©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - PRADEEP PUBLICATION

VECTORS

Example

1. If $\vec{c}=3 \vec{a}+4 \vec{b}$ and $2 \vec{c}=\vec{a}-\overrightarrow{3} b$ then show that \vec{c} and \vec{a} are like vectors and $|\vec{c}|>|\vec{a}|$.

- Watch Video Solution

2. Show that the sum of three vectors determined by the medians of a triangle directed from the vertics is zero.
3. If a, b, c and d be the position vectors of the points A, B, C and D respectively, referred to same origin O such that no three of these points are collinear and $a+c=b+d$, then quadrilateral $A B C D$ is a

- Watch Video Solution

4. $A B C D$ is a quadrilateral. E is the point of intersection of the line joining the mid-points of the opposite sides. If O is any point and $O A+O B+O C+O D=x O E$, then x is equal to

- Watch Video Solution

5. ABCDEF is a regular hexagon. Show that : $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=6 \overrightarrow{A O}$. Where O is the centre of the hexagon.
6. Solve for \vec{x}, the equation:
$\vec{A} C+\vec{x}=\overrightarrow{0}$

Watch Video Solution

7. Solve for \vec{x}, the equation:
$\vec{D} E+\vec{x}=\vec{D} C$

- Watch Video Solution

8. Solve for \vec{x}, the equation: , $\mathrm{br}>\vec{A} E+\vec{x}=\vec{A} C$

- Watch Video Solution

9. Solve for \vec{x}, the equation:
$\vec{B} E+\vec{x}+\vec{E} D=\vec{B} D$, where $A B C D$ is a quadilateral whose diagonals intersects in E .
10. $A B C D$ is a quadilateral in which $[B C]$ is parallel to [AD] and the ratio of the length $B C: A D:: 4: 7$. Taking $\vec{A} B$ and $\vec{A} D$ as repressentatives of vectors \vec{v} and $7 \vec{u}$ respectively, find the vectors represented by $\vec{B} C$

- Watch Video Solution

11. differentiate the following
$y=\sin 9 x+\operatorname{cosec} 2 x$

- Watch Video Solution

12. Differentiate the following
$y=\log \left(e^{x}\right)+x^{3}$

- Watch Video Solution

13. If A, B and C are the vertices of a triangle whose position vectors are a, b and c and G is the centroid of the $\triangle A B C$, then $G A+G B+G C$ is

- Watch Video Solution

14. Differentiate the following
$y=\cos \left(\log \left(e^{x}\right)\right)$

- Watch Video Solution

15. Consider two points P and Q with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2:1, internally.

- Watch Video Solution

16. Consider two points P and Q with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides
the line joining P and Q in the ratio 2:1, externally.

- Watch Video Solution

17. If the mid-points of the consecutives sides of any quadrilateral are connected by straight lines, prove that the resulting quadilateral is a paralellogram.

- Watch Video Solution

18. Write each of the statements in the form if then

A quadrilateral is a paralleogram if its diagonals bisect each other.

- Watch Video Solution

19. Show that the points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c}$, $-2 \vec{a}+3 \vec{b}+2 \vec{c}$ and $-8 \vec{a}+13 \vec{b}$ are collinear, whatever \vec{a}, \vec{b} and \vec{c} may be.
20. Show that the st. Line joining the mid-points of two non-parallel sides of a trapezium is parallel to the bases and is equal to half of the sum of their lengths.

- Watch Video Solution

21. Four points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S with respective position vectors $\vec{p}, \vec{q}, \vec{r}$ and \vec{s} are such that $5 \vec{p}-2 \vec{q}+6 \vec{r}-9 \vec{s}=\overrightarrow{0}$. Show that the four points are coplanar and find the P.V. of the point in which the lines PQ and RS intersect.

- Watch Video Solution

22. If O and H be the circumcentre and orthocentre respectively of triangle ABC , prove that $\vec{O} A+\overrightarrow{O B}+\vec{O} C=\vec{O} H$.
23. If S and O be the circumcentre and orthocentre respectively of triangle ABC, prove that $\vec{S} A+\vec{S} B+\vec{S} C=\vec{S} O$.

- Watch Video Solution

24. If $A(2,4)$ and $B(-5,-3)$ are respectively the initial and final points of a vector \vec{v}, find components of \vec{v} and the magnitude of \vec{v}.

- Watch Video Solution

25. If A is the point $(1,2)$ and the vector $\vec{A} B$ has components 2 and 6 , find the point B.
26. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?

- Watch Video Solution

27. Find the vector in the direction of the vector $\hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

28. Write all the unit vectors in XY-plane.

- Watch Video Solution

29. Find the components of a vector \vec{v} whose magnitude is $5 \sqrt{3}$ and which makes an angle of 120 with positive direction of X - axis.
30. Using vectors, prove that the point $A(1,2), B(3,8)$ and $(-3,-10)$ are collinear.

- Watch Video Solution

31. $A(5,4), B(3,8), C(-1,6)$ and D are coplanar points. Find the coordinates of D so that $\vec{A} B=\vec{D} C$.

- Watch Video Solution

32. If $\vec{v}_{1}=(2,-3), \vec{v}_{2}=(0,1)$ and $\vec{v}_{3}=(-1,6)$, find a unit vector parallel to $\vec{v}_{1}+2 \vec{v}_{2}-\vec{v}_{3}$.

- Watch Video Solution

33. If $\vec{v}_{1}=(2,-3), \vec{v}_{2}=(0,1)$ and $\vec{v}_{3}=(-1,6)$, find a unit vector parallel to $\vec{v}_{1}+2 \vec{v}_{2}-\vec{v}_{3}$.

- Watch Video Solution

34. Find the co-ordinates of the points A, B, C and D in the given figure.

- Watch Video Solution

35. Find the components and magnitude of the vector $\vec{P} Q$ where P and Q are the points ($-1,-2,4$) and ($2,0,-2$) respectively.

- Watch Video Solution

36. The vector $\vec{v}=\vec{A} B$ has components $3,-4$ and 5 and the point A has the coordinates $(2,-3,1)$. Find the point B.
37. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{I}+y \hat{j}+\hat{k}$ are equal.

- Watch Video Solution

38. Find the unit vector in the direction of vector vec $P Q, P(1,2,3)$ and $Q(5,6,7)$

- Watch Video Solution

39. Find a unit vector in the direction of $2 \hat{i}+3 \hat{j}+\hat{k}$.

- Watch Video Solution

40. Find a unit vector in the direction of the sum of the vectors:
$\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$.
41. Find a unit vector in the direction of the sum of the vectors:
$\vec{a}=2 \hat{i}+2 \hat{j}+5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$.

- Watch Video Solution

42. Show that the points $A(3,5,1), B(-1,0,8)$ and $C(7,10,-6)$ are collinear.

- Watch Video Solution

43. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

44. Prove that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ are coplanar.

(D) Watch Video Solution

45. Show that the points $(1,0,1),(1,1,0),(0,1,1)$ and $(0,0,2)$ are coplanar.

- Watch Video Solution

46. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

- Watch Video Solution

47. Show that the points $A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k})$ and $C(3 \hat{i}-4 \hat{j}-4 \hat{k})$ are the vertices of a right angled triangle.

- Watch Video Solution

48. Vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are given by $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}$, $\vec{c}=3 \hat{i}+5 \hat{j}-2 \hat{k}$ and $\vec{d}=-\hat{j}+\hat{k}$. Show that the vectors $\vec{b}-\vec{a}$ and $\vec{d}-\vec{c}$ are parallel and find the ratio of their lengths.

- Watch Video Solution

49. Find the values of x and y if the points ($x,-1,3$), ($3, y, 1$) and ($-1,11,9$) are collinear.

- Watch Video Solution

50. Show that the vectors $\vec{a}=\hat{i}-3 \hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{c}=3 \hat{i}+2 \hat{j}-3 \hat{k}$ are linearly independent.

- Watch Video Solution

51. Find $\vec{v} \cdot \overrightarrow{1}_{2} \vec{v}_{2}$ when $\vec{v}=1 \hat{i}+12 \hat{j}-3 \hat{k}, \vec{v}=-2 \hat{i}+6 \hat{j}+9 \hat{k}$.
52. Find $\vec{v}_{1} \cdot \vec{v}_{2}$ when $\vec{v}_{1}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{v}_{2}=-2 \hat{j}+4 \hat{k}$.

- Watch Video Solution

53. Find $\vec{v}_{1} \cdot \vec{v}_{2}$ when $\vec{v}_{1}=(2,3,-1), \vec{v}_{2}=(-1,2,3)$.

- Watch Video Solution

54. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=10,|\vec{b}|=15$ and $\vec{a} \cdot \vec{b}=75 \sqrt{2}$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

55. Find the angle between the vectors \vec{a} and \vec{b} with magnitudes 1 and 1 respectively and when $\vec{a} \cdot \vec{b}=1$.
56. Find the angle between the vectors ($1,-1,1$) and ($2,3,6$).

- Watch Video Solution

57. Find the angle between the vectors $3 \hat{i}-2 \hat{j}-6 \hat{k}$ and $4 \hat{i}-\hat{j}-8 \hat{k}$.

- Watch Video Solution

58. Find the angle between the vectors $\hat{i}+\hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

59. Find the angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$.

- Watch Video Solution

60. Prove that the three vectors $3 \hat{i}+\hat{j}+2 \hat{k}, \hat{i}-\hat{j}-\hat{k}$ and $\hat{i}+5 \hat{j}-4 \hat{k}$ are at right angle to one another.

- Watch Video Solution

61. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vecctors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

62. Find λ if the vectors $\vec{a}=\hat{i}-\lambda \hat{j}+3 \hat{k}$ and $\vec{b}=4 \hat{i}-5 \hat{j}+2 \hat{k}$ are perpendicular to each other.

- Watch Video Solution

63. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ be such that $\vec{a}+\lambda \vec{b}$ is at right angles to \vec{c}, then find λ.
64. Show hat the vectors $\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k})$, $\vec{b}=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ and $\vec{c}=\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})$ are mutually orthogonal unit vectors.

- Watch Video Solution

65. Find λ if the vector $\lambda(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

66. Show that the vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}$, $\vec{c}=3 \hat{i}-4 \hat{j}-4 \hat{k}$ form a right angled triangle.

- Watch Video Solution

67. Find the angles of the triangle whose vertices are $(0,-1,-2), B(3,1,4)$ and $C(5,7,1)$.

D Watch Video Solution

68. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, show that $\left(\frac{\sin \theta}{2}=\frac{1}{2}|\vec{a}-\vec{b}|\right.$.

D Watch Video Solution

69. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, prove that \vec{a} and \vec{b} are perpendicular.

- Watch Video Solution

70. If \vec{a} is a unit vectors and $(\vec{x}+\vec{a}) \cdot(\vec{x}-\vec{a})=8$, then find $|\vec{x}|$.

- Watch Video Solution

71. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=1$, then find the value of $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

- Watch Video Solution

72. Find two vectors of unit length which make angles of $\angle 45$ with ($1,0,0$) and are at right angles to ($0,0,1$).

- Watch Video Solution

73. Find a vector \vec{r} of magnitude $3 \sqrt{2}$ units, which makes an angle of $\frac{\pi}{4}$ and $\frac{\pi}{2}$ with y and z-axes respectively.

- Watch Video Solution

74. Show that the projection of \vec{a} on $\vec{b} \neq \overrightarrow{0}$ is $\left[\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|_{2}}\right] \vec{b}$. Hence find the projection of $\vec{P} Q$ on $\vec{A} B$ where $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}$ are the points $(-2,1,3),(3,2,5)$, (4,-3,5),(7,-5,-1) respectively

- Watch Video Solution

75. In any triangle ABC , prove that $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.

- Watch Video Solution

76. Show that the diagonals of a rhombus bisect each other at right angles.

- Watch Video Solution

77. Prove that angle in a semi-circle is right angle.
78. Prove analytically that the altitudes of a triangle are concurrent.

- Watch Video Solution

79. Show that the median to the base of ann isosceles triangle is perpendicular to base.

Watch Video Solution

80. Determine the lengths of the diagonals of a parallelogram whose adjacent sides are $\vec{a}=2 \vec{m}+\vec{n}$ and $\vec{b}=\vec{m}-2 \vec{n}$ where \vec{m} and \vec{n} are unit vectors inclined at an angle of $\angle 60$.

- Watch Video Solution

81. If $\vec{a}=2 \hat{i}-3 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-4 \hat{k}$, find $\vec{a}+\vec{b}$.

- Watch Video Solution

82. The vector $-\hat{i}+\hat{j}-\hat{k}$ bisects the angle between the vector \vec{c} and $3 \hat{i}+4 \hat{j}$. Determine the unit vector along \vec{c}.

- Watch Video Solution

83. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors, prove that $\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=\overrightarrow{0}$.

- Watch Video Solution

84. In a parallelogram ABCD , the bisector of $\angle A$ also bisects BC at X . Prove that $A D=2 A B$.

(Watch Video Solution

85. If \vec{a}, \vec{b} and \vec{c} are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

86. If $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

87. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $\vec{c} \mid=5$ and one of them being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.
88. Constant forces $2 \hat{i}-5 \hat{j}+6 \hat{k}$ and $-\hat{i}+2 \hat{j}-\hat{k}$ act on the particle. Determine the work done when the particle is displaced from a point A with position vector $4 \hat{i}-3 \hat{j}-2 \hat{k}$ to a point B with position vector $6 \hat{i}+\hat{j}-3 \hat{k}$.

- Watch Video Solution

89. Find the magnitude of $\vec{v}=(3 \hat{k}+4 \hat{j}) \cdot(\hat{i}+\hat{j}-\hat{k})$.

- Watch Video Solution

90. If $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$, find $|\vec{a} \cdot \vec{b}|$.

- Watch Video Solution

91. Integrate the following
$\int \log (3 x) d x$

- Watch Video Solution

92. Taking $\vec{v}_{1}=\hat{i}+2 \hat{j}-\hat{k}, \vec{v}_{2}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{v}_{3}=\hat{i}+\hat{j}+\hat{k}$ verify that $\left(\vec{v}_{1} \cdot \vec{v}_{2}\right) \vec{v}_{3} \neq \vec{v}_{1}\left(\vec{v}_{2} \cdot \vec{v}_{3}\right)$.

- Watch Video Solution

93. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, find $(\vec{r} \cdot \hat{i}) \cdot(\vec{r} \cdot \hat{j})+\mathrm{xy}$.

- Watch Video Solution

94. Find a unit vector perpendicular to both the vectors $4 \hat{i}-\hat{j}+3 \hat{k}$ and $-2 \hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

95. Find all vectors of magnitude 10 sqrt 3 that are perpendicular to the plane of vectors $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=-\hat{i}+3 \hat{j}+4 \hat{k}$.

- Watch Video Solution

96. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=\hat{i}+\vec{j}+\vec{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

- Watch Video Solution

97. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{i}-4 \hat{j}-5 \hat{k}$, then find a unit vector perpendicular to both of the vectors $\vec{a}-\vec{b}$ and $\vec{c}-\vec{b}$.

- Watch Video Solution

98. Find the cosine and the sine of the angle between the vectors $\underset{1}{\vec{v}}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\underset{2}{\vec{v}}=4 \hat{i}-2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

99. The vectors from the origin O to the points P and Q are respectively $2 \hat{i}-6 \hat{j}+3 \hat{k}$ and $-2 \hat{i}+\hat{j}+2 \hat{k}$. Determine the area of the parallelogram formed by $\vec{O} P$ and $\vec{O} Q$ as adjacent sides.

- Watch Video Solution

100. Using vectors find the area of the triange $A B C$ with vertices $\mathrm{A}(1,2,3), \mathrm{B}(2,-1,4)$ and $\mathrm{C}(4,5,-1)$.

- Watch Video Solution

101. Find the area of the parallelogram whose adjacent sides are given by vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

102. Prove that $\frac{1}{2} \overrightarrow{A C} \times \overrightarrow{B D}$ represents the vector area of the plane quadrilateral $A B C D$.

- Watch Video Solution

103. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$ give a geometrical interpretation to it. Hence find the area of the parallelogram whose diagonals are the vectors $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} \quad$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$.

- Watch Video Solution

104. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, then show that $\vec{a}+\vec{c}=k \vec{b}$ where k is a scalar.

Watch Video Solution

105. Let $\vec{A}, \vec{B}, \vec{C}$ be unit vectors. Suppose that $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}=0$ and the angle between \vec{B} and \vec{C} is $\frac{\pi}{6}$. Prove that $\vec{A}= \pm 2(\vec{B} \times \vec{C})$.

- Watch Video Solution

106. Let $a=\hat{i}+4 \hat{j}+2 \hat{k}, b=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $c=2 \hat{i}-\hat{j}+4 \hat{k}$ Find a vector d which is perpendicular to both a and b and $c . d=15$.

- Watch Video Solution

107. If a, b, c are the lengths of the sides $[B C],[C A]$ and $[A B]$ of triangle $A B C$, prove that $\vec{B} C+\vec{C} A+\vec{A} B=\overrightarrow{0}$ and deduce that
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

108. If \vec{a} and \vec{b} are any two vectors, show that $|\vec{a} \times \vec{b}|^{2}=\left[\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b}\end{array}\right]$.

- Watch Video Solution

109. Find the vector whose length is 3 and which is perpendicular to the vectors $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}, \vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k}$.

- Watch Video Solution

110. If \vec{a}, \vec{b} and \vec{c} are three proper vectors such that $\vec{a} \cdot \vec{b}=\vec{c}$, $\vec{b} \cdot \vec{c}=\vec{a}$. Prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at right angles and $\vec{b} \mid=1$, |quad vec $\mathrm{c}|=|$ quad vec $\mathrm{a} \mid$.
111. If $\vec{A}=(1,1,1), \vec{C}=(0,1,-1)$ are two given vectors, then find a vector \vec{B} satisfying the equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$.

- Watch Video Solution

112. If A, B, C and D are any four points in space prove that $\overrightarrow{A B} \times \overrightarrow{C D}+\overrightarrow{B C} \times \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D} \mid=4($ areaof $\triangle A B C)$.

(Watch Video Solution

113. If $\vec{\alpha}=3 \hat{i}-\hat{j}$ and $\beta=2 \hat{i}+\hat{j}-3 \hat{k}$, express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$ where β_{1} is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.

- Watch Video Solution

114. Using vectors, prove that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.
115. integrate the following
$\int \frac{d x}{\sqrt{16-x^{2}-6 x}}$

D Watch Video Solution

116. integrate the following
$\int \frac{d x}{\sqrt{11-x^{2}-10 x}}$

- Watch Video Solution

Exercise

1. Classify the following physical quantities into scalars and vectors:
$9 g m$
2. Classify the following physical quantities into scalars and vectors: 5 seconds

- Watch Video Solution

3. Classify the following physical quantities into scalars and vectors: $1000 \mathrm{~cm}^{3}$

Watch Video Solution

4. Classify the following physical quantities into scalars and vectors:

2 radians

- Watch Video Solution

5. Classify the following physical quantities into scalars and vectors: $30 \mathrm{~m} / \mathrm{s}$

Watch Video Solution

6. Classify the following physical quantities into scalars and vectors:
$20 \mathrm{~m} / \mathrm{s}$ towards north

- Watch Video Solution

7. Classify the following physical quantities into scalars and vectors:

10 Newton

- Watch Video Solution

8. Classify the following physical quantities into scalars and vectors:
$10 \mathrm{gm} / \mathrm{cm}^{3}$
9. Classify the following physical quantities into scalars and vectors: $981 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ towards the centre of earth

- Watch Video Solution

10. Find $\lambda \in R$ such that $|\lambda \vec{a}|=1, \vec{a}$ being a non-zero vector.

- Watch Video Solution

11. If $|\vec{a}|=2$, find $|4 \vec{a}|,|10 \vec{a}|$ and $|(-5) \vec{a}|$.

- Watch Video Solution

12. Is it possible that $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}|$? If yes, when?
13. If $\vec{a}=\vec{b}$, is it true that $|\vec{a}|=|\vec{b}|$?

- Watch Video Solution

14. Does $|\vec{a}|=|\vec{b}|$ imply $\vec{a}=\vec{b}$?

- Watch Video Solution

15. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the points with position vectors $\vec{a}, \vec{b}, 3 \vec{a}+2 \vec{b}$ and $\vec{a}-2 \vec{b}$ respectively, show that $\vec{A} C=2 \vec{a}+2 \vec{b}$ and $\vec{D} B=3 \vec{b}-a$.

- Watch Video Solution

16. If $\vec{c}=3 \vec{a}+4 \vec{b}$ and $2 \vec{c}=\vec{a}-3 \vec{b}$, show that \vec{c} and \vec{b} have opposite directions and $|\vec{c}|>2|\vec{b}|$.
17. If the position vector of a point A is $\vec{a}+2 \vec{b}$ and \vec{a} divides $A B$ in the ratio $2: 3$, then the position vector of B, is

- Watch Video Solution

18. If $A B C$ is triangle and D is the mid-point of $[B C]$, prove that $\vec{A} B+\vec{A} C=2 \vec{A} D$.

- Watch Video Solution

19. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}$, find $\vec{a}-2 \vec{b}$.

- Watch Video Solution

20. If $\vec{a}=5 \hat{i}-\hat{j}-2 \hat{k}$ and $\vec{b}=5 \hat{i}+\hat{j}-2 \hat{k}$, find $3 \vec{a}-\vec{b}$.

- Watch Video Solution

21. If ABCD is a parallelogram and $\vec{A} B=\vec{a}, \vec{B} C=\vec{b}$ then show that $\vec{A} C=\vec{a}+\vec{b}$ and $\vec{B} D=\vec{b}-\vec{a}$.

- Watch Video Solution

22. If $A B C D$ is a parallelogram and $\vec{A} B=\vec{a}, \vec{B} C=\vec{b}$ then give geometrical significance of $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$.

- Watch Video Solution

23. $A B C$ is any triangle and D, E, F are the mid-points of sides $\overrightarrow{B C}, \overrightarrow{C A}$ and $\overrightarrow{A B}$ respectively. Express the $\overrightarrow{B E}$ and $\overrightarrow{C F}$ as linear combination of vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

- Watch Video Solution

24. ABCD is a parallelogram and [AC], [BD]are its diagonals. Express $\vec{A} C$ and $\vec{B} D$ in terms of $\vec{A} B$ and $\vec{A} D$.

- Watch Video Solution

25. ABCD is a parallelogram and [AC], [BD]are its diagonals. Express $\vec{A} B$ and $\vec{A} D$ in terms of $\vec{A} C$ and $\vec{B} D$.

- Watch Video Solution

26. Evaluate $\int \frac{d x}{x^{2}+10 x+34}$

- Watch Video Solution

27. $A B C D$ is a parallelogram and $A C, B D$ are its diagonals. Show that :
$\overrightarrow{A C}+\overrightarrow{B D}=2 \overrightarrow{B C}, \overrightarrow{A C}-\overrightarrow{B D}=2 \overrightarrow{A B}$.
28. Apply vectors to prove that if a pair of opposite sides of quadrilateral are equal and parallel, then the figure is a parallelogram.

- Watch Video Solution

29. P is a point on the side BC of $\triangle A B C$ and Q is a point such that PQ is the resultant of $A P, P B$ and $P C$. Then, $A B Q C$ is a

- Watch Video Solution

30. Evaluate $\int \frac{d x}{x^{2}+8 x+25}$

- Watch Video Solution

31. If \vec{a} is a vectors of magnitude 3 pointing eastwards and \vec{b} is vector of magnitude 7 pointing westwards find the magnitude and direction of

- Watch Video Solution

32. Evaluate $\int \frac{d x}{x^{2}+12 x+37}$

- Watch Video Solution

33. integrate the following
$\int \frac{d x}{x^{2}+10 x+16}$

- Watch Video Solution

34. integrate the following
$\int \frac{d x}{x^{2}+8 x+12}$

- Watch Video Solution

35. integrate the following
$\int \frac{d x}{\sqrt{x^{2}+6 x+13}}$

- Watch Video Solution

36. Show that the mid-points o ftwo opposite sides of quadilateral and the mid-points of the diagonals are the vertices of parallelogram.

- Watch Video Solution

37. $A B C D$ is a quadrilateral and O is point in its plane. Show that if $\vec{O} A+\overrightarrow{O B}+\vec{O} C+\vec{O} D=\overrightarrow{0}$, then O is the point of the interection of the lines joining the mid-points of the opposite sides of $A B C D$.

- Watch Video Solution

38. $A B C D$ is a parallelogram. If P and Q are the mid-points of $[B C]$ and $[C D]$ respectively, show that $\vec{A} P+\vec{A} Q=$

Watch Video Solution

39. Evaluate
$\int \frac{d x}{3 x^{2}+6 x+5}$

- Watch Video Solution

40. A,B,C and D are four points with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively such that $5 \vec{a}-2 \vec{b}+6 \vec{c}-9 \vec{d}=\overrightarrow{0}$. Show that the point A, B, C, D are coplanar and find find the P.V. of the point in which the lines $A C$ and $B D$ intersects.

- Watch Video Solution

41. ABCDEF is a regular hexagon. Express the vectors $\overrightarrow{C D}, \overrightarrow{D E}, \overrightarrow{E F}, \overrightarrow{F A}, \overrightarrow{C E}$ in terms of $\overrightarrow{A B}$ and $\overrightarrow{B C}$.

- Watch Video Solution

42. Express the vector $a=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as sum of two vectors such that one is parallel to the vector $b=3 \hat{i}+\hat{k}$ and the other is perpendicular to b.

- Watch Video Solution

43. Find the component of vector $\vec{P} Q$ where:
$\mathrm{P}(2,3), \mathrm{Q}(5,-3)$. Also, find the magnitude of $\vec{P} Q$.

- Watch Video Solution

44. Find the component of vector $\vec{P} Q$ where: $\mathrm{P}(-1,-3), \mathrm{Q}(4,5)$.Also, find the magnitude of $\vec{P} Q$.

- Watch Video Solution

45. Find the component of vector $\overrightarrow{P Q}$ where:
$\mathrm{P}(0,2), \mathrm{Q}(-5,-6)$.Also, find the magnitude of $\overrightarrow{P Q}$.

- Watch Video Solution

46. Find the component of vector $\overrightarrow{P Q}$ where:
$\mathrm{P}(2,4), Q(5,3)$.Also, find the magnitude of $\overrightarrow{P Q}$.

- Watch Video Solution

47. In each of the following problems, components of $\vec{A} B$ along X -axis and Y-axis are respectively a_{1} and a_{2}. Find the point B when:
$a_{1}=2, a_{2}=3, A(2,-3)$.

- Watch Video Solution

48. In each of the following problems, components of $\vec{A} B$ along X-axis and Y -axis are respectively a_{1} and a_{2}. Find the point B when:

$$
a_{1}=-2, a_{2}=-4, A(-1,-2)
$$

- Watch Video Solution

49. In each of the following problems, components of $\vec{A} B$ along X -axis and Y -axis are respectively a_{1} and a_{2}. Find the point B when:

$$
a_{1}=-5, a_{2}=4, A(7,8)
$$

- Watch Video Solution

50. Find the components of vector \vec{v} making an angle α with positive direction of X-axis, when:
$|\vec{v}|=3 \sqrt{2}, \alpha=\angle 45$.

- Watch Video Solution

51. Find the components of vector \vec{v} making an angle α with positive direction of X -axis, when:
$|\vec{v}|=10, \alpha=\angle 30$.

- Watch Video Solution

52. Find the components of vector \vec{v} making an angle α with positive direction of X-axis, when:
$|\vec{v}|=\sqrt{3}, \alpha=\angle 60$.

- Watch Video Solution

53. Find the components of vector \vec{v} making an angle α with positive direction of X -axis, when:
$|\vec{v}|=5, \alpha=\angle 180$.

- Watch Video Solution

54. Find the components of vector \vec{v} making an angle α with positive direction of X -axis, when:
$|\vec{v}|=20, \alpha=\angle 240$.

- Watch Video Solution

55. Find the components of vector \vec{v} making an angle α with positive direction of X-axis, when:

$$
|\vec{v}|=3 \sqrt{2}, \alpha=\angle 45 .
$$

- Watch Video Solution

56. Find the corordinates of the terminal point of the position vector which is equivalent to $\vec{P} Q$ where $\mathrm{P}(2,6), \mathrm{Q}(-1,2)$.
57. Find the position vector of mid point of the line segment $A B$ where A is $(3,4,-2)$ and B is $(1,2,4)$.

- Watch Video Solution

58. If $\vec{a}=2 \hat{I}-3 \hat{j}, \vec{b}=3 \hat{i}+2 \hat{j}$ and $\vec{c}=\hat{i}+\hat{j}$, find the components of vector $\vec{a}-2 \vec{b}+\vec{c}$.

- Watch Video Solution

59. Let $A(2,-1), B(-1,2), C(3,1)$ and $D(0,4)$. Show that $\overrightarrow{A B}=\overrightarrow{C D}$.

- Watch Video Solution

60. Given four points $A(2,2), B(2,4), C(1,2)$ and $D(-1,3)$. Find the point P that $\overrightarrow{A P}=\overrightarrow{A B}+\overrightarrow{C D}$.

- Watch Video Solution

61. Let \vec{a} and \vec{b} be the position vectors of the points $(3,-5)$ and ($m, 4$) respectively. Find m if the vectors \vec{a} and \vec{b} are collinear.

- Watch Video Solution

62. $A B C D$ is a parallelogram. If the points A, B and C are respectively :
$(0,0),(2,2),(1,3)$ Find the coordinates of the point D.

- Watch Video Solution

63. $A B C D$ is a parallelogram. If the points A, B and C are respectively :
$(2,3),(1,4),(1,-2)$ Find the coordinates of the point D.
64. $A B C D$ is a parallelogram. If the points A, B and C are respectively : $(2,3),(1,4),(1,-2)$ Find the coordinates of the point D.

- Watch Video Solution

65. $A B C D$ is a parallelogram. If the points A, B and C are respectively : $(-2,-1),(3,0),(0,-2)$ Find the coordinates of the point D.

- Watch Video Solution

66. If $\vec{a}=\hat{i}-2 \hat{j}$ and $\vec{b}=2 \hat{i}+2 \hat{j}$, find a unit vector parallel to the vector $3 \vec{a}-2 \vec{b}$.

- Watch Video Solution

67. Using vectors, prove that the following point are collinear: $(1,2),(3,8),(7,20)$

- Watch Video Solution

68. Using vectors, prove that the following point are collinear:
$(-2,3,5),(1,2,3),(7,0,-1)$

- Watch Video Solution

69. Using vectors, prove that the following point are collinear:
$(7,9),(-1,1),(-5,-3)$

D Watch Video Solution

70. Using vectors, prove that the following point are collinear:
$(-1,2),(0,0),(2,-4)$
71. Find the unknown x if the points $(2,4),(7, x)$ and $(-1,1)$ are collinear.

- Watch Video Solution

72. If $\vec{\alpha}$ and $\vec{\beta}$ are non-collinear vectors and
$\vec{a}=(x+4 y) \vec{\alpha}+(2 x+y+1) \vec{\beta}$ and
$\vec{b}=(y-2 x+2) \vec{\alpha}+(2 x-3 y-1) \beta$, find x and y so that $3 \vec{a}=2 \vec{b}$.

- Watch Video Solution

73. If the position vectors of the vertices A, B and C of $\triangle A B C$ are respectively $\overrightarrow{0},-20 \hat{i}+15 \hat{j}$ and $36 \hat{I}+15 \hat{j}$. Find the P.V. of the incentre of the triangle.

- Watch Video Solution

74. Find the length of the vector $3 \hat{i}+4 \hat{j}-12 \hat{k}$.

- Watch Video Solution

75. Find the components ofteh vector $A B$ where A and B are the points($2,0,3$) and ($-1,2,-3$) respectively. Also , find the length of this vector.

- Watch Video Solution

76. Find the coordinates of the final point of vector \vec{v} whose components are $2,3,-4$ and whose initial point is $(3,-6,2)$. Also find $|\vec{v}|$.

- Watch Video Solution

77. Find the unit vector in the direction of $3 \hat{i}-6 \hat{j}-2 \hat{k}$.

- Watch Video Solution

78. Find the unit vector in the direction of $12 \hat{i}-5 \hat{k}$.

- Watch Video Solution

79. Find a unit vector parallel to the sum of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$, $\vec{b}=3 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{c}=-2 \hat{i}-\hat{j}-\hat{k}$.

- Watch Video Solution

80. Show that the points A, B and C whose position vectors are repectively $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ are collinear.

- Watch Video Solution

81. Find the unit vector in the direction of sum of vectors $-2 \hat{i}-3 \hat{j}+2 \hat{k}$, $3 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\hat{i}+2 \hat{j}+6 \hat{k}$.
82. If $\vec{A} B=\underset{1}{a} \hat{i}+\underset{2}{\hat{j}}+\underset{\hat{k}}{ }$ and A has the cordinates (b1,b2,b3), find the cordinates of B.

D Watch Video Solution

83. Find a unit vector in the direction of $\vec{a}-2 \vec{b}+3 \vec{c}$ if $\vec{a}=\hat{i}+\hat{j}$, $\vec{b}=\hat{j}+\hat{k}$ and $\vec{c}=\vec{i}+\vec{k}$.

(Watch Video Solution

84. Find the points of trisection of $[P Q]$ if the position vectors of P and Q are respectively $3 \hat{i}+2 \hat{j}-4 \hat{k}$ and $9 \hat{i}+8 \hat{j}-10 \hat{k}$.

- Watch Video Solution

85. Show that the point A, B, C and D whose position vectors are respectively $2 \hat{i}+4 \hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}+\hat{k}, 3 \hat{i}+\hat{j}-3 \hat{k}$ and $4 \hat{i}+3 \hat{j}-2 \hat{k}$ are the vertices of a paralleogram (use vector method).

- Watch Video Solution

86. The position vectors of the points A, B, C and D are respectively $4 \hat{i}+3 \hat{j}-\hat{k}, 5 \hat{i}+\hat{j}+2 \hat{k}, 2 \hat{i}-3 \hat{k}$ and $4 \hat{i}-4 \hat{j}+3 \hat{k}$. Show that $A B$ and CD are parallel.

- Watch Video Solution

87. Find the magnitude and components of the vector $2(-1,0,3)+3(1,1,2)-$ (-2,3,0).

- Watch Video Solution

88. Prove that the points $A(1,2,3), B(2,3,1)$ and $C(3,1,2)$ are the vertices of an equilateral triangle.

Watch Video Solution

89. Prove that the points (1,1,1),(-2,4,1),(-1,5,5) and (2,2,5) taken in order ,are the vertices of a square. Find the area of square.

- Watch Video Solution

90. If the points ($-1,-1,2$), (2,m,5) and ($3,11,6$) are collinear, find the value of m.

- Watch Video Solution

91. Using vectors, find the value of ' k ' such that the points $(k,-10,3),(1,-1,3)$ and $(3,5,3)$ are collinear.
92. The sides of a parallelogram represent the vectors $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vectors parallel to its diagonals.

- Watch Video Solution

93. Let $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{k}$. Find the vector in the direction of $\vec{b}-\vec{a}-2 \vec{c}$ and having length $2 \sqrt{30}$.

- Watch Video Solution

94. Prove that the points whose position vectors are $\hat{i}-\hat{j}+\hat{k}$, $2 \hat{i}+3 \hat{j}+\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{j}+3 \hat{k}$ lie in the same plane.

- Watch Video Solution

95. Prove that the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ are coplanar.

Watch Video Solution

96. Show that the points (1,1,1),(2,-1,2),(-1,2,2) and (2,2,-1) are coplanar.

- Watch Video Solution

97. Show that the points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are coplanar.

- Watch Video Solution

98. If \vec{a}, \vec{b} and \vec{c} are non-coplanar (independent) vectors, prove that the vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $\vec{a}-\vec{b}+2 \vec{c}$ are also linearly independent.
99. Find $\vec{v} \cdot \vec{v}_{2}$ when $\vec{v}=4 \hat{i}+12 \hat{j}-3 \hat{k}, \vec{v}=-2 \hat{i}+6 \hat{j}+9 \hat{k}$.

- Watch Video Solution

100. Find $\vec{v} \cdot \vec{v}_{2}$ when $\vec{v}=(1,3,5), \vec{v}=(5,-7,9)$.

- Watch Video Solution

101. Find the angle between the vectors:
$\vec{v}={ }_{1} \hat{i}-2 \hat{j}-2 \hat{k}$ and $\vec{v}=2 \hat{i}+3 \hat{j}-6 \hat{k}$.

- Watch Video Solution

102. Find the angle between the vectors:
$\vec{v}=(3,5,4)$ and $\vec{v}=2(2,-2,1)$.
103. Find the value of lambda so that vectors $\vec{a}=3 \hat{i}+3 \hat{j}-\lambda \hat{k}$ and $\vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ are perpendicular to each other.

- Watch Video Solution

104. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{c}=\hat{i}+3 \hat{j}-\hat{k}$, find lambda if \vec{a} is at right angles to $\lambda \vec{b}+\vec{c}$.

- Watch Video Solution

105. Find the value of a for which the vector $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}+a \hat{j}+3 \hat{k}$ are perpendicular.

- Watch Video Solution

106. Find the value of a for which the vector $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}+a \hat{j}+3 \hat{k}$ are parallel.

Watch Video Solution

107. If $(\vec{a})^{2}=(\vec{b})^{2}$, is it necessary that $\vec{a}=\vec{b}$?

- Watch Video Solution

108. Find the angles which the vector $3 \hat{i}-6 \hat{j}+2 \hat{k}$ makes the coordinates axes.

- Watch Video Solution

109. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove that $2 \vec{a}+\vec{b}$ is perpendicular to the vector \vec{b}.
110. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove that $2 \vec{a}+\vec{b}$ is perpendicular to the vector \vec{b}.

- Watch Video Solution

111. If \vec{a} is any vector in space, then show that $\vec{a}=(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}$.

- Watch Video Solution

112. If the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of $\triangle A B C$ have position vectors ($1,2,3$), $(-1,0,0)$, $(0,1,2)$ respectively what is the magnitude of the angle $A B C$?

- Watch Video Solution

113. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between $\vec{A} B$ and $\vec{C} D$. Are $\vec{A} B$ and $\vec{C} D$ collinear?

- Watch Video Solution

114. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$, show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are at right angles.

- Watch Video Solution

115. Find the projection (vector) of the vector $7 \hat{i}+\hat{j}-4 \hat{k}$ on $2 \hat{i}+6 \hat{j}+3 \hat{k}$.

- Watch Video Solution

116. Find the projection (vector) of the vector $7 \hat{i}+\hat{j}-4 \hat{k}$ on $7 \hat{i}+\hat{j}-3 \hat{k}$

- Watch Video Solution

117. Find the projection of $\vec{A} B$ on $\vec{P} Q$ where $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}$ are the points
$(-2,1,3),(0,2,5),(4,-3,0),(7,-5,-1)$ respectively.

- Watch Video Solution

118. If A, B, C, D are the points with position vectors $\hat{i}+\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}$, $2 \hat{i}-3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ respectively, find the projection of $\vec{A} B$ along $\vec{C} D$.

- Watch Video Solution

119. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.
120. Find the projection of thevector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$.

- Watch Video Solution

121. Prove that the vectors $\vec{a}=\hat{i}-3 \hat{j}-5 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}+6 \hat{k}$ from of a right angled triangle.

- Watch Video Solution

122. If A, B, C have position vectors $(0,1,1),(3,1,5),(0,3,3)$ respectively, prove that $\triangle A B C$ is right angled at C .

- Watch Video Solution

123. Prove Cauchy- Schwarz inequality $|\vec{a} \cdot \vec{b}|<|\vec{a}||\vec{b}|$.

- Watch Video Solution

124. For any two vectors \vec{a} and \vec{b}, prove that $(\vec{a} \cdot \vec{b})^{2} \leq|\vec{a}|^{2}|\vec{b}|^{2}$

- Watch Video Solution

125. If $|\vec{a}|=1,|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=1$, prove that $|\vec{a}-\vec{b}|=\sqrt{3}$.

- Watch Video Solution

126. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, prove that \vec{a} and \vec{b} are perpendicular.
127. If $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$, show that $|\vec{a}|=|\vec{b}|$.

- Watch Video Solution

128. If \vec{a} and \vec{b} are any two vectors, then prove that
$\vec{a}+\left.\vec{b}\right|^{2}+|\vec{a}-\vec{b}|^{2}=2|\vec{a}|^{2}+2|\vec{b}|^{2}$.

- Watch Video Solution

129. Prove that two proper vectors \vec{a} and \vec{b} are the right angles iff $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}$.

- Watch Video Solution

130. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and $\vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}=0$ then show that \vec{d} is zero vector.
131. Find a vector \vec{c} such that $\vec{c} \cdot(\hat{i}+\hat{j})=2, \vec{c} \cdot(\hat{i}-\hat{j})=3$ and $\vec{c} \cdot \hat{k}=0$.

Watch Video Solution

132. Find a vector \vec{c} such that $\vec{c} \cdot \hat{i}=\vec{c} \cdot \hat{j}=\vec{c} . \hat{k}$ and $|\vec{c}|=100$.

- Watch Video Solution

133. If \vec{c} is normal to \vec{a} and \vec{b}, show that \vec{c} is normal to $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$.

- Watch Video Solution

134. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}|=5,|, \vec{b}|=12$ and $|\vec{c}|=13$ and if $\vec{a}+\vec{b}+\vec{c}=0$, find the value of
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

135. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular unit vectors, then find the value of $|2 \vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

136. Prove that, in any triangle $\mathrm{ABC}, \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$.

- Watch Video Solution

137. If $\vec{a}+\vec{b}+\vec{c}=0$, show that the angle θ between \vec{a} and \vec{b} is given by $\cos \theta=c^{2}-a^{2}-b^{2} / 2 a b$.

- Watch Video Solution

138. Using vector method, prove that in a triangle, $a=b \cos C+c \cos B$ (projection formula)

D Watch Video Solution

139. Show that the median to the base of ann isosceles triangle is perpendicular to base.

(D) Watch Video Solution

140. Prove that in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

- Watch Video Solution

141. In any triangle $A B C$, show that
$A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
where, D is the middle point of $B C$.

- Watch Video Solution

142. Prove that in a right angled triangle the mid-point of the hypotenuse is equidistant from its vertices.

- Watch Video Solution

143. In a triangle $\mathrm{OAB}, \angle A O B=90^{\circ}$. If P and Q are the points of trisection of AB , prove that $O P^{2}+O Q^{2}=\frac{5}{9} A B^{2}$.

- Watch Video Solution

144. Which of the following statements are True or False :

If the diagonals of a parallelogram are equal then it is a rectangle.
145. Prove that the quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus.

- Watch Video Solution

146. Prove that if the diagonals of a quadrilateral bisect each other at right angles, then the quadrilateral is a rhombus.

- Watch Video Solution

147. Using vector method, prove that the altitudes of a triangle are concurrent.

- Watch Video Solution

148. Prove that the perpendicular from the vertices to the opposite sides (i.e. Altitudes) of a triangle concurrent.
149. Prove by vectors that: $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$.

- Watch Video Solution

150. Prove by vectors that:
$\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$.

- Watch Video Solution

151. In each of the following, find the work done by a force \vec{F} acting on a particle such that the particle is :

$$
P(-2,3,0), Q(0,1,2), \vec{F}=2 \hat{i}+\hat{j}-\hat{k} .
$$

- Watch Video Solution

152. In each of the following, find the work done by a force \vec{F} acting on a particle such that the particle is :
$P(-3,4,1), Q(-1,-1,2), \vec{F}=3 \hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

153. A particle acted on by two forces $4 \hat{i}+3 \hat{j}$ and $3 \hat{i}+2 \hat{j}$ is displaced from the point $\hat{i}+2 \hat{j}$ to $5 \hat{i}+4 \hat{j}$. Find the totral work done by these forces.

- Watch Video Solution

154. A particle is acted upon by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ which displace it from a point $\hat{i}+2 \hat{j}+3 \hat{k}$ to the point $5 \hat{i}+4 \hat{j}+\hat{k}$. Find the work done by the forces in standard units

- Watch Video Solution

155. Find $\underset{1}{\vec{v}} \cdot \underset{2}{\vec{v}}$ if $\underset{1}{\vec{v}}=3 \hat{i}+\hat{j}+2 \hat{k}, \cdot \underset{2}{v}=2 \hat{i}-2 \hat{j}+4 \hat{k}$.

- Watch Video Solution

156. Find $\vec{a} \cdot \vec{b}$ if $\vec{a}=2 \hat{i}+\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

157. If $\vec{a}=4 \hat{i}+3 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{k}$, find \mid vec a *vec $b \mid$:.

- Watch Video Solution

158. Evaluate the following products: $(3 \hat{i}-6 \hat{j}+2 \hat{k}) \cdot(2 \hat{i}+\hat{j}-2 \hat{k})$.

- Watch Video Solution

159. Evaluate the following products: $(2 \hat{i}+3 \hat{j}) \cdot(-\hat{i}+3 \hat{j}+\hat{k})$.
160. Evaluate the following products: $(2,-1,1) \cdot(3,4,-1)$.

Watch Video Solution

161. Taking $\vec{a}=2 \hat{i}-3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+4 \hat{j}-2 \hat{k}$, verify that $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$.

- Watch Video Solution

162. If $\vec{a}=3 \hat{i}+4 \hat{j}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$, find the value of $|\vec{a} \cdot \vec{b}|$.

- Watch Video Solution

163. Find the magnitude of $\vec{a}=(\hat{i}+3 \hat{j}-2 \hat{k}) \cdot(-\hat{i}+3 \hat{k})$.
164. Given $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, find $\mid \vec{a}$ cross $\vec{b} \mid$.

- Watch Video Solution

165. Define $\vec{a} \cdot \vec{b}$ where \vec{a} and \vec{b} are any two vectors. Find $\vec{a} \cdot \vec{b}$ if $|\vec{a}|=2,|\vec{b}|=5$.

- Watch Video Solution

166. Find a unit vector perpendicular to both the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $\hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

167. Find a unit vector perpendicular to both the planes of \vec{a} and \vec{b}, where $\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+\hat{k}$.
168. Find a unit vector perpendicular to the plane of two vectors $a=\hat{i}-\hat{j}+2 \hat{k}$ and $b=2 \hat{i}+3 \hat{j}-\hat{k}$.

- Watch Video Solution

169. Find the equation of a plane through the points (3,-1,2), (1,-1,-3) and (4,-3,1)

- Watch Video Solution

170. Find a unit vector perpendicular to each of the vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $-3 \hat{i}-2 \hat{j}+\hat{k}$. Also find the area of the parallelogram determined by these vectors.

- Watch Video Solution

171. Find the sine of the angle between the vectors:
($3,0,3$) and ($1,2,-7$)

Watch Video Solution

172. Find the sine of the angle between the vectors:
$2 \hat{i}+4 \hat{j}+4 \hat{k}$ and $2 \hat{i}-7 \hat{j}+\hat{k}$.

- Watch Video Solution

173. Determine the area of the parallelogram whose adjacent sides are the vectors $\hat{i}-3 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

174. Find the area of the parallelogram having two adjacent sides OA and $O B$ where O is the origin and the position vectors of A and B are
respectively $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-3 \hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

175. Find the area of $\triangle P Q R$ where $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ have respectively coordinates
$(1,3,2),(2,-1,1),(-1,2,3)$ with reference to rectangular system of co-ordinates.

- Watch Video Solution

176. Find the area of the triangle formed by O, A, B where :
$\vec{O} A=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{O} B=-3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

177. Find the area of the triangle formed by $\mathrm{O}, \mathrm{A}, \mathrm{B}$ where :
$\vec{O} A=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{O} B=-\hat{i}-3 \hat{j}+\hat{k}$
178. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$ where $\vec{a} \neq \vec{d}, \vec{b} \neq \vec{c}$.

- Watch Video Solution

179. Find the area of the triangle $A B C$ where A, B, C are the points $(a, 0,0)$, (0,b,0),(0,0,c)respectively, where $a b c \neq 0$.

- Watch Video Solution

180. Find the area of the triangle having the points $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ as vertices.

- Watch Video Solution

181. If $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$, find $(\vec{a} \cdot \vec{b}) \cdot(\vec{a} \cdot \vec{c})$.

(D) Watch Video Solution

182.

Calculate
the
product
$((\hat{i}-2 \hat{j}+3 \hat{k}) \operatorname{cross}(2 \hat{i}+\hat{j}-3 \hat{k})) \cdot(-3 \hat{i}+\hat{j}+2 \hat{k})$.

- Watch Video Solution

183. If $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$, compute $(\vec{a}$ cross $\vec{b}) \cdot \vec{c}$.

- Watch Video Solution

184. Define the vector product of two vectors \vec{a} and \vec{b}. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}+3 \hat{j}$, then find $(\vec{a}+\vec{b}) \cdot \vec{c}$ and $\vec{a} \cdot(\vec{b}+\vec{c})$.

- Watch Video Solution

185. If $\vec{a}=2 \hat{i}+5 \hat{j}-7 \hat{k}, \vec{b}=-3 \hat{I}+4 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}-3 \hat{k}$, compute $(\vec{a} \times \vec{b}) \cdot \vec{c}$ and $\vec{a} \cdot(\vec{b} \times \vec{c})$ and verify that these are same.

- Watch Video Solution

186. If G is the centroid of $\triangle A B C$, prove that area $\triangle A G B=\frac{1}{3}$ area $\triangle A B C$.

- Watch Video Solution

187. If D, E, f are the mid-point of the sides of triangle $A B C$, prove that : $\operatorname{ar}(\triangle D E F)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$.

- Watch Video Solution

188. Using vectors prove that $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$.
189. If $\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{b}=3 \hat{i}-6 \hat{j}+2 \hat{k}$ and $\vec{c}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ then compute $\vec{b} \cdot \vec{c}$ and $\vec{a} \cdot \vec{b}$. Hence evaluate $\vec{a} \cdot(\vec{b} \cdot \vec{c})$ and also $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$.

- Watch Video Solution

190. If $\vec{a}+\vec{b}+\vec{c}=0$, show that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

- Watch Video Solution

191. Integrate the following
$\int x \sin (2 x) d x$

- Watch Video Solution

192. Prove the following : $\vec{a} \cdot(\vec{a} \times \vec{b})=0$, where are \vec{a} and \vec{b} are any two vectors.

- Watch Video Solution

193. Integrate the following
$\int \frac{d x}{1+\cos e c x}$

- Watch Video Solution

194. Integrate the following
$\int \frac{d x}{1-\cos e c x}$

(Watch Video Solution

195. Find the volume of the parallelopied whose co-terminus edges are
$\overrightarrow{1}=2 \hat{i}+\hat{j}-\hat{k}, \overrightarrow{2},=\hat{i}+\hat{2} j+3 \hat{k}$ and $\overrightarrow{3}=3 \hat{i}-\hat{j}+2 \hat{k}$

- Watch Video Solution

196.

Show
that
the
vectors
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b},=-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}+5 \hat{k} \quad$ are coplanar.

Watch Video Solution

197. Find λ such that the vectors
$\vec{v}_{1}=2 \hat{i}-\hat{j}+\hat{k}, \vec{v}_{2}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{v}_{3}=3 \hat{i}+\lambda \hat{j}+5 \hat{k} \quad$ are coplanar.

- Watch Video Solution

198.

Find
λ
such
that
the
vectors

$$
\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k} \text { and } \vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}
$$

D Watch Video Solution

199. Prove that the points whose position vectors are $6 \hat{i}-7 \hat{j}, 16 \hat{i}-29 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}$ and $2 \hat{i}+5 \hat{j}+10 \hat{k}$ are coplanar.

- Watch Video Solution

200. Find x such that the four points $A(4,1,2), B(5, x, 6), C(5,1,-1)$ and D
$(7,4,0)$ are coplanar

- Watch Video Solution

$$
\begin{aligned}
& \text { 201. Find } \\
& \vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k} \text { and } \vec{c}=\lambda \hat{j}+3 \hat{k} \text { are coplanar. }
\end{aligned}
$$

202. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

203. For any three vectors \vec{a}, \vec{b} and \vec{c}, show that $\vec{a}-\vec{b}, \vec{b}-\vec{c}$ and $\vec{c}-\vec{a}$ are coplanar.

- Watch Video Solution

204. Prove that $[\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}]=0$

- Watch Video Solution

205. Integrate the following
$\int(\cos x) \frac{d x}{1+\sin ^{2} x}$

- Watch Video Solution

206. Prove that if $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are any four vectors, then $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\left[\begin{array}{l}\vec{a} \cdot \vec{c} \vec{b} \cdot \vec{c} \\ \vec{a} \cdot \vec{d} \vec{b} \cdot \vec{d}\end{array}\right]$

(Watch Video Solution

207.

Compute
where
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=\hat{j}+\hat{k}$.

Watch Video Solution

208.

Compute
where
$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=\hat{j}+\hat{k}$.

- Watch Video Solution

209. Find the volume of the Parallelopiped whose coterminous edges are
$\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

210. Find the volume of the Parallelopiped whose coterminous edges are represented by the vectors $\vec{a}=-3 \hat{i}+7 \hat{j}+5 \hat{k}, \vec{b}=-5 \hat{i}+7 \hat{j}-3 \hat{k}$ and $\vec{c}=7 \hat{i}-5 \hat{j}-3 \hat{k}$.

- Watch Video Solution

211. Find the volume of the Parallelopiped whose coterminous edges are represented by the vectors $2 \hat{i}+3 \hat{j}+4 \hat{k}, \hat{i}+2 \hat{j}-\hat{k}$ and $3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

212. If $\vec{\alpha}$ and $\vec{\beta}$ are any vectors, prove that $\vec{\beta} \cdot(\vec{\alpha} \times \vec{\beta})=0$.
213.

$\vec{a}=-2 \hat{i}-2 \hat{j}+4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\vec{c}=4 \hat{i}-2 \hat{j}-2 \hat{k}$. prove that $\vec{a}, \vec{b}, \vec{c}$ are coplanar

- Watch Video Solution

214. Show
that
the
vectors
$\vec{a}=10 \hat{i}-12 \hat{j}-4 \hat{k}, \vec{b}=-16 \hat{i}+22 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-8 \hat{j}+16 \hat{k}$
are coplanar.

- Watch Video Solution

215. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}-7 \hat{k}$ and $\vec{c}=5 \hat{i}+6 \hat{j}-5 \hat{k}$. show that \vec{a}, \vec{b} and \vec{c} are coplanar.
216. Integrate the following
$\int x e^{3 x} d x$

Watch Video Solution

217. Find λ
if
vectors
$\vec{a}=\hat{i}+\lambda \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=7 \hat{j}+3 \hat{k}$ are coplanar.

- Watch Video Solution

218. Find the value of scalar λ if the vectors $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=\lambda \hat{i}+3 \hat{j}-2 \hat{k} \quad$ are coplanar.

- Watch Video Solution

219. Prove that the four points
$4 \hat{i}+5 \hat{j}+\hat{k},-(\hat{j}+\hat{k}), 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $4(-\hat{i}+\hat{j}+\hat{k})$ are coplanar.

- Watch Video Solution

220. Integrate the following
$\int(2 x+6) \frac{d x}{x^{2}+6 x+49}$

- Watch Video Solution

221. Show that the four points having position vectors $6 \hat{i}-7 \hat{j}, 16 \hat{i}-19 \hat{j}-4 \hat{k}, 3 \hat{j}-6 \hat{k}, 2 \hat{i}+5 \hat{j}+10 \hat{k}$ are not coplanar.

- Watch Video Solution

222. Integrate the following
$\int x \log 3 x d x$

Watch Video Solution

223. If $\vec{a}=3 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+\hat{j}+3 \hat{k}$, state which of the following is meaningful and evaluate those that are meaningful : $(\vec{a} \cdot \vec{b}) \times \vec{c}, \vec{a} \times(\vec{b} \times \vec{c}),(\vec{a} \times \vec{b}) \cdot \vec{c}$

- Watch Video Solution

224. Integrate the following
$\int \frac{d x}{x^{2}+10 x+9}$

- Watch Video Solution

225. If $\vec{a}, \vec{b}, \vec{c}$ are any three vectors, prove that $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$

(d) Watch Video Solution

226. For any vector \vec{a}, prove that
$\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$

- Watch Video Solution

227. If a, b and c are three non-zero vectors such that $a \cdot(b \times c)=0$ and b and c are not parallel vectors, prove that $a=\lambda b+\mu c$ where λ and μ are scalar.

- Watch Video Solution

228. Integrate the following
$\int x \cos 5 x d x$

Watch Video Solution

229. What is the magnitude of a unit vector ?

- Watch Video Solution

230. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ equal vectors, then find the value of $x+y+z$.

- Watch Video Solution

231. Does $|\vec{a}|=|\vec{b}|$ imply $\vec{a}=\vec{b}$?

- Watch Video Solution

232. State whether the vectors \hat{i}, \hat{j} and \hat{k} are coplanar or non-coplanar.

- Watch Video Solution

233. Integrate the following
$\int \frac{d x}{1-\sec x}$

- Watch Video Solution

234. What is the cosine of the angle which the vector $\sqrt{2} \hat{i}+\hat{j}+\hat{k}$ makes with the Y -axis ?

- Watch Video Solution

235. Find p if the vectors $2 \hat{i}+3 \hat{j}+6 \hat{k}$ and $p \hat{i}+2 \hat{j}-3 \hat{k}$ are perpendicular.
236. Find λ if the vector $\lambda(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

237. If \vec{a} and \vec{b} are non-zero vectors and the angle θ between them is given by $\cos \theta=\frac{k}{|\vec{a}||\vec{b}|}$ then write the value of k.

- Watch Video Solution

238. Write a vector of magnitude 9 units in the direction vector $-2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

239. If θ is the angle between two non-zero vectors \vec{a} and \vec{b}, then write down the value of $\sin \theta$.

Watch Video Solution

240. If the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}-2 p \hat{j}+3 \hat{k}$ are parallel, find p .

- Watch Video Solution

241. If for any two vectors \vec{a} and \vec{b},
$(\vec{a}+\vec{b})^{2}+(\vec{a}-\vec{b})^{2}=\lambda\left\{(\vec{a})^{2}+(\vec{b})^{2}\right\}$, thenwritethevalueof
λ^{\prime}.

- Watch Video Solution

242. Find the angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$.

- Watch Video Solution

243. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, then what can be concluded about the vector \vec{b} ?

Watch Video Solution

244. If $\overrightarrow{P Q}=3 \hat{i}+3 \hat{j}+6 \hat{k}$ and Q is the point $(4,5,6)$, find the point P.

- Watch Video Solution

245. Find $\vec{a} \cdot \vec{b}$ if $\vec{a}=3 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\vec{b}=-2 \hat{i}+2 \hat{j}+\hat{k}$

- Watch Video Solution

246. If $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$ and $|\vec{a}|=5$, find $|\vec{b}|$.

- Watch Video Solution

247. If $(\vec{a})^{2}=(\vec{b})^{2}$, is it necessary that $\vec{a}=\vec{b}$?

- Watch Video Solution

248. What is the angle between two unlike parallel vectors ?

- Watch Video Solution

249. If vectors \vec{a} and \vec{b}, are such that $|\vec{a}|=3,|\vec{b}|=\frac{2}{3}$ and $\vec{a} \times \vec{b}$ is a unit vector, then find the angle between \vec{a} and \vec{b}.

(Watch Video Solution

250. Find the sum of vectors $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{j}+\hat{k}$.

D Watch Video Solution

251. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}$, find $\vec{a}+\vec{b}$.

- Watch Video Solution

252. If $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-2 \hat{k}$, find $2 \vec{a}-\vec{b}$.

- Watch Video Solution

253. Find a unit vector in the direction of $\overrightarrow{P Q}$. where P and Q have coordinates ($5,0,8$) and ($3,3,2$) respectively.

- Watch Video Solution

254. Find the angle between the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}+4 \hat{j}-\hat{k}$

- Watch Video Solution

255. Find a vector of magnitude 11 in the direction opposite to that of $\overrightarrow{P Q}$, where P and Q are the points $(1,3,2)$ and $(-1,0,8)$ respectively.

- Watch Video Solution

256. Find the position vector of the point R which divides the line (segment) joining the two points P and Q with position vectors $\overrightarrow{O P}=2 \vec{a}+\vec{b}$ and $\overrightarrow{O Q}=\vec{a}-2 \vec{b}$ respectively, in the ratio $1: 2$. (i) internally (ii) externally. ‘

- Watch Video Solution

257. if $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{c}=\hat{i}+3 \hat{j}-\hat{k}$, find λ such that \vec{a} is perpendicular to $\lambda \vec{b}+\vec{c}$

- Watch Video Solution

258. Find the magnitude of a vector, whose components are 3,4 and -12

- Watch Video Solution

259. Consider the points $P(-1,02)$ and $Q(3,-21)$, write down vector $\overrightarrow{P Q}$.

- Watch Video Solution

260. If $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=4 \hat{i}+\hat{j}-3 \hat{k}$, find $\vec{a}+\vec{b}$.

- Watch Video Solution

261. For any two vectors \vec{a} and \vec{b}, prove that $(\vec{a} \cdot \vec{b})^{2} \leq|\vec{a}|^{2}|\vec{b}|^{2}$
262. If for a vector $\vec{a}, \vec{a} \cdot \hat{i}=\vec{a} \cdot \hat{j}=\vec{a} \cdot \hat{k}=0$, then find $|\vec{a}|$.

- Watch Video Solution

263. If $|\vec{a}|=10$, and $|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, find angle between the two vectors

- Watch Video Solution

264. What is the area of a triangle, two of whose sides are along the vectors \hat{i} and \hat{j}.

- Watch Video Solution

265. If \vec{a} and \vec{b} are the position vectors of A and B respectively, find the position vector of a Point C in $B A$ produced such that $B C=1.5 B A$.
266. Evaluate
$\int \sin 2 x \frac{d x}{1-\sin x}$

- Watch Video Solution

267. Find the sine of the angle between the vectors $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$.

- Watch Video Solution

268. Find a vector of magnitude 6 units which is at right angles to both the vectors $2 \hat{i}-\hat{j}+2 \hat{k}$ and $4 \hat{i}-\hat{j}+3 \hat{k}$

- Watch Video Solution

269. A vector \vec{r} is inclined at equal angles to the three axes. If the magnitude of \vec{r} is $2 \sqrt{3}$ units, find \vec{r}.

- Watch Video Solution

270. If $\vec{a}=6 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}-2 \hat{k}$, find $\vec{a}-\vec{b}$.

- Watch Video Solution

271. What is the value of $[\vec{a} \vec{b} \vec{c}]$ if $\vec{a}, \vec{b}, \vec{c}$ are non-zero coplanar vectors?

- Watch Video Solution

272. If a and b are two unit vectors such that $a+2 b$ and $5 a-4 b$ are perpendicular to each other, then the angle between a and b is
273. If $\vec{a}=7 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$, then find the projection of \vec{a} on \vec{b}.

- Watch Video Solution

274. What is the value of $|\widehat{a}+\hat{b}+\hat{c}|$ if \hat{a}, \hat{b} and \hat{c} are mutually orthogonal unit vectors.

- Watch Video Solution

275. If $\vec{a}=4 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$, then find a unit vector $\vec{a}+\vec{b}$.

- Watch Video Solution

276. Find λ and μ if $(\hat{i}+3 \hat{j}+9 \hat{k}) \times(3 \hat{i}-\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.
277. If $\vec{a}=2 \hat{i}-3 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}-4 \hat{k}$, find $\vec{a}+\vec{b}$.

- Watch Video Solution

278. Classify the following measures as scalars and vectors, 10 g

- Watch Video Solution

279. Classify the following measures as scalars and vectors : 2 meters north-west.

- Watch Video Solution

280. Classify the following measure as scalar and vector:40watt
281. Classify the following measures as scalars and vectors : 40 watt.

- Watch Video Solution

282. Classify the following measures as scalars and vectors : 10^{-19}.

- Watch Video Solution

283. Classify the following measures as scalars and vectors: $20 \frac{\mathrm{~m}}{\mathrm{~s}}$

- Watch Video Solution

284. Classify the following as scalar and vector quantities: timeperiod
285. Classify the following as scalar and vector quantities: dis $\tan c e$

- Watch Video Solution

286. Classify the following as scalar and vector quantities: force

- Watch Video Solution

287. Classify the following as scalar and vector quantities: velocity

- Watch Video Solution

288. Classify the following as scalar and vector quantities:work done

- Watch Video Solution

289. Answer the following ad true or false : \vec{a} and $-\vec{a}$ are collinear.
290. Answer the following ad true or false : Two collinear vectors are always equal in mangitude.

- Watch Video Solution

291. Answer the following ad true or false : Two vectors having same magnitude are collinear.

(Watch Video Solution

292. Answer the following ad true or false : Two collinear vectors having the same magnitude are equal.
(Watch Video Solution
293. Compute the magnitude of the following vectors : $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}, \vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

- Watch Video Solution

294. Write two different vectors having same magnitude.

- Watch Video Solution

295. Write two different vectors having same direction.

- Watch Video Solution

296. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

297. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point (-5, 7).

- Watch Video Solution

298. Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$,

- Watch Video Solution

299. Find the unit vector in the direction of the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

300. Find the unit vector in the direction of vector $\overrightarrow{P Q}$, where P and Q are the points ($1,2,3$) and (4, 5, 6), respectively.
301. For given vectors, $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$.

- Watch Video Solution

302. Find a vector in the direction of vector $5 \vec{i}-\vec{j}+2 \vec{k}$ which has magnitude 8 units.

- Watch Video Solution

303. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

- Watch Video Solution

304. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.
305. Find the direction cosines of the vector joining the points $A(1,2,-3)$ and $B(-1,-2,1)$, directed from A to B .

- Watch Video Solution

306. Show that the vector $\vec{i}+\vec{j}+\vec{k}$ is equally inclined to the axes OX , OY and OZ.

- Watch Video Solution

307. Find the position vector of a point R which divides the line joining two points P and Q whose Position Vector, are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ (i) internally,

- Watch Video Solution

308. Find the position vector of a point R which divides the line joining two points P and Q whose Position Vector, are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$ externally

- Watch Video Solution

309. Find the position vector of the mid-point of the vector joining the points $P(2,3,4)$ and $Q(4,1,2)$

- Watch Video Solution

310. Show that the points A, B and C with position vectors, $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k} \quad$ and $\quad \vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$, respectively, form the vertices of a right angled triangle.

- Watch Video Solution

311. If \vec{a} and \vec{b} are two collinear vectors then which of the following are incorrect :
A. $\vec{b}=\lambda \vec{a}$, for some scalar
B. $\vec{a}= \pm \vec{b}$
C. the respective components of \vec{a} and \vec{b} are proportional
D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes.

Answer:

- Watch Video Solution

312. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2,respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$

- Watch Video Solution

313. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

314. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$

- Watch Video Solution

315. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$.

- Watch Video Solution

316. Show that each of the given three vectors is a unit vector : $\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k}) \quad$ Also, show that they are mutually perpendicular to each other.

- Watch Video Solution

317. Find $|\vec{a}|$ and $|\vec{b}| \operatorname{If}(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.

- Watch Video Solution

318. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

- Watch Video Solution

319. Find the magnitude of two vectors \vec{a} and \vec{b}, having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

- Watch Video Solution

320. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ then $\vec{a}+\vec{b}$ is

- Watch Video Solution

321. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors \vec{a} and \vec{b}.

- Watch Video Solution

322. If $|a|=5,|a-b|=8$ and $|a+b|=10$, then $|\mathrm{b}|$ is equal to

- Watch Video Solution

323. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

324. If either vector $\vec{a}=0 \operatorname{or} \vec{b}=0$, then $\vec{a} \cdot \vec{b}=0$. But the converse need not be true. Justify your answer with an example.

- Watch Video Solution

325. If the vertices A, B, C of a triangle $A B C$ are (1,2,3), ($-1,0,0$), ($0,1,2$) respectively, then find $\angle A B C$ [$\angle A B C$ is the angle between the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$]

- Watch Video Solution

326. Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10,-1)$ are collinear.

- Watch Video Solution

327. Show that the points $A(2 \hat{i}-\hat{j}+\hat{k}), B(\hat{i}-3 \hat{j}-5 \hat{k})$ and $C(3 \hat{i}-4 \hat{j}-4 \hat{k})$ are the vertices of a right angled triangle.

- Watch Video Solution

328. If \vec{a} is a non-zero vector of magnitude ' a ' and λ a non-zero scalar, then $\lambda \vec{a}$ is unit vector if $\lambda=1$

- Watch Video Solution

329. If \vec{a} is a non-zero vector of magnitude ' a ' and λ a non-zero scalar, then $\lambda \vec{a}$ is unit vector if $\lambda=-1$

- Watch Video Solution

330. If \vec{a} is a non-zero vector of magnitude ' a ' and λ a non-zero scalar, then $\lambda \vec{a}$ is unit vector if $a=|\lambda|$

- Watch Video Solution

331. If \vec{a} is a non-zero vector of magnitude 'a' and λ a non-zero scalar, then $\lambda \vec{a}$ is unit vector if $a=\frac{1}{|\lambda|}$
332. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}-5 \hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

333. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

334. If a unit vector \vec{a}, makes angles $\frac{\pi}{3}$ with \hat{i}. $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then find θ and hence the component of \vec{a}.

- Watch Video Solution

335. Show that $(a-b) \times(a+b)=2(a \times b)$
336. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$

- Watch Video Solution

337. Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ?.

- Watch Video Solution

338. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be given as $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$, then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$.

- Watch Video Solution

339. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$. Is the converse true ? Justify your answer with an example.

- Watch Video Solution

340. Find the area of the triangle with vertices $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1$, $5,5)$.

- Watch Video Solution

341. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

342. Let the vectors $\overrightarrow{\text { and }} \vec{b}$ be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

- Watch Video Solution

$$
\begin{array}{llrr}
\text { 343. Area of a rectangle } & \text { having } & \text { vertices } \\
A\left[-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right], B\left[\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right], C\left[\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}\right] & \text { and } \\
D\left[-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}\right] \text { is }
\end{array}
$$

A. $\frac{1}{2}$
B. 1
C. 2
D. 4

Answer:

D Watch Video Solution

344. Find $[\vec{a}, \vec{b}, \vec{c}]$ if $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}-2 \hat{k}$.

Watch Video Solution

$$
\begin{aligned}
& \text { 345. Show } \\
& \vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b},=-2 \hat{i}+3 \hat{j}-4 \hat{k} \text { and } \vec{c}=\hat{i}-3 \hat{j}+5 \hat{k} \text { are }
\end{aligned}
$$ coplanar.

D Watch Video Solution

346. Find λ if the vectors $\hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+\lambda \hat{j}-3 \hat{k}$ are coplanar.
347. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then (a) if $c_{1}=1$ and $c_{2}=2$, find c_{3}, which makes \vec{a}, \vec{b} and \vec{c} coplanar.

- Watch Video Solution

348. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. Then if $c_{2}=-1$ and $c_{3}=1$, show that no value of c_{1}, can makes \vec{a}, \vec{b} and \vec{c} coplanar.

- Watch Video Solution

349. Show that the four points with position vectors
$4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$
are coplanar.

- Watch Video Solution

350. Find ' x ' such that the four points : $\mathrm{A}(3,2,1), \mathrm{B}(4, \mathrm{x}, 5), \mathrm{C}(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

- Watch Video Solution

351. If a, b and c are coplanar show $[\mathrm{a}+\mathrm{b} \mathrm{b}+\mathrm{c} \mathrm{c}+\mathrm{a}$] are coplanar.

- Watch Video Solution

352. Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

- Watch Video Solution

353. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$
354. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

- Watch Video Solution

355. If $\vec{a}=\vec{b}+\vec{c}$ then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$? Justify your answer

- Watch Video Solution

356. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

357. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

358. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a unit vector parallel to the Vector $2 \vec{a}-\vec{b}+3 \vec{c}$

- Watch Video Solution

359. Show that the points $\mathrm{A}(1,-2,-8), \mathrm{B}(5,0,-2)$ and $\mathrm{C}(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

360. Find the position vector of a point R which divides the line joining two points $P(2 \vec{a}+\vec{b})$ and $Q(\vec{a}-3 \vec{b})$ externally in the ratio 1:2. Also, show that P is the middle point of the line segment $R Q$.

- Watch Video Solution

361. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector Parallel to its diagonal. Also, find its area.

- Watch Video Solution

362. Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are $\left(\frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

363. Let $a=\hat{i}+4 \hat{j}+2 \hat{k}, b=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $c=2 \hat{i}-\hat{j}+4 \hat{k}$ Find a vector d which is perpendicular to both a and b and $c . d=15$.

- Watch Video Solution

364. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

- Watch Video Solution

365. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

366.

Prove
that
$(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}, \quad$ if and only if vec a,vec
b` are perpendicular.

- Watch Video Solution

367. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

Answer:

- Watch Video Solution

368. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
A. $\theta=\frac{\pi}{4}$
B. $\theta=\frac{\pi}{3}$
C. $\theta=\frac{\pi}{2}$
D. $\theta=2 \frac{\pi}{3}$

Answer:

- Watch Video Solution

369. If $(\hat{i}, \hat{j}, \hat{k})$ are the usual three perpendicular unit vectors, then the value of $\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})$ is
A. 0
B. -1
C. 1
D. 3

Answer:

- Watch Video Solution

370. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to :
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer:

- Watch Video Solution

371. If \vec{a} is a non-zero vector, then $\left(\frac{1}{|\vec{a}|}\right) \vec{a}$ is a..........
372. If \vec{a}, \vec{b} are non-collinear vectors, then \vec{a}, \vec{b} and $\vec{a}+\vec{b}$ are.

Watch Video Solution

373. The vector $\vec{a}+\vec{b}$ bisects the angle between the non collinear vectors \vec{a} and \vec{b} if

- Watch Video Solution

374. If $\vec{r} \cdot \vec{a}=0=\vec{r} \cdot \vec{b}$,where \vec{a} and \vec{b} are non-coplanar vectors then

- Watch Video Solution

375. If $\vec{r} \cdot \vec{a}=0=\vec{r} \cdot \vec{b}=0$ and also $\vec{r} \cdot \vec{c}=0$ for some non-zero vector \vec{r}, then the value of $\vec{a} \cdot(\vec{b} \times \vec{c})$ is.........

- Watch Video Solution

376. If \vec{a} and \vec{b} are any two vectors, then $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}$
=......

- Watch Video Solution

377. If \vec{a} is any non-zero vector, then $(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}$ is equal to......

Watch Video Solution

378. If a is any vector, then
$(a \times \hat{i})^{2}+(a \times \hat{j})^{2}+(a \times \hat{k})^{2}$ is equal to

- Watch Video Solution

379. If $(a \times b)^{2}+(a \cdot b)^{2}=144$ and $|a|=4$, then find the value of $|\mathrm{b}|$.
380. If a non-zero vector \vec{a} makes an angle α with positive direction of x axis, then $\cos \alpha=$. \qquad

- Watch Video Solution

381. The values of k , for which $|k \vec{a}|<|\vec{a}|$ and $k \vec{a}=\frac{1}{2} \vec{a}$ is parallel to \vec{a} hold true, lie in...

- Watch Video Solution

382. The vectors $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+2 \hat{k}$ are the adjacent sides of a parallelogram. The acute angle between its diagonals is \qquad
383. If \vec{a} and \vec{b} are any two vectors, then $(\vec{a}+\vec{b})^{2}+(\vec{a}-\vec{b})^{2}$
\qquad

- Watch Video Solution

384. If $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

385. If \vec{a} is a non-zero vector and λ is a real number st. $|\lambda \vec{a}|=1$, then
$|\lambda|$ is equal to......

- Watch Video Solution

386. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $(\vec{a} \times \vec{b}) \cdot \vec{c}=(\vec{b} \times \vec{c}) \cdot \vec{a}=$
387. The value is $(\hat{k} \times \hat{j}) \cdot \hat{i}+\hat{j} \cdot \hat{k}$ is

- Watch Video Solution

388. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$

- Watch Video Solution

389. In case of each of the following statements, state whether it is true or false : If $|\vec{a}|=|\vec{b}|$ then necessarily it implies that $|\vec{a}|= \pm|\vec{b}|$

- Watch Video Solution

390. Incase of each of the following statements, state whether it is true or false : For any two vectors $\vec{a}, \vec{b}:|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$
391. Incase of each of the following statements, state whether it is true or false : If \vec{a} and \vec{b} are the adjacent sides of a parallelogram, then $\vec{a} \cdot \vec{b}=0$

- Watch Video Solution

392. Incase of each of the following statements, state whether it is true or false : If \vec{a} and \vec{b} are the adjacent sides of a rhomus, then $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b}) \neq 0$.

- Watch Video Solution

393. Incase of each of the following statements, state whether it is true or false : If \vec{a} and \vec{b} are the adjacent sides of a rhombus, then $\vec{a} \cdot \vec{b}=0$
394. Incase of each of the following statements, state whether it is true or false : If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then the vectors \vec{a} and \vec{b} are orthogonal.

- Watch Video Solution

395. Incase of each of the following statements, state whether it is true or false : For any two non-zero vectors \vec{a} and \vec{b}, $(\vec{a}-\vec{b})^{2}=(\vec{a})^{2}+(\vec{b})^{2}-2 \vec{a} \cdot \vec{b}$

- Watch Video Solution

396. Incase of each of the following statements, state whether it is true or false For any two non-zero vectors \vec{a} and \vec{b}, $(\vec{a}+\vec{b})^{2}=(\vec{a})^{2}+(\vec{b})^{2}+2 \vec{a} \cdot \vec{b}$
397. Position vector of a point P is vectors whose initial point is origin.

- Watch Video Solution

398. Incase of each of the following statements, state whether it is true or false : If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then the vectors \vec{a} and \vec{b} are orthogonal.

- Watch Video Solution

399. Incase of each of the following statements, state whether it is true or false : For any vector $\vec{a},(\vec{a} \cdot \hat{i})^{2}+(\vec{a} \cdot \hat{j})^{2}+(\vec{a} \cdot \hat{k})^{2}=(\vec{a})^{2}$

- Watch Video Solution

400. Incase of each of the following statements, state whether it is true or false : For any vector $\vec{a},(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \hat{k}) \hat{k}=\vec{a}$

- Watch Video Solution

401. Incase of each of the following statements, state whether it is true or false : Direction cosines of a non-zero vector \vec{a} are the components of a unit vector in the direction of \vec{a}.

- Watch Video Solution

402. Incase of each of the following statements, state whether it is true or false : $(\hat{i} \times \hat{j}) \cdot \hat{k}=1=\hat{i} \cdot(\hat{j} \times \hat{k})$

- Watch Video Solution

403. If a is any vector, then

$$
(a \times \hat{i})^{2}+(a \times \hat{j})^{2}+(a \times \hat{k})^{2} \text { is equal to }
$$

Watch Video Solution

404. Incase of each of the following statements, state whether it is true or false : For any vector $\vec{a},(\vec{a} \times \hat{i}) \hat{i}+(\vec{a} \times \hat{j}) \hat{j}+(\vec{a} \times \hat{k}) \hat{k}=\vec{a}$

- Watch Video Solution

405. Which of the following is not a vector quantity?
A. force
B. mass
C. weight
D. velocity

Answer:

406. A vector with magnitude zero is called a
A. free vector
B. localized vector
C. position vector
D. null vector

Answer:

- Watch Video Solution

407. The magnitude of a vector can never be
A. negative
B. zero
C. positive
D. none of these.

Answer:

- Watch Video Solution

408. The vector in the direction of the vector $\hat{i}-2 \hat{j}+2 \hat{k}$ that has magnitude 9 units is
A. $\hat{i}-2 \hat{j}+\hat{k}$
B. $\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k})$
C. $3(\hat{i}-2 \hat{j}+2 \hat{k})$
D. $9(\hat{i}-2 \hat{j}+2 \hat{k})$

Answer:

- Watch Video Solution

409. The position vector of the point which divides the join of points $2 \vec{a}-3 \vec{b}$ and $\vec{a}+\vec{b}$ in the ratio 3: 1 is
A. $\frac{3 \vec{a}-2 \vec{b}}{2}$
B. $\frac{7 \vec{a}-8 \vec{b}}{4}$
C. $\frac{3 \vec{a}}{4}$
D. $\frac{5 \vec{a}}{4}$

Answer:

- Watch Video Solution

410. The magnitude of the vector $6 \hat{i}+2 \hat{j}+3 \hat{k}$ is
A. 5
B. 7
C. 12
D. 11

Answer:

- Watch Video Solution

411. The position vector of the point which divides the join of points with position vectors $\vec{a}+\vec{b}$ and $2 \vec{a}-\vec{b}$ inthe ratio $1: 2$ is
A. $\frac{1}{3}(3 \vec{a}+2 \vec{b})$
B. \vec{a}
C. $\frac{1}{3}(5 \vec{a}-\vec{b})$
D. $\frac{4 \vec{a}+\vec{b}}{3}$

Answer:

412. The value of λ for which the vectors $3 \hat{i}-6 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+\lambda \hat{k}$ are parallel is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $\frac{2}{5}$

Answer:

- Watch Video Solution

413. If \vec{a} and \vec{b} are non-collinear proper vectors then number of unit vectors at right angles to both \vec{a} and \vec{b} is........
A. 1
B. 2
C. 4
D. infinitely many

Answer:

- Watch Video Solution

414. If θ is the angle between two proper vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b}<0$ then
A. $0 \leq \theta \leq \pi$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $\frac{\pi}{2} \leq \theta \leq \pi$
D. none of these

Answer:
415. If \vec{a} is any vector, then $\vec{a} \cdot \vec{a}$
A. 0
B. $\overrightarrow{0}$
C. $\neq 0$
D. $|\vec{a}|^{2}$

Answer:

- Watch Video Solution

416. For any vector, $\vec{a}, \vec{a} \times \vec{a}$
A. $\overrightarrow{0}$
B. 0
c. $|\vec{a}|^{2}$
D. none of these

- Watch Video Solution

417. The vector having initial and terminal points as $(2,5,0)$ and $(-3,7,4)$ respectively is
A. $-\hat{i}+12 \hat{j}+4 \hat{k}$
B. $5 \hat{i}+2 \hat{j}-4 \hat{k}$
C. $-5 \hat{i}+2 \hat{j}+4 \hat{k}$
D. $\hat{i}+\hat{j}+\hat{k}$

Answer:

- Watch Video Solution

418. The angle between two vectors \vec{a} and \vec{b} with Magnitudes $\sqrt{3}$ and 4 respectively and $\vec{a} \cdot \vec{b}=2 \sqrt{3}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $5 \frac{\pi}{12}$

Answer:

- Watch Video Solution

419. The value of λ for which the vectors $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ are orthogonal is
A. 0
B. 1
C. $\frac{3}{2}$
D. $-\frac{5}{2}$

Answer:

420. Find the angle between the vectors $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$.
A. $\frac{\pi}{3}$
B. $2 \frac{\pi}{3}$
C. $-\frac{\pi}{3}$
D. $5 \frac{\pi}{6}$

Answer:

421. The vector with initial point $P(2,-3,5)$ and terminal point $Q(3,-4,7)$ is :
A. $\hat{i}-\hat{j}+2 \hat{k}$
B. $5 \hat{i}-7 \hat{j}+12 \hat{k}$
C. $-\hat{i}+\hat{j}-2 \hat{k}$
D. none of these

Answer:

- Watch Video Solution

422. If $\vec{a} \cdot \vec{a}=0$ then \vec{a} is a
A. A) proper vector
B. B) free vector
C. C) null vector
D. D) none of these

Answer:

- Watch Video Solution

423. If \vec{a} and \vec{b} are proper vectors such that $\vec{b}=\lambda \vec{a}$ for some real λ then \vec{a} and \vec{b} are
A. non-collinear
B. linearly independent
C. linearly dependent
D. none of these

Answer:

- Watch Video Solution

424. For any two vectors \vec{a} and \vec{b}, which of the following is not true?
A. $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
B. $|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
c. $|\vec{a}-\vec{b}| \geq||\vec{a}|-|\vec{b}||$
D. none of these

D Watch Video Solution

425. The area of the parallelogram whose adjacent sides are $\hat{i}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ ts
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 3
D. 4

Answer:

- Watch Video Solution

426. If the vectors from the origin to the points A and B are . $\vec{a}=a \hat{i}-3 \hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}+\hat{k}$ respectively, then the area of
$\triangle O A B$ is
A. 340
B. $\sqrt{125}$
C. $\sqrt{229}$
D. $\frac{1}{2} \sqrt{229}$

Answer:

- Watch Video Solution

427. Given $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, find $\mid \vec{a}$ cross $\vec{b} \mid$.
A. 5
B. 10
C. 14
D. 16

Answer:

428. Direction cosines of \hat{i} are ‘
A. a) $\langle, 0,1,1\rangle$
B.b) $\langle 1,0,0\rangle$
C.c) $\langle,-1,0,0\rangle$
D. d) none of these

Answer:

- Watch Video Solution

429. The vectors $-2 \hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\lambda \hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+\lambda \hat{k}$, are coplanar if $\lambda=.$.
A. 1) -2
B. 2) 0
C. 3) 1
D. 4) -1

Answer:

- Watch Video Solution

430. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to
A. 1
B. 3
C. $-\frac{3}{2}$
D. none of these

Answer:

431. If $|\vec{a}|=8,|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$, then the value of $\vec{a} \cdot \vec{b}$ is
A. $6 \sqrt{3}$ or $-6 \sqrt{3}$
B. $8 \sqrt{3}$ or $-8 \sqrt{3}$
C. $12 \sqrt{3}$ or $-12 \sqrt{3}$
D. none of these

Answer:

- Watch Video Solution

432. If the vectors $2 \hat{j}+\hat{k}$ and $3 \hat{i}-\hat{j}+4 \hat{k}$ represent the two sides $A B$ and AC respectively of a $\triangle A B C$, then the length of the median through A is,
A. $\frac{1}{2} \sqrt{35}$
B. $2 \sqrt{3}$
C. $3 \sqrt{2}$
D. none of these

Answer:

- Watch Video Solution

433. $(\hat{i}+\hat{j}) \times(\hat{j}+\hat{k}) \cdot(\hat{k}+\hat{i})$ is equal to
A. A) 0
B. B) 1
C. C) 2
D. D) none of these

Answer:

- Watch Video Solution

434. If \vec{a}, \vec{b} and $\sqrt{3} \vec{a}-\vec{b}$ are Unit Vectors, then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. 'pi/6
D. $\frac{\pi}{2}$

Answer:

- Watch Video Solution

435. If $|\vec{a}|=8,|\vec{b}|=3$ and $|\vec{a} \times \vec{b}|=12$, then the value of $\vec{a} \cdot \vec{b}$ is
A. $[0,8]$
B. [-12,8]
C. $[0,12]$
D. $[8,12]$

- Watch Video Solution

436. If $A B C$ is any triangle and D is the midpoint of side [$B C]$, then $\overrightarrow{A B}+\overrightarrow{A C}$
A. $\overrightarrow{A D}$
В. $2 \overrightarrow{A D}$
C. $3 \overrightarrow{A D}$
D. none of these

Answer:

- Watch Video Solution

437. If \vec{b} is a non-zero vector, then projection of \vec{a} on \vec{b} is
A. $\vec{a} \cdot \hat{b}$
B. $(\vec{a} \cdot \operatorname{vecb}) /|\operatorname{vec} b|^{\wedge} 2^{`}$
C. $\vec{a} \cdot \vec{b}$
D. none of these

Answer:

- Watch Video Solution

438. If \vec{a} is a unit vector Perpendicular to the vectors $\vec{b}=\hat{i}-\hat{j}$ and $\vec{c}=\hat{i}+\hat{j}$ such that $\vec{a}, \vec{b}, \vec{c}$ form a right hand triad, then \vec{a} is equal to
A. \hat{k}
B. $-\hat{k}$
C. $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$
D. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$

D Watch Video Solution

