),(1,3),(3,1)$

- Watch Video Solution

41. If $A=\{1,2,3\}$ and f, g are relations corresponding to the subset of $A \times A$ indicated against them, which of f, g, is a function? Why? $\mathrm{F}(1,3),(2,3)$, $(3,2), \mathrm{g}=(1,2),(1,3),(3,1)$

- Watch Video Solution

42. If $A=\{1,2,3\}$ and f, g are relations corresponding to the subset of $A \times A$ indicated against them, which of f, g, is a function? Why? $\mathrm{F}(1,3),(2,3)$, $(3,2), g=(1,2),(1,3),(3,1)$

- Watch Video Solution

43. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$, be functions defined by $f(x)=x^{2}-x, x \in A$ and $\mathrm{g}(\mathrm{x})=2|\mathrm{x}-(1 / 2)|-1, \mathrm{x}$ in A^{\prime}. Are f and g equal? Justify your answer.

- Watch Video Solution

44. Let $f: R \rightarrow R$ be defined by $f(x)=x+1$ determine whether or not f is onto.

- Watch Video Solution

45. Let f, g be the functios $f=((1,5),(2,6),(3,4)), g=((4,7),(5,8),(6,9))$ ' write the range of f and also that of g. Find gof.

- Watch Video Solution

46. Let $\mathrm{f}=((1,3),(2,1),(3,2))$ and $g=((1,2),(2,3),(3,1))^{\prime}$, then find (gof) (1) and (fog) (2).

- Watch Video Solution

47. If $f: R \rightarrow R$ is defined by $f(x)=\frac{x}{x^{2}+1}$ then $\mathrm{f}(\mathrm{f}(2))$ is
48. If $\mathrm{f}\left(\mathrm{X}=X^{2}-3 x+2\right.$ be a real valued function of the real variable, find fof.

- Watch Video Solution

49. Let $\mathrm{f}: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$ ad $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by
$\mathrm{g}(\mathrm{x})=\frac{x+2}{3}$. Shwo that fog $=I_{R}=g \circ f$

- Watch Video Solution

50. If $\mathrm{f}(\mathrm{x})=x^{2}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-1$ then find formulae for the following functions: gof

- Watch Video Solution

51. If $\mathrm{f}(\mathrm{x})=x^{2}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-1$ then find formulae for the following functions: fog

- Watch Video Solution

52. If $\mathrm{f}(\mathrm{x})=x^{2}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-1$ then find formulae for the following functions:
fof

- Watch Video Solution

53. If $\mathrm{f}(\mathrm{x})=x^{2}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-1$ then find formulae for the following functions:
gog

- Watch Video Solution

54. If $f(x)=\left(\frac{1}{x}\right)$ and $\mathrm{g}(\mathrm{x})=\frac{1-x}{1+x}$ find $D_{g o f}$ and $D_{f o g}$. Also find (gof) (x) and (fog) (x).

- Watch Video Solution

55. If the formula $f: R \rightarrow R$ be given by $f(x)=x^{2} 2$ and $\mathrm{g}: R \rightarrow R$ be given by $\mathrm{g}(\mathrm{x})=\frac{x}{x-1} \cdot X \neq 1$. Find fog and gof. Hence find (fog) (2) and (gof (-3)'

- Watch Video Solution

56. If $\mathrm{f}(\mathrm{X})=\sqrt{x}(x \geq 0)$ and $\mathrm{g}(\mathrm{x})=x^{2}-1$, check whether or not $\mathrm{fog}=\mathrm{gof}$.

- Watch Video Solution

57. Let $A=(1,2)$. Find all the functions from A to A. How many of these are one-one?
58. Let $\mathrm{X}=(-2,-1,0,1,2,3)$ and $\mathrm{Y}=(0,1,2, \ldots, 10)$ and $\mathrm{f}: X \rightarrow Y$ be a function defined by $\mathrm{f}(\mathrm{x})=x^{2}$ for all $\mathrm{x} \in \mathrm{X}$, find $f^{-1}(\mathrm{~A})$ where $\mathrm{A}=(0,1,2,4)$

- Watch Video Solution

59. Let $\mathrm{A}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $\mathrm{B}=(\mathrm{p}, \mathrm{q}, \mathrm{r})$ and a function $\mathrm{f}: A \rightarrow B$ be given by $\mathrm{f}=$ $((a, q), b, r),(c, p))$ Is f invertible ? If so, find f^{-1} and verify that $f^{-1} o f=I_{A}$ and fof ${ }^{-1}=I_{B}$ where I_{A} and I_{B} are identity fucnctions on A and B respectively.

- Watch Video Solution

60. Let $\mathrm{f}: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{X})=10 \mathrm{x}+7$. Show that f is invertible. Find f^{-1}

- Watch Video Solution

61. Draw the graph of the function $f(X)=x^{2}$ and show that it is not invertible. Restrict its domain suitably so that f^{-1} may exist, find f^{-1} and draw its graph.

- Watch Video Solution

62. Let A be a non-empty set and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}, \mathrm{g}: \mathrm{A} \rightarrow \mathrm{A}$ be two functions such that fog $=I_{A}=g o f$, show that f and g are ijections and that g $=f^{-1}$

- Watch Video Solution

63. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be onto functions, show that gof is an onto function.
64. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one, then gof: $A \rightarrow C$ is also one-one.

Watch Video Solution

65. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two invertible functions. Then gof is also invertible with $(g o f)^{-} 1=f^{-} 1 o f g^{-} 1$

- Watch Video Solution

66. Let $f: N r a r R$ be a function defined as : $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$ where S is Range f is invertible. Find the invere of ' f '.

- Watch Video Solution

67. Show that $f: N \rightarrow N$ given by : $f(x)=\{x+1$, if xisoddx -1 , if x is even is both one-one and onto.
68. Show that the table gives a commutative binary composition '*' on the set $\mathrm{A}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$. What is the identity element?

- Watch Video Solution

69. Let a mapping '*' from $Q \times Q$ to Q (set of all rational numbers) be defined by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+2 \mathrm{~b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{Q}$. Prove that * is a binary operation on Q
70. Let a mapping '*' from $Q \times Q$ to Q (set of all rational numbers) be defined $b y a^{*} b=a+2 b$ for $a l l a, b \in Q$. Prove that the given operation is not commutative.

- Watch Video Solution

71. Let a mapping '*' from $Q \times Q$ to Q (set of all rational numbers) be defined $b y a^{*} b=a+2 b$ for $a l l a, b \in Q$. Prove that the given operation is not associative.

- Watch Video Solution

72. Let '*' be a binary operation on the set n of natural numbers defined by the rule $\mathrm{a}^{*} \mathrm{~b}=a^{b}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{N}$. Is ${ }^{\text {"t' }}$ commutative

- Watch Video Solution

73. Let '"' be a binary operation on the set n of natural numbers defined by the rule $\mathrm{a}^{*} \mathrm{~b}=a^{b}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{N}$. Is '*' associative?

Watch Video Solution

74. Number of binary operations on the set $\{a, b\}$ is

- Watch Video Solution

75. Show that the number of binary operations on $\{1,2\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

- Watch Video Solution

76. Let S be the set of all real numbers except 1 and 'o' be an operation on S defined $\mathrm{by}: \mathrm{aob}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{S}$. Prove that S is closed under given operation.
77. Let A be the set of all real numbers except -1 and 'o' be the mapping form $A \times A$ to A defined by a $\mathrm{o} \mathrm{b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$. Prove that the given operation is commutative.

- Watch Video Solution

78. Let A be the set of all real numbers except -1 and 'o' be the mapping form $A \times A$ to A defined by a $\mathrm{o} \mathrm{b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$. Prove that the given operation is associative.

- Watch Video Solution

79. Let A be the set of all real numbers except -1 and 'o' be the mapping form $A \times A$ to A defined by a o $\mathrm{b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{A}$. Prove that 0 (zero) is the identify element.
80. Let S be the set of all real numbers except 1 and ' o ' be an operation on S defined $b y: a o b=a+b-a b$ for $a l l a, b \in S$. Prove that S is closed under given operation.

- Watch Video Solution

81. Let $\mathrm{A}=\mathrm{Q}-(0)$, where Q is the set of rationals. Let *: $A \times A \rightarrow A$ be defined as $a \cdot b=\frac{3 a b}{5}$ for all a,b $\in \mathrm{A}$. Check whetehr * is commutative or associative. Find the identity element for * and inverse of a in` A (if it exists).

- Watch Video Solution

82. Let A $=N \times N, \mathrm{~N}$ being the set of natural numbers. Let *: $A \times A \rightarrow$

A be defined as $(a, b) \cdot(c, d)=(a d+b c, b d)$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A}$.
Show that "'1 is commutative
83. Let $\mathrm{A}=N \times N$, N being the set of natural numbers. Let * $: A \times A \rightarrow$ A be defined as $(a, b) \cdot(c, d)=(a d+b c, b d)$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A}$. Show that '"' is associative.

- Watch Video Solution

84. Let A $=N \times N, \mathrm{~N}$ being the set of natural numbers. Let *: $A \times A \rightarrow$

A be defined as $(a, b) \cdot(c, d)=(a d+b c, b d)$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A}$.
Show that identify element w.r.t. '*' does not exist.

- Watch Video Solution

85. Let $A=Q \times Q$, where Q is the set of all rational numbers and * be a binary operaton on A defined by (a, b) * $(c, d)=(a c, a d+b)$ for all $(a, b),(c, d)$ $\in \mathrm{A}$. Then find the identify element of * in A.
86. Let $A=Q \times Q$, where Q is the set of all natural involved and * be the binary operation on A defined by $(a, b)^{*}(c, d)=(a c, b+a d)$ for $(a, b),(c, d) \in A$. Then find Invertible elements of A, and hence write the inverse of elements (5,3) and $\left(\frac{1}{2}, 4\right)$

- Watch Video Solution

87. Let $A=R \times R$ and ${ }^{*} A \times A \rightarrow A$ be defined as (a,b) * $(\mathrm{c}, \mathrm{d})=(\mathrm{ac}-$ $b d, a d+b c)$ for all $(a, b),(c, d) \in A$. Find the identity element of A w.r.t. '*' and invertible elements of A.

- Watch Video Solution

88. Number of binary operations on the set $\{a, b\}$ is

- Watch Video Solution

1. Let $A=(a, b, c)$ and R be the relation defined on A as follows $R=(a, a)$, $(b, c),(a, b)$ Write minimum number of ordered pairs to be added to R to make R reflexive and transitive.

D Watch Video Solution

2. Let $A=(6,7,8,10), B=(2,4,5) a \in A, b \in B$ and R be the relation form A to B defined by $a R b$ iff a is divisible by b. Write the solution of R and find the inverse relation of R.

- Watch Video Solution

3. For the given relation R on a set S, determine which are equivalence relations: (i) S is the set of all rational numbers $a R b$ iff $a=b$. (ii) S is the set of all real numbers iff : (I) $|a|=|b|$ (II) $a \geq b$.
4. For the given relation R on a set S, determine which are equivalence relations : (i) S is the set of all rational numbers $a \mathrm{R} b$ iff $a=b$. (ii) S is the set of all real numbers iff : (I) $|a|=|b|$ (II) $a \geq b$.

- Watch Video Solution

5. For the given relation R on a set S, determine which are equivalence relations: (i) S is the set of all rational numbers $a R b$ iff $a=b$. (ii) S is the set of all real numbers iff : (I) $|a|=|b|$ (II) $a \geq b$.

- Watch Video Solution

6. In the following cases, for the given relation R on the set S , determine which are equivalence relations:
S is the set of all people in the world today, $a \mathrm{R} b \Leftrightarrow a$ and b have same father.
7. In the following cases, for the given relation R on the set S , determine which are equivalence relations:

S is the set of all people in the world today, $\mathrm{a} R \mathrm{~b}$ iff a lives within 100 kilometres fb .

- Watch Video Solution

8. For the given relation R on a set S, determine which are equivalence relations : (i) S is the set of all rational numbers $a R b$ iff $a=b$. (ii) S is the set of all real numbers iff : (I) $|a|=|b|$ (II) $a \geq b$.

- Watch Video Solution

9. Check whether the relation R defined in the set $(1,2,3,4,5,6)$ as $R=\{(a$,
b) : $\mathrm{b}=\mathrm{a}+1)\}$ is reflexive, symmetric or transitive ?
10. Show that $R=\{(a, b): a \geq b\}$ is reflexive and transitive but not symmetric.

- Watch Video Solution

11. Let A be the set of human beings living in a town at a particular time and R be the relation on A defined by $R=(x, y): x$ is exactly 7 cm taller than y). Check whether the relation R is reflexive, symmetric or transitive on A.

- Watch Video Solution

12. Given the relation $R=\{(1,2),(2,3)\}$ on the set of natural numbers, add a minimum of ordered pairs so that the enlarged relation is symmetric, transitive and reflexive.

- Watch Video Solution

13. Show that each of the relation R in the set $\mathrm{A}=\{x \in z: 0 \leq x \leq 12\}$, given by
$R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalec relation. Find the set of all elements related to 1 in each case.

- Watch Video Solution

14. Show that each of the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by: $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of all elements related to 1 in each case.

- Watch Video Solution

15. Is inclusion of a subset in another, in the context of a universal set, an equivalence relation in the class of subsets of the sets ? Justify your answer.

- Watch Video Solution

16. If R is a relation in $N \times N$, show that the relation R defined by $(\mathrm{a}, \mathrm{b}) \mathrm{R}$ (c, d) if and only if $a d=b c$ is an equivalence relation.

- Watch Video Solution

17. If R is the relation in $N \times N$ defined by (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$ if and only if (a + d) $=(b+c)$, show that R is an equivalence relation.

- Watch Video Solution

18. Show that the relation R defined by
$(a, b) R(c, d) \Rightarrow a+d=b+c$ in the set N is an equivalence relation.

- Watch Video Solution

19. Each of the following defines a relation R in N .
$x R y$ if $x y$ is square of an integer, $x y \in N$. Determine in each ase, whetehr R is reflexive, symetric or transitive.

- Watch Video Solution

20. Each of the following defines a relation R in N .
$x R y$ if $x y$ is square of an integer, $x y \in N$. Determine in each ase, whetehr R is reflexive, symetric or transitive.

- Watch Video Solution

21. Each of the following defines a relation R in N.
$x R y$ if $x y$ is square of an integer, $x y \in N$. Determine in each ase, whetehr R is reflexive, symetric or transitive.

- Watch Video Solution

22. Each of the following defines a relation R in N .
$x R y$ if $x y$ is square of an integer, $x y \in N$. Determine in each ase, whetehr R is reflexive, symetric or transitive.
23. Let R_{1} and R_{2} be two relations defined on a non-empty set A. Which of the following statements is false? Give reason in support of your answer.

If R_{1} and R_{2} are reflexive, then so is $R_{!} N n R_{2}$.

Watch Video Solution

24. Let R and S be two non-void relations on a set A. Which of the following statement is false?

- Watch Video Solution

25. Let R and S be two non-void relations on a set A. Which of the following statement is false?
26. Let R and S be two non-void relations on a set A. Which of the following statement is false?

- Watch Video Solution

27. Let R_{1} and R_{2} be two relations defined on a non-empty set A. Which of the following statements is false? Give reason in support of your answer.

If R_{1} and R_{2} are reflexive, then so is $R_{!} N n R_{2}$.

- Watch Video Solution

28. Let $X=\{1,2,3,4,5,6,7,8,9\}$. Let R_{1} be a relation in X given by $R_{1}=\{(x, y): x-y \quad$ is divisible by 3$\}$ and R2
bea \neg herrelationonXgivenbyR_2 $=\{(\mathrm{x}, \mathrm{y})$: $\{\mathrm{x}, \mathrm{y}\}$ sub $\{1,4,7\}$ or $\{\mathrm{x}, \mathrm{y}\}$ sub $\{2,5,8\}$ or $\left\{(x, y\}\right.$ sub $\{3,6,9\}$. Showt $\mathrm{R}_{-} 1=$ R_2.
29. Let $A=\{1,2,3\}$. Then show that the nmber of relations $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is four.

Watch Video Solution

30. Which of the following relations are functions form $A=(1,3,5,7,9)$ to $B=$ (1,2,3,4,5).
$f=((3,1),(5,1),(7,1),(9,1))$

(Watch Video Solution

31. Which of the following are the functions of RNA?

- Watch Video Solution

32. Which of the following functions are odd or even or neither :
$f(x)=|x|+1$
33. Which of the following are the functions of RNA?

- Watch Video Solution

34. Which of the following functions are not derivable at $x=0$?

- Watch Video Solution

35. Correct the following statement, "Every function is a relation is a relation and every relation is a function"

- Watch Video Solution

36. Give an example of a function which is one-one but not onto
37. Give an example of a function which is one-one but not onto

- Watch Video Solution

38. Give an example of a function which is one-one but not onto

- Watch Video Solution

39. If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\}$, find $X-Y$ and $Y-X$.

- Watch Video Solution

40. Let $\mathrm{X}=(\mathrm{a}, \mathrm{b}, \mathrm{c})$ and $\mathrm{Y}=(0,1,2,3,4,5)$, define a one-one function from X to Y . does there exist an onto function form X to Y ? If not, give reason.

- Watch Video Solution

41. Prove that the function $f: N \rightarrow N$ defined by $f(x)=x^{2}+x+1$ is one -one but not onto.

- Watch Video Solution

42. Let $\mathrm{f}, \mathrm{X} \rightarrow \mathrm{Y}$ be defined by $\mathrm{f}(\mathrm{x})=x^{2}+1$, for all $\mathrm{X} \in \mathrm{X}$ where $\mathrm{X}=$ $(0,1,2,-2)$ and $Y=(0,1,2,3,4,5)$. Find the range of f. Is f one-one?

Watch Video Solution

43. Which of the following functions are one-one?
$f(x)=3 x+2$

- Watch Video Solution

44. Which of the following functions are one-one?
$f(x)=2 x^{2}+3$
45. Which of the following functions are one-one?
$f(x)=\frac{1}{3 x-4}$

- Watch Video Solution

46. Whether the following functions is one-one?
$f(x)=\frac{1}{x^{2}}+1$

- Watch Video Solution

47. Whether the following functions are one-one?
$f(x)=x+\frac{1}{x}$

- Watch Video Solution

48. Let $A=(-1,1)$. In each of the following cases, check whether $f, A \rightarrow A$ is one-one or onto or both.
$f(x)=\frac{x}{2}$

- Watch Video Solution

49. Whether the following functions are one-one?
$f(x)=|x|$

- Watch Video Solution

50. Whether the following functions are one-one?
$f(x)=x|x|$

- Watch Video Solution

51. Whether the following functions are one-one?
$f(x)=x^{2}$

Watch Video Solution

52. Let $\mathrm{f}: X \rightarrow Y$ be defie by $\mathrm{f}(\mathrm{x})=x^{2}$ for all $\mathrm{x} \in \mathrm{X}$ where
$X=(-2,-1,0,1,2,3)$ and $Y=(0,1,4,5,9,10)$. If $A=(-1,0,2,3)$ and $B=(0,1,2,3)$. Verify that $f(A \cup B)=f(A) \cup f(B)$

- Watch Video Solution

53. Let $\mathrm{f}: X \rightarrow Y$ be defie by $\mathrm{f}\left(\mathrm{x}=x^{2}\right.$ for all $\mathrm{x} \in \mathrm{X}$ where $X=(-2,-1,0,1,2,3)$ and $Y=(0,1,4,5,9,10)$. If $A=(-1,0,2,3)$ and $B=(0,1,2,3)$. Verify that $f(A \cap B) \neq f(A) \cap f(B)$

- Watch Video Solution

54. Let $\mathrm{f}: X \rightarrow Y$ be defie by $\mathrm{f}\left(\mathrm{x}=x^{2}\right.$ for all $\mathrm{x} \in \mathrm{X}$ where $X=(-2,-1,0,1,2,3)$ and $Y=(0,1,4,5,9,10)$. If $A=(-1,0,2,3)$ and $B=(0,1,2,3)$. Verify that $f(A-B) \neq f(A)-f(B)$

- Watch Video Solution

55. Let $\mathrm{f}: N \rightarrow N$ be defined by $\mathrm{f}(\mathrm{X})=\mathrm{x}+3$ for all $\mathrm{x} \in \mathrm{N}$, obtain $f^{-1}(1,2,3$,

- Watch Video Solution

56. If $f=(5,2),(6,3), g=(2,5),(3,6)$, write fog.

- Watch Video Solution

57. Let $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=x^{2}-3 x+4$ for all $\mathrm{x} \in \mathrm{R}$, then $f^{-1}(2)$ is equal to
58. If $f(x)=\left(a-x^{n}\right)^{1 / n}$ prove that $f(f(x))=x$

- Watch Video Solution

59. If $\mathrm{f}(\mathrm{X})=\frac{a x-b}{b x-a}$, show that $\mathrm{f}(\mathrm{f}(\mathrm{x}))=x$

- Watch Video Solution

60. If $\mathrm{f}(\mathrm{x})=\frac{1}{1-x}$, show that $\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$

- Watch Video Solution

61. If $f: R \rightarrow R$ be given by: $f(x)=\left(3-x^{3}\right)^{1} / 3$, then $\mathrm{f}(\mathrm{f}(\mathrm{x}))$ is:

- Watch Video Solution

62. Let $A=(1,2,3,5)$, let $f=f=(1,5), \quad(2,1), \quad(3,3), \quad(5,2)$ and $g=(1,3),(2,1),(3,2),(5,5)$ find gof

- Watch Video Solution

63. Let $A=(1,2,3,5)$, let $f=f=(1,5), \quad(2,1), \quad(3,3), \quad(5,2)$ and $g=(1,3),(2,1),(3,2),(5,5)$ find fog

- Watch Video Solution

64. Let $\mathrm{A}=(1,2,3,5)$, let $\mathrm{f}=\mathrm{f}=(1,5),(2,1),(3,3),(5,2))$ and $g=\left(\begin{array}{ll}1 & 3 \\ 2 & 1 \\ 3 & 2 \\ 5 & 5\end{array}\right)$ find fof
65. Let $\mathrm{A}=(1,2,3,5)$, let $\mathrm{f}=\mathrm{f}=(1,5),(2,1),(3,3),(5,2))$ and $g=\left(\begin{array}{ll}1 & 3 \\ 2 & 1 \\ 3 & 2 \\ 5 & 5\end{array}\right)$ find gog

- Watch Video Solution

66. Let $\mathrm{f}(\mathrm{X})=3-4 \mathrm{x}$ for all $\mathrm{x} \in$ R. Find $\mathrm{g}: R \rightarrow R$ such that gof $=1_{R}=\mathrm{fog}$

- Watch Video Solution

67. Let $\mathrm{f}: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=7 \mathrm{x}-3$. Find the function $\mathrm{g}: R \rightarrow R$ such that fog $=$ gof $=1_{R}$,

- Watch Video Solution

68. if $f(x)=|x+1|$ and $g(X)=3 x^{2}-2$, then find formulae for the functions fog
69. if $f(x)=|x+1|$ and $g(X)=3 x^{2}-2$, then find formulae for the functions gof

- Watch Video Solution

70. if $f(x)=|x+1|$ and $g(X)=3 x^{2}-2$, then find formulae for the functions fof

- Watch Video Solution

71. if $f(x)=|x+1|$ and $g(X)=3 x^{2}-2$, then find formulae for the functions gog

- Watch Video Solution

72. If $f(x)=\sin x$ and $g(X)=3 x$. Describe gof and fog. Are these functions equal ?

Watch Video Solution

73. If $f(x)=\sin x$ and $g(X)=3 x$. Describe fog. Are these functions equal ?

- Watch Video Solution

74. If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{X})=x^{2}+1$, describe the functions fog Also show that $f o f \neq f f$

- Watch Video Solution

75. If $f(x)=2 x+3$ and $g(X)=x^{2}+1$, describe the functions gof Also show that $g \circ f \neq g f$
76. If $f(x)=2 x+3$ and $g(X)=x^{2}+1$, describe the functions fof Also show that $f o f \neq f f$

- Watch Video Solution

77. If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{X})=x^{2}+1$, describe the functions ff. Also show that $f o f \neq f f$

- Watch Video Solution

78. Consider $f: N \rightarrow N, g: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x$
, $\quad g(y)=3 y+4$ and $h(z)=\sin z, \forall x, y$ and z Show that $h o(g \circ f)=(h o g) o f$.

- Watch Video Solution

79.

$f:(1,2,3) \rightarrow(a, b, c)$ and $g:(a,, c) \rightarrow(a p p \leq, b a l l, c a t) \operatorname{def} \in \operatorname{edasf}(1)$ (gof)

- Watch Video Solution

80. Explain why the following functions $\mathrm{f}: X \rightarrow Y$ do not have inverses:
$\mathrm{X}=\mathrm{Q}-(0), \mathrm{Y}=\mathrm{Q}$ and $\mathrm{f}(\mathrm{x})=\frac{1}{X}$ for all $\mathrm{x} \in \mathrm{X}$.

- Watch Video Solution

81. Explain why the following functions $\mathrm{f}: X \rightarrow Y$ do not have inverses:
$X=(1,2,3,4,5), Y=(0,1)$ and $f(X)=0$ for $X=1,2,3,4$ and $f(5)=1$

- Watch Video Solution

82. Explain why the following functions $\mathrm{f}: X \rightarrow Y$ do not have inverses:
$\mathrm{X}=\mathrm{R}=\mathrm{Y}$ and $\mathrm{f}(\mathrm{X})=x^{2}$ for all $\mathrm{x} \in \mathrm{R}$.

Watch Video Solution

83. Explain why the following functions $\mathrm{f}: X \rightarrow Y$ do not have inverses:
$\mathrm{X}=\mathrm{R}=\mathrm{Y}$ and $\mathrm{f}(\mathrm{X})=x^{2}$ for all $\mathrm{x} \in \mathrm{R}$.

- Watch Video Solution

84. If $A=(a, b, c, d)$ and f corresponds to the subset $(a, b),(b, d),(c, a),(d, c)$ of the cartesian product $A \times A$. Show that f is a bijection and find f^{-1}

- Watch Video Solution

85. Let $\mathrm{f}: Z \rightarrow Z$ be defined as $\mathrm{f}(\mathrm{n})=3 \mathrm{n}$ for all $n \in Z$. Let $\mathrm{g}: Z \rightarrow Z$ be defined as
$\mathrm{g}(\mathrm{n})=\frac{n}{3}$ if n is a multiple of 3.
$\mathrm{g}(\mathrm{n})=0$ if n is not a multiple of 3. Show that gof $=I_{z}$ and $f o g \neq I_{Z}$

- Watch Video Solution

86. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x} \forall x \in R$, then f is

- Watch Video Solution

87. Let $f: N \rightarrow N$ be defined by, $f(n)=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if nisodd } \\ \frac{n}{2} & \text { if niseven }\end{array}\right.$ for all $n \in N$. State whether the function f is bijective. Justify your answer.

- Watch Video Solution

88. Lert $f: X \rightarrow Y$ be such that $\mathrm{fof}=\mathrm{f}$. Show that f is onto if and only if f is one-one.
89. Let $f: X \rightarrow Y$ be an invertible function. Show that f has unique inverse.

Watch Video Solution

90. Let A be any non-empty set and f be a bijection on A , prove that $f^{-1} o f=I_{A}=f o f^{-1}$ where I_{A} is the identity map on A.

- Watch Video Solution

91. Let A be any non-empty set and f be a bijection on A, prove that $f^{-1} o f=I_{A}=f o f^{-1}$ where I_{A} is the identity map on A.

- Watch Video Solution

92. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be onto functions, show that gof is an onto function.
93. Consider f : $R \rightarrow[-5, \infty]$ given by $f(x)=9 x^{2}+6 x-5$. Show that
f is invertible with $f^{-1}(y)=\left[\frac{\sqrt{y+6}-1}{3}\right]$

- Watch Video Solution

94. Consider $f: R_{+} \rightarrow(-9, \infty)$ given by $f(x)=5 x^{2}+6 x-9$. Prove that f is invertible with $f^{-1}(y)=\frac{\sqrt{54+5 y}-3}{5}$

- Watch Video Solution

95. Let $f: R \rightarrow R$ be the signum function defined as
$f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$ and $g: R \rightarrow R$ be the greatest integer function given by $g(x)=[x]$ where $[\mathrm{x}]$ is greatest integer less than or equal to x . Then, does fog and gof coincide in (0,1] ?
96. Let $f: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{X})=3 \mathrm{x}$. Then

- Watch Video Solution

97. Consider the function $f(x)=\frac{1-x}{1+x}$. Is f one-one? If yes, find f^{-1}

- Watch Video Solution

98. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.

- Watch Video Solution

99. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.

- Watch Video Solution

100. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $f(f(x))$.

- Watch Video Solution

101. Show that $\cdot: R \times R \rightarrow R$, givenby $(a, b) \rightarrow a+4 b^{2}$ is a binary operation.

- Watch Video Solution

102. Let a mapping '*' from $R \times R$ to R be defined by a * $\mathrm{b}=2 \mathrm{a}+2 \mathrm{~b}$ for all $a, b \in Z$. Prove that the givne operation is commutative but not associative.

- Watch Video Solution

103. Let a binary operation '*' be defined on Z by $a \operatorname{b}=2 a+2 b$ for $a l l a, b$ \in Z. Prove that the given operawtion is commutative but not associative.
104. Let S be the set of all real numbers except 1 and 'o' be an operation on S defined by : $a o b=a+b-a b$ for $a l l a, b \in S$. Prove that the given operation is: (I) commutative (II) associative.

- Watch Video Solution

105. Let S be the set of all real numbers except 1 and 'o' be an operation on S defined $\mathrm{by}: \mathrm{aob}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{S}$. Prove that S is closed under given operation.

- Watch Video Solution

106. Let S be the set of all real numbers except 1 and 'o' be an operation on S defined $b y: a o b=a+b-a b$ for $a l l a, b \in S$. Prove that the given operation is: (I) commutative (II) associative.
107. Let S be the set of all real numbers except 1 and 'o' be an operation on S defined $b y: a o b=a+b-a b$ for $a l l a, b \in S$. Prove that S is closed under given operation.

- Watch Video Solution

108. Let S be the set of all real numbers except 1 and 'o' be an operation on S defined by : $\mathrm{aob}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{S}$. Prove that S is closed under given operation.

- Watch Video Solution

109. Consider the operations '*' and \oplus on the set R of all real numbers defined as $a^{*} b=|a-b|$ and $a \oplus b=a$ for $a l l a, b \in R$.

Prove that '*' is commutative but not associative.
110. Consider the operations 't' and \oplus on the set R of all real numbers defined as $a * b=|a-b|$ and $a \oplus b=a$ for $a l l a, b \in R$.

Prove that \oplus is associative but n ot commutative.

- Watch Video Solution

111. Consider the operations '*' and \oplus on the set R of all real numbers defined as $a^{*} b=|a-b|$ and $a \oplus b=a$ for $a l l a, b \in R$.

Prove that \oplus is associative but n ot commutative.

- Watch Video Solution

112. Let $A=Q \times Q, Q$ being the set of rationals. Let '*' be a binary operation on A , defined by $(\mathrm{a}, \mathrm{b})^{*}(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{ad}+\mathrm{b})$. Show that ${ }^{\text {'*' }}$ is not commutative.
113. Let $A=Q \times Q, Q$ being the set of rationals. Let '*' be a binary operation on A, defined by (a,b) * $(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{ad}+\mathrm{b})$. Show that '*' is associative.

- Watch Video Solution

114. Let $A=N \times N$ being the set of natural numbers. Let '*' be a binary operation on A defined by ${ }^{`}(a, b)$ * $(c, d)=(a+c, b+d)$. Show that ${ }^{\prime * 1}$ is commutative.

- Watch Video Solution

115. Let $A=N \times N$ being the set of natural numbers. Let '*' be a binary operation on A defined by ${ }^{`}(a, b)$ * $(c, d)=(a+c, b+d)$. Show that '*' is associative.

- Watch Video Solution

116. Let $A=N \times N$ being the set of natural numbers. Let '*' be a binary operation on A defined by ${ }^{`}(a, b)^{*}(c, d)=(a+c, b+d)$. Show that identity element w.r.t "'t does not exist.

- Watch Video Solution

117. Let $A=R \times R$ and * be a binary operation on A defined by : (a,b) * $(\mathrm{c}, \mathrm{d}) \quad=\quad(\mathrm{A}+\mathrm{c}, \mathrm{b}+\mathrm{d})$
. Showt \uparrow iscomptative and associative. $F \in d$ theidentitye \leq ment f or in’A.

- Watch Video Solution

118. Let $A=Q \times Q$. Let'*' be a binary operation on A defined by: (a, b) * $(c, d)=(a c, a d+b)$. Find the identity element of A

- Watch Video Solution

119. Let $A=Q \times Q$. Let'*' be a binary operation on A defined by: (a, b) * $(c, d)=(a c, a d+b)$. Find the identity element of A

Watch Video Solution

120. If the operation * defined by $a^{*} b=a^{\wedge} 2+b^{\wedge} 2$ or all real numbers a and b, then $\left(2^{*} 3\right) * 4=$

- Watch Video Solution

121. Let * $: Q \times Q \rightarrow Q$ be defined a as $\mathrm{a} * \mathrm{~b}=1+\mathrm{ab}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$. Show that * is commutative but not associative.

- Watch Video Solution

122. Let '*' be a binary operation on Q defined by a * $b=(3 a b) / 5$. Show that * is commutative as well as associative. Also, find its identity element, if it

exists.

- Watch Video Solution

123. Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as
$a \cdot b=\left\{\begin{array}{ll}a+b & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 6\end{array}\right.$ Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with $6-a$ being the inverse of a.

(Watch Video Solution

124. Let N^{m} be the set of al ordered m-tuples of natral numbers. If $\mathrm{x}=$ $\left(x_{1} . x_{2} \ldots \ldots x_{m}\right) \mathrm{y}=\left(y_{1}, y_{2} \ldots . . y_{m}\right)$ where $x_{i}, y_{i}, \in N, I=1,2 \ldots m$ and an operation ' + ' is defined on N^{m} by $x+y=\left(x_{1}+y_{1} \cdot x_{2}+y_{2}, \ldots \ldots x_{m}+y_{m}\right)$ then prove that given operation is commutative as well as associative.

- Watch Video Solution

125. Let A be a non-empty set and '*' be a binary operation on $P(A)$, the power set of A, defind by $\mathrm{X}^{\star} \mathrm{Y}=X \cup Y$ for all $\mathrm{X}, \mathrm{Y} \in \mathrm{P}(\mathrm{A})$ find the identity element w.r.t. '*'

- Watch Video Solution

126. Let A be a non-empty set and '*' be a binary operation on $P(A)$, the power set of A, defind by $X^{\star} \mathrm{Y}=X \cup Y$ for all $\mathrm{X}, \mathrm{Y} \in \mathrm{P}(\mathrm{A})$ Show that $\phi \in$ $P(A)$ is only invertible element w.r.t '*'

- Watch Video Solution

127. Let $A=(1,2,3)$ and $B=(a, b)$. How many relations can be defined form A to B ?

- Watch Video Solution

128. If $\mathrm{R}=(1,3),(2,1)$ is a relation on the set $\mathrm{A}=(1,2,3)$, find R^{-1}
129. Write the domain of the relation $R(a, a),(a, b),(a, c)$ defined on the set (a,b,c)

- Watch Video Solution

130. Write down the range of the relation $R=(1,1),(1,2),(3,2),(4,2)^{\prime}$ defined on the set $(1,2,3,4)$

(Watch Video Solution

131. Given set $A=\{1,2,3\}$, then the relation : $R=\{(1,1),(2,2),(3,3)\}$ is reflexive.
(True/False)

- Watch Video Solution

132. Is the relation $R=(a, a),(a, b),(b, b)$. Transitive on the set $A=(a, b, c)$?

- Watch Video Solution

133. Write down the identity relation on the set $A=(x, y, z)$

- Watch Video Solution

134. If $A=\{a, b, c, d\}$ then a relation $R=\{(a, a),(b, b),(c, c),(d, d)\}$ on A is:

- Watch Video Solution

135. Is the relation $R=(1,1),(2,2),(3,3)$ transitive on the set $A=(1,2,3)$?

- Watch Video Solution

136. Write the domain of the relation $R(a, a),(a, b),(a, c)$ defined on the set (a,b,c)

- Watch Video Solution

137. Let $A=(1,2,3)$. For $x, y \in A$, let $x R y$ iff $x<y$. Write down R as a subset of $A \times A$.

- Watch Video Solution

138. Write the smallest reflexive relation on the set $A=(a, b)$

- Watch Video Solution

139. Let $A=\{0,1,2,3\}$ and define a relation R on A as follows :
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$
Is R reflexive ? symmetric ? transitive ?
140. Let $A=\{0,1,2,3\}$ and define a relation R on A as follows :
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$ Is R reflexive ? symmetric ? transitive ?

- Watch Video Solution

141. Let $A=\{0,1,2,3\}$ and define a relation R on A as follows :
$R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$
Is R reflexive ? symmetric ? transitive ?

- Watch Video Solution

142. For the set $A=(1,2,3)$ define a relation R on the set A as follows:
$R=(1,1),(2,2),(3,3),(1,3)$. Write the ordered paris to be added to R to make it the smallest equivalence relation.
143. Write the number of symmetric relations that can be defined on the set $\{0\}$

- Watch Video Solution

144. State the reason for the relation R, in the set $\{1,2,3\}$ given by $R=\{(1,2)$, $(2,1)$, not to be transitive.

- Watch Video Solution

145. If $R=\{(x, y): x+2 y=8\}$ is a relation on N write the range of R

- Watch Video Solution

146. If $R=(x, y), x y=12$ is a relation on N, write the domain of R.
147. Show that -a is not the inverse of $a \in N$ for the addition operation ' + ' on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation ' \times 'on N, for $a \neq 1$.

- Watch Video Solution

148. Let R be a relation from a set A to a set B, then:

- Watch Video Solution

149. What is the set builder form of the set $\{1,2,3\}$.

- Watch Video Solution

150. The number of relations that can be defined on the set $\{x, y, z\}$ is:
151. A vertical line meets the graph of a function in:

- Watch Video Solution

152. If $f=(1,4),(2,5),(3,5)$ and $g=(4,6),(5,6)$ be two function then find the function fog.

- Watch Video Solution

153. The number of bijective functions from the set A to itsef, if A contains 108 elements is

- Watch Video Solution

154. What is the domain of the function $f(X)=\frac{1}{x-1}$?
155. if ' f ' is the function form R to R defined by the rule $f(x)=x^{2}-3 x+2$ then find $f^{-1}(0)$

- Watch Video Solution

156. Consider the function $f(x)=x^{2}$ defined on R . find the set $f^{-1}(1,-1,-4)$

- Watch Video Solution

157. In order that a relation R defined on a non-empty set A is an equivalence relation. It is sufficient, if R

- Watch Video Solution

158. If $f(x)=\frac{x-2}{x-3}, x \neq 3$, Examine whether $f(x)$ is invertible or not. If $f(x)$ is invertible, then find $f^{-1}(x)$.
159. In order that a relation R defined on a non-empty set A is an equivalence relation. It is sufficient, if R

- Watch Video Solution

160. A vertical line meets the graph of a function in:

- Watch Video Solution

161. What is the range of the signum function?

- Watch Video Solution

162. if $f(x)=|\mathrm{x}+1|$ and $g(\mathrm{X})=3 x^{2}-2$, then find formulae for the functions fog
163. Function $\mathrm{f}: \mathrm{R} \rightarrow R \mathrm{f}(\mathrm{x})=3 \mathrm{x}-5$ is

- Watch Video Solution

164. If $f(x)=x^{2}$, find $\frac{f(1.1)-f(1)}{(1.1-1)}$.

- Watch Video Solution

165. Consider the function $f: R-(-1) \rightarrow R-(-1)$ defined by the rule $f(x)=\frac{1-x}{1+x}$. Find $f^{-1}(\mathrm{x})$

- Watch Video Solution

166. Write down the domain of the function f defined by $f(x)$ $=\sqrt{25-x^{2}}$
167. If $A=(a, b, c, d)$ and f corresponds to the subset (a,b),(b,d),(c,a),(d,c) of the cartesian product $A \times A$. Show that f is a bijection and find f^{-1}

- Watch Video Solution

168. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function described by the formula $\mathrm{g}(\mathrm{x})=\alpha x+\beta$, what values should be assigned to α and β ?

- Watch Video Solution

169. Prove that:
$\left|\begin{array}{ccc}a^{2} & a & b+c \\ b^{2} & b & c+a \\ c^{2} & c & a b\end{array}\right|=-(a+b+c)(a-b)(b-c)(c-a)$

- Watch Video Solution

170. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x} \forall x \in R$, then f is

- Watch Video Solution

171. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $\mathrm{f}(\mathrm{f}(\mathrm{x})$).

- Watch Video Solution

172. If f. $\mathrm{g}: R \rightarrow R$ are defined respectively as $\mathrm{f}(\mathrm{X})=2 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=$ $x^{2}-2$ for all $\mathrm{x} \in \mathrm{R}$, then find gof.

- Watch Video Solution

173. Are the following sets of ordered pairs functions? $(x, y): x$ is a person, y is mother of x
174. Are the following sets of ordered pairs functions? $(a, b), a$ is a person, b is an ancestor of a

- Watch Video Solution

175. If $f(x)=x+7$ and $g(x)=x-7, x \in R$ find (fog) (7).

- Watch Video Solution

176. The range of function $f(x)=\frac{|x-1|}{x-1}$

(Watch Video Solution

177. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.
178. If $f(x)=x^{2}$ and $g(x)=2 x+3$, then the laue of $g o f(-1)$ is

- Watch Video Solution

179. If $f(x)=\frac{x+1}{x+2}$ and $g(x)=x^{2}$, then find fog

- Watch Video Solution

180. Let $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x})=\sqrt{x}$, then $(\mathrm{fog})(\mathrm{x})=\mathrm{x}$ for all $\mathrm{x} \in D_{\text {fog }}$. Write 'D_(fog)~

- Watch Video Solution

181. Let '*' be the binary operation defined on N by the rule a * $b=3 a+4 b$ - 2 . Find 4 * 3 .

- Watch Video Solution

182. Is the binary operation '*' defined on Z (set of integers) by the rule $\mathrm{m}^{*} \mathrm{n}=\mathrm{m}-\mathrm{n}$ for all $\mathrm{m}, \mathrm{n} \in \mathrm{Z}$ commutative?

- Watch Video Solution

183. Let "*' be the operation defined on the set Z of integers by the rule $a * b=a+b+1$ for $a l l a, b \in Z$, write down the identity element for this operation.

- Watch Video Solution

184. Let '*' be the binary operation defined on Q by the rule $\mathrm{a} * \mathrm{~b}=a b^{2}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$. compute (1*2)*3.

- Watch Video Solution

185. Let '"' be the binary operaton on the set $(1,2)$ defined by the following table.

Write down
the identity element, Also write the inverse of 2.

- Watch Video Solution

186. Let '*' be the binary operation defined on the set $R-(0)$ by the rule a * $\mathrm{b}=\frac{a b}{3}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}-(0)$. Find $\left(2^{-1}\right)$

- Watch Video Solution

187. Let '*' be the operation defined on the set $\mathrm{R}-(0)$ by the rule a * $\mathrm{b}=\frac{a b}{5}$ for all $a, b \in R-(0)$. Write the identity element for this operation.
188. Let '*' be the binary operation defined on Q by the rule a * $\mathrm{b}=\frac{a b}{4}$ for all $a, b \in Q$. Is the operaiton * associative?

- Watch Video Solution

189. Write the domain of the relation $R(a, a),(a, b),(a, c)$ defined on the set
(a,b,c)

(Watch Video Solution

190. Find the multiplication of 95×0

- Watch Video Solution

191. The number of relations that can be defined on the set $\{x, y, z\}$ is:
192. Write down the number of commutaive binary operations that can be defined on the set $(1,2)$.

- Watch Video Solution

193. Let '*' be a binary operation on N given by $a^{*} b=\operatorname{LCM}(a, b)$ for $a l l a, b$ $\in N$. Find $5 * 7$.

- Watch Video Solution

194. The binary operation $*: R \times R \rightarrow R$ is defined as $a * b=2 a+b$.

Find $(2 * 3) * 4$

- Watch Video Solution

195. Let * be a binary operation on the set of all non-zero real numbers, given by $a * b=\frac{a b}{5}$ for all $a, b \in R-\{0\}$. Find the value of x , given that $2 *(x * 5)=10$

- Watch Video Solution

196. Let '*' be the binary operaton on the set $(1,2)$ defined by the following table.

Write down
the identity element, Also write the inverse of 2.

Watch Video Solution

197. Write down the IUPAC name of

- Watch Video Solution

198. Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation R in the set $A=\{1,2,3, \ldots, 13,14\}]$ defined as $R=\{(x, y): 3 x-y=0)$.
199. Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation R in the set N of natural numbers defined as: $R=(x, y), y=x+5$ and $\mathrm{x}<4$)

Watch Video Solution

200. Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation R in the set $A=(1,2,3,4,5,6)$ as $R=(x, y)$, y is divisible by x.

- Watch Video Solution

201. Determine whether each of the following relations are reflexive, symetric and transitive

Relation R in the set Z of all integers defined as $R=(x, y): x-y$ is an integer.
202. Determine whether the following relations are reflexive, symmetric and transitive: Relation R in the set A of human beings in a town at a particular time given by, $R=\{(x, y): x$ and y work at the same place $\}$

- Watch Video Solution

203. Determine whether the following relation is reflexive, symmetric and transitive:

Relation R in the set A of human beings in a town at a particular time given by
$R=(x, y): x$ and y live in the same locality.

- Watch Video Solution

204. Determine whether the following relations are reflexive, symmetric and transitive:Relation R in the set A of human beings in a town at a particular time given by, $R=\{(x, y): x$ is exactly 7 cm taller than y$\}$
205. Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation R in the set A of human beings in a town at a particular time given by :
$R=(x, y): x$ is wife of y

- Watch Video Solution

206. Show that the relation R in the set R given $b y,{ }^{\wedge} R=\left\{(a, b)\right.$: $\left.a \leq b^{\wedge} 2\right\}$ neither reflexive nor symmetric nor transitive.

- Watch Video Solution

207. Check whether the relation R defined in the set $(1,2,3,4,5,6)$ as $R=$ $\{(a, b): b=a+1)\}$ is reflexive, symmetric or transitive ?
208. The relation R in R defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

- Watch Video Solution

209. Check whether the relation R in R , defined by $R=\left\{(a, b): a \leq b^{3}\right)$ is reflexive, symmetric or transitive ?

- Watch Video Solution

210. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

- Watch Video Solution

211. Show that the relation R in the set A of all the books in a library of a college, given by $R=\{(x, y)$: x andy have same number of pages $\}$ is an equivalence, relation.

- Watch Video Solution

212. Show that each of the relation R in the set $\mathrm{A}=\{x \in z: 0 \leq x \leq 12\}$, given by
$R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalec relation. Find the set of all elements related to 1 in each case.

- Watch Video Solution

213. Show that each of the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$, given by: $R=\{(a, b): a=b\}$, is an equivalence relation. Find the set of all elements related to 1 in each case.
214. Give an example of a relation. Which is: Symmetric but neither reflexive nor transitive.

Watch Video Solution

215. Give an example of relation which is

Transitive but niether reflexive nor symmetric.

- Watch Video Solution

216. Give an example of a relation which is reflextive and symmetric but not transitive.

- Watch Video Solution

217. Give an example of relation which is

Reflexive and transitive but not symmetric
218. Give an example of a relation which is symmetric and transitive but not reflexive.

- Watch Video Solution

219. Show that the relation R in the set A of points in a plane given by $R=$ $\{(P, Q)$: distance of the point P from the origin is same as the distance of the point Q from the origin\}, is an equivalence relation. Further, show that the set of all points related to a point $P \neq(0,0)$ is the circle passing through P with origin as centre.

- Watch Video Solution

220. Show that the relation R, defined by the set A of all triangles as : $R=\left\{\left(T_{1}, T_{2}\right)=T_{1}\right.$ is similar to $\left.T_{-} 2\right\}$ is an equivalence relation. Consider
three right-angled triangles T_1 with sides $3,4,5, T_{2} 2$ with sides 5, 12, 13 and T_3 with sides $6,8,10$.

(Watch Video Solution

221. Show that the relation R defined in the set A of all polygons as $R=\{(P 1, P 2): P 1$ and $P 2$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?

(Watch Video Solution

222. Let L be the set of all lines in $X Y$ plane and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to $\left.\left.L_{2}\right)\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$.

- Watch Video Solution

223. Let R be the relation in the set $\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1$, 1), (4,4), (1,3), (3, 3), (3, 2)\}. Choose the correct answer.
A. R is reflexive and symmetric but not transitive
B. R is reflexive and transitive but not symmetric
C. R is symmetric and transitive but not reflexive
D. R is an equivalence relation.

Answer:

- Watch Video Solution

224. Let R be the relation in the set N given by $R=\{(a, b): a=b-2, b>6\}$. Choose the correct answer:
A. $(2,4) \in R$
B. $(3.8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

Answer:

- Watch Video Solution

225. Show that the function $f: R . \rightarrow R$. defined by $f(x)=\frac{1}{x}$ is oneone and onto, where R. is the set of all non-zero real numbers. Is the result true, if the domain R. is replaced by N with co-domain being same as R ?

- Watch Video Solution

226. Check the injectivity and surjectivity of the following function:
$f: N \rightarrow N$ given by $f(x)=x^{2}$

- Watch Video Solution

227. Check the injectivity and surjectivity of the following function: $f: Z \rightarrow Z$ given by $f(x)=x^{2}$

Watch Video Solution

228. Check the injectivity and surjectivity of the following function:
$f: R \rightarrow R$ given by $f(x)=x^{2}$

- Watch Video Solution

229. Check the injectivity and surjectivity of the following function:
$f: N \rightarrow N$ given by $f(x)=x^{3}$

- Watch Video Solution

230. Check the injectivity and surjectivity of the following function:
$f: Z \rightarrow Z$ given by $f(x)=x^{3}$
231. Check the injectivity and surjectivity of the following function: $f: R \rightarrow R$ given by $f(x)=x^{3}$

- Watch Video Solution

232. Prove that greatest integer function $f: R \rightarrow R$, given by $f(x)=[x]$, is neither one-one nor onto where [x] denotes the greatest integer less than or equal to x .

- Watch Video Solution

233. Prove that Modulus Function $f: R \rightarrow R$ given by: $f(x)=|x|$ is neither one-one nor onto, where $|x|$ is x , if x is positive and $|x|$ is -x , if x is negative.
234. Show that the signum function $f: R \rightarrow R$ given by:
$f(x)=\left\{\begin{array}{lll}1 & \text { if } & x>0 \\ 0 & \text { if } & x=0 \\ -1 & \text { if } & x<0\end{array}\right.$ is neither one-one nor onto.

- Watch Video Solution

235. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one-one.

- Watch Video Solution

236. In the following case, state whether the function is one-one, onto or bijective. Justify your answer: $f: R \rightarrow R$ defined by $f(x)=3-4 x$

- Watch Video Solution

237. In the following case, state whether the function is one-one, onto or bijective. Justify your answer: $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$

(D) Watch Video Solution

238. Let A and B be sets, show that $f: A \times B \rightarrow B \times A$ such that $\mathrm{f}(\mathrm{a}, \mathrm{b})=$ (b,a) is a bijective function.

- Watch Video Solution

239. Let $f: N \rightarrow N$ be defined by:
$f(n)=\left\{\begin{array}{ll}\frac{n+1}{2} & \text { if nisodd } \\ \frac{n}{2} & \text { if niseven }\end{array}\right.$ then f is

- Watch Video Solution

240. Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.
241. Let $f: R \rightarrow R$ be defined as $f(x)=x^{4}$. Choose the correct answer.
A. f is one-one onto
B. f is many-oe onto
C. f is one-one but not onto
D. f is neither one-one nor onto.

Answer:

- Watch Video Solution

242. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$ Find the pre-image of 17
A. f is one-one onto
B. f is many-one onto
C. f is one-one but not onto
D. f is neither one-one nor onto.

D Watch Video Solution

243. If $f:(1,3,4\} \rightarrow\{1,2,5\}$ and $g:(1,2,5)\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g:\{(1,3),(2,3),(5,1)\}$, write down gof.

- Watch Video Solution

244. Let f, g and h be function from R to R. Show that $(f+g) \circ h=f o h+g o h$

- Watch Video Solution

245. Find gof and fog, if $f(x)=|x|$ and $g(x)=15 x-21$

- Watch Video Solution

246. Find gof and fog, if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

- Watch Video Solution

247. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that (fof) $(\mathrm{x})=\mathrm{x}$ for all $\neq \frac{2}{3}$. What is inverse of ' f ' ?

- Watch Video Solution

248. State with reason whether following functions have inverse: $f:\{1,2,3,4\} \rightarrow\{10\}$ with $f=\{(1,10),(2,10),(3,10),(4,10)\}$

- Watch Video Solution

249. State with reason whether following functions have inverse: $g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g=\{(5,4),(6,3),(7,4),(8,2)\}$
250. State with reason whether following functions have inverse: $h:\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with $f=\{(2,7),(3,9),(4,11),(5,13)\}$

- Watch Video Solution

251. Show that $\mathrm{f}:[-1,1]$, given by $f(x)=\frac{x}{x+2}$ is one-one. Find the inverse of $[-1,1] \rightarrow R_{f}$

- Watch Video Solution

252. Consider $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=4 x+3$. Show that f is invertible.

Find the inverse of f.

- Watch Video Solution

253. Consider $r \rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$. Show that f is invertible with the increase f^{-1} off given by $f^{-1}(y)=\sqrt{y-4}$, where R is the set of all non-negative real numbers.

- Watch Video Solution

254. Consider $f: R \rightarrow[-5, \infty]$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left[\frac{\sqrt{y+6}-1}{3}\right]$

- Watch Video Solution

255. Let $f: X \rightarrow Y$ be an invertible function. Show that f has unique inverse.

- Watch Video Solution

$f:\{1,2,3\} \rightarrow\{a, b, c\}$, givenby $f(1)=a, f(2)=b$ and $f(3)=c$. Find $f^{-} 1$ and show that $\left(f^{-} 1\right)^{-} 1=f$

- Watch Video Solution

257. Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of $f^{-} 1$ is f , i.e. $\left(f^{-} 1\right)^{-} 1=f$

- Watch Video Solution

258. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{1 / 3}$, then (fof) (x) is
A. $x^{\frac{1}{3}}$
B. x^{3}
C. x
D. $3-x^{3}$

- Watch Video Solution

259. Let $f: R-\left\{-\frac{4}{3}\right\} \rightarrow R \quad$ be \quad a function defined as $f(x)=4 \frac{x}{3 x+4}$. The inverse of f is the map g : Range $f \rightarrow R=\left\{-\frac{4}{3}\right\}$ given by
A. $g(y)=\frac{3 y}{3-4 y}$
B. $g(y)=\frac{4 y}{4-3 y}$
C. $g(y)=\frac{4 y}{3-4 y}$
D. $g(y)=\frac{3 y}{4-3 y}$

Answer:

- Watch Video Solution

260. Determine whether or not each of the defination of '*' given below gives a binary operation. In the event that * is not a binary operation, give justification for this :

On Z^{+}, deifne '*' by a * $\mathrm{b}=|\mathrm{a}-\mathrm{b}|$.

- Watch Video Solution

261. Determine whether or not each of the defination of '*' given below gives a binary operation. In the event that * is not a binary operation, give justification for this :
$O n Z^{+}$, define'*' by a * $\mathrm{b}=\mathrm{ab}$

- Watch Video Solution

262. Determine whether or not each of the defination of "t' given below gives a binary operation. In the event that * is not a binary operation, give justification for this:

On R, define '*' by $\mathrm{a} * \mathrm{~b}=a b^{2}$

- Watch Video Solution

263. Determine whether or not each of the defination of '*' given below gives a binary operation. In the event that * is not a binary operation, give justification for this:

On Z^{+}, deifne '*' by a * b = |a-b|.

Watch Video Solution

264. Determine whether or not each of the definition of * given below gives a binary operation. In the event that * is not a binary operation, given justification for this. On Z^{+}, define * by a * $b=a$

D Watch Video Solution

265. For each binary operation '*' defined below, determine whether '*' is commutative and whether '*' is associative.

On Z, define * by a * b = a -b.

(D) Watch Video Solution

266. For each binary operation '*' defined below, determine whether '*' is commutative and whether '"' is associative.

On Q, define * by a * $b=a b+1$

- Watch Video Solution

267. For each binary operation '*' defined below, determine whether '*' is commutative and whether '"' is associative.

On Q , define * by a * $\mathrm{b}=\frac{a b}{2}$

- Watch Video Solution

268. For each binary operation '*' defined below, determine whether '*1 is commutative and whether '*' is associative.
$O n Z^{+}$, define * by a * $\mathrm{b}=2^{a b}$
269. For each binary operation "*' defined below, determine whether '*1 is commutative and whether '*' is associative. On Z^{+}, define * by a * $\mathrm{b}=a^{b}$

- Watch Video Solution

270. For each binary operation '*' defined below, determine whether '*1 is commutative and whether '"' is associative.

On $\mathrm{R}-(-1)$, define * by a * $\mathrm{b}=\frac{a}{b+1}$

- Watch Video Solution

271. Consider the binary operation \wedge on the set $\{1,2,3,4,5\}$ defined by a $\wedge b=\min \{a, b\}$, Write the operation table of the operation \wedge
272. Consider a binary operation * on the set ($1,2,3,4,5$) given by the adjoining operation table.

\cdot	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

Compute
(2*3)*4 and 2* (3*4)

- Watch Video Solution

273. Consider a binary operation * on the set ($1,2,3,4,5$) given by the adjoining operation table.

commutaive ?

(Watch Video Solution

274. Consider a binary operation * on the set $(1,2,3,4,5)$ given by the adjoining operation table.

Compute
$(2 * 3)^{*}(4 * 5)$.

- Watch Video Solution

275. Let * be the binary operation on the set $\{1,2,3,4,5\}$, defined by a *' $b=$ H.C.F of a and b. Is the operation *' same as the operation * defined above? Justify your answer.

- Watch Video Solution

276. Let * be the binary operation on N given by $a * b=I . c . m$. of a and b.

Find 5 * 7, 20 * 16

- Watch Video Solution

277. Let * be the binary operation on N given by a $b=$ L.C.M. of a and b.

Find. Is * commutative?

- Watch Video Solution

278. Let * be the binary operation on N given by $\cdot a \cdot b=L . C . M$. ofa and b. Find : Is * associative?

- Watch Video Solution

279. Let * be the binary operation on N given by $\cdot a \cdot b=L . C . M . o f a$ and b. Find : Find the identity of $*$ in N
280. Let * be the binary operation on N given by
$\cdot a \cdot b=L . C . M$. of a and b. Find : Which elements of N are invertible for the operation *?

- Watch Video Solution

281. Is '*' defined on the set $\{1,2,3,4,5\}$ by $a * b=$ L.C.M. of a and b a binary operation ? Justif your answer.

- Watch Video Solution

282. Let be the binary operation on N defined by $a^{*} b=H$.C.F. of a and b : Is '*' commutative? Is * associative ? Does there exist identity for this binary operation on N ?
283. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b=a-b$ find is it commutative?

- Watch Video Solution

284. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=(a-b)^{2}$ find is it associative?

- Watch Video Solution

285. Let * be a binary operation on the set Q of rational numbers as follows : ${ }^{\mathrm{a} *} \mathrm{~b}=(\mathrm{ab}) / 4$ find is it commutative.

- Watch Video Solution

286. Let * be a binary operation on the set Q of rational numbers as follows: $a \cdot b=(a-b)^{2}$ find is it associative?
287. Let * be a binary operation on the set Q of rational numbers as follows : ${ }^{\mathrm{a} *} \mathrm{~b}=(\mathrm{ab}) / 4$ find is it commutative.

- Watch Video Solution

288. Let $*$ be a binary operation on the set Q of rational numbers as follows: $a \cdot b=(a b)^{2}$ find is it associative?

- Watch Video Solution

289. Show that the number of binary operations on $\{1,2\}$ having 1 as identity and having 2 as the inverse of 2 is exactly one.

- Watch Video Solution

290. let $A=N \times N$ and * be the binary operation on A defined by : (a,b) * $(c, d)=(a+c, b+d)$. Show that * is commutative and associative. Find the identify element for * on A , if any.

- Watch Video Solution

291. State whether the following statement is true or false. Justify:For an arbitrary binary operation \cdot on a set $N, a \cdot a=a, f$ or alla $\in N$

- Watch Video Solution

292. State whether the following statements are true or false. Justify. If * is a commutative binary operation on N, then $a^{*}\left(b^{*} c\right)=\left(c^{*} b\right)^{*} a$

- Watch Video Solution

293. State whether the following statements are true or false. Justify . For an arbitrary binary operation * on a set $\mathrm{N} A \cdot a=a, \forall a \in N$.

Watch Video Solution

294. Consider a binary operation * on N defined as $\mathrm{a}^{*} \mathrm{~b}=a^{3}+b^{3}$. Then
A. * both associative and commutative.
B. * commutative but not associative.
C. * associative but not commutative
D. * neither commutative nor associative.

Answer:

- Watch Video Solution

295. Let $f: R \rightarrow R$, be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g o f=f o g=1_{R}$

(D) Watch Video Solution

296. Let $f: W \rightarrow W$ be defined as $f(n)=n-1$, if n is odd and $f(n)=n+1$, if n is even. Show that f is invertible. Find the inverse of f . Here, W is the set of all whole numbers.

- Watch Video Solution

297. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$, find $\mathrm{f}(\mathrm{f}(\mathrm{x}))$.

- Watch Video Solution

298. Show that the function $f: R \rightarrow\{x \in R:-1<x<1\}$ defined by $f(x)=\frac{x}{1+|x|}, x \in R$ is one one and onto function.

- Watch Video Solution

299. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}$ is injective.

- Watch Video Solution

300. Give examples of two functions $f: N \rightarrow Z$ and $g: Z \rightarrow Z$ such that gof is injective but g is not injective.

- Watch Video Solution

301. Give examples of two functions $f: N \rightarrow N$ and $g: N \rightarrow N$ such that gof is onto but f is not onto.

- Watch Video Solution

302. Given a non empty set X , consider $P(X)$ which is the set of all subsets of X . Define the relation R in $P(X)$ as follows: For subsets A, B in
$\mathrm{P}(\mathrm{X})$, ARB if and only if $A \subset B$. Is R an equivalence relation on $\mathrm{P}(\mathrm{X})$? Justify your answer.

(Watch Video Solution

303. Given a non - empty set, X, consider the binary operation ** : $P(X) \times P(X) \rightarrow P(X)$ given by $A * B=A \cap B, \forall A, B \in P(X)$, where $P(X)$ is the power set X. Show that X is the identity element for this operation and X is the only invertible element in $P(X)$ with respect to the operation **.

- Watch Video Solution

304. Find the number of all onto functions formthe set $\{1,2,3, \ldots, n\}$ to itself.

- Watch Video Solution

305. Let $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{1,2,3\}$. Find F^{-1} of the folowing functions F from S to T, if it exists. $F=\{(a, 3),(b, 2),(c, 1)\}$

- Watch Video Solution

306. Let $\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{1,2,3\}$. Find F^{-1} of the folowing functions F from S to T, if it exists. $F=(a, 2),(b, 1),(c, 1)$

- Watch Video Solution

307. Consider the binary operations * $R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ defined as a * $b=|a-b|$ and a o $b=a$ for all a, b in R. Show that ${ }^{\prime *}$ is commutative but not associative, 'o' is associative but not commutative.

- Watch Video Solution

308. Given a non-empty set X , let $\cdot: P(X) \times P(X) \rightarrow P(X)$, be defined as $A \cdot B=(A-B) \cup(B-A), \forall A, B \in P(X)$. Show that the empty set ϕ is the identity for the operation * and all the elements A of $P(X)$ are invertible with $A^{-} 1=A$.

- Watch Video Solution

309. Define a binary operation * on the set $\{0,1,2,3,4,5\}$ as
$a \cdot b=\left\{\begin{array}{ll}a+b & \text { if } a+b<6 \\ a+b-6 & \text { if } a+b \geq 6\end{array}\right.$ Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6 -a being the inverse of a.

- Watch Video Solution

310. Let $A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$, be functions defined by $f(x)=x^{2}-x, x \in A$ and $\mathrm{g}(\mathrm{x})=2|\mathrm{x}-(1 / 2)|-1, \mathrm{x}$ in A^{\prime}. Are f and g equal? Justify your answer.
311. Let $A=\{1,2,3\}$ Then number of relations containing $(1,2)$ and $(1,3)$ which are reflexive and symmetric but not transitive is :
A. 1
B. 2
C. 3
D. 4

Answer:

Watch Video Solution
312. Let $A=\{1,2,3\}$ Then number of equivalence relations containing
$(1,2)$ is:
A. 1
B. 2
C. 3
D. 4

Answer:

- Watch Video Solution

313. Let $f: R \rightarrow R$ be the signum function defined as
$f(x)=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{array}\right.$ and $g: R \rightarrow R$ be the greatest integer function
given by $g(x)=[x]$ where $[\mathrm{x}]$ is greatest integer less than or equal to x .
Then, does fog and gof coincide in $(0,1]$?

- Watch Video Solution

314. Number of binary operations on theset (a, b) is
A. 10
B. 16
C. 20
D. 8

Answer:

- Watch Video Solution

315. Fill in the blank:

The number of relations that can be defined from set $A=(1,2,3)$ to the set $B=(a, b, c)$ is \qquad

- Watch Video Solution

316. Let the relation R be defined in N by $a R b$ if $2 a+3 b=30$. Then $R=$
317. Fill in the blank:

Consider the set $A=(0,1,2)$ and let $R=(0,1),(1,0)$ be the relation on A, then R is a \qquad relation on A .

- Watch Video Solution

318. Let the relation R be defined on the set
$A=\{1,2,3,4,5\}$ by $R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\}:$ Then R is given by

- Watch Video Solution

319. Fill in the blank:

The identity relation on any non-empty set is always an \qquad relation.

- Watch Video Solution

320. Fill in the blank:

Let $f=(1,2),(3,5),(4,1)$ and $g=(2,3),(5,1),(1,3)^{\prime}$ then gof $=$ \qquad
\qquad .

- Watch Video Solution

321. Fill in the blank:

If $\mathrm{f}(\mathrm{X})=4-(x-7)^{3}$, then $f^{-1}(x)={ }_{\text {_ }}$ _ _

- Watch Video Solution

322. Fill in the blank:

If $f=(a, c),(b, d)$ and $g=(c, a),(d, b)$ then range of g of is \qquad .

- Watch Video Solution

323. Fill in the blank:

Let $f: R \rightarrow R$ be defined by $f(x)=\frac{x}{\sqrt{1+x^{2}}}$, then (fofof) $(\mathrm{x})=$ \qquad

- Watch Video Solution

324. Fill in the blank:

Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{2+\cos x}$ for all $x \in R$, the range of f is \qquad .

Watch Video Solution

325. Fill in the blank:

Let * be a binary operation defined on Z as $\mathrm{a} * \mathrm{~b}=a^{2}-b^{2}$, then $(-2)^{*}\left(3^{*} 0\right)$ is equal to \qquad

- Watch Video Solution

326. Consider the set $A=\{1,2,3\}$ and R be the smallest equivalence relation on A, then $R=$ \qquad

Watch Video Solution

327. Fill in the blank:

The domain of the function $f: R \rightarrow R$ defined by $f(x)=\sqrt{x^{2}-5 x+6}$ is \qquad .

- Watch Video Solution

328. Fill in the blank:

The total number of injective functions that can be defined form a set A contaiing n distinct elements onto itself is \qquad .

- Watch Video Solution

329. Fill in the blank:

Let R_{1} be the set of all reals except 1 and * be the binary operation defined on R_{1} as $\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in R_{1}$. The identity element with respect to the binary operation * is \qquad .

- Watch Video Solution

330. Let Z be the set of all integers and R be the relation on Z defined as $R=(a, b): a, b$ in $^{`} \mathrm{Z}$ and $\mathrm{a}-\mathrm{b}$ is divisible by 5) Prove that R is an equivalence relation.

- Watch Video Solution

331. Fill in the blank:

Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{2+\cos x}$ for all $x \in R$, the range of f is \qquad .
332. If relation R defined on set A is an equivalence relation, then R is

D Watch Video Solution

333. True or False statements :

Let $R=(3,1),(1,3),(3,3)^{\prime}$ be a relation defined on the set $A=(1,2,3)$, then R is symmetric, transitive but not reflexive.

- Watch Video Solution

334. Are the following statement true or false ? Justify the answer : Every rational number is a whole number.

- Watch Video Solution

335. True or False statements :

Every function is invertible.
336. True or False statements :

The relation $R=(a, b),(b a$,$) on the set (A=a, b)$ is symmetric and transitive.

- Watch Video Solution

337. Let A be a finite set. Then, each injective function from A into itself is not surjective.

- Watch Video Solution

338. True or False statements :

Let $A=(a, b, c)$ and $R=(a, b),(a, c)$. Then R is a transitive relation.

- Watch Video Solution

339. The relation R on the set $A=\{1,2,3\}$ defined as $R=\{(1,1),(1,2),(2,1)$, $(3,3)\}$ is reflexive, symmetric and transitive.

- Watch Video Solution

340. The function $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$ is:

- Watch Video Solution

341. Every relation which is symmetric and transitive is also reflexive.

- Watch Video Solution

342. True or False statements :

Let N be the set of natural numbers. Then, the binary operation * on N defined as a * $\mathrm{b}=\mathrm{a}+\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{N}$ has the identity element.
343. True or False statements:

A binary operatio on a set has always the identity element.

- Watch Video Solution

344. The function $f: R \rightarrow R$ defined by $f(x)=1+x^{2}$ is :

- Watch Video Solution

345. True or False statements :

Let N be the set of natural numbers. Then, the binary operation * on N defined as a * $\mathrm{b}=\mathrm{a}+\mathrm{b}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{N}$ has the identity element.

- Watch Video Solution

346. True or False statements :

The function $f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$ is a bijection.

Watch Video Solution

347. Let $A=\{0,1\}$ and N be the set of natural numbers. Then the mapping
$\mathrm{f}: \mathrm{N} \rightarrow$ A defined by $\mathrm{f}(2 \mathrm{n}-1)=0, \mathrm{f}(2 \mathrm{n})=1, \forall n \in N$, is onto.

- Watch Video Solution

348. True or False statements :

The binary operation * defined in Z by $a * b=a+b$ is commutative but not associative.

- Watch Video Solution

349. An integer m is said to be related to another integer n if m is a integral multiple of n. This relation in Z is reflexive, symmetric and transitive.

- Watch Video Solution

350. Let R be a relation from a set A to a set B, then:

- Watch Video Solution

351. True or False statements :

Composition of functions is associative.

- Watch Video Solution

352. True or False statements :

The function $f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-2$ is a bijection.
353. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be onto functions, show that gof is an onto function.

- Watch Video Solution

354. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be onto functions, show that gof is an onto function.

- Watch Video Solution

355. For all sets A, B and C, if $A \subset C$ and $B \subset C$, then $A \cup B \subset C$.

- Watch Video Solution

356. Match the following :
(i) $\sin \left(90^{\circ}-\mathrm{A}\right) \quad$ (a) $\operatorname{Sin} \mathrm{A}$
(ii) $\operatorname{Cos} 0^{\circ}$
(b) 0
(iii) $\operatorname{Sin} 0^{\circ}$
(c) 1
(iv) $\mathrm{Cas}\left(90^{\circ}-\mathrm{A}\right)($ d $) \operatorname{Cos} \mathrm{A}$

- Watch Video Solution

357. Consider the set $A=(a, b)$. The smallest equivalence relation that can be defined on A is
A. $\}$
B. $(a, a),(b, b)$
C. (a,b),(b,a)
D. $A \times A$

Answer:

358. Consider the set $A=(1,2)$. Which of the following relations on A is symmetric, neither transitive nor reflexive?
A. $(1,1),(2,2)$
B. $\}$
C. $(1,2)$
D. $(1,2),(2,1)$

Answer:

- Watch Video Solution

359. Let A be a finite set containing n distinct elements. The number of relations that can be defined from A to A is (a) 2^{n} (b) n^{2} (c) $2^{n^{2}}$ (d) None of these
A. $m n$
B. $2^{m} n$
C. 2^{m+n}
D. none of these

Answer:

- Watch Video Solution

360. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as $a R b$ if a is congruent to $b \forall a, b \in T$. Then R is
A. reflexive but not transitive
B. transitive but not symmetric
C. equivalence
D. none of these

Answer:

361. Consider the non-empty set consisting of children in a family and a relation R defined as $a R b$ if a is brother of b. Then R is
A. symmetric but not transitive
B. transitive but not symmetric
C. neither symmetric nor transitive
D. both symmetric and transitive.

Answer:

- Watch Video Solution

362. If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then R is
A. reflexive
B. transitive but not symmetric
C. symmetric
D. none of these

Answer:

- Watch Video Solution

363. Let R be a relation defined by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): a \geq b\}$, where a and b are real numbers, then R is
A. an equivalence relation
B. reflexive, transitive but not symmetric
C. symmetric, transitive but not reflexive
D. neither transitive nor relfexive but symmetric.

Answer:

364. Let R be the relation defined on the set N of natural numbers by the rule $x R y$ iff $x+2 y=8$, then domain of R is
A. $(2,4,8)$
B. $(2,4,6)$
C. $(2,4,6,8)$
D. $(1,2,3,4)$

Answer:

- Watch Video Solution

365. Let $A=(a, b, c)$ and $R=(a, a),(b, b),(c, c),(b, c),(a, b)$ be a relation on A, then R is
A. symmetric
B. transitive
C. reflexive
D. none of these

Answer:

- Watch Video Solution

366. Let $A=\{1,2,3\}$ and consider the relation, $R=\{1,1\},(2,2),(3,3),(1,2),(2$,
$3),(1,3)$. Then R is
A. reflexive but not transitive
B. reflexive but not symmetric
C. symmetric and transitive
D. neither symmetric not transitive.

Answer:

- Watch Video Solution

367. The maximum number of equivalence relations on the set $A=\{1,2,3\}$ are
A. 1
B. 2
C. 3
D. 5

Answer:

- Watch Video Solution

368. Let $A=(1,2,3)$ and $R=(1,1),(2,2),(1,2),(2,1),(1,3)$ then R is
A. reflexive
B. symmetric
C. transitive
D. none of these

D Watch Video Solution

369. Let $A=\{1,2,3\}$, which of the following is not an equivalence relation of $A\{(1,1),(2,2),(3,3)\}$
A. $(1,2),(2,2),(3,3)$
B. $(1,1),(2,2),(3,3),(1,2),(2,1)$
C. $(1,1),(2,2),(3,3),(2,3),(3,2)$
D. none of these

Answer:

D Watch Video Solution

370. Let R be a relation on the set N of natural numbers defined by n m if n divides m . Then R is
A. reflexive and symmetric
B. transitive and symmetric
C. equivalence
D. reflexive, transitive but not symmetric.

Answer:

- Watch Video Solution

371. Let $A=(1,2,3)$. Which of the following relations is a function from A to A?
A. $(1,1),(2,1),(3,2)$
B. $(1,1),(1,2)$
C. $(2,3),(3,1)$
D. $(1,1),(2,2),(3,3),(1,3),(3,1)$

Answer:

372. Let $A=(1,2,3)$ and $B=(2,3,4)$, then which of the following is a function from A to B ?
A. $(1,2),(1,3),(2,3),(3,3)$
B. $(1,3),(2,4)$
C. (1,3), (2,3), (3,3)
D. $(1,2),(2,3),(3,4),(3,2)$

Answer:

- Watch Video Solution

373. Let A be a finite set containing n distinct elements. The number of functions that can defined from A to A is

$$
\text { A. } 2^{n}
$$

B. n^{n}
C. n
D. none of these

Answer:

- Watch Video Solution

374. If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
A. 720
B. 120
C. 0
D. none of these

Answer:

375. Set A has 3 elements and the set B has 4 elements. Then the number of injective mapping that can be defined from A to B is
A. 144
B. 12
C. 24
D. 64

Answer:

- Watch Video Solution

376. Let N be the set of natural numbers and the function f: $N \rightarrow N$ be defined by $\mathrm{f}(\mathrm{n})=2 \mathrm{n}+3 \forall \mathrm{n} \in \mathrm{N}$. Then f is

A. surjective

B. injective
C. bijective
D. none of these

Answer:

- Watch Video Solution

377. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x} \forall x \in R$, then f is
A. one-one
B. onto
C. bijective
D. not defined

Answer:

378. Let $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=x^{2}-3 x+4$ for all $\mathrm{x} \in \mathrm{R}$, then $f^{-1}(2)$ is equal to
A. $(1,2)$
B. $(1,2)$
C. $(1,2)$
D. none of these

Answer:

- Watch Video Solution

379. Let $f: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$ for all $x \in N$, then f is
A. onto
B. invertible
C. one-one
D. none of these

D Watch Video Solution

380. If f is a function from a set A to A, then f is invertible iff f is
A. one-one
B. onto
C. both one-one and onto
D. none of these

Answer:

Watch Video Solution
381. Let $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-4$, then $f^{-1}(\mathrm{x})=$
A. $\frac{x+4}{3}$
B. $\frac{x}{3}-4$
C. $3 x+4$
D. none of these

Answer:

- Watch Video Solution

382. Let $f:[2, \infty) \rightarrow R$ be the function defined by $f(x)=x^{2}-4 x+5$, then the range of f is
A. R
B. $(1, \infty)$
C. $(4, \infty)$
D. $(5, \infty)$

Answer:

383. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$, then, $f^{-1}(17)$ and f^{-1}
(-3) are respectively
A. $\phi(4,-4)$
B. $(3,-3), \phi$
C. $(4,-4), \phi$
D. $(4,-4),(2,-2)$

Answer:

- Watch Video Solution

384. Which of the following function from Z to itself are bijections?
A. $f(x)=x^{3}$
B. $f(x)=x+2$
C. $f(x)=2 x+1$
D. $f(x)=x^{2}+1$

Answer:

- Watch Video Solution

385. Let $f: R \rightarrow R$ be the functions defined by $f(X)=x^{3}+5$, then f^{-1}
(x) is
A. $(x+5)^{1 / 3}$
B. $(x-5)^{1 / 3}$
C. $(5-x)^{1 / 3}$
D. $5-x$

Answer:

386. Let $f: R-\left(\frac{3}{5}\right) \rightarrow R$ be defined by $f(X)=\frac{3 x+2}{5 x-3}$, then
A. $f^{-1}(x)=f(x)$
B. $f^{-1}(x)=f(x)$
C. $(f o f) x=-x$
D. $f^{-1}(x)=(1 / 19)^{\prime} \mathrm{f}(\mathrm{x})$

Answer:

- Watch Video Solution

387. Let $f: R \rightarrow R$ be given $\operatorname{byf}(\mathrm{X})=\tan \mathrm{x}$, then $f^{-1}(1)$ is
A. $\frac{\pi}{4}$
B. $\left\{n \pi+\frac{\pi}{4}, n \in Z\right\}$
C. does not exist
D. none of these

Answer:

D Watch Video Solution

388. Let $f: R \rightarrow R$ be defined by
$f(x)= \begin{cases}2 x & x>3 \\ x^{2} & 1 \leq x<3 \\ 3 x & x \leq 1\end{cases}$
Then $f(-1)+f(2)+f(4)$ is
A. 14
B. 5
C. 17
D. 9

Answer:

389. Let $f(x)=a x^{2}+b x+c \quad$ where $\quad a, b, c \varepsilon R, a \neq 0$. Suppose $|f(x)| \leq 1, \forall x \varepsilon[0,1]$ then
A. is given by $\frac{1}{a x+b}$
B. is given by $\frac{x-b}{a}$
C. does not exist as f is not onto
D. doesnot exist as f is not one-one.

Answer:

- Watch Video Solution

390. Which of the following functions is differentiable at $x=0$?
A. $f=(1,1),(2,1),(3,1)$
B. $f=(1,2),(2,3),(3,1)$
C. $f=(1,2),(2,3),(3,2)$
D. $f=(1,1),(2,2),(3,1)$

Answer:

D Watch Video Solution

391. Let $f: R \rightarrow R$ be defined $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}: R \rightarrow R$ be defined by $g(x)=x^{2}$, Find fog.
A. $x^{2} \sin x$
B. $(\sin x)^{2}$
C. $\sin x^{2}$
D. $\frac{\sin x}{x^{2}}$

Answer:

- Watch Video Solution

392. Let $f: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{X})=3 \mathrm{x}$. Then
A. $\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$
B. $\frac{3 x^{2}-5}{9 x^{4}-6 x^{2}+26}$
C. $\frac{3 x^{2}}{x^{4}+2 x^{2}-4}$
D. $\frac{3 x^{2}}{9 x^{4}+30 x^{2}-2}$

Answer:

- Watch Video Solution

393. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two invertible functions. Then $g o f$ is also invertible with $(g o f)^{-} 1=f^{-} 1 o f g^{-} 1$
A. $f^{-1} o g^{-1}$
B. $f o g$
C. $g^{-1} o f^{-1}$
D. gof
394. Let $\mathrm{f}(\mathrm{x})=x^{2}$ and $\mathrm{g}(\mathrm{x})=\sqrt{x}$, then
A. $(\mathrm{g} \circ f)(-2)=2$
B. $(\mathrm{fog})(2)=4$
C. (gof) (2) $=4$
D. $(\mathrm{gof})(3)=3$

Answer:

395. If $' f(x)=x+1$ And $g(X)=2 x$, then $f(g(x))$ is equal to
A. $f(a)=g(c)$
B. $f(b)=g(b)$
C. $f(d)=g(b)$
D. $f(c)=g(a)$

Answer:

- Watch Video Solution

396. If $f(x)=\{x$, when x is rational and 0 , when x is irrational $g(x)=\{0$, when x is rational and x, when x is irrational then $(f-g)$ is
A. one-one and into
B. neither one-one nor onto
C. many one and onto
D. one-one and onto
A. $\operatorname{fog}(x)=-1$ for all $x \in R$
B. $\operatorname{gof}(x)=1$ for all $x \in R$
C. fog $(\mathrm{x})=1$ for all $x \in R$
D. none of these

- Watch Video Solution

397. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x} \forall x \in R$, then f is
A. constant
B. $1+X$
C. x
D. none of these

Answer:

Watch Video Solution

398. let $f: N \rightarrow R$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $g: Q \rightarrow R$ be another function defined by $\mathrm{g}(\mathrm{x})=\mathrm{x}+2$, then (gof) $\left(\frac{3}{2}\right)$ is
A. 1
B. 1
C. $\left(\frac{7}{2}\right)$
D. none of these

Answer:

- Watch Video Solution

399. The identity element for the binary operation * defined on Q-(0) as a

* $\mathrm{b}=\frac{a b}{2}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{Q}-(0)$ is
A. 1
B. 0
C. 2
D. none of these

Answer:

400. If $A=(a, b)$, then the number of binary operations that can be defined on A is
A. 4
B. 2
C. 16
D. 1

Answer:

- Watch Video Solution

401. Let * be the binary operation defined on R by a * $b=1+a b$ for $a l l a, b$ $\in R$, then the operation * is
A. commutative but not associative
B. associative but not commutative
C. neither commutative nor associative
D. both commutative and associative.

Answer:

- Watch Video Solution

