

MATHS

BOOKS - PRADEEP PUBLICATION

VECTORS

1. If
$$\overrightarrow{c} = 3\overrightarrow{a} + 4\overrightarrow{b}$$
 and $2\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{3}b$ then show that \overrightarrow{c} and \overrightarrow{a} are like vectors and $|\overrightarrow{c}| > |\overrightarrow{a}|$.

Watch Video Solution

2. Show that the sum of three vectors determined by the medians of a triangle directed from the vertics is zero.

3. If a,b,c and d be the position vectors of the points A,B,C and D respectively, referred to same origin O such that no three of these points are collinear and a+c=b+d, then quadrilateral ABCD is a

Watch Video Solution

4. ABCD is a quadrilateral. E is the point of intersection of the line joining the mid-points of the opposite sides. If O is any point and OA+OB+OC+OD=xOE, then x is equal to

5. ABCDEF is a regular hexagon. Show that : $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{OAO}$. Where O is the centre of the hexagon.

6. Solve for \overrightarrow{x} , the equation:

$$\overrightarrow{A}C + \overrightarrow{x} = \overrightarrow{0}$$

Watch Video Solution

7. Solve for
$$\overrightarrow{x}$$
, the equation:

 $\overrightarrow{D}E+\overrightarrow{x}=\overrightarrow{D}C$

Watch Video Solution

8. Solve for
$$\overrightarrow{x}$$
, the equation: ,br> $\overrightarrow{A}E + \overrightarrow{x} = \overrightarrow{A}C$

Watch Video Solution

9. Solve for \overrightarrow{x} , the equation:

 $\overrightarrow{B}E + \overrightarrow{x} + \overrightarrow{E}D = \overrightarrow{B}D$, where ABCD is a quadilateral whose diagonals

intersects in E.

10. ABCD is a quadilateral in which [BC] is parallel to [AD] and the ratio of the lengths BC: AD: :4:7. Taking $\overrightarrow{A}B$ and $\overrightarrow{A}D$ as representatives of vectors \overrightarrow{v} and $7\overrightarrow{u}$ respectively, find the vectors represented by $\overrightarrow{B}C$

Watch Video Solution

11. differentiate the following

 $y = \sin 9x + \cos ec2x$

Watch Video Solution

12. Differentiate the following

$$y = \log(e^x) + x^3$$

15. Consider two points P and Q with position vectors $\overrightarrow{OP} = 3\overrightarrow{a} - 2\overrightarrow{b}$ and $\overrightarrow{OQ} = \overrightarrow{a} + \overrightarrow{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2:1, internally.

Watch Video Solution

16. Consider two points P and Q with position vectors $\overrightarrow{OP} = 3\overrightarrow{a} - 2\overrightarrow{b}$ and $\overrightarrow{OQ} = \overrightarrow{a} + \overrightarrow{b}$. Find the position vector of a point R which divides

 \overrightarrow{c} may be.

20. Show that the st. Line joining the mid-points of two non-parallel sides of a trapezium is parallel to the bases and is equal to half of the sum of their lengths.

Watch Video Solution

21. Four points P,Q,R and S with respective position vectors $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ and \overrightarrow{s} are such that $5\overrightarrow{p} - 2\overrightarrow{q} + 6\overrightarrow{r} - 9\overrightarrow{s} = \overrightarrow{0}$. Show that the four points are coplanar and find the P.V. of the point in which the lines PQ and RS intersect.

Watch Video Solution

22. If O and H be the circumcentre and orthocentre respectively of triangle ABC, prove that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C = \overrightarrow{O}H$.

23. If S and O be the circumcentre and orthocentre respectively of triangle ABC, prove that $\overrightarrow{S}A + \overrightarrow{S}B + \overrightarrow{S}C = \overrightarrow{S}O$.

Watch Video Solution

24. If A (2,4) and B (-5,-3) are respectively the initial and final points of a vector \overrightarrow{v} , find components of \overrightarrow{v} and the magnitude of \overrightarrow{v} .

Watch Video Solution

25. If A is the point (1,2) and the vector $\overrightarrow{A}B$ has components 2 and 6, find

the point B.

27. Find the vector in the direction of the vector $\hat{i} - 2\hat{j}$ that has magnitude 7 units.

Watch Video Solution

28. Write all the unit vectors in XY-plane.

29. Find the components of a vector \overrightarrow{v} whose magnitude is $5\sqrt{3}$ and which makes an angle of 120 with positive direction of X- axis.

30. Using vectors, prove that the point A(1,2), B(3,8) and (-3,-10) are collinear.

Watch Video Solution
31. A(5,4),B(3,8),C(-1,6) and D are coplanar points. Find the coordinates of D so that
$$\overrightarrow{A}B = \overrightarrow{D}C$$
.

Watch Video Solution

32. If $\overrightarrow{v}_1 = (2, -3)$, $\overrightarrow{v}_2 = (0, 1)$ and $\overrightarrow{v}_3 = (-1, 6)$, find a unit vector parallel to $\overrightarrow{v}_1 + 2\overrightarrow{v}_2 - \overrightarrow{v}_3$.

the coordinates(2,-3,1). Find the point B.

37. Find the values of x,y and z so that the vectors $\overrightarrow{a} = x\hat{i} + 2\hat{j} + z\hat{k}$ and $\overrightarrow{b} = 2\hat{I} + y\hat{j} + \hat{k}$ are equal.

38. Find the unit vector in the direction of vector vec PQ ,P(1,2,3) and Q(5,6,7)

Watch Video Solution

39. Find a unit vector in the direction of $2\hat{i} + 3\hat{j} + \hat{k}$.

40. Find a unit vector in the direction of the sum of the vectors:

$$\stackrel{
ightarrow}{a}=\ -\ \hat{i}+\hat{j}+\hat{k}$$
 and $\stackrel{
ightarrow}{b}=2\hat{i}+\hat{j}-3\hat{k}.$

41. Find a unit vector in the direction of the sum of the vectors:

$$\overrightarrow{a}=2\hat{i}+2\hat{j}+5\hat{k}$$
 and $\overrightarrow{b}=2\hat{i}+\hat{j}-3\hat{k}.$

Watch Video Solution

42. Show that the points A(3,5,1), B(-1,0,8) and C(7,10,-6) are collinear.

Watch Video Solution

43. Show that the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $-4\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear.

Watch Video Solution

44. Prove that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ are

coplanar.

45. Show that the points (1,0,1),(1,1,0),(0,1,1) and (0,0,2) are coplanar.

46. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$.

Watch Video Solution

47. Show that the points $A(2\hat{i} - \hat{j} + \hat{k})$, $B(\hat{i} - 3\hat{j} - 5\hat{k})$ and $C(3\hat{i} - 4\hat{j} - 4\hat{k})$ are the vertices of a right angled triangle.

48. Vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and \overrightarrow{d} are given by $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \overrightarrow{b} = 2\hat{i} + 3\hat{j},$ $\overrightarrow{c} = 3\hat{i} + 5\hat{j} - 2\hat{k}$ and $\overrightarrow{d} = -\hat{j} + \hat{k}$. Show that the vectors $\overrightarrow{b} - \overrightarrow{a}$ and $\overrightarrow{d} - \overrightarrow{c}$ are parallel and find the ratio of their lengths.

Watch Video Solution

49. Find the values of x and y if the points (x,-1,3), (3,y,1) and (-1, 11,9) are

collinear.

Watch Video Solution

50. Show that the vectors $\overrightarrow{a} = \hat{i} - 3\hat{j} + 2\hat{k}$, $\overrightarrow{b} = 2\hat{i} - 4\hat{j} - 4\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 2\hat{j} - 3\hat{k}$ are linearly independent.

51. Find
$$\overrightarrow{v} \cdot \overrightarrow{v}_2$$
 when $\overrightarrow{v} = 4\hat{i} + 12\hat{j} - 3\hat{k}$, $\overrightarrow{v} = -2\hat{i} + 6\hat{j} + 9\hat{k}$.

52. Find
$$\overrightarrow{v}_1$$
. \overrightarrow{v}_2 when \overrightarrow{v}_1 = $\hat{i} + 2\hat{j} + 3\hat{k}$, \overrightarrow{v}_2 = $-2\hat{j} + 4\hat{k}$.

Watch Video Solution

53. Find
$$\overrightarrow{v}_1$$
. \overrightarrow{v}_2 when \overrightarrow{v}_1 =(2, 3, -1), \overrightarrow{v}_2 =(-1, 2, 3).

Watch Video Solution

54. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a}| = 10$, $|\overrightarrow{b}| = 15$ and \overrightarrow{a} . $\overrightarrow{b} = 75\sqrt{2}$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

55. Find the angle between the vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 1 and 1 respectively and when \overrightarrow{a} . \overrightarrow{b} =1.

60. Prove that the three vectors $3\hat{i}+\hat{j}+2\hat{k},\,\hat{i}-\hat{j}-\hat{k}$ and $\hat{i}+5\hat{j}-4\hat{k}$

are at right angle to one another.

61. If $\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, then show that the vecctors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular.

Watch Video Solution

62. Find λ if the vectors $\overrightarrow{a} = \hat{i} - \lambda \hat{j} + 3\hat{k}$ and $\overrightarrow{b} = 4\hat{i} - 5\hat{j} + 2\hat{k}$ are

perpendicular to each other.

63. If $\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ be such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is at right angles to \overrightarrow{c} , then find λ .

64. Show hat the vectors
$$\overrightarrow{a} = \frac{1}{7} \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big)$$
,
 $\overrightarrow{b} = \frac{1}{7} \Big(6\hat{i} + 2\hat{j} - 3\hat{k} \Big)$ and $\overrightarrow{c} = \frac{1}{7} \Big(3\hat{i} - 6\hat{j} + 2\hat{k} \Big)$ are mutually

orthogonal unit vectors.

Watch Video Solution

65. Find λ if the vector $\lambda \left(\hat{i} + \hat{j} + \hat{k}
ight)$ is a unit vector.

Watch Video Solution

66. Show that the vectors $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 3\hat{j} - 5\hat{k}$, $\vec{c} = 3\hat{i} - 4\hat{j} - 4\hat{k}$ form a right angled triangle.

67. Find the angles of the triangle whose vertices are (0,-1,-2), B(3,1,4) and

C(5,7,1).

68. If \overrightarrow{a} and \overrightarrow{b} are unit vectors and θ is the angle between them, show that $\left(\frac{\sin\theta}{2} = \frac{1}{2} \left| \overrightarrow{a} - \overrightarrow{b} \right|$.

Watch Video Solution

69. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, prove that \overrightarrow{a} and \overrightarrow{b} are perpendicular.

Watch Video Solution

70. If \overrightarrow{a} is a unit vectors and $\left(\overrightarrow{x} + \overrightarrow{a}\right)$. $\left(\overrightarrow{x} - \overrightarrow{a}\right) = 8$, then find $|\overrightarrow{x}|$.

71. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 1$ and \overrightarrow{a} . $\overrightarrow{b} = 1$, then find the value of $(3\overrightarrow{a} - 5\overrightarrow{b})$. $(2\overrightarrow{a} + 7\overrightarrow{b})$.

Watch Video Solution

72. Find two vectors of unit length which make angles of $\angle 45$ with (1,0,0) and are at right angles to (0,0,1).

Watch Video Solution

73. Find a vector \overrightarrow{r} of magnitude $3\sqrt{2}$ units, which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axes respectively.

74. Show that the projection of \overrightarrow{a} on $\overrightarrow{b} \neq \overrightarrow{0}$ is $\left[\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}\right] \overrightarrow{b}$. Hence find

the projection of $\stackrel{
ightarrow}{P}Q$ on $\stackrel{
ightarrow}{A}B$ where P,Q,A,B are the points (-2,1,3),(3,2,5),

(4,-3,5),(7,-5,-1) respectively

Watch Video Solution

75. In any triangle ABC, prove that $\cos A = rac{b^2 + c^2 - a^2}{2bc}.$

Watch Video Solution

76. Show that the diagonals of a rhombus bisect each other at right angles.

77. Prove that angle in a semi-circle is right angle.

are unit vectors inclined at an angle of $\angle 60.$

81. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - \hat{j} - 4\hat{k}$, find $\overrightarrow{a} + \overrightarrow{b}$.

Watch Video Solution

82. The vector $-\hat{i} + \hat{j} - \hat{k}$ bisects the angle between the vector \overrightarrow{c} and

 $3\hat{i} + 4\hat{j}$. Determine the unit vector along \overrightarrow{c} .

Watch Video Solution

84. In a parallelogram ABCD, the bisector of $\angle A$ also bisects BC at X. Prove

that AD = 2AB.

85. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, $\left|\overrightarrow{a}\right| = 1$, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{c}\right| = 2$, then find the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$.

Watch Video Solution

86. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
 and $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 5$, $\left|\overrightarrow{c}\right| = 7$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

87. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be three vectors such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$ and $|\overrightarrow{c}| = 5$ and one of them being perpendicular to the sum of the other two, find $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$.

88. Constant forces $2\hat{i} - 5\hat{j} + 6\hat{k}$ and $-\hat{i} + 2\hat{j} - \hat{k}$ act on the particle. Determine the work done when the particle is displaced from a point A with position vector $4\hat{i} - 3\hat{j} - 2\hat{k}$ to a point B with position vector $6\hat{i} + \hat{j} - 3\hat{k}$.

Watch Video Solution

89. Find the magnitude of
$$\overrightarrow{v} = (3\hat{k} + 4\hat{j}) \cdot (\hat{i} + \hat{j} - \hat{k}).$$

Watch Video Solution

90. If
$$\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$, find $|\overrightarrow{a} \cdot \overrightarrow{b}|$.

Watch Video Solution

91. Integrate the following

 $\int \log(3x) dx$

92. Taking
$$\overrightarrow{v}_1 = \hat{i} + 2\hat{j} - \hat{k}$$
, $\overrightarrow{v}_2 = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{v}_3 = \hat{i} + \hat{j} + \hat{k}$
verify that $\left(\overrightarrow{v}_1 \cdot \overrightarrow{v}_2\right) \overrightarrow{v}_3 \neq \overrightarrow{v}_1 \left(\overrightarrow{v}_2 \cdot \overrightarrow{v}_3\right)$.

Watch Video Solution

93. If
$$\overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}$$
, find ($\overrightarrow{r}\cdot\hat{i}$).($\overrightarrow{r}\cdot\hat{j}$) +xy.

Watch Video Solution

94. Find a unit vector perpendicular to both the vectors $4\hat{i} - \hat{j} + 3\hat{k}$ and

$$-2\hat{i}+\hat{j}-2\hat{k}.$$

95. Find all vectors of magnitude 10 sqrt 3 that are perpendicular to the plane of vectors $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$.

Watch Video Solution

96. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ where $\vec{a} = \hat{i} + \vec{j} + \vec{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

Watch Video Solution

97. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j}$ and $\overrightarrow{c} = 3\hat{i} - 4\hat{j} - 5\hat{k}$, then find a unit vector perpendicular to both of the vectors $\overrightarrow{a} - \overrightarrow{b}$ and $\overrightarrow{c} - \overrightarrow{b}$.

98. Find the cosine and the sine of the angle between the vectors $\vec{v}_1 = 2\hat{i} + \hat{j} + 3\hat{k} \text{and } \vec{v}_2 = 4\hat{i} - 2\hat{j} + 2\hat{k}.$

Watch Video Solution

99. The vectors from the origin O to the points P and Q are respectively $2\hat{i} - 6\hat{j} + 3\hat{k}$ and $-2\hat{i} + \hat{j} + 2\hat{k}$. Determine the area of the parallelogram formed by $\overrightarrow{O}P$ and $\overrightarrow{O}Q$ as adjacent sides.

Watch Video Solution

100. Using vectors find the area of the triange ABC with vertices A(1,2,3),B(2,-1,4) and C(4,5,-1).

101. Find the area of the parallelogram whose adjacent sides are given by

vectors
$$\overrightarrow{a}=3\hat{i}+\hat{j}+4\hat{k}$$
 and $\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}.$

Watch Video Solution

102. Prove that $\frac{1}{2}\overrightarrow{AC} \times \overrightarrow{BD}$ represents the vector area of the plane quadrilateral ABCD.

Watch Video Solution

103. Prove that
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right) = 2\left(\overrightarrow{a} \times \overrightarrow{b}\right)$$
 give a

geometrical interpretation to it. Hence find the area of the parallelogram

whose diagonals are the vectors $\overrightarrow{a}=3\hat{i}+\hat{j}-2\hat{k}$ and $\overrightarrow{b}=\hat{i}-3\hat{j}+4\hat{k}.$

104. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq \overrightarrow{0}$$
, then show that $\overrightarrow{a} + \overrightarrow{c} = k \overrightarrow{b}$ where k

is a scalar.

105. Let
$$\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}$$
 be unit vectors. Suppose that $\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{A} \cdot \overrightarrow{C} = 0$ and the angle between \overrightarrow{B} and \overrightarrow{C} is $\frac{\pi}{6}$. Prove that $\overrightarrow{A} = \pm 2\left(\overrightarrow{B} \times \overrightarrow{C}\right)$.

Watch Video Solution

106. Let $a = \hat{i} + 4\hat{j} + 2\hat{k}, b = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $c = 2\hat{i} - \hat{j} + 4\hat{k}$ Find

a vector d which is perpendicular to both a and b and c.d=15.

Watch Video Solution

107. If a,b,c are the lengths of the sides [BC],[CA] and [AB] of triangle ABC,

prove that $\overrightarrow{B}C + \overrightarrow{C}A + \overrightarrow{A}B = \overrightarrow{0}$ and deduce that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$
Watch Video Solution
$$108. \quad |f \quad \overrightarrow{a} \quad \text{and} \quad \overrightarrow{b} \quad \text{are} \quad \text{any} \quad \text{two vectors, show that} \\ |\overrightarrow{a} \times \overrightarrow{b}|^2 = \begin{bmatrix} \overrightarrow{a} \cdot \overrightarrow{a} \quad \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{a} \cdot \overrightarrow{b} \quad \overrightarrow{b} \cdot \overrightarrow{b} \end{bmatrix}.$$
Watch Video Solution

109. Find the vector whose length is 3 and which is perpendicular to the vectors $\vec{a} = 3\hat{i} + \hat{j} - 4\hat{k}$, $\vec{b} = 6\hat{i} + 5\hat{j} - 2\hat{k}$.

Watch Video Solution

110. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three proper vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{a}$. Prove that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually at right angles and $\left|\overrightarrow{b}\right| = 1$,|quad vec c|=|quad vec a|. **111.** If $\overrightarrow{A} = (1, 1, 1)$, $\overrightarrow{C} = (0, 1, -1)$ are two given vectors, then find a vector \overrightarrow{B} satisfying the equations $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{C}$ and $\overrightarrow{A} \cdot \overrightarrow{B} = 3$.

Watch Video Solution

112. If A,B,C and D are any four points in space prove that $\left| \overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD} \right| = 4(areaof \Delta ABC).$

Watch Video Solution

113. If
$$\overrightarrow{\alpha} = 3\hat{i} - \hat{j}$$
 and $\beta = 2\hat{i} + \hat{j} - 3\hat{k}$, express $\overrightarrow{\beta}$ in the form $\overrightarrow{\beta} = \overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$ where β_1 is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}_2$ is perpendicular to $\overrightarrow{\alpha}$.

Watch Video Solution

114. Using vectors, prove that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.

115. integrate the following

$$\int \! rac{dx}{\sqrt{16-x^2-6x}}$$

Watch Video Solution

116. integrate the following

$$\int \! rac{dx}{\sqrt{11-x^2-10x}}$$

Watch Video Solution

Exercise

1. Classify the following physical quantities into scalars and vectors:

9gm

2. Classify the following physical quantities into scalars and vectors:

5 seconds

Watch Video Solution 3. Classify the following physical quantities into scalars and vectors: $1000 cm^{3}$ Watch Video Solution

4. Classify the following physical quantities into scalars and vectors:

2 radians

5. Classify the following physical quantities into scalars and vectors:

30 m/s

Watch Video Solution
6. Classify the following physical quantities into scalars and vectors:
20 m/s towards north
Watch Video Solution

7. Classify the following physical quantities into scalars and vectors:

10 Newton

8. Classify the following physical quantities into scalars and vectors:

 $10 \text{ gm/c}m^3$

9. Classify the following physical quantities into scalars and vectors:

 $981 \frac{m}{s^2}$ towards the centre of earth

Watch Video Solution

10. Find
$$\lambda \in R$$
 such that $\left| \begin{array}{c} \lambda \overrightarrow{a} \\ a \end{array} \right| = 1$, \overrightarrow{a} being a non-zero vector.

Watch Video Solution

11. If
$$|\overrightarrow{a}| = 2$$
, find $|4\overrightarrow{a}|, |10\overrightarrow{a}|$ and $|(-5)\overrightarrow{a}|$.

Watch Video Solution

12. Is it possible that
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} \right| + \left| \overrightarrow{b} \right|$$
? If yes, when?

13. If
$$\overrightarrow{a} = \overrightarrow{b}$$
, is it true that $|\overrightarrow{a}| = |\overrightarrow{b}|$?

14. Does
$$\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$$
 imply $\overrightarrow{a} = \overrightarrow{b}$?

Watch Video Solution

15. If A,B,C,D are the points with position vectors $\overrightarrow{a}, \overrightarrow{b}, 3\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{a} - 2\overrightarrow{b}$ respectively, show that $\overrightarrow{A}C = 2\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{D}B = 3\overrightarrow{b} - a$.

Watch Video Solution

16. If
$$\overrightarrow{c} = 3\overrightarrow{a} + 4\overrightarrow{b}$$
 and $2\overrightarrow{c} = \overrightarrow{a} - 3\overrightarrow{b}$, show that \overrightarrow{c} and \overrightarrow{b} have opposite directions and $|\overrightarrow{c}| > 2|\overrightarrow{b}|$.

17. If the position vector of a point A is $\overrightarrow{a} + 2\overrightarrow{b}$ and \overrightarrow{a} divides AB in the

ratio 2:3, then the position vector of B, is

18. If ABC is triangle and D is the mid-point of [BC], prove that $\overrightarrow{A}B + \overrightarrow{A}C = 2\overrightarrow{A}D$.

Watch Video Solution

19. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 2\hat{k}$, find $\overrightarrow{a} - 2\overrightarrow{b}$.

Watch Video Solution

20. If
$$\overrightarrow{a} = 5\hat{i} - \hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = 5\hat{i} + \hat{j} - 2\hat{k}$, find $3\overrightarrow{a} - \overrightarrow{b}$.

21. If ABCD is a parallelogram and $\overrightarrow{A}B = \overrightarrow{a}, \overrightarrow{B}C = \overrightarrow{b}$ then show that $\overrightarrow{A}C = \overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{B}D = \overrightarrow{b} - \overrightarrow{a}$.

Watch Video Solution

22. If ABCD is a parallelogram and $\overrightarrow{A}B = \overrightarrow{a}$, $\overrightarrow{B}C = \overrightarrow{b}$ then give geometrical significance of $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a} - \overrightarrow{b}\right|$.

Watch Video Solution

23. ABC is any triangle and D,E,F are the mid-points of sides $\overrightarrow{BC}, \overrightarrow{CA}$ and \overrightarrow{AB} respectively. Express the \overrightarrow{BE} and \overrightarrow{CF} as linear combination of vectors \overrightarrow{AB} and \overrightarrow{AC} .

24. ABCD is a parallelogram and [AC], [BD]are its diagonals. Express $\overrightarrow{A}C$ and $\overrightarrow{B}D$ in terms of $\overrightarrow{A}B$ and $\overrightarrow{A}D$.

25. ABCD is a parallelogram and [AC], [BD]are its diagonals. Express \overrightarrow{AB} and \overrightarrow{AD} in terms of \overrightarrow{AC} and \overrightarrow{BD} .

Watch Video Solution

26. Evaluate
$$\int \frac{dx}{x^2 + 10x + 34}$$

Watch Video Solution

27. ABCD is a parallelogram and AC, BD are its diagonals. Show that : $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{BC}, \overrightarrow{AC} - \overrightarrow{BD} = 2\overrightarrow{AB}.$ **28.** Apply vectors to prove that if a pair of opposite sides of quadrilateral are equal and parallel, then the figure is a parallelogram.

31. If \overrightarrow{a} is a vectors of magnitude 3 pointing eastwards and \overrightarrow{b} is vector of magnitude 7 pointing westwards find the magnitude and direction of

32. Evaluate
$$\int \frac{dx}{x^2 + 12x + 37}$$

Watch Video Solution

33. integrate the following

$$\int \! rac{dx}{x^2 + 10x + 16}$$

Watch Video Solution

34. integrate the following

$$\int \! rac{dx}{x^2+8x+12}$$

Watch Video Solution

 $\overrightarrow{a} - \overrightarrow{b}.$

35. integrate the following

$$\int \! rac{dx}{\sqrt{x^2+6x+13}}$$

Watch Video Solution

36. Show that the mid-points o ftwo opposite sides of quadilateral and the mid-points of the diagonals are the vertices of parallelogram.

Watch Video Solution

37. ABCD is a quadrilateral and O is point in its plane. Show that if $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = \overrightarrow{0}$, then O is the point of the interection of

the lines joining the mid-points of the opposite sides of ABCD.

38. ABCD is a parallelogram . If P and Q are the mid-points of [BC] and [CD]

respectively, show that $\overrightarrow{A}P+\overrightarrow{A}Q=$

39. Evaluate

$$\int \! rac{dx}{3x^2+6x+5}$$

Watch Video Solution

40. A,B,C and D are four points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} respectively such that $5\overrightarrow{a} - 2\overrightarrow{b} + 6\overrightarrow{c} - 9\overrightarrow{d} = \overrightarrow{0}$. Show that the point A,B,C,D are coplanar and find find the P.V. of the point in which the lines AC and BD intersects.

41. ABCDEF is a regular hexagon. Express the vectors $\overrightarrow{CD}, \overrightarrow{DE}, \overrightarrow{EF}, \overrightarrow{FA}, \overrightarrow{CE}$ in terms of \overrightarrow{AB} and \overrightarrow{BC} .

Watch Video Solution

42. Express the vector $a = 5\hat{i} - 2\hat{j} + 5\hat{k}$ as sum of two vectors such that one is parallel to the vector $b = 3\hat{i} + \hat{k}$ and the other is perpendicular to b.

Watch Video Solution

43. Find the component of vector $\stackrel{
ightarrow}{P} Q$ where:

P(2,3), Q(5,-3). Also, find the magnitude of $\overrightarrow{P}Q$.

$$a_1 = 2, a_2 = 3, A(2, -3).$$

48. In each of the following problems, components of $\stackrel{\rightarrow}{A}B$ along X-axis

and Y-axis are respectively a_1 and a_2 . Find the point B when:

$$a_1 = -2, a_2 = -4, A(-1, -2).$$

Watch Video Solution

49. In each of the following problems, components of $\overrightarrow{A}B$ along X-axis

and Y-axis are respectively a_1 and a_2 . Find the point B when:

$$a_1=\ -5, a_2=4, A(7,8).$$

Watch Video Solution

50. Find the components of vector \overrightarrow{v} making an angle α with positive direction of X-axis, when:

$$\left|\overrightarrow{v}
ight|=3\sqrt{2},lpha=\angle45.$$

51. Find the components of vector \overrightarrow{v} making an angle α with positive direction of X-axis, when:

$$\left. \overrightarrow{v} \right| = 10, lpha = \angle 30.$$

Watch Video Solution

52. Find the components of vector \overrightarrow{v} making an angle α with positive

direction of X-axis, when:

$$\left. \overrightarrow{v} \right| = \sqrt{3}, lpha = \angle 60.$$

Watch Video Solution

53. Find the components of vector \overrightarrow{v} making an angle α with positive

direction of X-axis, when:

$$\begin{vmatrix} \overrightarrow{v} \end{vmatrix} = 5, \alpha = \angle 180.$$

Watch Video Solution

54. Find the components of vector \overrightarrow{v} making an angle α with positive direction of X-axis, when:
$$\begin{vmatrix} \overrightarrow{v} \end{vmatrix} = 20, \alpha = \angle 240.$$

Watch Video Solution

55. Find the components of vector \overrightarrow{v} making an angle α with positive

direction of X-axis, when:

$$\left| \overrightarrow{v} \right| = 3\sqrt{2}, lpha = \angle 45.$$

Watch Video Solution

56. Find the corordinates of the terminal point of the position vector which is equivalent to $\overrightarrow{P}Q$ where P(2,6), Q(-1,2).

57. Find the position vector of mid point of the line segment AB where A is (3, 4, -2) and B is (1, 2, 4).

Watch Video Solution

58. If
$$\overrightarrow{a} = 2\hat{I} - 3\hat{j}$$
, $\overrightarrow{b} = 3\hat{i} + 2\hat{j}$ and $\overrightarrow{c} = \hat{i} + \hat{j}$, find the components of vector $\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c}$.

Watch Video Solution

59. Let A(2, -1), B(-1, 2), C(3, 1) and D(0, 4). Show that $\overrightarrow{AB} = \overrightarrow{CD}$.

60. Given four points A(2, 2), B(2, 4), C(1, 2) and D(-1, 3). Find the point P that $\overrightarrow{AP} = \overrightarrow{AB} + \overrightarrow{CD}$.

61. Let \overrightarrow{a} and \overrightarrow{b} be the position vectors of the points (3,-5) and (m,4) respectively. Find m if the vectors \overrightarrow{a} and \overrightarrow{b} are collinear.

Watch Video Solution

62. ABCD is a parallelogram. If the points A , B and C are respectively :

(0,0), (2,2),(1,3) Find the coordinates of the point D.

63. ABCD is a parallelogram. If the points A, B and C are respectively :

(2,3), (1,4),(1,-2) Find the coordinates of the point D.

64. ABCD is a parallelogram. If the points A , B and C are respectively :

(2,3), (1,4),(1,-2) Find the coordinates of the point D.

Watch Video Solution

65. ABCD is a parallelogram. If the points A, B and C are respectively :

(-2,-1), (3,0),(0,-2) Find the coordinates of the point D.

Watch Video Solution

66. If $\overrightarrow{a} = \hat{i} - 2\hat{j}$ and $\overrightarrow{b} = 2\hat{i} + 2\hat{j}$, find a unit vector parallel to the vector $3\overrightarrow{a} - 2\overrightarrow{b}$.

67. Using vectors, prove that the following point are collinear:

(1, 2), (3, 8), (7, 20)

Watch Video Solution

68. Using vectors, prove that the following point are collinear:

(-2,3,5),(1,2,3),(7,0,-1)

Watch Video Solution

69. Using vectors, prove that the following point are collinear:

(7,9),(-1,1),(-5,-3)

70. Using vectors, prove that the following point are collinear:

(-1,2),(0,0),(2,-4)

Watch Video Solution

71. Find the unknown x if the points (2,4), (7,x) and (-1,1) are collinear.

72. If
$$\overrightarrow{\alpha}$$
 and $\overrightarrow{\beta}$ are non-collinear vectors and
 $\overrightarrow{a} = (x+4y)\overrightarrow{\alpha} + (2x+y+1)\overrightarrow{\beta}$ and
 $\overrightarrow{b} = (y-2x+2)\overrightarrow{\alpha} + (2x-3y-1)\beta$, find x and y so that $3\overrightarrow{a} = 2\overrightarrow{b}$.
Watch Video Solution

73. If the position vectors of the vertices A,B and C of $\triangle ABC$ are respectively $\overrightarrow{0}$, $-20\hat{i} + 15\hat{j}$ and $36\hat{I} + 15\hat{j}$. Find the P.V. of the incentre of the triangle.

78. Find the unit vector in the direction of $12\hat{i} - 5\hat{k}$.

81. Find the unit vector in the direction of sum of vectors $-2\hat{i} - 3\hat{j} + 2\hat{k}$,

$$3\hat{i}+4\hat{j}-2\hat{k}$$
 and $\hat{i}+2\hat{j}+6\hat{k}.$

82. If
$$\overrightarrow{A}B = a\hat{i}_1 + a\hat{j}_2 + a_{\hat{k}}$$
 and A has the cordinates (b1,b2,b3), find the

cordinates of B.

83. Find a unit vector in the direction of $\vec{a} - 2\vec{b} + 3\vec{c}$ if $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k}$ and $\vec{c} = \vec{i} + \vec{k}$.

Watch Video Solution

84. Find the points of trisection of [PQ] if the position vectors of P and Q

are respectively $3\hat{i}+2\hat{j}-4\hat{k}$ and $9\hat{i}+8\hat{j}-10\hat{k}.$

85. Show that the point A,B,C and D whose position vectors are respectively $2\hat{i} + 4\hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} + \hat{k}$, $3\hat{i} + \hat{j} - 3\hat{k}$ and $4\hat{i} + 3\hat{j} - 2\hat{k}$ are the vertices of a paralleogram (use vector method).

86. The position vectors of the points A, B, C and D are respectively $4\hat{i} + 3\hat{j} - \hat{k}, 5\hat{i} + \hat{j} + 2\hat{k}, 2\hat{i} - 3\hat{k}$ and $4\hat{i} - 4\hat{j} + 3\hat{k}$. Show that AB and CD are parallel.

Watch Video Solution

87. Find the magnitude and components of the vector 2(-1,0,3) + 3(1,1,2)-

(-2,3,0).

88. Prove that the points A (1,2,3), B(2,3,1) and C(3,1,2) are the vertices of an

equilateral triangle.

89. Prove that the points (1,1,1),(-2,4,1),(-1,5,5) and (2,2,5) taken in order ,are

the vertices of a square. Find the area of square.

Watch Video Solution

90. If the points (-1,-1,2),(2,m,5) and (3,11,6) are collinear, find the value of m.

Watch Video Solution

91. Using vectors, find the value of 'k' such that the points (k, -10, 3), (1, -1, 3) and (3,5,3) are collinear.

92. The sides of a parallelogram represent the vectors $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vectors parallel to its diagonals.

93. Let
$$\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}$ and $\overrightarrow{c} = -\hat{i} + 2\hat{k}$. Find the vector in the direction of $\overrightarrow{b} - \overrightarrow{a} - 2\overrightarrow{c}$ and having length $2\sqrt{30}$.

Watch Video Solution

94. Prove that the points whose position vectors are $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $-2\hat{j} + 3\hat{k}$ lie in the same plane.

95. Prove that the vectors $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\overrightarrow{b} = -2\hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$ are coplanar. **Watch Video Solution 96.** Show that the points (1,1,1),(2,-1,2),(-1,2,2) and (2,2,-1) are coplanar. **Watch Video Solution**

97. Show that the points A(4,5,1), B(0,-1,-1), C(3,9,4) and D(-4,4,4) are coplanar.

Watch Video Solution

98. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar (independent) vectors, prove that the vectors $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$, $-2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$ and $\overrightarrow{a} - \overrightarrow{b} + 2\overrightarrow{c}$ are also linearly independent.

99. Find
$$\overrightarrow{v} \cdot \overrightarrow{v}_2$$
 when $\overrightarrow{v} = 4\hat{i} + 12\hat{j} - 3\hat{k}$, $\overrightarrow{v} = -2\hat{i} + 6\hat{j} + 9\hat{k}$.

Watch Video Solution

100. Find
$$\overrightarrow{v} \cdot \overrightarrow{v}_2$$
 when $\overrightarrow{v} = (1, 3, 5), \ \overrightarrow{v} = (5, -7, 9).$

Watch Video Solution

101. Find the angle between the vectors:

$$\stackrel{
ightarrow}{v}= {}_1\hat{i}-2\hat{j}-2\hat{k}$$
 and $\stackrel{
ightarrow}{v}= {}_22\hat{i}+3\hat{j}-6\hat{k}.$

Watch Video Solution

102. Find the angle between the vectors:

$$\overrightarrow{v} = \mathop{}_1(3,5,4)$$
 and $\overrightarrow{v} = \mathop{}_2(2,\ -2,1).$

103. Find the value of lambda so that the vectors $\overrightarrow{a}=3\hat{i}+3\hat{j}-\lambda\hat{k}$ and

 $\stackrel{
ightarrow}{b}=2\hat{i}-\hat{j}+\hat{k}$ are perpendicular to each other.

Watch Video Solution

104. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{c} = \hat{i} + 3\hat{j} - \hat{k}$, find lambda if \overrightarrow{a} is at right angles to $\lambda \overrightarrow{b} + \overrightarrow{c}$.

Watch Video Solution

105. Find the value of a for which the vector $3\hat{i}+2\hat{j}+9\hat{k}$ and $\hat{i}+a\hat{j}+3\hat{k}$ are perpendicular.

106. Find the value of a for which the vector $3\hat{i}+2\hat{j}+9\hat{k}$ and $\hat{i}+a\hat{j}+3\hat{k}$ are parallel.

107. If
$$\left(\overrightarrow{a}\right)^2 = \left(\overrightarrow{b}\right)^2$$
, is it necessary that $\overrightarrow{a} = \overrightarrow{b}$?

Watch Video Solution

108. Find the angles which the vector $3\hat{i} - 6\hat{j} + 2\hat{k}$ makes the coordinates axes.

109. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} \right|$, then prove that $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to the vector \overrightarrow{b} .

110. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} \right|$, then prove that $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to the vector \overrightarrow{b} .

Watch Video Solution

111. If
$$\overrightarrow{a}$$
 is any vector in space, then show that
 $\overrightarrow{a} = (\overrightarrow{a} \cdot \hat{i})\hat{i} + (\overrightarrow{a} \cdot \hat{j})\hat{j} + (\overrightarrow{a} \cdot \hat{k})\hat{k}.$

Watch Video Solution

112. If the vertices A,B,C of riangle ABC have position vectors (1,2,3), (-1,0,0),

(0,1,2) respectively what is the magnitude of the angle ABC?

113. If $\hat{i} + \hat{j} + \hat{k}, 2\hat{i} + 5\hat{j}, 3\hat{i} + 2\hat{j} - 3\hat{k}$ and $\hat{i} - 6\hat{j} - \hat{k}$ are the position vectors of points A,B,C and D respectively, then find the angle between $\overrightarrow{A}B$ and $\overrightarrow{C}D$. Are $\overrightarrow{A}B$ and $\overrightarrow{C}D$ collinear?

Watch Video Solution

114. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} - 3\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - \hat{j} + 2\hat{k}$, show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are at right angles.

Watch Video Solution

115. Find the projection (vector) of the vector $7\hat{i}+\hat{j}-4\hat{k}$ on $2\hat{i}+6\hat{j}+3\hat{k}.$

116. Find the projection (vector) of the vector $7\hat{i}+\hat{j}-4\hat{k}$ on $7\hat{i}+\hat{j}-3\hat{k}$

117. Find the projection of $\overrightarrow{A}B$ on $\overrightarrow{P}Q$ where P,Q,A,B are the points (-2,1,3),(0,2,5),(4,-3,0),(7,-5,-1) respectively.

Watch Video Solution

118. If A,B,C,D are the points with position vectors $\hat{i} + \hat{j} - \hat{k}$, $2\hat{i} - \hat{j} + 3\hat{k}$, $2\hat{i} - 3\hat{k}$, $3\hat{i} - 2\hat{j} + \hat{k}$ respectively, find the projection of $\overrightarrow{A}B$ along $\overrightarrow{C}D$.

Watch Video Solution

119. Find the projection of the vector $\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ on the vector $\overrightarrow{b} = \hat{i} + 2\hat{j} + \hat{k}$.

120. Find the projection of thevector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $2\hat{i}-3\hat{j}+6\hat{k}.$

Watch Video Solution

121. Prove that the vectors $\overrightarrow{a} = \hat{i} - 3\hat{j} - 5\hat{k}$, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + 2\hat{j} + 6\hat{k}$ from of a right angled triangle.

Watch Video Solution

122. If A,B,C have position vectors (0,1,1),(3,1,5),(0,3,3) respectively, prove

that riangle ABC is right angled at C.

123. Prove Cauchy- Schwarz inequality $\begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \end{vmatrix} < \begin{vmatrix} \overrightarrow{a} \end{vmatrix} \begin{vmatrix} \overrightarrow{b} \end{vmatrix}$.

124. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , prove that $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2 \leq |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$

Watch Video Solution

•

125. If
$$|\vec{a}| = 1$$
, $|\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = 1$, prove that $|\vec{a} - \vec{b}| = \sqrt{3}$.

Watch Video Solution

126. If
$$\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} - \overrightarrow{b} \end{vmatrix}$$
, prove that \overrightarrow{a} and \overrightarrow{b} are perpendicular.

127. If
$$\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} - \overrightarrow{b}\right) = 0$$
, show that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$

Watch Video Solution

128. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are any two vectors, then prove that $\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 = 2 \left| \overrightarrow{a} \right|^2 + 2 \left| \overrightarrow{b} \right|^2$.

Watch Video Solution

129. Prove that two proper vectors \overrightarrow{a} and \overrightarrow{b} are the right angles iff $\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \right|^2 + \left| \overrightarrow{b} \right|^2$.

Watch Video Solution

130. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-coplanar vectors and $\overrightarrow{d} \cdot \overrightarrow{a} = \overrightarrow{d} \cdot \overrightarrow{b} = \overrightarrow{d} \cdot \overrightarrow{c} = 0$ then show that \overrightarrow{d} is zero vector.

131. Find a vector
$$\overrightarrow{c}$$
 such that $\overrightarrow{c}\cdot\left(\hat{i}+\hat{j}
ight)=2$, $\overrightarrow{c}\cdot\left(\hat{i}-\hat{j}
ight)=3$ and $\overrightarrow{c}\cdot\hat{k}=0.$

Watch Video Solution

132. Find a vector
$$\overrightarrow{c}$$
 such that $\overrightarrow{c} . \hat{i}$ = $\overrightarrow{c} . \hat{j}$ = \overrightarrow{c} . \hat{k} and $\left|\overrightarrow{c}\right| = 100$.

Watch Video Solution

133. If
$$\overrightarrow{c}$$
 is normal to \overrightarrow{a} and \overrightarrow{b} , show that \overrightarrow{c} is normal to $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

134. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $|\overrightarrow{a}| = 5$, $|, \overrightarrow{b}| = 12$ and $|\overrightarrow{c}| = 13$ and if $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, find the value of
$$\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}.$$

Watch Video Solution

135. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are mutually perpendicular unit vectors , then find the value of $\begin{vmatrix} 2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \end{vmatrix}$.

Watch Video Solution

136. Prove that, in any triangle ABC, $\cos B = rac{c^2 + a^2 - b^2}{2ca}.$

Watch Video Solution

137. If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, show that the angle θ between \overrightarrow{a} and \overrightarrow{b} is given by $\cos \theta = c^2 - a^2 - b^2/2ab$.

138. Using vector method, prove that in a triangle, $a = b \cos C + c \cos B$

(projection formula)

139. Show that the median to the base of ann isosceles triangle is perpendicular to base.

Watch Video Solution

140. Prove that in a right-angled triangle, the square of the hypotenuse is

equal to the sum of the squares of the other two sides.

141. In any triangle ABC, show that

 $AB^2+AC^2=2ig(AD^2+BD^2ig)$

143. In a triangle OAB, $\angle AOB = 90^{\circ}$. If P and Q are the points of trisection of AB, prove that $OP^2 + OQ^2 = \frac{5}{9}AB^2$.

Watch Video Solution

144. Which of the following statements are True or False :

If the diagonals of a parallelogram are equal then it is a rectangle.

145. Prove that the quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus.

Watch Video Solution

146. Prove that if the diagonals of a quadrilateral bisect each other at right angles, then the quadrilateral is a rhombus.

Watch Video Solution

147. Using vector method, prove that the altitudes of a triangle are concurrent.

148. Prove that the perpendicular from the vertices to the opposite sides

(i.e. Altitudes) of a triangle concurrent.

149. Prove by vectors that :

 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta.$

Watch Video Solution

150. Prove by vectors that :

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta.$$

Watch Video Solution

151. In each of the following , find the work done by a force \overrightarrow{F} acting on a particle such that the particle is :

$$P(\,-2,3,0), Q(0,1,2), \overrightarrow{F} = 2 \hat{i} + \hat{j} - \hat{k}.$$

152. In each of the following , find the work done by a force \overrightarrow{F} acting on a particle such that the particle is :

$$P(\,-3,\,4,\,1),\,Q(\,-1,\,\,-1,\,2),\,\stackrel{
ightarrow}{F}=3\hat{i}+\hat{j}-2\hat{k}.$$

Watch Video Solution

153. A particle acted on by two forces $4\hat{i} + 3\hat{j}$ and $3\hat{i} + 2\hat{j}$ is displaced from the point $\hat{i} + 2\hat{j}$ to $5\hat{i} + 4\hat{j}$. Find the totral work done by these forces.

Watch Video Solution

154. A particle is acted upon by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ which displace it from a point $\hat{i} + 2\hat{j} + 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. Find the work done by the forces in standard units

155. Find
$$\overrightarrow{v}_1 \cdot \overrightarrow{v}_2$$
 if $\overrightarrow{v}_1 = 3\hat{i} + \hat{j} + 2\hat{k}$, $\overrightarrow{v}_2 = 2\hat{i} - 2\hat{j} + 4\hat{k}$.

Watch Video Solution

156. Find
$$\overrightarrow{a}\cdot\overrightarrow{b}$$
 if $\overrightarrow{a}=2\hat{i}+\hat{k}$ and $\overrightarrow{b}=\hat{i}+\hat{j}+\hat{k}$

Watch Video Solution

157. If
$$\overrightarrow{a} = 4\hat{i} + 3\hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i} - 2\hat{k}$, find | vec a *vec b|`.

Watch Video Solution

158. Evaluate the following products: $\left(3\hat{i}-6\hat{j}+2\hat{k}
ight)\cdot\left(2\hat{i}+\hat{j}-2\hat{k}
ight)$.

Watch Video Solution

159. Evaluate the following products: $\left(2\hat{i}+3\hat{j}
ight)\cdot\Big(-\hat{i}+3\hat{j}+\hat{k}\Big).$

160. Evaluate the following products: $(2, -1, 1) \cdot (3, 4, -1)$.

161. Taking
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} - \hat{k}$$
 and $\overrightarrow{b} = \hat{i} + 4\hat{j} - 2\hat{k}$, verify that $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$.

Watch Video Solution

162. If
$$\overrightarrow{a} = 3\hat{i} + 4\hat{j}$$
 and $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$, find the value of $\left|\overrightarrow{a} \cdot \overrightarrow{b}\right|$.

Watch Video Solution

163. Find the magnitude of
$$\overrightarrow{a}=\left(\hat{i}+3\hat{j}-2\hat{k}
ight)\cdot\left(-\hat{i}+3\hat{k}
ight)$$

164. Given
$$|\overrightarrow{a}| = 10$$
, $|\overrightarrow{b}| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, find $|\overrightarrow{a} \operatorname{cross} \overrightarrow{b}|$.
Watch Video Solution
165. Define $\overrightarrow{a} \cdot \overrightarrow{b}$ where \overrightarrow{a} and \overrightarrow{b} are any two vectors. Find $\overrightarrow{a} \cdot \overrightarrow{b}$ if $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 5$.
Watch Video Solution

166. Find a unit vector perpendicular to both the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}.$

Watch Video Solution

167. Find a unit vector perpendicular to both the planes of \vec{a} and \vec{b} , where $\vec{a} = 3\hat{i} + 2\hat{j} + 5\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + \hat{k}$.

168. Find a unit vector perpendicular to the plane of two vectors $a = \hat{i} - \hat{j} + 2\hat{k}$ and $b = 2\hat{i} + 3\hat{j} - \hat{k}$.

Watch Video Solution

169. Find the equation of a plane through the points (3,-1,2), (1,-1,-3) and

(4,-3,1)

Watch Video Solution

170. Find a unit vector perpendicular to each of the vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and $-3\hat{i} - 2\hat{j} + \hat{k}$. Also find the area of the parallelogram determined by these vectors.

171. Find the sine of the angle between the vectors :

(3,0,3) and (1,2,-7)

172. Find the sine of the angle between the vectors :

 $2\hat{i}+4\hat{j}+4\hat{k}$ and $2\hat{i}-7\hat{j}+\hat{k}.$

Watch Video Solution

173. Determine the area of the parallelogram whose adjacent sides are the vectors $\hat{i} - 3\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$.

Watch Video Solution

174. Find the area of the parallelogram having two adjacent sides OA and OB where O is the origin and the position vectors of A and B are

respectively
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \ \overrightarrow{b} = -3\hat{i} - 2\hat{j} + \hat{k}.$$

Watch Video Solution

175. Find the area of riangle PQR where P,Q,R have respectively coordinates

(1,3,2),(2,-1,1),(-1,2,3) with reference to rectangular system of co-ordinates.

Watch Video Solution

176. Find the area of the triangle formed by O,A,B where :

$$\stackrel{
ightarrow}{O}A=\hat{i}+2\hat{j}+3\hat{k}, \stackrel{
ightarrow}{O}B=\ -3\hat{i}\ -2\hat{j}+\hat{k}$$

Watch Video Solution

177. Find the area of the triangle formed by O,A,B where :

$$\stackrel{
ightarrow}{O}A=3\hat{i}+2\hat{j}+\hat{k}, \stackrel{
ightarrow}{O}B=\ -\ \hat{i}\ -3\hat{j}+\hat{k}$$

178. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$, show that $\overrightarrow{a} - \overrightarrow{d}$ is parallel to $\overrightarrow{b} - \overrightarrow{c}$ where $\overrightarrow{a} \neq \overrightarrow{d}$, $\overrightarrow{b} \neq \overrightarrow{c}$.

Watch Video Solution

179. Find the area of the triangle ABC where A,B,C are the points (a,0,0),

(0,b,0),(0,0,c)respectively, where $abc \neq 0$.

Watch Video Solution

180. Find the area of the triangle having the points A(1,1,1), B(1,2,3) and C(2,3,1) as vertices.

181. If
$$\overrightarrow{a} = 2\hat{i} + \hat{j} - \hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} - 4\hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} + \hat{k}$, find $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)$.

182. Calculate the product
$$ig(\hat{i}-2\hat{j}+3\hat{k}ig)crossig(2\hat{i}+\hat{j}-3\hat{k}ig)ig)\cdotig(-3\hat{i}+\hat{j}+2\hat{k}ig).$$

Watch Video Solution

183. If
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$, compute $\left(\overrightarrow{a} \operatorname{cross} \overrightarrow{b}\right) \cdot \overrightarrow{c}$.

Watch Video Solution

184. Define the vector product of two vectors \overrightarrow{a} and \overrightarrow{b} . If $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = 2\hat{i} + 3\hat{j}$, then find $\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \overrightarrow{c}$ and $\overrightarrow{a} \cdot \left(\overrightarrow{b} + \overrightarrow{c}\right)$.

185. If
$$\overrightarrow{a} = 2\hat{i} + 5\hat{j} - 7\hat{k}$$
, $\overrightarrow{b} = -3\hat{I} + 4\hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} - 3\hat{k}$, compute $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{c}$ and $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and verify that these are

same.

187. If D, E, f are the mid-point of the sides of triangle ABC, prove that : $ar(\ \bigtriangleup \ DEF) = rac{1}{4}ar(\ \bigtriangleup \ ABC).$

Watch Video Solution

188. Using vectors prove that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$.

189. If
$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 6\hat{j} + 2\hat{k}$ and $\overrightarrow{c} = 6\hat{i} + 2\hat{j} - 3\hat{k}$
then compute $\overrightarrow{b} \cdot \overrightarrow{c}$ and $\overrightarrow{a} \cdot \overrightarrow{b}$. Hence evaluate $\overrightarrow{a} \cdot \left(\overrightarrow{b} \cdot \overrightarrow{c}\right)$ and also $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \cdot \overrightarrow{c}$.

Watch Video Solution

190. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, show that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.

Watch Video Solution

191. Integrate the following

$$\int x \sin(2x) dx$$

192. Prove the following : $\overrightarrow{a} \cdot \left(\overrightarrow{a} \times \overrightarrow{b}\right) = 0$, where are \overrightarrow{a} and \overrightarrow{b} are

any two vectors.

193. Integrate the following

$$\int \frac{dx}{1 + \cos ecx}$$

Watch Video Solution

194. Integrate the following

$$\int \frac{dx}{1 - \cos ecx}$$

Watch Video Solution

195. Find the volume of the parallelopied whose co-terminus edges are

represented

$$\overrightarrow{1}=2\hat{i}+\hat{j}-\hat{k}, \, \overrightarrow{2}, \, =\hat{i}+\hat{2}j+3\hat{k} \, ext{ and } \, \overrightarrow{3}=3\hat{i}-\hat{j}+2\hat{k}$$

coplanar.

Watch Video Solution

197. Find
$$\lambda$$
 such that the vectors
 $\overrightarrow{v}_1 = 2\hat{i} - \hat{j} + \hat{k}, \ \overrightarrow{v}_2 = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{v}_3 = 3\hat{i} + \lambda\hat{j} + 5\hat{k}$ are

coplanar.

coplanar.

202. Prove that
$$\left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$$

Watch Video Solution

203. For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , show that $\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{b} - \overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ are coplanar.

Watch Video Solution

204. Prove that
$$\left[\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{b} - \overrightarrow{c}, \overrightarrow{c} - \overrightarrow{a}\right] = 0$$

Watch Video Solution

205. Integrate the following

$$\int (\cos x) \frac{dx}{1 + \sin^2 x}$$

206. Prove that if $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and \overrightarrow{d} are any four vectors, then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \left(\overrightarrow{c} \times \overrightarrow{d}\right) = \begin{bmatrix} \overrightarrow{a} \cdot \overrightarrow{c} \overrightarrow{b} \cdot \overrightarrow{c} \\ \overrightarrow{a} \cdot \overrightarrow{d} \overrightarrow{b} \cdot \overrightarrow{d} \end{bmatrix}$ **Vatch Video Solution**

207. Compute
$$\begin{bmatrix} \overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \end{bmatrix}$$
 where $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \ \overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k} \ ext{and} \ \overrightarrow{c} = \hat{j} + \hat{k}.$

Watch Video Solution

208. Compute
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
 where $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \quad \overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k} \text{ and } \quad \overrightarrow{c} = \hat{j} + \hat{k}.$

Watch Video Solution

209. Find the volume of the Parallelopiped whose coterminous edges are

represented

$$\overrightarrow{a}=2\hat{i}-3\hat{j}+4\hat{k}, \ \overrightarrow{b}=\hat{i}+2\hat{j}-\hat{k} \ ext{and} \ \overrightarrow{c}=3\hat{i}-\hat{j}+2\hat{k}.$$

210. Find the volume of the Parallelopiped whose coterminous edges are

represented by the vectors $\overrightarrow{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}, \ \overrightarrow{b} = -5\hat{i} + 7\hat{j} - 3\hat{k} \ ext{and} \ \overrightarrow{c} = 7\hat{i} - 5\hat{j} - 3\hat{k}.$

Watch Video Solution

211. Find the volume of the Parallelopiped whose coterminous edges are represented by the vectors $2\hat{i} + 3\hat{j} + 4\hat{k}$, $\hat{i} + 2\hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} + 2\hat{k}$.

Watch Video Solution

212. If $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ are any vectors, prove that $\overrightarrow{\beta} \cdot \left(\overrightarrow{\alpha} \times \overrightarrow{\beta}\right) = 0$.

213.

$$\overrightarrow{a} = -2\hat{i} - 2\hat{j} + 4\hat{k}, \ \overrightarrow{b} = -2\hat{i} + 4\hat{j} - 2\hat{k} \ \text{and} \ \overrightarrow{c} = 4\hat{i} - 2\hat{j} - 2\hat{k}.$$

prove that $\overrightarrow{a}, \ \overrightarrow{b}, \ \overrightarrow{c}$ are coplanar

Watch Video Solution

214. Show that the vectors
$$\vec{a} = 10\hat{i} - 12\hat{j} - 4\hat{k}, \vec{b} = -16\hat{i} + 22\hat{j} - 2\hat{k} \text{ and } \vec{c} = 2\hat{i} - 8\hat{j} + 16\hat{k}$$

are coplanar.

Watch Video Solution

215. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}$$
, $\overrightarrow{b} = 3\hat{i} + 2\hat{j} - 7\hat{k}$ and $\overrightarrow{c} = 5\hat{i} + 6\hat{j} - 5\hat{k}$.
show that \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are coplanar.

216. Integrate the following

$$\int x e^{3x} dx$$

Watch Video Solution

218. Find the value of scalar
$$\lambda$$
 if the vectors
 $\overrightarrow{a} = 2\hat{i} + \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} - \hat{j} + 2\hat{k} \ \text{and} \ \overrightarrow{c} = \lambda\hat{i} + 3\hat{j} - 2\hat{k}$ are

coplanar.

219. Prove that the four points
$$4\hat{i} + 5\hat{j} + \hat{k}, -(\hat{j} + \hat{k}), 3\hat{i} + 9\hat{j} + 4\hat{k}$$
 and $4(-\hat{i} + \hat{j} + \hat{k})$ are

coplanar.

Watch Video Solution

$$\int (2x+6)rac{dx}{x^2+6x+49}$$

Watch Video Solution

221. Show that the four points having position vectors

 $6\hat{i}-7\hat{j}, 16\hat{i}-19\hat{j}-4\hat{k}, 3\hat{j}-6\hat{k}, 2\hat{i}+5\hat{j}+10\hat{k}$ are not coplanar.

222. Integrate the following

 $\int x \log 3x dx$

Watch Video Solution

223. If
$$\overrightarrow{a} = 3\hat{i} - \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 3\hat{j} - \hat{k} \text{ and } \ \overrightarrow{c} = -\hat{i} + \hat{j} + 3\hat{k},$$

state which of the following is meaningful and evaluate those that are meaningful: $(\overrightarrow{a} \cdot \overrightarrow{b}) \times \overrightarrow{c}, \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}), (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$

Watch Video Solution

224. Integrate the following

$$\int \! rac{dx}{x^2 + 10x + 9}$$

225. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are any three vectors, prove that
 $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{0}$
Watch Video Solution
226. For any vector \overrightarrow{a} , prove that
 $\overrightarrow{i} \times (\overrightarrow{a} \times \overrightarrow{i}) + \overrightarrow{j} \times (\overrightarrow{a} \times \overrightarrow{j}) + \overrightarrow{k} \times (\overrightarrow{a} \times \overrightarrow{k}) = 2\overrightarrow{a}$
Watch Video Solution

227. If a,b and c are three non-zero vectors such that $a \cdot (b \times c) = 0$ and b and c are not parallel vectors, prove that $a = \lambda b + \mu c$ where λ and μ are scalar.

228. Integrate the following

 $\int x \cos 5x dx$

229. What is the magnitude of a unit vector ?

Watch Video Solution

230. If
$$\overrightarrow{a} = x\hat{i} + 2\hat{j} - z\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - y\hat{j} + \hat{k}$ equal vectors, then find

the value of x + y + z.

Watch Video Solution

231. Does
$$\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$$
 imply $\overrightarrow{a} = \overrightarrow{b}$?

236. Find λ if the vector $\lambda \left(\hat{i} + \hat{j} + \hat{k}
ight)$ is a unit vector.

239. If θ is the angle between two non-zero vectors \overrightarrow{a} and \overrightarrow{b} , then write down the value of $\sin\theta$.

240. If the vectors $3\hat{i}+2\hat{j}+9\hat{k}$ and $\hat{i}-2p\hat{j}+3\hat{k}$ are parallel, find p.

242. Find the angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$.

243. If $\overrightarrow{a} \cdot \overrightarrow{a} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, then what can be concluded about the vector \overrightarrow{b} ?

244. If $\overrightarrow{PQ} = 3\hat{i} + 3\hat{j} + 6\hat{k}$ and Q is the point (4, 5, 6), find the point P.

Watch Video Solution

245. Find
$$\overrightarrow{a}\cdot\overrightarrow{b}$$
 if $\overrightarrow{a}=3\hat{i}+4\hat{j}-2\hat{k}$ and $\overrightarrow{b}=-2\hat{i}+2\hat{j}+\hat{k}$

Watch Video Solution

246. If
$$\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} - \overrightarrow{b}\right) = 0$$
 and $\left|\overrightarrow{a}\right| = 5$, find $\left|\overrightarrow{b}\right|$.

247. If
$$(\overrightarrow{a})^2 = (\overrightarrow{b})^2$$
, is it necessary that $\overrightarrow{a} = \overrightarrow{b}$?
Watch Video Solution
248. What is the angle between two unlike parallel vectors ?
Watch Video Solution
249. If vectors \overrightarrow{a} and \overrightarrow{b} , are such that $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = \frac{2}{3}$ and $\overrightarrow{a} \times \overrightarrow{b}$
is a unit vector, then find the angle between \overrightarrow{a} and \overrightarrow{b} .
Watch Video Solution

250. Find the sum of vectors $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{j} + \hat{k}$.

251. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 2\hat{k}$, find $\overrightarrow{a} + \overrightarrow{b}$.

252. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 2\hat{k}$, find $2\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

253. Find a unit vector in the direction of \overrightarrow{PQ} . where P and Q have coordinates (5, 0, 8) and (3, 3, 2) respectively.

Watch Video Solution

254. Find the angle between the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$

255. Find a vector of magnitude 11 in the direction opposite to that of \overrightarrow{PQ} , where P and Q are the points (1,3,2) and (-1,0,8) respectively.

Watch Video Solution

256. Find the position vector of the point R which divides the line (segment) joining the two points P and Q with position vectors $\overrightarrow{OP} = 2\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{OQ} = \overrightarrow{a} - 2\overrightarrow{b}$ respectively, in the ratio 1: 2. (i) internally (ii) externally.

Watch Video Solution

257. if
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{c} = \hat{i} + 3\hat{j} - \hat{k}$, find λ such that \overrightarrow{a} is perpendicular to $\lambda \overrightarrow{b} + \overrightarrow{c}$

258. Find the magnitude of a vector, whose components are 3, 4 and -12

260. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = 4\hat{i} + \hat{j} - 3\hat{k}$, find $\overrightarrow{a} + \overrightarrow{b}$.

Watch Video Solution

261. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , prove that $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2 \leq |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$
262. If for a vector \overrightarrow{a} , $\overrightarrow{a} \cdot \hat{i} = \overrightarrow{a} \cdot \hat{j} = \overrightarrow{a} \cdot \hat{k} = 0$, then find $\left| \overrightarrow{a} \right|$.

263. If
$$\left|\overrightarrow{a}\right| = 10$$
, and $\left|\overrightarrow{b}\right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, find angle between the

two vectors

Watch Video Solution

264. What is the area of a triangle, two of whose sides are along the vectors \hat{i} and \hat{j} .

Watch Video Solution

265. If \overrightarrow{a} and \overrightarrow{b} are the position vectors of A and B respectively, find the position vector of a Point C in BA produced such that BC = 1.5 BA.

266. Evaluate

$$\int \sin 2x \frac{dx}{1 - \sin x}$$

Watch Video Solution

267. Find the sine of the angle between the vectors $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$.

Watch Video Solution

268. Find a vector of magnitude 6 units which is at right angles to both

the vectors $2\hat{i}-\hat{j}+2\hat{k}\,$ and $\,4\hat{i}-\hat{j}+3\hat{k}\,$

269. A vector \overrightarrow{r} is inclined at equal angles to the three axes. If the magnitude of \overrightarrow{r} is $2\sqrt{3}$ units, find \overrightarrow{r} .

Watch Video Solution

270. If
$$\overrightarrow{a} = 6\hat{i} - \hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = \hat{i} - 3\hat{j} - 2\hat{k}$, find $\overrightarrow{a} - \overrightarrow{b}$.

Watch Video Solution

271. What is the value of
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
 if $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-zero coplanar vectors ?

272. If a and b are two unit vectors such that a+2b and 5a-4b are perpendicular to each other, then the angle between a and b is

273. If
$$\overrightarrow{a} = 7\hat{i} + \hat{j} - 4\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$, then find the projection of \overrightarrow{a} on \overrightarrow{b} .

Watch Video Solution

274. What is the value of $|\hat{a} + \hat{b} + \hat{c}|$ if \hat{a}, \hat{b} and \hat{c} are mutually orthogonal unit vectors.

Watch Video Solution

275. If $\overrightarrow{a} = 4\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{i} - 2\hat{j} + \hat{k}$, then find a unit vector $\overrightarrow{a} + \overrightarrow{b}$.

276. Find
$$\lambda$$
 and μ if $\left(\hat{i}+3\hat{j}+9\hat{k}
ight) imes \left(3\hat{i}-\lambda\hat{j}+\mu\hat{k}
ight)=\overrightarrow{0}.$

277. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} - \hat{j} - 4\hat{k}$, find $\overrightarrow{a} + \overrightarrow{b}$.

278. Classify the following measures as scalars and vectors, 10 g

Watch Video Solution

279. Classify the following measures as scalars and vectors : 2 meters north-west.

280. Classify the following measure as scalar and vector:40watt

281. Classify the following measures as scalars and vectors : 40 watt.

Watch Video Solution
282. Classify the following measures as scalars and vectors : 10^{-19} .
Watch Video Solution
283. Classify the following measures as scalars and vectors: $20\frac{m}{s}$
Watch Video Solution
284. Classify the following as scalar and vector quantities: <i>timeperiod</i>
Watch Video Solution

285. Classify the following as scalar and vector quantities: dis an ce

Watch Video Solution
286. Classify the following as scalar and vector quantities: force
Vatch Video Solution
287. Classify the following as scalar and vector quantities: $velocity$
Watch Video Solution
288. Classify the following as scalar and vector quantities:work done
Watch Video Solution

289. Answer the following ad true or false : \overrightarrow{a} and $-\overrightarrow{a}$ are collinear.

291. Answer the following ad true or false : Two vectors having same magnitude are collinear.

Watch Video Solution

292. Answer the following ad true or false : Two collinear vectors having

the same magnitude are equal.

297. Find the scalar and vector components of the vector with initial point

(2, 1) and terminal point (- 5, 7).

298. Find the sum of the vectors $\overrightarrow{a} = \hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\overrightarrow{c} = \hat{i} - 6\hat{j} - 7\hat{k}$,

Watch Video Solution

299. Find the unit vector in the direction of the vector $\overrightarrow{a} = \hat{i} + \hat{j} + 2\hat{k}$

304. Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$.

305. Find the direction cosines of the vector joining the points A(1, 2, -3) and B(-1, -2, 1), directed from A to B.

Watch Video Solution

306. Show that the vector $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ is equally inclined to the axes OX,

OY and OZ.

Watch Video Solution

307. Find the position vector of a point R which divides the line joining two points P and Q whose Position Vector, are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2 : 1 (i) internally,

308. Find the position vector of a point R which divides the line joining two points P and Q whose Position Vector, $\operatorname{are} \hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2 : 1 externally

points P (2, 3, 4) and Q (4, 1, 2)

Watch Video Solution

310. Show that the points A, B and C with position vectors, $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}, \vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k},$

respectively, form the vertices of a right angled triangle.

311. If \overrightarrow{a} and \overrightarrow{b} are two collinear vectors then which of the following are incorrect :

A.
$$\stackrel{
ightarrow}{b}=\lambda\stackrel{
ightarrow}{a}$$
 , for some scalar

- $\mathsf{B}.\,\overrightarrow{a}\,=\,\pm\,\overrightarrow{b}$
- C. the respective components of \overrightarrow{a} and \overrightarrow{b} are proportional

D. both the vectors \overrightarrow{a} and \overrightarrow{b} have same direction, but different

magnitudes.

Answer:

Watch Video Solution

312. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 2,respectively having $\overrightarrow{a} \cdot \overrightarrow{b} = \sqrt{6}$

that they are mutually perpendicular to each other.

317. Find
$$\left|\overrightarrow{a}\right|$$
 and $\left|\overrightarrow{b}\right|$ If $\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} - \overrightarrow{b}\right) = 8$ and $\left|\overrightarrow{a}\right| = 8\left|\overrightarrow{b}\right|$.

Watch Video Solution

318. Evaluate the product
$$\left(3\overrightarrow{a} - 5\overrightarrow{b}\right) \cdot \left(2\overrightarrow{a} + 7\overrightarrow{b}\right)$$
.

Watch Video Solution

319. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

Watch Video Solution

320. If
$$\overrightarrow{a}=2\hat{i}+2\hat{j}+3\hat{k}, \, \overrightarrow{b}=\,-\,\hat{i}+2\hat{j}+\hat{k}$$
 then $\overrightarrow{a}+\overrightarrow{b}$ is

321. Show that $|\overrightarrow{a}|\overrightarrow{b} + |\overrightarrow{b}|\overrightarrow{a}$ perpendicular to $|\overrightarrow{a}|\overrightarrow{b} - |\overrightarrow{b}|\overrightarrow{a}$, for any two non-zero vectors \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

322. If |a| = 5, |a - b| = 8 and |a + b| = 10, then |b| is equal to

Watch Video Solution

323. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then find the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$.

Watch Video Solution

324. If either vector $\overrightarrow{a} = 0$ or $\overrightarrow{b} = 0$, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$.But the converse

need not be true. Justify your answer with an example.

325. If the vertices A, B, C of a triangle ABC are (1,2,3), (-1,0,0), (0,1,2) respectively, then find $\angle ABC$ [$\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC}]

Watch Video Solution

326. Show that the points A(1,2,7), B(2,6,3) and C(3,10,-1) are collinear.

Watch Video Solution

327. Show that the points $A(2\hat{i} - \hat{j} + \hat{k})$, $B(\hat{i} - 3\hat{j} - 5\hat{k})$ and $C(3\hat{i} - 4\hat{j} - 4\hat{k})$ are the vertices of a right angled triangle.

328. If \overrightarrow{a} is a non-zero vector of magnitude 'a' and λ a non-zero scalar, then $\lambda \overrightarrow{a}$ is unit vector if $\lambda = 1$

329. If \overrightarrow{a} is a non-zero vector of magnitude 'a' and λ a non-zero scalar,

then $\lambda \overrightarrow{a}$ is unit vector if $\lambda = -1$

Watch Video Solution

330. If \overrightarrow{a} is a non-zero vector of magnitude 'a' and λ a non-zero scalar, then $\lambda \overrightarrow{a}$ is unit vector if $a = |\lambda|$

Watch Video Solution

331. If \overrightarrow{a} is a non-zero vector of magnitude 'a' and λ a non-zero scalar, then $\lambda \overrightarrow{a}$ is unit vector if $a = \frac{1}{|\lambda|}$

332. Find
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|$$
, if $\overrightarrow{a} = 2\hat{i} - 5\hat{j} + 3\hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} + 2\hat{k}$.

Watch Video Solution

333. Find a unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Watch Video Solution

334. If a unit vector \overrightarrow{a} , makes angles $\frac{\pi}{3}$ with $\hat{i} \cdot \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence the component of \overrightarrow{a} .

Watch Video Solution

335. Show that (a-b) imes (a+b) = 2(a imes b)

336. Find
$$\lambda$$
 and μ if $\left(2\hat{i}+6\hat{j}+27\hat{k}
ight) imes\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}
ight)=\overrightarrow{0}$

Watch Video Solution

337. Given that
$$\overrightarrow{a} \cdot \overrightarrow{b} = 0$$
 and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. What can you conclude about the vectors \overrightarrow{a} and \overrightarrow{b} ?.

Watch Video Solution

338. Let the vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$, then show that $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$.

339. If either $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$, then $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$. Is the converse

true ? Justify your answer with an example.

340. Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1,

5, 5).

Watch Video Solution

341. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Watch Video Solution

342. Let the vectors $\overrightarrow{and b}$ be such that $\left|\overrightarrow{a}\right| = 3$ and $\left|\overrightarrow{b}\right| = \frac{\sqrt{2}}{3}$, then $\overrightarrow{a} \times \overrightarrow{b}$ is a unit vector if the angle between \overrightarrow{a} and \overrightarrow{b} is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

Answer:

344. Find
$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}$$
 if $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \overrightarrow{b} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} - 2\hat{k}.$

Watch Video Solution

345. Show that the vectors
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \ \overrightarrow{b}, = -2\hat{i} + 3\hat{j} - 4\hat{k} \ ext{and} \ \overrightarrow{c} = \hat{i} - 3\hat{j} + 5\hat{k}$$
 are

coplanar.

Watch Video Solution

346. Find λ if the vectors $\hat{i} - \hat{j} + \hat{k}, 3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + \lambda\hat{j} - 3\hat{k}$ are

coplanar.

347. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i}$ and $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then
(a) if $c_1 = 1$ and $c_2 = 2$, find c_3 , which makes $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} coplanar.

Watch Video Solution

348. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{i}$ and $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then if $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 , can makes $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} coplanar.

Watch Video Solution

349. Show that the four points with position vectors $4\hat{i} + 8\hat{j} + 12\hat{k}, 2\hat{i} + 4\hat{j} + 6\hat{k}, 3\hat{i} + 5\hat{j} + 4\hat{k}$ and $5\hat{i} + 8\hat{j} + 5\hat{k}$ are coplanar.

350. Find 'x' such that the four points : A(3,2,1),B(4,x,5),C(4,2,-2) and

D(6,5,-1) are coplanar.

D Watch Video Solution

351. If a,b and c are coplanar show $[a+b \ b+c \ c+a]$ are coplanar.

Watch Video Solution

352. Write down a unit vector in XY-plane, making an angle of 30° with the

positive direction of x-axis.

Watch Video Solution

353. Find the scalar components and magnitude of the vector joining the

points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$

354. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

356. Find the value of x for which $x\left(\hat{i}+\hat{j}+\hat{k}
ight)$ is a unit vector.

357. Find a vector of magnitude 5 units, and parallel to the resultant of

the vectors
$$\overrightarrow{a}=2\hat{i}+3\hat{j}-\hat{k}$$
and $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}.$

358. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the Vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$

Watch Video Solution

359. Show that the points A (1, - 2, - 8), B (5, 0,- 2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

Watch Video Solution

360. Find the position vector of a point R which divides the line joining two points $P\left(2\overrightarrow{a} + \overrightarrow{b}\right)$ and $Q\left(\overrightarrow{a} - 3\overrightarrow{b}\right)$ externally in the ratio 1 : 2.

Also, show that P is the middle point of the line segment RQ.

361. The two adjacent sides of a parallelogram are $2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. Find the unit vector Parallel to its diagonal. Also, find its area.

Watch Video Solution
362. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are
$$\left(\frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{3}}\right), \left(\frac{1}{\sqrt{3}}\right)$$

Watch Video Solution

363. Let $a = \hat{i} + 4\hat{j} + 2\hat{k}, b = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $c = 2\hat{i} - \hat{j} + 4\hat{k}$ Find

a vector d which is perpendicular to both a and b and c.d=15.

364. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

Watch Video Solution

365. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} .

Watch Video Solution

366. Prove that
$$\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} + \overrightarrow{b}\right) = \left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{b}\right|^2$$
, if and *only* if vec a,vec

b` are perpendicular.

367. If θ is the angle between two vectors \overrightarrow{a} and \overrightarrow{b} , then $\overrightarrow{a} \cdot \overrightarrow{b} \ge 0$ only when

A.
$$0 < \theta < rac{\pi}{2}$$

B. $0 \le \theta \le rac{\pi}{2}$
C. $0 < \theta < \pi$
D. $0 \le \theta \le \pi$

Answer:

Watch Video Solution

368. Let \overrightarrow{a} and \overrightarrow{b} be two unit vectors and θ is the angle between them. Then $\overrightarrow{a} + \overrightarrow{b}$ is a unit vector if

A.
$$\theta = \frac{\pi}{4}$$

B. $\theta = \frac{\pi}{3}$
C. $\theta = \frac{\pi}{2}$

D.
$$heta=2rac{\pi}{3}$$

Answer:

Watch Video Solution

369. If $(\hat{i}, \hat{j}, \hat{k})$ are the usual three perpendicular unit vectors, then the value of $\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is

A. 0

B. -1

C. 1

D. 3

Answer:

370. If
$$\theta$$
 is the angle between any two vectors
 \overrightarrow{a} and \overrightarrow{b} , then $\left| \overrightarrow{a} \cdot \overrightarrow{b} \right| = \left| \overrightarrow{a} \times \overrightarrow{b} \right|$ when θ is equal to :
A.O
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer:

Watch Video Solution

371. If
$$\overrightarrow{a}$$
 is a non-zero vector, then $\left(\frac{1}{\left|\overrightarrow{a}\right|}\right)\overrightarrow{a}$ is a.....

372. If
$$\overrightarrow{a}$$
, \overrightarrow{b} are non-collinear vectors, then \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{a} + \overrightarrow{b} are......

373. The vector $\overrightarrow{a} + \overrightarrow{b}$ bisects the angle between the non collinear vectors \overrightarrow{a} and \overrightarrow{b} if

Watch Video Solution

374. If
$$\overrightarrow{r} \cdot \overrightarrow{a} = 0 = \overrightarrow{r} \cdot \overrightarrow{b}$$
, where \overrightarrow{a} and \overrightarrow{b} are non-coplanar vectors

then

Watch Video Solution

375. If $\overrightarrow{r} \cdot \overrightarrow{a} = 0 = \overrightarrow{r} \cdot \overrightarrow{b} = 0$ and also $\overrightarrow{r} \cdot \overrightarrow{c} = 0$ for some non-zero

vector
$$\overrightarrow{r}$$
 , then the value of $\overrightarrow{a} \cdot \left(\overrightarrow{b} imes \overrightarrow{c}
ight)$ is.....

376. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are any two vectors, then $(\overrightarrow{a} \times \overrightarrow{b})^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2$
=.....
Watch Video Solution
377. If \overrightarrow{a} is any non-zero vector, then $(\overrightarrow{a} \cdot \hat{i})\hat{i} + (\overrightarrow{a} \cdot \hat{j})\hat{j} + (\overrightarrow{a} \cdot \hat{k})\hat{k}$
is equal to.....
Watch Video Solution
378. If a is any vector, then
 $(a \times \hat{i})^2 + (a \times \hat{j})^2 + (a \times \hat{k})^2$ is equal to
Watch Video Solution

379. If $\left(a \times b\right)^2 + \left(a \cdot b\right)^2 = 144 \text{ and } |a| = 4$, then find the value of |b|.

380. If a non-zero vector \overrightarrow{a} makes an angle α with positive direction of x-

axis, then $\cos \alpha$ =.....

Watch Video Solution

381. The values of k, for which
$$\left|k\overrightarrow{a}\right| < \left|\overrightarrow{a}\right|$$
 and $k\overrightarrow{a} = \frac{1}{2}\overrightarrow{a}$ is parallel to

 \overrightarrow{a} hold true, lie in...

Watch Video Solution

382. The vectors $\overrightarrow{a}=3\hat{i}+2\hat{j}+2\hat{k}$ and $\overrightarrow{b}=-\hat{i}+2\hat{k}$ are the

adjacent sides of a parallelogram. The acute angle between its diagonals

is.....
383. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are any two vectors, then $\left(\overrightarrow{a} + \overrightarrow{b}\right)^2 + \left(\overrightarrow{a} - \overrightarrow{b}\right)^2$

=.....

Watch Video Solution

384. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
 and $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$, find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

385. If \overrightarrow{a} is a non-zero vector and λ is a real number st. $\left|\lambda \overrightarrow{a}\right| = 1$, then

 $|\lambda|$ is equal to.....

386. If the vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are coplanar then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{c} = \left(\overrightarrow{b} \times \overrightarrow{c}\right) \cdot \overrightarrow{a} = \dots$

387. The value is
$$\left(\hat{k} imes\hat{j}
ight)\cdot\hat{i}+\hat{j}\cdot\hat{k}$$
 is.....

388. Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$

Watch Video Solution

389. In case of each of the following statements, state whether it is true

or false : If $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$ then necessarily it implies that $\left| \overrightarrow{a} \right| = \pm \left| \overrightarrow{b} \right|$

Watch Video Solution

390. Incase of each of the following statements, state whether it is true or

$$\mathsf{false}:\mathsf{For}\;\mathsf{any}\;\mathsf{two}\;\mathsf{vectors}\;\overrightarrow{a},\,\overrightarrow{b}:\left|\overrightarrow{a}\,\cdot\,\overrightarrow{b}\right|\leq\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|$$

391. Incase of each of the following statements, state whether it is true or false : If \overrightarrow{a} and \overrightarrow{b} are the adjacent sides of a parallelogram, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

Watch Video Solution

392. Incase of each of the following statements, state whether it is true or false : If \overrightarrow{a} and \overrightarrow{b} are the adjacent sides of a rhomus, then $\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left(\overrightarrow{a} - \overrightarrow{b}\right) \neq 0.$

Watch Video Solution

393. Incase of each of the following statements, state whether it is true or false : If \overrightarrow{a} and \overrightarrow{b} are the adjacent sides of a rhombus, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

394. Incase of each of the following statements, state whether it is true or

false : If $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$ then the vectors \overrightarrow{a} and \overrightarrow{b} are

orthogonal.

Watch Video Solution

395. Incase of each of the following statements, state whether it is true or

false : For any two non-zero vectors \overrightarrow{a} and \overrightarrow{b} , $\left(\overrightarrow{a} - \overrightarrow{b}\right)^2 = \left(\overrightarrow{a}\right)^2 + \left(\overrightarrow{b}\right)^2 - 2\overrightarrow{a} \cdot \overrightarrow{b}$

Watch Video Solution

396. Incase of each of the following statements, state whether it is true or

false For any two non-zero vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} ,
 $\left(\overrightarrow{a} + \overrightarrow{b}\right)^2 = \left(\overrightarrow{a}\right)^2 + \left(\overrightarrow{b}\right)^2 + 2\overrightarrow{a}$. \overrightarrow{b}

397. Position vector of a point P is vectors whose initial point is origin.

398. Incase of each of the following statements, state whether it is true or false : If $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a} - \overrightarrow{b}\right|$ then the vectors \overrightarrow{a} and \overrightarrow{b} are orthogonal.

Watch Video Solution

399. Incase of each of the following statements, state whether it is true or

false : For any vector
$$\overrightarrow{a}, \left(\overrightarrow{a}\cdot\hat{i}
ight)^2 + \left(\overrightarrow{a}\cdot\hat{j}
ight)^2 + \left(\overrightarrow{a}\cdot\hat{k}
ight)^2 = \left(\overrightarrow{a}
ight)^2$$

400. Incase of each of the following statements, state whether it is true or false : For any vector \vec{a} , $(\vec{a} \cdot \hat{i})\hat{i} + (\vec{a} \cdot \hat{j})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k} = \vec{a}$

401. Incase of each of the following statements, state whether it is true or false : Direction cosines of a non-zero vector \overrightarrow{a} are the components of a unit vector in the direction of \overrightarrow{a} .

Watch Video Solution

402. Incase of each of the following statements, state whether it is true

or false :
$$\left(\hat{i} imes \hat{j}
ight) \cdot \hat{k} = 1 = \hat{i} \cdot \left(\hat{j} imes \hat{k}
ight)$$

403. If a is any vector, then

$$\left(a imes \hat{i}
ight)^2+\left(a imes \hat{j}
ight)^2+\left(a imes \hat{k}
ight)^2$$
 is equal to

Watch Video Solution

404. Incase of each of the following statements, state whether it is true

or false : For any vector \overrightarrow{a} , $\left(\overrightarrow{a} imes \hat{i}
ight) \hat{i} + \left(\overrightarrow{a} imes \hat{j}
ight) \hat{j} + \left(\overrightarrow{a} imes \hat{k}
ight) \hat{k} = \overrightarrow{a}$

Watch Video Solution

405. Which of the following is not a vector quantity?

A. force

B. mass

C. weight

D. velocity

406. A vector with magnitude zero is called a

A. free vector

B. localized vector

C. position vector

D. null vector

Answer:

Watch Video Solution

407. The magnitude of a vector can never be

A. negative

B. zero

C. positive

D. none of these.

Answer:

408. The vector in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 9 units is

A.
$$\hat{i} - 2\hat{j} + \hat{k}$$

B. $rac{1}{3}ig(\hat{i} - 2\hat{j} + 2\hat{k}ig)$
C. $3ig(\hat{i} - 2\hat{j} + 2\hat{k}ig)$
D. $9ig(\hat{i} - 2\hat{j} + 2\hat{k}ig)$

Answer:

409. The position vector of the point which divides the join of points $2\overrightarrow{a} - 3\overrightarrow{b}$ and $\overrightarrow{a} + \overrightarrow{b}$ in the ratio 3: 1 is

A.
$$\frac{3\overrightarrow{a} - 2\overrightarrow{b}}{2}$$

B.
$$\frac{7\overrightarrow{a} - 8\overrightarrow{b}}{4}$$

C.
$$\frac{3\overrightarrow{a}}{4}$$

D.
$$\frac{5\overrightarrow{a}}{4}$$

Answer:

410. The magnitude of the vector $6\hat{i} + 2\hat{j} + 3\hat{k}$ is

A. 5

B. 7

C. 12

Watch Video Solution

411. The position vector of the point which divides the join of points with position vectors $\vec{a} + \vec{b}$ and $2\vec{a} - \vec{b}$ in the ratio 1: 2 is

A.
$$\frac{1}{3} \left(3\overrightarrow{a} + 2\overrightarrow{b} \right)$$

B. \overrightarrow{a}
C. $\frac{1}{3} \left(5\overrightarrow{a} - \overrightarrow{b} \right)$
D. $\frac{4\overrightarrow{a} + \overrightarrow{b}}{3}$

Answer:

412. The value of λ for which the vectors $3\hat{i}-6\hat{j}+\hat{k}$ and $2\hat{i}-4\hat{j}+\lambda\hat{k}$

are parallel is

A.
$$\frac{2}{3}$$

B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer:

Watch Video Solution

413. If \overrightarrow{a} and \overrightarrow{b} are non-collinear proper vectors then number of unit vectors at right angles to both \overrightarrow{a} and \overrightarrow{b} is.....

A. 1

B. 2

C. 4

D. infinitely many

Answer:

414. If θ is the angle between two proper vectors \overrightarrow{a} and \overrightarrow{b} , then $\overrightarrow{a} \cdot \overrightarrow{b} < 0$ then

A. $0 \le heta \le \pi$ B. $0 \le heta \le rac{\pi}{2}$

C.
$$rac{\pi}{2} \leq heta \leq \pi$$

D. none of these

Answer:

415. If \overrightarrow{a} is any vector, then $\overrightarrow{a} \cdot \overrightarrow{a}$

A. 0

 $\mathsf{B}.\stackrel{\rightarrow}{0}$

 $\mathsf{C.} \neq 0$

 $\mathsf{D}.\left|\overrightarrow{a}\right|^{2}$

Answer:

Watch Video Solution

416. For any vector,
$$\overrightarrow{a}$$
, $\overrightarrow{a} \times \overrightarrow{a}$

A. $\stackrel{\longrightarrow}{0}$

B. 0

$$\mathsf{C}.\left|\overrightarrow{a}\right|^{2}$$

D. none of these

417. The vector having initial and terminal points as (2,5,0) and (-3,7,4) respectively is

A.
$$-\hat{i} + 12\hat{j} + 4\hat{k}$$

B. $5\hat{i} + 2\hat{j} - 4\hat{k}$
C. $-5\hat{i} + 2\hat{j} + 4\hat{k}$
D. $\hat{i} + \hat{j} + \hat{k}$

Answer:

418. The angle between two vectors \overrightarrow{a} and \overrightarrow{b} with Magnitudes $\sqrt{3}$ and 4 respectively and $\overrightarrow{a} \cdot \overrightarrow{b} = 2\sqrt{3}$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $5\frac{\pi}{12}$

419. The value of λ for which the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal is

B. 1

C.
$$\frac{3}{2}$$

D. $-\frac{5}{2}$

420. Find the angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$.

Answer:

Watch Video Solution

421. The vector with initial point P(2,-3,5) and terminal point Q(3,-4,7) is :

A.
$$\hat{i}-\hat{j}+2\hat{k}$$

B. $5\hat{i}-7\hat{j}+12\hat{k}$
C. $-\hat{i}+\hat{j}-2\hat{k}$

D. none of these

Answer:

422. If
$$\overrightarrow{a} \cdot \overrightarrow{a} = 0$$
 then \overrightarrow{a} is a

A. A) proper vector

B. B) free vector

C. C) null vector

D. D) none of these

423. If \overrightarrow{a} and \overrightarrow{b} are proper vectors such that $\overrightarrow{b} = \lambda \overrightarrow{a}$ for some real λ then \overrightarrow{a} and \overrightarrow{b} are

A. non-collinear

B. linearly independent

C. linearly dependent

D. none of these

Answer:

Watch Video Solution

424. For any two vectors \overrightarrow{a} and \overrightarrow{b} , which of the following is not true ?

$$\begin{array}{l} \mathsf{A}. \left| \overrightarrow{a} + \overrightarrow{b} \right| \leq \left| \overrightarrow{a} \right| + \left| \overrightarrow{b} \right| \\ \\ \mathsf{B}. \left| \overrightarrow{a} - \overrightarrow{b} \right| \leq \left| \overrightarrow{a} \right| + \left| \overrightarrow{b} \right| \\ \\ \mathsf{C}. \left| \overrightarrow{a} - \overrightarrow{b} \right| \geq \left| \left| \overrightarrow{a} \right| - \left| \overrightarrow{b} \right| \\ \end{array}$$

D. none of these

425. The area of the parallelogram whose adjacent sides are $\hat{i} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$ ts A. $\sqrt{2}$ B. $\sqrt{3}$ C. 3 D. 4

Answer:

426. If the vectors from the origin to the points A and B are . $\vec{a} = a\hat{i} - 3\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ respectively, then the area of

riangle OAB ls

A. 340

 $\mathsf{B.}\,\sqrt{125}$

 $\mathsf{C.}\,\sqrt{229}$

D.
$$\frac{1}{2}\sqrt{229}$$

Answer:

427. Given
$$|\overrightarrow{a}| = 10$$
, $|\overrightarrow{b}| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, find $|\overrightarrow{a} \operatorname{cross} \overrightarrow{b}|$.
A. 5
B. 10
C. 14
D. 16

428. Direction cosines of \hat{i} are '

- A. a) $\,<\,,0,1,1>$
- B.b) < 1, 0, 0 >
- C.c) <, -1, 0, 0 >

D. d) none of these

Answer:

Watch Video Solution

429. The vectors $-2\hat{i}+\hat{j}+2\hat{k}$, $\hat{i}+\lambda\hat{j}-\hat{k}$, $2\hat{i}-\hat{j}+\lambda\hat{k}$, are coplanar if

 λ =.....

A. 1) -2

B. 2) O

C. 3) 1

D. 4) -1

Answer:

Watch Video Solution

430. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, then the value of $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ is equal to

A. 1

B. 3

$$\mathsf{C.}-rac{3}{2}$$

D. none of these

Answer:

431. If $\left|\overrightarrow{a}\right| = 8$, $\left|\overrightarrow{b}\right| = 3$ and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 12$, then the value of \overrightarrow{a} . \overrightarrow{b} is

A.
$$6\sqrt{3}$$
 or $-6\sqrt{3}$

B. $8\sqrt{3}$ or $-8\sqrt{3}$

C.
$$12\sqrt{3}$$
 or $-12\sqrt{3}$

D. none of these

Answer:

Watch Video Solution

432. If the vectors $2\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represent the two sides AB and AC respectively of a $\triangle ABC$, then the length of the median through A is,

A. $\frac{1}{2}\sqrt{35}$ B. $2\sqrt{3}$ C. $3\sqrt{2}$ D. none of these

Answer:

Watch Video Solution

433.
$$\left(\hat{i} + \hat{j}
ight) imes \left(\hat{j} + \hat{k}
ight) \cdot \left(\hat{k} + \hat{i}
ight)$$
 is equal to

A. A) 0

- B. B) 1
- C. C) 2

D. D) none of these

434. If \overrightarrow{a} , \overrightarrow{b} and $\sqrt{3}\overrightarrow{a} - \overrightarrow{b}$ are Unit Vectors, then the angle between \overrightarrow{a} and \overrightarrow{b} is

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{3}$
C. pi/6

D. $\frac{\pi}{2}$

Answer:

Watch Video Solution

435. If
$$|\overrightarrow{a}| = 8$$
, $|\overrightarrow{b}| = 3$ and $|\overrightarrow{a} \times \overrightarrow{b}| = 12$, then the value of $\overrightarrow{a} \cdot \overrightarrow{b}$ is
A. [0,8]
B. [-12,8]
C. [0, 12]

D. [8, 12]

436. If ABC is any triangle and D is the midpoint of side [BC], then $\overrightarrow{AB} + \overrightarrow{AC}$

- A. \overrightarrow{AD}
- $\mathsf{B.}\, 2\overset{\longrightarrow}{AD}$
- $\mathsf{C.}\, 3\stackrel{\longrightarrow}{AD}$
- D. none of these

437. If
$$\overrightarrow{b}$$
 is a non-zero vector, then projection of \overrightarrow{a} on \overrightarrow{b} is

A. $\overrightarrow{a}\cdot \hat{b}$

B.
$$\left(\overrightarrow{a} \cdot \text{vecb}\right)/|\text{vec b}|^2$$
`
C. $\overrightarrow{a} \cdot \overrightarrow{b}$

D. none of these

Answer:

Watch Video Solution

438. If \overrightarrow{a} is a unit vector Perpendicular to the vectors $\overrightarrow{b} = \hat{i} - \hat{j}$ and $\overrightarrow{c} = \hat{i} + \hat{j}$ such that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ form a right hand triad, then \overrightarrow{a} is equal to

A.
$$\hat{k}$$

B. $-\hat{k}$
C. $rac{1}{\sqrt{2}}ig(\hat{i}-\hat{j}$
D. $rac{1}{\sqrt{2}}ig(\hat{i}+\hat{j})$

