# ©゙doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - PRADEEP PUBLICATION

## THREE DIMENSIONAL GEOMETRY

## Example

1. Find $\lambda$ so that the distance between the points $(5,-1,-5)$ and $(2,3, \lambda)$ be 13 units.

## - Watch Video Solution

2. Find the points on $Y$-axis which are at a distance of $\sqrt{29}$ from the point (2,-1,3).
3. Find the equation to the locus of a point whose distance from the $(-1,3,4)$ is 12 .

## Watch Video Solution

4. Find the points of trisection of the segment joining the points $A(4,-1,5)$ and $B(-5,5,-7)$.

## - Watch Video Solution

5. Show that the points : $(4,7,8),(2,3,4),(-1,-2,1),(1,2,5)$ are the vertices of a parallelogram.

## - Watch Video Solution

6. Find the point which is equidistant from the points (1,0,0), ( $0,2,0$ ),(0,0,3) and ( $0,0,0$ ).

## - Watch Video Solution

7. Show that the three points $\mathrm{A}(2,3,4)$ and $\mathrm{B}(-1,2,-3)$ and $\mathrm{C}(-4,1,-10)$ are collinear and find the ratio in which $C$ divides [AB].

## - Watch Video Solution

8. Find the angle at which the vector $\vec{v}=2 \hat{i}-6 \hat{j}+2 \hat{k}$ is inclined to each of the coordinate axes.

## - Watch Video Solution

9. Find the direction cosines of the ray form $P$ to $Q$ where $P$ is point $(1,-2,2)$ and $Q$ is te point ( $3,-5,-4$ ).
10. Find the position vector of a point A in space such that $\overrightarrow{O A}$ is inclined at $60^{\circ}$ to $O X$ and at $45^{\circ}$ to $O Y$ and $|\overrightarrow{O A}|=10$ units.

## - Watch Video Solution

11. Find the direction cosines of the line jonining the ponts $P(4,3,-5)$ and $Q(-2,1,-8)$.

## - Watch Video Solution

12. Find the direction cosines of the line passing through the points $(-2,4,-5)$, and (1,2,3).

## - Watch Video Solution

13. If a line has direction ratios $<2,-1,-2\rangle$, then what are its direction cosines?

## - Watch Video Solution

14. the direction cosines of a line equally inclined to the co-ordinate axes are:

## - Watch Video Solution

15. Find the vector equation for the line passing through the points ( $-1,0$,
2) and (3, 4, 6).

## - Watch Video Solution

16. Find the vector equation of the line which is parallel to the vector $3 \hat{i}-2 \hat{j}+\hat{k}$ and which passes through the point $(1,-2,3)$.
17. Find the vector and the Cartesian equations of the line through the point $(5,2,-4)$ and which is parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$

## - Watch Video Solution

18. Show that the points $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$ are collinear. Find the equations of the line in which they lie.

## - Watch Video Solution

19. Find the points on the line through the points $A(1,2,3)$ and $B(5,8,15)$ at a distance of 14 units from the mid point of AB.

## - Watch Video Solution

20. Find the points on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of 5 units from the point $(1,3,3)$.

## - Watch Video Solution

21. Show that the two lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect each other. Find also the point of intersection.

## - Watch Video Solution

22. Check whether the lines $\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=4 \hat{i}-\hat{k}+\mu(2 \hat{i}+\hat{k})$ intersect or not.

## - Watch Video Solution

23. Find the equations of the line intersecting the lines $\frac{x-a}{1}=\frac{y}{1}=\frac{z-a}{1}$ and $\frac{x-a}{2}=\frac{y}{1}=\frac{z+a}{2}$ and parallel to the line $\frac{x-a}{2}=\frac{y-a}{1}=\frac{z-2 a}{2}$.

## - Watch Video Solution

24. Find the angle between the lines
$\vec{r}=2 \hat{i}+3 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+1 \hat{j}+2 \hat{k})$
and
$\vec{r}=2 \hat{i}-5 \hat{k}+\mu(6 \hat{i}+3 \hat{j}+2 \hat{k})$

## - Watch Video Solution

25. Find the angle between the lines

$$
\begin{aligned}
& \vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \\
& \vec{r}=8 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+5 \hat{k}) .
\end{aligned}
$$

and
26. Find the angle between the lines
$\frac{x-3}{2}=\frac{y-5}{3}=\frac{z+5}{4}$ and $\frac{x+3}{1}=\frac{y-4}{2}=\frac{z-5}{1}$.

## - Watch Video Solution

27. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0,6 m n-2 n l+5 l m=0$

## - Watch Video Solution

28. A variable line in two adjacent positions has direction cosines $<l, m, n$ $>$ and
$<l+\sigma l, \mathrm{~m}+\sigma m, \mathrm{n}+\sigma n>$. Show that the small angle $\sigma \theta$ between the two positions is given by $\sigma \theta^{2}=\sigma l^{2}+\sigma m^{2}+\sigma n^{2}$.

## - Watch Video Solution

29. Prove that the angle between any two diagonals of a cube is $\cos ^{-1} \frac{1}{3}$

## - Watch Video Solution

30. Evaluate
$\int e^{2 x} \sin 3 x$

## Watch Video Solution

31. Find the coordinates of the foot of the perpendicular and the length of the perpendicular drawn from the point $P(5,4,2)$ to the line $\vec{r}=(-\hat{i}+\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}-\hat{k})$. Also find the image of P in this line.

## - Watch Video Solution

32. Find the equation of the line passing through the point ( $-1,3,-2$ ) and perpendicular to the lines : $\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \quad$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$.
33. Find the vectoer and cartesian equations of the line through the point $(1,2,4)$ and perpendicualr of the lines: $\vec{r}=(8 \hat{i}-19 \hat{j}+10 \hat{k})+\lambda(3 \hat{i}-16 \hat{j}+7 \hat{k})$ and $\vec{r}=(15 \hat{i}+29 \hat{j}+5 \hat{k})$

## - Watch Video Solution

34. Find the equation of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.

## - Watch Video Solution

35. Verify that $<\frac{l_{1}+l_{2}+l_{3}}{\sqrt{3}}, \frac{m_{1}+m_{2}+m_{3}}{\sqrt{3}}, \frac{n_{1}+n_{2}+n_{3}}{\sqrt{3}}>$ can be taken as the direction cosines of a line $L$ equally inclined to three mutually perpendicular lines with direction cosines: ', ,
36. Prove that the lines, whose direction cosines are given by $a l+b m+c n=0, f m n+g n l+h l m=0 \quad$ are: $\quad$ perpendicular if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$

## - Watch Video Solution

37. Prove that the lines whose direction cosines are given by
al + bm+cn $=0, f m n+g n l+h l m=0$ are
parallel if $a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}-2(b c g h+c a h f+a b f g)=0$.

## - Watch Video Solution

38. Find the S.D (shortest distance) between the two given lines $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})$

## - Watch Video Solution

39. Find the shortest distance between the lines. $\frac{x-8}{3} \cdot \frac{y+9}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

## - Watch Video Solution

40. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5} \quad$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar. Also find the equation of the plane containing the lines.

## - Watch Video Solution

41. Find the value of equation of a line passing through the point $(2,3,2)$ and parallel to the line $\vec{r}=(-2 \hat{i}+3 \hat{j})+\lambda(2 \hat{i}-3 \hat{j}+6 \hat{k})$. Also, find the distance between these two lines

## - Watch Video Solution

42. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=(3 \hat{i}+3 \hat{j}-5 \hat{k})+\mu(2$

## - Watch Video Solution

43. A line passing through the point $A$ with position vector $\vec{a}=4 \hat{i}+2 \hat{j}+2 \hat{k}$ is parllel to vector $\vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$. Find the length of the perpendicular drawn on this line from a point $P$ with position vector $\vec{r}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}$.

## - Watch Video Solution

44. Find the equations of the perpendicular drawn from the point $(2,4,-1)$
to the line : $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$

## - Watch Video Solution

45. Find shortest distance between lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$

## - Watch Video Solution

46. Find the general solution of the following
$(1-\cos x) d y=y^{3} d x$

## - Watch Video Solution

47. Find the direction cosines of the perpendicular from the origin to the plane $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-6 \hat{k})+1=0$.

## - Watch Video Solution

48. If the line drawn from the point $(-2,-1,-3)$ meets a plane at right angles at the point ( $1,-3,3$ ), find the eqution of the plane.
49. Find the vector and cartesian equations of the plane which passes through the point ( $5,2,4$ ) and perpendicular to the line with direction ratios <2,2,1>,

## - Watch Video Solution

50. Find the equation of the plane through the line points ( $1,1,0$ ),( $1,2,1$ ) and $(-2,2,-1)$.

## - Watch Video Solution

51. Show that the points $(1,-1,1),(2,3,1),(1,2,3)$ and $(0,-2,3)$ are coplanar. Find the equation of the plane in which they lie.

## - Watch Video Solution

52. Find the vector equations of the plane which is at a distance of 7 from the origin and its normal vector from the origin is $2 \hat{i}-6 \hat{j}+3 \hat{k}$.

## - Watch Video Solution

53. A plane meets the coordinate axes in points $A, B, C$ and the centroid of the triangle ABC is $(\alpha, \beta, \gamma)$, find the equation of the plane.

## - Watch Video Solution

54. Find the vector equation of the line passing through the point $(1,2,1)$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=10$. Find the point of intersection of this line and the plane.

## - Watch Video Solution

55. Find the ratio in which the plane $x-2 y+3 z=17$ divides the line joining the points $(-2,4,7)$ and ( $3,-5,8$ ). Also obtain the coordinates of the point of intersection.

## - Watch Video Solution

56. Find the vector equation in scalar product form of the plane
$\vec{r}=2 \hat{i}-\hat{j}+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})+\mu(2 \hat{i}-\hat{j}-3 \hat{k})$.

## - Watch Video Solution

57. A variable plane passes through a fixed point a,b,c and meet the coordinates axes in $A, B, C$. Show that the locus of the point common to the planes through $A, B, C$ parallel to the co-ordinate planes is $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$

## - Watch Video Solution

58. Find the coordinates of the point where the line through $(3,4,1)$ and $(5,1,6)$ crosses $X Y$-plane.

## - Watch Video Solution

59. Find the vector equation of the plane passing through three points with position vectors $\hat{i}+\hat{j}-2 \hat{k}, 2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$. Also find the co-ordinates of the point of intersection of this plane and the line $\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$.

## - Watch Video Solution

60. Find the equation in vector anf cartesian form of the line passing through the point : $(2,-1,3)$ and perpendicular to the lines $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2$
61. Find the equation of the plane containing the line $\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-4}{-2}$ and the point $(0,6,0)$.

## Watch Video Solution

62. Find the equation of the plane passing through the points $(-1,2,0)$, $(2,2,-1)$ and parallel to the line $\frac{x-1}{1}=\frac{2 y-1}{2}=\frac{z+1}{-1}$

## - Watch Video Solution

63. Find the general solution of the following Differential equation
$\left(x^{2}+3 x+12\right) d y=y d x$

## - Watch Video Solution

64. Show that the lines
$\vec{r}=\hat{i}+\hat{j}+\hat{k}+\lambda(\hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=4 \hat{j}+2 \hat{k}+\mu(2 \hat{i}-\hat{j}+3 \hat{k})$
are coplanar.

## - Watch Video Solution

65. If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then $k$ is equal to

## - Watch Video Solution

66. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$.

## - Watch Video Solution

67. Find the distance of the point $(2,12,5)$ from the point of intersection of the line: $\vec{r}=2 \hat{i}-4 \hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=0$.
68. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=5$.

## - Watch Video Solution

69. Find the length and the foot of perpendicular from the point $\left(1, \frac{3}{2}, 2\right)$ to the plane $2 x-2 y+4 z+5=0$.

## - Watch Video Solution

70. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$

## - Watch Video Solution

71. Find the equation of the line passing through the point $(3,0,1)$ and parallel to the planes $x+2 y=0$ and $3 y-z=0$.

## - Watch Video Solution

72. Find the equations of the line passing through the point $(-4,3,1)$ perpendicular to the plane $x+2 y-z=0$.

## - Watch Video Solution

73. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line

## - Watch Video Solution

74. Find the angle between the two planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$ using vector method.
75. Find the acute angle between the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$ and $\vec{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})=2$.

## (D) Watch Video Solution

76. Find the vector equation of the plane through the points ( $2,1,-1$ ) and $(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$.

## - Watch Video Solution

77. Find the equation of the plane through the point $(-1,-1,2)$ and perpendicular to the planes $3 x+2 y-3 z=1$ and $5 x-4 y+z=5$.

## - Watch Video Solution

78. Find the equation of the plane passing through the point ( $1,-1,2$ ) and perpendicular to the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.

## Watch Video Solution

79. Find the angle between the line $\vec{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})=4$.

## - Watch Video Solution

80. Find the angle between the line $: \frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.

## - Watch Video Solution

81. A variable plane which remains at a constant distance $p$ from the origin cuts the co-ordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ planes are drawn
parallel to the co-ordinate planes. Show that locus of the point of intersection is : $x^{-2}+y^{-2}+z^{-2}=p^{-2}$

## - Watch Video Solution

82. Find the equation of the plane which passes through the point $(3,4,-1)$ and is parallel to the plane $2 x-3 y+5 z+7=0$. also, find the distance between the two planes.

## - Watch Video Solution

83. Show that the line $L$ whose vector equation is $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ is parallel to plane $\pi$ whose vector equation is $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ and find the distance between them.

## - Watch Video Solution

84. Find the equation of the plane mid parallel to the planes $3 x-4 y+12 z-$ $26=0$ and $3 x-4 y+12 z+13=0$.

## - Watch Video Solution

85. A variable plane which remains at a constant distance 3 p from the origin cuts the coordinate axes at $A, B, C$. show that the locus of the centroid of the triangle ABC is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$.

## - Watch Video Solution

86. Find the distane of the point $P(\hat{i}+\hat{j}+\hat{k})$ from the plane through the points $A(2 \hat{i}+\hat{j}+\hat{k}), B(\hat{i}+2 \hat{j}+\hat{k})$ and $C(\hat{i}+\hat{j}+2 \hat{k})$

## - Watch Video Solution

87. Distance of the point $(2,5,-3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$ is

## - Watch Video Solution

88. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,-1,2), B(5,2,5)$ and $C(-1,-1,6)$.

## - Watch Video Solution

89. Find in symmetrical form, the equations of the line
$2 x-2 y+3 z-2=0, x-y+z+1=0$.

## - Watch Video Solution

90. Find the equation of the plane passing through the line of intersection of the planes $2 x-y=0$ and $3 z-y=0$ and perpendicular to the
plane $4 x+5 y-3 z=8$

## - Watch Video Solution

91. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6 \quad$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and point $(1,1,1)$

## - Watch Video Solution

92. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-z=3$ and $5 x-3 y+4 z=9$ and parallel to the lines $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

## - Watch Video Solution

93. Find the equations of the bisector planes of the angle between the planes : $3 x-2 y+6 z+8=0$ and $2 x-y+2 z+3=0$

## - Watch Video Solution

94. Find in symmetrical form, the equations of the line
$2 x-2 y+3 z-2=0, x-y+z+1=0$.

## - Watch Video Solution

95. Prove that the line of section of the planes $2 x-y+z=4$ and
$5 x+7 y+2 z=0$ meets the plane $3 x+4 y-2 z+3=0$ in a single point. Find the cooridnates of that point.

## - Watch Video Solution

96. Find the cartesian and vector equations of the planes passing through the intersection of te planes $\vec{r} \cdot(2 \hat{i}+6 \hat{j})+12=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}-4 \hat{k})=0$ which are at a unit distance from the origin.
97. The plane $a x+b y=0$ is rotated through an angle $\alpha$ about its line of intersection with the plane $z=0$. Show that the equation to the plane in new position is $a x+b y \pm z \sqrt{a^{2}+b^{2}} \tan \alpha=0$.

## - Watch Video Solution

## Exercise

1. Find the points on $z$-axis which are at a distance of $\sqrt{21}$ from the point (1,2,3).

## - Watch Video Solution

2. Find k so that the distance between the points ( $7,1,-3$ ) and ( $4,5, \mathrm{k}$ ) be 13 units.
3. Find the point on $x$-axis which is equidistant from the point $(1,3,2)$ and (5,5,2).

## - Watch Video Solution

4. Find the point which is equidistant from the points (a,0,0),(0,b,0),(0,0,c) and ( $0,0,0$ ), a,b and c being non-zero reals.

## - Watch Video Solution

5. Show that the points $(2,4,3),(4,1,9)$ and $(10,-1,6)$ are the vertices of an isosceles right angled triangle.

## - Watch Video Solution

6. Find the locus of a point which is equidistant from the points $(3,2,1)$ and $(-1,2,3)$.
7. Find the point in the XY-plane which is equidistant from the points $(2,0,3),(0,3,2)$ and ( $0,0,1$ ).

## - Watch Video Solution

8. Prove that the point $\mathrm{A}(0,0,0), \mathrm{B}(2,0,0), C(1, \sqrt{3}, 0)$ and $D\left(1, \frac{1}{\sqrt{3}}, \frac{2 \sqrt{2}}{\sqrt{3}}\right)$ are the vertices of a regular tetrahedron.

## ( Watch Video Solution

9. Find the coordinates of the point which divides the join of the points
(2,-1,3) and (4,3,1) in the ratio 3:4 internally.

## - Watch Video Solution

10. Find the points on the line segment PQ situated at
$\frac{2}{3}$ of the distance from the initial point P to the final point Q , where
$P=(3,1,7), Q=(-2,5,3)$.

## - Watch Video Solution

11. Find the points on the line segment $P Q$ situated at
$\frac{2}{3}$ of the distance from the initial point $P$ to the final point $Q$, where $P=(3,1,7), Q=(-2,5,3)$.

## - Watch Video Solution

12. If $A$ and $B$ are two points whose position vectors are $3 \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}-\hat{k}$ respectively. Find the position vectors of the points dividing the segment $A B$
internally in the ratio 1:3.
13. If A and B are two points whose position vectors are $3 \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}-\hat{k}$ respectively. Find the position vectors of the points dividing the segment $A B$
externally in the ratio $3: 1$.

## - Watch Video Solution

14. Find the coordinates of the point which is three fifth of the way $(3,4,5)$ to $(-2,-1,0)$.

## - Watch Video Solution

15. Find the ratio in which the line segment joining : $(1,2,3)$ and $(-3,4,-5)$ is divided by the xy-plane.

## - Watch Video Solution

16. If $A$ and $B$ are the points $(-3,4,-8)$ and ( $5,-6,4$ ) respectively, find the ration in which YZ-plane divides [AB]. Also find the coordinates of the point of section.

## - Watch Video Solution

17. Using section formula, prove that the three points $(-2,3,5),(1,2,3)$ and ( $7,0,-1$ ) are collinear.

## - Watch Video Solution

18. Show that the points : $(4,7,8),(2,3,4),(-1,-2,1),(1,2,5)$ are the vertices of a parallelogram.

## - Watch Video Solution

19. Using vectors, show that the medians of a triangle are concurrent.
20. Prove that the points $A(5,0,2), B(2,-6,0), C(4,-9,6)$ and $D(7,-3,8)$, taken in order, form a square of area 49 square units.

## - Watch Video Solution

21. If three consecutive vertices of a parallelogram are $(3,4,-1),(7,10,-3)$ and ( $8,1,0$ ), find the fourth vertex.

## - Watch Video Solution

22. The ends of a side of a parallelogram are (2,5,-3),(3,7,-5) and its diagonals meet in $(4,3,3)$. Find the remaining vertices of the parallelogram.

## - Watch Video Solution

23. The mid-points of the sides of a triangle are $(5,7,1),(0,8,5)$ and $(2,3,-1)$.

Find the coordinates of the vertices of the triangle.

## - Watch Video Solution

24. Two vertices of a traingle are $(2,-6,4)$ and $(4,-2,3)$ and its centroid is $\left(\frac{8}{3},-1,3\right)$. Find the third vertex.

## - Watch Video Solution

25. Find the coordinates of the centroid of a triangle the mid points of whose sides are ( $1,2,-3$ ), ( $3,0,1$ ) and ( $-1,1,-4$ )

## - Watch Video Solution

26. $\mathrm{A}(3,2,0), \mathrm{B}(5,3,2), \mathrm{C}(-9,6,-3)$ are three points forming a triangle. AD, the bisector of $a n l \geq B A C$ meets $[\mathrm{BC}]$ at D . Find the co-ordinates of D .
27. Calculate the cosine of the angle $A$ of the triangle with vertices $A(1,-1,2), B(6,11,2), C(1,2,6)$.

## - Watch Video Solution

28. The direction ratios of a vector are $\langle 1,-3,-2\rangle$, find its direction cosines.

## - Watch Video Solution

29. Find the direction cosines of the vectors:
$2 \hat{i}+2 \hat{j}-\hat{k}$

## - Watch Video Solution

30. Find the direction cosines of the vectors:
$6 \hat{i}-2 \hat{j}-3 \hat{k}$
31. Find the direction cosines of the vectors:
$3 \hat{i}+4 \hat{k}$

## - Watch Video Solution

32. Find the direction cosines of the vectors:
$\hat{k}$

## - Watch Video Solution

33. Find the angles at which the following vectors are inclined to each of the coordinates axes: $\hat{i}-\hat{j}+\hat{k}$.
34. Find the angles at which the following vectors are inclined to each of the coordinates axes:
$4 \hat{i}+8 \hat{j}+\hat{k}$.

## - Watch Video Solution

35. Find the angles at which the following vectors are inclined to each of the coordinates axes:
$\hat{j}-\hat{k}$

## - Watch Video Solution

36. Find the angles at which the following vectors are inclined to each of the coordinates axes:
$\hat{i}$
37. Can a vector have direction angles $45^{\circ}, 60^{\circ}$ and $120^{\circ}$ ?

## - Watch Video Solution

38. A line makes angles $45^{\circ}$ and $60^{\circ}$ with the positive direction of the axis of $x$ and $y$ makes with the positive direction of $z$ axis, an angle of:
A. $60^{\circ}$
B. $120^{\circ}$
C. $60^{\circ}$ or $120^{\circ}$
D. none

## Answer:

## - Watch Video Solution

39. If a line makes angles $90^{\circ}, 60^{\circ}$ and $30^{\circ}$ with the positive direction of $x, y$ and $z$-axis reapectively, then direction cosines are

## (D) Watch Video Solution

40. A line passes through the points $(6,-7,-1) \operatorname{and}(2,-3,1)$. Find the direction cosines of the line if the line makes an acute angle with the positive direction of the $x$-axis.

## - Watch Video Solution

41. A vector $\vec{r}$ has length 14 and direction numbers $\langle 2,6,-3\rangle$. Find the direction cosines and components of $\vec{r}$.

## - Watch Video Solution

42. A vector $\vec{v}$ is inclined at equal angles to the positive directions of the three coordinate axes. If the magnitude of $\vec{v}$ is 6 units, find $\vec{v}$.

## - Watch Video Solution

43. Show that the line joining the mid points of two sides of a triangle is parallel to the third side.

## - Watch Video Solution

44. The Cartesian equations of a line are $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Vector equation for the line is

## - Watch Video Solution

45. The Cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equation for the line.

## - Watch Video Solution

46. A line passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction of $\hat{i}+\hat{j}-2 \hat{k}$. Find the equations for the line in vector and in cartesian form.

## (D) Watch Video Solution

47. Find the vector equation for the line through the points $A(3,4,-7)$ and $B(1,-1,6)$.

## Watch Video Solution

48. The cartesian equation of a line is $6 x-2=3 y+1=2 z-2$. Find :
(a) the direction-ratios of the line, and (b) vector equation of the line parallel to this line and• passing through the point (2,-1,-1).

## - Watch Video Solution

49. Find the equations of a line through $A(1,-1,0)$ and parallel to the line $\frac{x-2}{3}=\frac{2 y+1}{2}, \frac{5-z}{1}$.

## - Watch Video Solution

50. The points $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$ are three vertices of a parallelogram $A B C D$. Find the vector equations of side $A B$ and $B C$ and also find the coordinates of point $D$.

## - Watch Video Solution

51. Show that the two lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5} \quad$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ intersect each other. Find also the point of intersection.

## - Watch Video Solution

52. Show that the lines
$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5} \quad$ intersect
each other. Also find their point of intersection.

## - Watch Video Solution

53. Prove that the line through $A(0,-1,-1)$ and $B(4,5,1)$ intersects the line through $C(3,9,4)$ and $D(-4,4,4)$. Also find their point of intersection.

## Watch Video Solution

54. Show by direction numbers that the points ( $-2,4,7$ ),(3,-6,-8) and ( $1,-2,-2$ ) are collinear.

## - Watch Video Solution

55. Find the equation of the line passing through the points $A(-2,4,7)$, $B(3,-6,-8)$. Hence show that the points $A, B$ and $C(1,-2,2)$ are collinear.

## - Watch Video Solution

56. Evaluate
$\int(2 x+5) \frac{d x}{x^{2}+4 x+5}$
57. Find the point on the line $\frac{x+2}{3}=\frac{y+1}{2}=\frac{z-3}{2}$ at a distance of $3 \sqrt{2}$ from the point $(1,2,3)$.

## - Watch Video Solution

58. Find the angle between the pairs of line with direction ratios $<5,-12,13>,<-3,4,5>$

## - Watch Video Solution

59. Find the angle between the pair of lines with directions ratios:
$\langle 1,1,2\rangle,\langle\sqrt{3}-1,-\sqrt{3}-1,4\rangle$

## - Watch Video Solution

60. If $P, Q$ are $(2,3,-6),(3,-4,5)$, then find the acute angle that $O P$ makes with OQ.

## D Watch Video Solution

61. Find the angles between each of the following pairs of lines:
$\vec{r}=4 \hat{i}-\hat{j}+\lambda(\hat{i}+2 \hat{j}-\hat{k})$
$\vec{r}=\hat{i}-\hat{j}+2 \hat{k}-\mu(2 \hat{i}+4 \hat{j}-4 \hat{k})$

## D Watch Video Solution

62. Find the angle between the followig pair of lines :
$\frac{-x+2}{-2}=\frac{y-1}{7}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{2 y-8}{4}=\frac{z-5}{4} \quad$ and check whether the lines are parallel or perpendicuar.
63. Find the angles between each of the following pairs of lines:
$\frac{x-2}{3}=\frac{y+1}{-2}, z=2, \frac{x-1}{1}=\frac{y+3}{3}=\frac{z+5}{2}$.

## - Watch Video Solution

64. The angle between a line with direction ratios proportional to $2,2,1$ and a line joining $(3,1,4)$ and $(7,2,12)$ is

## - Watch Video Solution

65. Find the angle between the following pair of lines :
$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}), \vec{r}=2 \hat{i}-\hat{j}+\hat{k}+\mu(3 \hat{i}+\hat{j}-2 \hat{k})$

## - Watch Video Solution

66. Find the angle between the lines whose direction cosines are given by
the equations:
$1-5 m+3 n=0$
$7 l^{2}+5 m^{2}-3 n^{2}=0$.

## - Watch Video Solution

67. Find the angle between the lines whose direction cosines are given by the equations:
$21-m+2 n=0$ $\mathrm{mn}+\mathrm{nl}+\mathrm{Im}=0$.

## - Watch Video Solution

68. Differentiate the following
$y=\tan \left(\sin \left(a^{x}\right)\right)$

## - Watch Video Solution

69. Find the angle of the tirangle $A B C$ whose vertices are $A(-1,3,2), B(2,3,5)$ and $C(3,5,-2)$.

## D Watch Video Solution

70. Find the length of the perpendicular from the point $(1,2,3)$ to the line :
$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$

## D Watch Video Solution

71. Find the perpendicular distance of the point $(1,0,0)$ from the line : $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$. Also find the co ordinates of the foot of the perpendicular.
72. Find the equations of the perpendicular drawn from the point $(2,4,-1)$ to the line : $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$

## - Watch Video Solution

73. Find the length and foot of perpendicular drawn from the point $(2,-1,3)$ to the line
$\frac{x-11}{10}=\frac{y+2}{-4}=\frac{z+8}{-11}$

## - Watch Video Solution

74. Find the equations of the straight line passing through the point $(1,2$, -4) and is perpendicular to the lines: $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

## - Watch Video Solution

75. Find the equation in vector anf cartesian form of the line passing through the point : $(2,-1,3)$ and perpendicular to the lines $\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j}-3 \hat{k})+\mu(\hat{i}+2$

## - Watch Video Solution

76. Show that, if the axes are rectangular, the equations of the line through $\left(x_{1}, y_{1}, z_{1}\right)$ at right angles to the lines:

$$
\begin{aligned}
& \frac{x}{l_{1}}=\frac{y}{m_{1}}=\frac{z}{n_{1}}, \frac{x}{l_{2}}=\frac{y}{m_{2}}=\frac{z}{n_{2}} \\
& \frac{x-x_{1}}{m_{1} n_{2}-m_{2} n_{1}}=\frac{y-y_{1}}{n_{1} l_{2}-n_{2} l_{1}}=\frac{z-z_{1}}{l_{1} m_{2}-l_{2} m_{1}}
\end{aligned}
$$

are

## - Watch Video Solution

77. Find the coordinates of the foot of the perpendicular drawn from point $A(1,0,3)$ to the join of points $B(4,7,1)$ and $C(3,5,3)$.
78. $A(1,0,4), B(0,-11,3), C(2,-3,1)$ are three points and $D$ is the foot of the perpandicular from $A$ on $B C$. Find the coodinates of $D$.

## - Watch Video Solution

79. Find the equation of the line joining the points $A(0,-1,3)$ and $B(2,-3,-1)$.

## - Watch Video Solution

80. Find the vector equation of the line joining the points $A(1,-1,2)$ and $B(1,-2,0)$.

## - Watch Video Solution

81. Find the image of the point $(1,6,3)$ in the line $: \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.
82. A line makes angles $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube, prove that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$

## - Watch Video Solution

83. If the edges of a rectangular parallelopiped are $\mathrm{a}, \mathrm{b}$ and c , show that the angles between the four diagonals are given by $\cos ^{-1} \frac{a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}$

## - Watch Video Solution

84. Find the general solution of the following
$(1+\sin x) d y=y d x$

## - Watch Video Solution

85. Prove that the two lines whose direction cosines are connected by the relations

$$
a l+b m+c n=0 \text { and } u l^{2}+v m^{2}+w n^{2}=0 \quad \text { are }
$$

perpendicular if $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$ and parallel if $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$.

## - Watch Video Solution

86. Find the general solution of the following
$(1+\sec x) d y=y^{2} d x$

## - Watch Video Solution

87. Find the shortest distance between two lines whose vector equations are $\quad: \quad \vec{r}=3 \hat{i}+8 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}-\hat{j}+\hat{k}) \quad$ and
$\vec{r}=-3 \hat{i}-7 \hat{j}+6 \hat{k}+\mu(-3 \hat{i}+2 \hat{j}+4 \hat{k})$

## - Watch Video Solution

88. Find the shortest distance between each of the following pair of lines:
$\vec{r}=3 \hat{i}+5 \hat{j}+7 \hat{k}+\lambda(\hat{i}-2 \hat{j}+7 \hat{k})$
$\vec{r}=-\hat{i}-\hat{j}-\hat{k}+\mu(7 \hat{i}-6 \hat{j}+\hat{k})$.

## - Watch Video Solution

89. Find the shortest distance between each of the following pair of lines:
$\vec{r}=(4 \hat{i}-5 \hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and
$\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$.

## - Watch Video Solution

90. Find the general solution of the following
$(\sin x+\cos x) d y=y(\cos x-\sin x) d x$

## - Watch Video Solution

91. Find the shortest distance between each of the following pair of lines:

$$
\begin{aligned}
& \vec{r}=(8+3 t) \hat{i}-(9+16 t) \hat{j}+(10+7 t) \hat{k} \\
& \vec{r}=15 \hat{i}+29 \hat{j}+5 \hat{k}+s(3 \hat{i}+8 \hat{j}-5 \hat{k})
\end{aligned}
$$

92. Find shortest distance between lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$

## - Watch Video Solution

93. Determine whether or not the following paris of lines intersect:
$\vec{r}=\hat{i}-\hat{j}+\lambda(2 \hat{i}+\hat{k}), \vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}-\hat{j}-\hat{k})$

## - Watch Video Solution

94. Determine whether or not the following paris of lines intersect:
$\vec{r}=\hat{i}-5 \hat{j}+\lambda(2 \hat{i}+\hat{k}), \vec{r}=2 \hat{i}-\hat{j}+\mu(\hat{i}+\hat{j}-\hat{k})$.

- Watch Video Solution

95. Determine whether or not the following paris of lines intersect:
$\frac{x-1}{2}=\frac{y+1}{3}=z, \frac{x+1}{5}=\frac{y-2}{1}, z=2$.

## - Watch Video Solution

96. Find the general solution of the following
$\left(1+x^{2}\right) d y=x y d x$

## Watch Video Solution

97. Find the general solution of the following
$\left(e^{x}+1\right) d y=y\left(e^{x}\right) d x$

## - Watch Video Solution

98. Show that the lines $\frac{x-1}{23}=\frac{y+1}{2}=\frac{z-1}{5} \quad$ and $\frac{x-2}{4}=\frac{y-1}{3}=\frac{z+1}{-2}$ do not intersect.
99. Write the vector equation of the following lines and hence find distance between them
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}, \frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$

## - Watch Video Solution

100. Find the normal unit vector to the plane $x+2 y+3 z-6=0$.

## - Watch Video Solution

101. Find the unit vector perpendicular to the plane $\vec{r} \cdot(6 \hat{i}+3 \hat{j}-2 \hat{k})+1=0$ passing through the origin and directed from origin to the plane.

## - Watch Video Solution

102. Find the cartesian equation of the following planes:
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$

## - Watch Video Solution

103. Find the cartesian equation of the following planes:
$\vec{r} \cdot(2 \hat{i}-3 \hat{j}-4 \hat{k})=1$

## - Watch Video Solution

104. Find the equations of the line passing through the point ( $1,-1,2$ ) and perpendicular to the plane $2 x-y+3 z=5$.

## - Watch Video Solution

105. Find the equation of the line passing through the point with position vector $\hat{i}-\hat{j}+2 \hat{k}$ and perpendicular to the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+3 \hat{k})=5$.
106. Find the general solution of the following
$(1+\log x) x d y=y d x$

## - Watch Video Solution

107. Find the equation of the plane passing through the point $(3,-3,1)$ and perpendicular to the line joining the points ( $3,4,-1$ ) and ( $2,-1,5$ ). Also find the coordinates of the foot of the perpendicular, the equation of the perpendicular line and the length of perpendicular drawn from the origin to the plane.

## - Watch Video Solution

108. Find the equation of a plane which bisects perpendicularly the line segment joining the points $A(2,3,4)$ and $B(4,5,8)$.
109. Find the equation of the plane through the point $(1,4,-2)$ and parallel to the plane $2 x-y+3 z+7=0$.

## - Watch Video Solution

110. If the line drawn from ( $4,-1,2$ ) to the point $(-3,2,3)$ meets a plane at right angles, at the point $(-10,5,4)$, then find the equation of the plane.

## - Watch Video Solution

111. Find the equation of the plane through $(1,5,-2)$ and parallel to the plane deterined the points (0,1,1),(1,1,2) and (-1,2,-2).

## - Watch Video Solution

112. The position vectors of two points $A$ and $B$ are $3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}-2 \hat{j}-4 \hat{k}$ respectively. Find the equation of the plane passing through B and perpendicular to $\overrightarrow{A B}$

## - Watch Video Solution

113. Find the vector equations of the line passing through the point ( $1,-1,2$ ) and perpendicular to the plane $2 x-y+3 z-5=0$.

## - Watch Video Solution

114. Find the vector equation of the line through the origin, which is perpendicular to the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+\hat{k})=3$.

## - Watch Video Solution

115. The vector equation of a plane is $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-\hat{k})=21$, find the length of the perpendicular from the origin to the plane.

## - Watch Video Solution

116. Find the vector equation of a plane which is at a distance of 5 units from the origin and has $\langle 2,-1,2\rangle$ as the direction numbers of a normal to the plane.

## - Watch Video Solution

117. Find the vector equation of a line passing through the point with position vector $(2 \hat{i}-3 \hat{j}-5 \hat{k})$ and perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-5 \hat{k})+2=0$. Also, find the point of intersection of this line and the plane.

## - Watch Video Solution

118. The foot of perpendicular drawn from the origin to a plane is $(12,-4,-3)$. Find the equation of the phase.

## - Watch Video Solution

119. The foot of perpendicular drawn from the origin to a plane is $(2,5,7)$.

Find the vector equations of the plane.

## Watch Video Solution

120. $O$ is the origin and $A$ is ( $a, b, c$ ). Find the d.c. of $O A$ and the equation of the plane through $A$ at right angles of $O A$.

## - Watch Video Solution

121. Find the equation of the plane whose intercepts on the axes are 3,4,5 respectively.
122. Find the equation of the plane passing through the point $(2,4,6)$ and making equal intercepts on axes.

## - Watch Video Solution

123. A variable plane moves so that the sum of reciprocals of its intercepts on the three coordinate axes is constant, show that it passes through a fixed point.

## - Watch Video Solution

124. A plane meets the coordinates axes in A, B and C such that the centroid of the triangle ABC is the point $(p, q, r)$, show that the eqation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=3$.

## - Watch Video Solution

125. Find the intercepts made by the plane $2 x-3 y+5 z+4=0$ on the coordinate axes.

## - Watch Video Solution

126. Change to normal form the plane $2 x-3 y+6 z+4=0$

## - Watch Video Solution

127. Find the vector equation of the following planes in scalar product form:

$$
\vec{r}=2 \hat{i}-\hat{k}+\lambda \hat{i}+\mu(\hat{i}-2 \hat{j}-\hat{k}) .
$$

## - Watch Video Solution

128. Find the shortest distance between the following lines whose vector
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(؛$ where $t$ and $s$ are scalars.

## - Watch Video Solution

129. Find the vector equation of the following plane in scalar product form: $\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})$

## - Watch Video Solution

130. Find the equation satisfied by the coordinates of a variable point $P(x, y, z)$ lying in the plane in which the point $A(1,0,2), B(2,2,-1), C(1,1,0)$ lie

## - Watch Video Solution

131. Find the vector equations of the plane passing through the points
$R(2,5,-3), S(-2,-3,5), T(5,3,-3)$
132. Prove that the normal to the plane containing three point whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ lie in the direction of $\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}$.

## - Watch Video Solution

133. Find the equation of a plane which is at a distance $3 \sqrt{3}$ units from origin and the normal to which is equally inclined to co-ordinate axes.

## - Watch Video Solution

134. Show that the plane whose vector equation is $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$ contains the line whose vector equation is $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$.

## - Watch Video Solution

135. Find the equation of the plane through the points $(2,2,-1)$ and $(3,4,2)$ and parallel to the line whose direction ratios are <7,0,6>.

## - Watch Video Solution

136. Find the equation of the plane which passes through the line $\frac{x-3}{2}=\frac{y+2}{9}=\frac{z-4}{-1}$ and the point (-6,3,2).

## - Watch Video Solution

137. Find the equation of the plane containing the line $\frac{x-3}{7}=\frac{y-4}{0}=\frac{z-2}{1}$ and the point (2,2,-1).

## - Watch Video Solution

138. Find the equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point ( $0,7,-7$ ).
139. Find the equation of the plane passing through the point $(1,1,1)$ and containing the line: $\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(3 \hat{i}-\hat{j}+5 \hat{k})$. Also, show that the plane contains the line: $\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\lambda(\hat{i}-2 \hat{j}-5 \hat{k})$.

## D Watch Video Solution

140. Find the equation of the plane which is parallel to the line $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}$ and passes through the point $(0,0,0)$ and (3,-1,2).

## - Watch Video Solution

141. Find the equation of the plane parallel to the line $\frac{x-2}{1}=\frac{y-1}{3}=\frac{z-3}{2}$, which contains the point ( $5,2,-1$ ) and passes through the origin.
142. Evaluate $\int \frac{d x}{\sec x+\tan x}$

## - Watch Video Solution

143. Find the equation of the line passing through ( $1,2,3$ ) and parallel to the planes $x-y+2 z=5$ and $3 x+y+z=6$.

## - Watch Video Solution

144. Find the equation of the plane, which contains two lines: $\frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}$ and $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z}{5}$.

## - Watch Video Solution

145. Find the equation of the plane containing g the lines:

$$
\vec{r}=\hat{i}+\hat{j}+\lambda(\hat{i}+2 \hat{j}-\hat{k}) \text { and } \vec{r}=\hat{i}+\hat{j}+\mu(-\hat{i}+\hat{j}-2 \hat{k}) .
$$

Find the distance of this plane from origin and also from the point $(1,1,1)$.

## - Watch Video Solution

146. Find the vector equation of the line $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z+3}{4}$.

## - Watch Video Solution

147. Find the co-ordinates of the points where the line through the points $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$

## - Watch Video Solution

148. Find the co-ordinates of the point $P$, where the line through $A(3,-4,-5)$ and $B(2,-3,1)$ crosses the plane passing through three points $L(2,2,1)$, $M(3,0,1)$ and $N(4,-1,0)$. Also, find the ratio in which $P$ divides the line segment AB.
149. Find the co-ordinates of the points where the line through the points $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$

## - Watch Video Solution

150. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

## - Watch Video Solution

151. Show that the lines $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}$ intersect. Find the point of intersection and the equaion of the plane contianing them.

## - Watch Video Solution

$$
\frac{x-1}{-3}=\frac{y-2}{-2 k}=\frac{z-3}{2} \text { and } \frac{x-1}{k}=\frac{y-2}{1}=\frac{z-3}{5}
$$ containing these lines.

## - Watch Video Solution

153. Find the length and the foot of the perpendicular from the point
$(7,14,5)$ to the plane $2 x+4 y-z=2$.

## - Watch Video Solution

154. find the length and the foot of perpendicular drawn from the point $(1,1,2)$ to the plane
$\vec{r} \cdot(2 \hat{i}-2 \hat{j}+4 \hat{k})+5=0$.

## - Watch Video Solution

155. Find image of point $(1,3,4)$ in the plane $2 x-y+z+3=0$.

## - Watch Video Solution

156. Find the image of the point $\hat{i}+3 \hat{j}+4 \hat{k}$ in the plane $\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$.

## - Watch Video Solution

157. Find the length and foot of perpendicular drawn from the point $(3,2,1)$ onto the plane $2 x-y+z+1=0$. also find the equation of the plane in which they lie.

## - Watch Video Solution

158. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line
159. Find the projection of the line $\frac{x-1}{2}=\frac{y+1}{-1}=\frac{z-3}{4}$ in the plane $x+2 y+z-9=0$.

## - Watch Video Solution

160. Find the distance of the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{1}$ in the plane $x+y+z+3=0$.

## - Watch Video Solution

161. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line

## - Watch Video Solution

162. Find the ratio in which the plane $a x+b y+c z+d=0$ divides the join of the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ lying on the plane. Hence, show that the points $P(1,-2,3)$ and $Q(0,0,-1)$ lie on opposite sides of the plane $2 x+5 y+7 z=3$.

## - Watch Video Solution

163. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

## - Watch Video Solution

164. Find the angle between the planes $2 x-3 y+4 z=1$ and $-x+y=4$.

## - Watch Video Solution

165. Find the angle between the planes:
$\vec{r} \cdot(\hat{i}+\hat{j})=1$ and $\vec{r} \cdot(\hat{i}+\hat{k})=3$.

## Watch Video Solution

166. Find the angle between the two planes $3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$

## - Watch Video Solution

167. Show that the plane passing through the points $(1,1,1),(1,7,1)$ and $(-7,-3,-5)$ is perpendicular to zx -plane.

## - Watch Video Solution

168. Find the equation of the plane passing through the points ( $1,-1,2$ ) and $(2,-2,2)$ and which is perpendicular to the plane $6 x-2 y+2 z=9$.
169. Find the equation of the plane passing through the points ( $-1,1,1$ ) and (1,-1,1) and perpendicular to the plane $x+2 y+2 z=5$.

## - Watch Video Solution

170. Find the equation of the plane passing through the line $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-3}{4}$ and perpendicular to the plane $x+2 y-z=12$.

## - Watch Video Solution

171. Obtain the equation of the plane passing through the point $(1,-3,-2)$ and perpendicular to the plane $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.

## - Watch Video Solution

172. Find the angles between the line
$\vec{r}=-\hat{i}+\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}+4 \hat{k}) \quad$ and the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}-3 \hat{k})+4=0$

## - Watch Video Solution

173. Find the co-ordinates of the point, where the line: $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersects the plane $x-y+z-5=0$. Also find the angle between the line and the plane.

## - Watch Video Solution

174. The distance of the point ( $2,1,-1$ ) from the plane $x-2 y+4 z=9$ is :

## - Watch Video Solution

175. Find the distance between the point $(7,2,4)$ and the plane determined by the points: $\mathrm{A}(2,5,-3),(\mathrm{B}(-2,-3,5), \mathrm{C}(5,3,-3)$.
176. Find the equations of two planes through the point $(4,2,1),(2,1,-1)$ and making angles $\frac{\pi}{4}$ with the plane $x-4 y+z=9$.

## - Watch Video Solution

177. Find the length of the projection of the line segment joining the point $A(-1,2,0)$ and $B(1,-1,2)$ on the plane $2 x-y-2 z-4=0$

## - Watch Video Solution

178. Show that the line $L$ whose vector equation is $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ is parallel to plane $\pi$ whose vector equation is $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ and find the distance between them.

## - Watch Video Solution

179. Find the equation of plane passing through the point $(1,4,-2)$ and parallel to the plane $2 x-y+3 z=0$

## - Watch Video Solution

180. Find the equation of the planes parallel to the plane $x-2 y+2 z-3=0$ and which is at a unit distance from the point $A(1,1,1)$.

## - Watch Video Solution

181. The planes $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$ are

## D Watch Video Solution

182. Find the distance between the parallel planes $2 x-y+3 z+4=0$ and $6 x-$ $3 y+9 z+13=0$.

## Watch Video Solution

183. Show that the equation of the plane through the line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ and perpendicular to the plane containing non perpendicular lines
$\frac{x}{m}=\frac{y}{n}=\frac{z}{l} \quad$ and $\quad \frac{x}{n}=\frac{y}{l}=\frac{z}{m}$ is
$(m-n) x+(-l) y+(l-m) z=0$.

## - Watch Video Solution

184. Two systems of rectangular axes have the same origin. If a plane cuts them at distance $a, b, c$ and $a^{\prime}, b^{\prime}, c^{\prime}$ respectively form the origin, prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}$.

## - Watch Video Solution

185. Show that the points $P(\hat{i}-\hat{j}+3 \hat{k})$ and $Q(3 \hat{i}+3 \hat{j}+3 \hat{k})$ are equidistant from the plane $\vec{r} \cdot(5 \hat{i}+2 \hat{j}-7 \hat{k})+9=0$ and lie on opposite sides of it.

## - Watch Video Solution

186. Find in parametric form, the equations of the line $x+y+z+1=0,4 x+y-$ $2 z+2=0$.

## - Watch Video Solution

187. Find the equation of the plane through the line of intersection of the planes $x+2 y+3 z+4=0$ and $x-y+z+3=0$ and passing through the origin.

## - Watch Video Solution

188. Find the equation of the plane containing the line of intersection of the plane $x+y+z-6=0$ and $2 x+3 y+4 z+5=0$ and passing
through the points $(1,1,1)$.

## - Watch Video Solution

189. Find the vector quation of the plane containing the line of intersection of the planes $x-3 y+4 z-5=0$ and $2 x-y+3 z-1=0$ and passing through the point (1,-2,3).

## - Watch Video Solution

190. Find the equation of the plane which is perpendicular to the plane 5 $x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}-4-0$ and $2 \mathrm{x}+\mathrm{y}-\mathrm{z}+5-0$.

## - Watch Video Solution

191. Find the equation of the plane bisectiing the angles between the planes: $x+2 y+2 z-3=0,3 x+4 y+12 z+1=0$ and specify the
plane, which bisects the acute angle.

## - Watch Video Solution

192. Show that the lines $\frac{x+4}{3}=\frac{y+6}{5}=\frac{z-1}{-2} \quad$ and $3 x-2 y+z+5=0=2 x+3 y+4 z-4$ intersect. Find the equation of the plane in which they lie and also their point of intersection.

## - Watch Video Solution

193. Prove that the line of section of the planes $5 x+2 y-4 z+2=0$ and $2 x+8 y+2 z-1=0$ is parallel to the plane $4 x-2 y-5 z-2=0$.

## - Watch Video Solution

194. Find the equations of the line through the point $(1,2,4)$ and parallel to the line $3 x+2 y-z=4, x-2 y-2 z=5$.
195. Find the angle between the lines: $x-2 y+z=0=x+2 y-2 z$ and $x+2 y+z=0=3 x+9 y+5 z$.

## - Watch Video Solution

196. Prove that the lines $x=p y+q, z=r y+s$ and $x=p^{\prime} y+q^{\prime} z=r^{\prime} y+s^{\prime}$ are at right angles if $\mathrm{pp}^{\prime}+\mathrm{rr}+1=0$.

## - Watch Video Solution

197. Find the equations of the plane through the intersection of the planes $\vec{r} \cdot(\hat{i}-1 \hat{j})=-6$ and $\vec{r} \cdot(3 \hat{i}+3 \hat{j}-4 \hat{k})=0$, whose perpendicular distance form the origin is unity.

## - Watch Video Solution

198. Find the equations of the plane which contains the line of intersections of the planes
$\vec{r} \cdot(\hat{i}-2 \hat{j}+3 \hat{k})-4=0 \quad$ and $\quad \vec{r} \cdot(-2 \hat{i}+\hat{j}+\hat{k})+5=0 \quad$ and whose intercept on x -axis is equal to the on y -axis.

## - Watch Video Solution

199. If a line makes angles of $90^{\circ}, 60^{\circ}$ and $\theta$ with the $\mathrm{x}, \mathrm{y}$ and z axis respectively,where $\theta$ is acute, find its $\theta$

## - Watch Video Solution

200. Name the locus of the equation $x^{2}+y^{2}=0$.

## - Watch Video Solution

201. What is the locus of the equations $x^{2}+y^{2}+z^{2}=0$ ?
202. Write the direction cosines of the $Y$-axis.

## - Watch Video Solution

203. What is the shortest distance between two intersecting lines?

## - Watch Video Solution

204. Direction cosines of $\hat{i}$ are ‘

Watch Video Solution
205. Write down direction cosines of the line $\frac{1-x}{1}=\frac{y-2}{1}=\frac{z-3}{1}$.
206. What is the angle between the planes $x+y=0$ and $z=0$.

## - Watch Video Solution

207. Name the surface represented by the equation $a x+b y+c z+d=0$, where $a^{2}+b^{2}+c^{2}=0$.

## - Watch Video Solution

208. Write the attitude numbers of the plane $2 x-3 y+4 z-13=0$.

## - Watch Video Solution

209. Find $p$ if the planes $2 x+3 y+6 z-13=0$ and $6 x+p y-3 z=0$ are at right angles.

## - Watch Video Solution

210. Find $\lambda$ if the lines $\frac{x}{6}=\frac{y}{2}=\frac{z}{-3}$ and $\frac{x}{p}=\frac{y}{-6}=\frac{z}{2}$ are at right angles.

## Watch Video Solution

211. Find the intercepts of the plane $2 x-3 y+4 z-24=0$ on the cooridnate axes.

## - Watch Video Solution

212. Find the distance of the plane $x+y+z-\sqrt{3}=0$ from the origin.

## - Watch Video Solution

213. Does the line $\mathrm{x}=\mathrm{y}=0$ lie in the plane $\mathrm{z}=0$.

## - Watch Video Solution

214. Name the surface represented by the equation $2 x-3 y=0$.

## - Watch Video Solution

215. Find the distance between the point $(2,3,6)$ and $(0,0,0)$.

## - Watch Video Solution

216. Write down the coordinates of the mid point of the segment joining the points $A(1,-3,5)$ and $B(-3,7,1)$.

## - Watch Video Solution

217. If the direction ratios of a line $<2,-1,-2>$ find the direction cosines of the line.

## - Watch Video Solution

218. find the vector equations of the line which is parallel to the vector $3 \hat{i}-2 \hat{j}+6 \hat{k}$ and which is passes through the point $(1,-2,3)$

## - Watch Video Solution

219. Find the direction cosines of the line passing through the points $P(2,3,5)$, and $Q(-1,2,4)$.

## - Watch Video Solution

220. If a line makes an angles of $30^{\circ}, 60^{\circ}, 90^{\circ}$ with the positive direction of $x, y, z$ axis respectively, then find its direction cosines.

## - Watch Video Solution

221. If the $x$-coordinate of a point $P$ on the line joining points $Q(2,2,1)$ and $R(5,1,-2)$ is 4 , then its $z$-coordinate is
222. Find the distance of the point whose position vector is $2 \hat{i}+\hat{j}-\hat{k}$ from the plane $\vec{r} \cdot(\hat{i}-2 \hat{j}+4 \hat{k})=9$.

## - Watch Video Solution

223. Find the position vector of a point A in space such that $\overrightarrow{O A}$ is inclined at $60^{\circ}$ to $O X$ and at $45^{\circ}$ to $O Y$ and $|\overrightarrow{O A}|=10$ units.

## - Watch Video Solution

224. Parametric equations of a line are $x=-1+2 t, y=3-4 t$ and $z=2+t$. find the equations of the line in the symmetrical form.

## - Watch Video Solution

225. Parametric equations a line are $x=2-3 t, y=-1+2 t$ and $z=3+t$. write down the vector equations of the line.

## Watch Video Solution

226. Vector equations of a line if $\vec{r}=3 \hat{i}-6 \hat{j}+7 \hat{k}+\lambda(2 \hat{i}-\hat{j}+\hat{k})$.

Find te equations of the line in the symmetrical form.

## - Watch Video Solution

227. Vector equation of a plane is $\vec{r} \cdot(2 \hat{i}+4 \hat{j}-3 \hat{k})=5$. Write down the equation of the plane in the cartesian form.

## - Watch Video Solution

228. What is the distance of the point $(-1,2,1)$ from the plane $2 x-3 y+4 z+5=0$.
229. Find $p$ if the plane $x+y-2 z+6=0$ is parallel to the plane $p x+3 y-6 z-1=0$.

## - Watch Video Solution

230. Write the equation to the locus of a point which is always at a fixed distance 'r' from the origin.

## - Watch Video Solution

231. Find the vector equations to the locus of a point whose distance from the point $C(\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k})$ is constant equal to a.

## - Watch Video Solution

232. If the line drawn from the point $(-2,-1,-3)$ meets a plane at right angles at the point ( $1,-3,3$ ), find the eqution of the plane.
233. Write the distance of the plane $2 x-y+2 z+1=0$ from the origin.

## - Watch Video Solution

234. Write the direction of cosines of the line joining the poidnts $(1,0,0)$ and $(0,0,1)$.

## - Watch Video Solution

235. Write the vector equations of the plane throught the point $(a, b, c)$ and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

## - Watch Video Solution

236. If the cartesian equations of a line are $: \frac{3-x}{5}=\frac{y+4}{7}=\frac{2 z-6}{4}$, write the vector equation for the line.
237. Distance of the point $(2,5,-3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$ is

## - Watch Video Solution

238. Write down the direction cosines of the line whose equations are $5 x-$ $3=15 y+7=3-10 z$.

## - Watch Video Solution

239. Write the sum of intercepts cut off by the plane $\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})-5=0$ on the three axes.

## - Watch Video Solution

240. If a line angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the positive $x, y$ and $z$ axis respectively, find its direction cosines.

## Watch Video Solution

241. Find the direction cosines of a line which makes equal angles with the coordinate axes.

## - Watch Video Solution

242. If a line has the direction ratios $-18,12,-4$, then what are its direction cosines ?

## - Watch Video Solution

243. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.
244. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.

## - Watch Video Solution

245. show that the three lines with direction cosines $<\frac{12}{13},-\frac{3}{13},-\frac{4}{13}>,<\frac{4}{13}, \frac{12}{13}, \frac{3}{13}>,<\frac{3}{13},-\frac{4}{13}, \frac{12}{13}>$
are mutually perpendicular.

## - Watch Video Solution

246. Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

## - Watch Video Solution

247. Show that the line through the points $(4,7,8)$ and $(2,3,4)$ is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

## Watch Video Solution

248. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

## - Watch Video Solution

249. Find the equation of the line in vector and in cartesian form that passes through the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$

## - Watch Video Solution

250. Find the cartesian equation of the line which passes through the point (- 2, 4, - 5) and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$

## - Watch Video Solution

251. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

## - Watch Video Solution

252. Find the vector and the cartesian equations of the lines that passes through the origin and ( $5,-2,3$ ).

## - Watch Video Solution

253. Find the vector and the cartesian equations of the line that passes through the points $(3,-2,-5),(3,-2,6)$.

## - Watch Video Solution

254. Find the angle between the following pair of lines:
$\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and
$\vec{r}=7 \hat{i}-6 \hat{j}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$

## - Watch Video Solution

255. Find the angle between the following pair of lines:
$\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$
and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

## - Watch Video Solution

256. Find the angle between the following pair of lines:
$\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-2}=\frac{y-4}{8}=\frac{z-5}{4}$.

## - Watch Video Solution

257. Find the angle between the following pair of lines:
$\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

## - Watch Video Solution

258. Find the value of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

## - Watch Video Solution

259. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other
260. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
and
$\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$

## - Watch Video Solution

261. Find the shortest distance between the lines $\left(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\right.$ and $\left.\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\right)$

## - Watch Video Solution

262. Find the shortest distance between the lines whose vector equations are

$$
\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \quad \text { and }
$$

$\vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
263. Find the shortest distance between the following lines whose vector equations are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(\dot{s}$
where $t$ and $s$ are scalars.

## - Watch Video Solution

264. In the following, determine the direction cosines of the normal to the plane and the distance from the origin : $z=2$

## - Watch Video Solution

265. Determine the direction cosines of the normal to the plane and the distance from the origin.
$x+y+z=1$
266. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin. : $2 x+3 y-z=5$

## - Watch Video Solution

267. In the following, determine the direction cosines of the normal to the plane and the distance from the origin : $5 y+8=0$

## - Watch Video Solution

268. Find the vector equation of a plane, which is at a distance of 7 units from the origin and which is normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

## - Watch Video Solution

269. Find the cartesian equation of the following planes.
$\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
270. Find the cartesian equation of the following planes.
$\vec{r} \cdot(2 \hat{i}+\hat{j}-4 \hat{k})=1$.

## - Watch Video Solution

271. Find the Cartesian equation of the following plane:
$\vec{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15$

## - Watch Video Solution

272. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $2 x+3 y+4 z-12=0$

## - Watch Video Solution

273. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $3 y+4 z-6=0$

## Watch Video Solution

274. In the following cases, find the co-ordinates of the foot of the perpendicular drawn from the origin : $x+y+z=1$

## - Watch Video Solution

275. In the following case, find the coordinates of the foot of the perpendicular drawn from the origin: $5 y+8=0$

## - Watch Video Solution

276. Find the vector and cartesian equations of the plane that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
277. Find the vector and cartesian equations of the plane that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$

## - Watch Video Solution

278. Find the equations of the plane that passes through three points : (1,1,-1), (6,4,-5), (-4,-2,3)

## - Watch Video Solution

279. Find the equations of the plane that passes through three points :
$(1,1,0),(1,2,1),(-2,2,-1)$

## - Watch Video Solution

280. Find the intercepts cut off by the plane $2 x+y-z=5$

## - Watch Video Solution

281. Find the equation of the plane with intercept 3 on the $y$-axis and parallel to ZOX plane.

## - Watch Video Solution

282. Find the equation of the plane throught he intersection of the planes : $3 x-y+2 z-4=0$ and $x+y+z-2=0$ at the point (2,2,1).

## - Watch Video Solution

283. Find the vector equation of the plane passing through the intersection of the
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and through the point (2, 1, 3)

## - Watch Video Solution

284. Find the equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$

## - Watch Video Solution

285. Find the angle between the planes whose vector equations are
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

## - Watch Video Solution

286. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them:
$7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$

## - Watch Video Solution

287. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them: $2 x+y+3 z-2=0$ and $x-2 y+5=0$

## - Watch Video Solution

288. In the following determine whether the given planes are parallel or perpendicular and in case they are neither, find the angles between them: $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

## - Watch Video Solution

289. Find the angle between them
$2 x-y+3 z-1=0$ and $2 x-y+3 z=0$.
290. In the following case, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them: $4 x+8 y+z-8=0$ and $y+z-4=0$

## - Watch Video Solution

291. In the following exercises find the distances of each of the given points from the corresponding given plane.

## Point

(a) $(0,0,0)$
(b) $(3,-2,1)$
(c) $(2,3,-5)$
(d) $(-6,0,0)$

Plane
$3 x-4 y+12 z=3$
$2 x-y+2 z+3=0$
$x+2 y-2 z=9$
$2 x-3 y+6 z-2=0$.
292. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points ( $3,5,-1$ ), ( $4,3,-1$ ).

## - Watch Video Solution

293. If $l_{1}, m_{1}, n_{1}$ and $l_{2}, m_{2}, n_{2}$ are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2}-m_{1}$

## - Watch Video Solution

294. Find the angle between the lines whose direction ratios are $a, b, c$ and $b-c, c-a$, $a-b$

## - Watch Video Solution

295. Find the equation of a line parallel to $x$-axis and passing through the origin.

## Watch Video Solution

296. If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -
6) and (2, 9, 2) respectively, then find the angle between the lines $A B$ and CD.

## - Watch Video Solution

297. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2} \quad$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k .

- Watch Video Solution

298. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

## Watch Video Solution

299. Write the vector equations of the plane throught the point (a,b,c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

## - Watch Video Solution

300. Find the shortest distance between the lines:
$\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and $\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-$

## - Watch Video Solution

301. Find the coordinates of the points where the line through $(5,1,6)$ and $(3,4,1)$ crosses YZ-plane.

## - Watch Video Solution

302. Find the coordinates of the point where the line through $(5,1,6)$ and
$(3,4,1)$ crosses the ZX-plane.

## - Watch Video Solution

303. Find the coordinates of the point where the line through ( $3,-4,-5$ ) and $(2,-3,1)$ crosses the plane $2 x+y+z=7$

## - Watch Video Solution

304. Find the equation of the plane passing through the point ( $1,1,-1$ ) and perpendicular to each of the planes
$x+2 y+3 z-7=0$ and $2 x-3 y+4 z=0$

## - Watch Video Solution

305. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane
$\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of $p$.

## - Watch Video Solution

306. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1 \quad$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to $x$-axis.

## - Watch Video Solution

307. If $O$ be the origin and the coordinates of $P$ be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to OP .
308. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \quad$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

## - Watch Video Solution

309. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$.

## - Watch Video Solution

310. Find the vector equation of the line passing through ( $1,2,3$ ) and parallel to the planes
$\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$.
311. Find the equations of the straight line passing through the point ( 1 , 2, -4 ) and is perpendicular to the lines : $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

## - Watch Video Solution

312. Prove that if a plane has intercepts $a, b, c$ and is at a distance of $p$ units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.

## - Watch Video Solution

313. Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is:
A. 2 units
B. 4units
C. 8 units
D. $\frac{2}{\sqrt{29}}$ units

## Answer:

## - Watch Video Solution

314. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are :
A. perpendicular
B. parallel
C. intersect along y axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

## Answer:

## - Watch Video Solution

315. If a line makes angle $90^{\circ}, 135^{\circ}, 45^{\circ}$ with $\mathrm{X}, \mathrm{Y}$ and Z -axis respectively, then its direction cosines are

## - Watch Video Solution

316. The vector equation of the line through the points $(3,4,-7)$ and $(1,-$ 1,6 ) is $\qquad$

## - Watch Video Solution

317. Fill ups

Equations of a line containing the points $(0,0,0)$ and $(1,2,-3)$ are.

## - Watch Video Solution

318. If $\cos \alpha, \cos \beta, \cos \gamma$ are the direction-cosines of a line, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
319. Fill ups

If the lines $\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-4}{\lambda}$ and $\frac{x}{1}=\frac{y}{-2}=\frac{z}{2}$ are t right angles then the value of $\lambda$ is

## - Watch Video Solution

320. The vector equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ is

## - Watch Video Solution

## 321. Fill ups

The direction cosines of the vector $3 \hat{i}+2 \hat{j}-6 \hat{k}$ are

## - Watch Video Solution

322. Direction cosines of $\hat{i}$ are ‘

## - Watch Video Solution

323. Fill ups

The equation of the plane containing the points (2,0,0),(0,3,0) and ( $0,0,4$ )
is $\qquad$ . .

## - Watch Video Solution

324. Fill ups

A plane ' p ' passes through the point $\mathrm{P}(1,-2,3)$. If O is the origin and
$O P \perp p$, then equation of the plane p is

## - Watch Video Solution

325. Find the cartesian equation of the following planes.
$\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$

## Watch Video Solution

326. If a line makes an angle of $\frac{\pi}{4}$ each of $y$ and $z$ axis, then the angle which it makes with $x$-axis is $\qquad$

## - Watch Video Solution

## 327. Fill ups

The equation of the plane containing the points (2,0,0),(0,3,0) and ( $0,0,4$ ) is $\qquad$
328. Fill ups

Distance of the point $(4,-2,3)$ from $Y$-axis is $\qquad$

## Watch Video Solution

329. Fill ups

Intercepts made by the plane $2 x-3 y+5 z-30=0$ on the coordinate axes are respectively.

## D Watch Video Solution

330. The acute angle between the planes $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}-2 \hat{j})=2$ is

## - Watch Video Solution

## 331. Fill ups

The image of the poidnt $(1,-2,3)$ in the plane $x-2 y+3 z-14=0$ is $\qquad$

## Watch Video Solution

332. Fill ups

The image of the poidnt $(1,-2,3)$ in the plane $x-2 y+3 z-14=0$ is $\qquad$

## - Watch Video Solution

333. True or false

The points (a,0,0),(0,b,0) and (0,0,c) are collinear $(a b c \neq 0)$.

## ( Watch Video Solution

334. The points (1, 2, 3), (-2, 3, 4) and (7,0,1) are collinear.
335. The unit vector normal to the plane $x+2 y+3 z-6=0$ is $\frac{1}{\sqrt{14}} \hat{i}+\frac{2}{\sqrt{14}} \hat{j}+\frac{3}{\sqrt{14}} \hat{k}$

- Watch Video Solution

336. True or false

The line $x=y=z$ lies in the plane $x-2 y+z-1=0$.

## - Watch Video Solution

337. True or false

The line $\vec{r}=2 \hat{i}-3 \hat{j}+\hat{k}+t(\hat{i}-\hat{j}+2 \hat{k})$ lies in the plane $\vec{r} \cdot(3 \hat{i}+\hat{j}-\hat{k})-2=0$.

## - Watch Video Solution

338. True or false

The projection of the point $(\alpha, \beta, \gamma)$ on the XOY plane is $(0,0, \gamma)$

## - Watch Video Solution

339. The intercepts made by the plane $2 x-3 y+5 z+4=0$ on the coordinate axis are $-2, \frac{4}{3},-\frac{4}{5}$,

## - Watch Video Solution

340. True or false

The projection of the point $(\alpha, \beta, \gamma)$ on the z -axis $(0,0, \gamma)$

## - Watch Video Solution

341. True or false

The vector equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ is

$$
\vec{r}=5 \hat{i}-4 \hat{j}+6 \hat{k}+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k}) .
$$

## - Watch Video Solution

342. The acute angle between the planes $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+\hat{k})=1$ and $\vec{r} \cdot(\hat{i}-2 \hat{j})=2$ is.

## - Watch Video Solution

343. If $<l, m, n,>$ are $D$. cosines of a line then $l^{2}+m^{2}+n^{2}=$

## - Watch Video Solution

344. The angle between the lines $\vec{r}=(5 \hat{i}-\hat{j}-4 \hat{k})+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and the plane $\vec{r} \cdot(3 \hat{i}-4 \hat{j}-\hat{k})+5=0$ is $\sin ^{-1}\left(\frac{5}{2} \sqrt{91}\right)$.

## - Watch Video Solution

345. True or false

The distance of the point $(-2,4,-5)$ from the line $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$ is $\sqrt{\frac{37}{10}}$.

## - Watch Video Solution

346. Find equation of a plane passing through the points $(2,1,0),(3,-2,-2)$ and (3,1,7)

## - Watch Video Solution

347. The equation of a line, which is parallel to $2 \hat{i}+\hat{j}+3 \hat{k}$ and which passes through the point $(5,-2,4)$ is $\frac{x-5}{2}=\frac{y+2}{-1}=\frac{z-4}{3}$

## - Watch Video Solution

348. True or false

If the foot of perpendicular drawn from the origin to a plane is $(5,-3,-2)$ then the equation of the plane is $\vec{r} \cdot(5 \hat{i}-3 \hat{j}-2 \hat{k})=38$.

## - Watch Video Solution

349. Direction cosines of $x$-axis are
A. It $1,0,0 \mathrm{gt}$
B. It0,1,0gt
C. Ito,0,1gt
D. It0,,1,1gt

## Answer:

Watch Video Solution
350. Direction cosines of any normal to xy-plane are
A. $(1,0,0)$
B. $(0,1,0)$
C. $(0,0,1)$
D. $(1,1,0)$

## Answer:

## - Watch Video Solution

351. Distance of the point $(\alpha, \beta, \gamma)$ from $y$-axis is
A. $\beta$
B. $|\beta|$
C. $|\alpha|+|\gamma|$
D. $\sqrt{a^{2}-\gamma^{2}}$

## Answer:

352. The distance of a point $P(a, b, c)$ from $x$ axis is:
A. $\sqrt{a^{2}+c^{2}}$
B. $\sqrt{a^{2}+b^{2}}$
C. $\sqrt{b^{2}+c^{2}}$
D. $b^{2}+c^{2}$

## Answer:

## - Watch Video Solution

353. If the direction cosine of a line are $<k, k, k>$, then,
A. kgto
B. Oltklt1
C. $\mathrm{k}=1$
D. $k=\frac{1}{\sqrt{3}}$ or $-\frac{1}{\sqrt{3}}$

## Answer:

## - Watch Video Solution

354. If a line makes angles $\alpha, \beta, \gamma$ respectively with positive directions of the coordinate axes, then the value of $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$.
A. 2
B. 1
C. 0
D. none of these

## Answer:

355. Distance of the point $(\alpha, \beta, \gamma)$ from $y$-axis is
A. $\gamma$
B. $|\gamma|$
C. sqrt(alpha^2+beta^2)
D. none of these

## Answer:

## - Watch Video Solution

356. The co-ordinates of foot of the perpendicular drawn from the point $(2,5,7)$ on the $x$ axis are given by:
A. $(2,0,0)$
B. $(0,5,0)$
C. $(0,0,7)$
D. $(0,5,7)$

## - Watch Video Solution

357. The equation of $x$-axis is of the form
A. $x=0, y=0$
B. $x=0, z=0$
C. $x=0$
D. $y=0, z=0$

## Answer:

358. A set of D.R of the line

$$
\vec{r}=(\hat{i}+\hat{j}+\hat{k})+1(2 \hat{i}+3 \hat{j}+6 \hat{k}) \text { are }
$$

A. $\langle 1,1,1\rangle$
B. $\langle 2,3,6\rangle$
C. $<2 \hat{i}, 3 \hat{j}, 6 \hat{k}>$
D. none of these

## Answer:

## - Watch Video Solution

359. If $\alpha, \beta, \gamma$ are the angles that a line makes with the positive direction of $x, y, z$ axis repectively, then the direction cosines of the line are:
A. $<\sin \alpha, \sin \beta, \sin \gamma>$
B. $<\cos \alpha, \cos \beta, \cos \gamma>$
C. $\tan \alpha, \tan \beta, \tan \gamma>$
D. $\cos ^{2} \alpha, \cos ^{2} \beta, \cos ^{2} \gamma>$

## Answer:

360. $P$ is a point on the line segment joining the points ( $3,2,-1$ ) and ( 6, $2,-2$ ). If $x$ coordinates of $P$ is 5 , then its $y$ coordinate is
A. 2
B. 1
C. -1
D. -2

## Answer:

## - Watch Video Solution

361. The shortest destance between $\vec{r}=\vec{a}_{1}+\lambda \vec{b}$ and $\vec{r}=\vec{a}_{2}+\mu \vec{b}$ is $\left|\frac{\vec{b} \times\left(\vec{a}_{2}-\vec{a}_{1}\right)}{|\vec{b}|}\right|$
A. $\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)\right|}{\left|\vec{a}_{1} \times \vec{a}_{2}\right|}$
B. $\left(\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)\right|\right)$
c. $\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)\right|}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}$
D. none of these

## Answer:

## - Watch Video Solution

362. The area of the quadrilateral $A B C D$, where $A 0,4,1), B(2,3,-1), C(4,5$,
$0)$ and $D(2,6,2)$ is equal to
A. 9 square units
B. 18 square units
C. 27 square units
D. 81 square units.

## Answer:

## D Watch Video Solution

363. The line $x=1, y=2$ is
A. parallel to X -axis
B. parallel to $Y$-axis
C. parallel to Z-axis
D. lies in a plane parallel to XY-plane.

## Answer:

Watch Video Solution
364. The distance between the planes $3 x+2 y-6 z=14=0$ and $3 x+2 y-6 z+21=0$ is
A. 35
B. 7
C. 1
D. 5

## Answer:

## D Watch Video Solution

365. The line $\frac{x-x_{1}}{0}=\frac{y-y_{1}}{1}=\frac{z-z_{1}}{2}$ is
A. at right angles to $x$-axis
B. at right angles to the plane YOZ
C. is parallel to Y -axis
D. none of these

## Answer:

366. The line $\frac{x-x_{1}}{0}=\frac{y-y_{1}}{1}=\frac{z-z_{1}}{2}$ is
A. parallel to $X$-axis
B. parallel to $Y$-axis
C. parallel to XOY-plane
D. parallel to Z-axis.

## Answer:

## - Watch Video Solution

367. The locus represented by $x y+y z=0$ is
A. a pair of perpendicular lines
B. a pair of parallel lines
C. a pair of parallel planes
D. a pair of perpendicular planes

## Answer:

## - Watch Video Solution

368. The line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ is at right angles to the plane $A x+B y+C z+D=0$ if
A. $\frac{a}{A}=\frac{b}{B}=\frac{c}{C}$
B. $a A+b B+c C=0$
C. $a^{2} A^{2}+b^{2} B^{2}+c^{2} C^{2}=0$
D. $a A+b B+c C=1$.

## Answer:

## - Watch Video Solution

369. The line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ is parallel to the plane $A x+B y+C z+D=0$ if
A. $\frac{a}{A}=\frac{b}{B}=\frac{c}{C}$
B. $a A+b B+c C=1$
C. $a A+b B+c C=0$
D. none of these

## Answer:

## - Watch Video Solution

370. The lines $\vec{r}=a_{1}+t \vec{v}_{1}$ and $\vec{r}=a_{2}+s \vec{v}_{2}$ lie in a plane $\left(\vec{v}_{1} \times \vec{v}_{2} \neq \overrightarrow{0}\right)$ iff
A. $\vec{a}_{1} \times \vec{a}_{2}=\overrightarrow{0}$
B. $\vec{a}_{1} \times \vec{v}_{2}=0$
c. $\vec{a}_{2} \times \vec{v}_{1}=0$
D. $\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{v}_{1} \times \vec{v}_{2}\right)=0$

## Answer:

## - Watch Video Solution

371. If the projections of $\overrightarrow{P Q}$ on OX , OY and OZ are respectively 12,4 ,and 3 then $|P Q|$ is equal to
A. 169
B. 19
C. 13
D. 144

## Answer:

372. The reflection of the point $(\alpha, \beta, \gamma)$ in the xy-plane is:
A. $(\alpha, \beta, 0)$
B. $(0,0, \gamma)$
C. $(-\alpha,-\beta, \gamma)$
D. $(\alpha, \beta,-\gamma)$

## Answer:

## - Watch Video Solution

373. The projection of the point $(1,2,-4)$ in the YOZ-plane is
A. $(0,2,-4)$
B. $(1,0,0)$
C. $(-1,2,-4)$
D. $(1,2,4)$

- Watch Video Solution

