

MATHS

NCERT - NCERT MATHS (KANNADA ENGLISH)

TRIANGLES

Examples

1. In the given Figure AB and CD are intersecting at 'O', OA = OB and OD = OC. Show

that (i) $\Delta AOD\cong \Delta BOC$ and (ii)

 $AD \mid BC$.

2. AB is a line segment and line I is its perpendicular bisector. If a point P lies on I, show that P is equidistant from A and B.

3. In the given figure, AB||DC| and AD||BC| show that $\Delta ABC\cong \Delta CDA$.

Watch Video Solution

4. In the given figure, AL || DC, E is mid point of BC. Show that $\Delta EBL\cong\Delta ECD$.

Watch Video Solution

5. Use the information given in the adjoining figure, to prove :

$$(i)\Delta DBC\cong\Delta EAC$$

(ii)DC = EC.

Watch Video Solution

6. Line-segment AB is parallel to another line-segment CD. O is the mid-point of AD.

Show that (i) $\Delta AOB\cong \Delta DOC$ (ii) O is also

the mid-point of BC.

Watch Video Solution

7. In ΔABC , the bisector AD of A is perpendicular to side BC Show that AB = AC

and ΔABC is isosceles.

8. In the adjacent figure,

 $AB = BC \ \mathrm{and} \ AC = CD$. Prove that :

 $\angle BAD$: $\angle ADB = 3:1$.

Watch Video Solution

9. E and F are respectively the mid-points of equal sides AB and AC of ΔABC (see figure)

Show that BF = CE.

Watch Video Solution

10. In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD (see

figure) Show that AD = AE

that

Watch Video Solution

11. In quadrilateral ABCD, AB = CD, BC=AD show

 $\Delta ABC\cong \Delta CDA$

Consider

 ΔABC and ΔCDA

12. AB is a line - segment. P and Q are points on either side of AB such that each of them is equidistant from the points A and B (See Fig). Show that the line PQ is the perpendicular bisector of AB.

Watch Video Solution

13. P is a point equidistant from two lines I and m intersecting at point A (see figure). Show

that the line AP bisects the angle between them.

14. D is a point on side BC \triangle ABC such that AD =

AC (see figure). Show that AB > AD.

Watch Video Solution

Do This

1. There are some statements given below.

Write whether they are true or false:

Two circle are always congruent.

2. There are some statements given below.

Write whether they are true or false:

Two right angle triangles are sometimes congruent.

Watch Video Solution

3. Find the component statements of the following compound statements and check

whether they are true or false.

Number 3 is prime or it is odd.

Watch Video Solution

4. There are some statements given below.

Write whether they are true or false:

Two equilateral triangles with their sides equal are always congruent.

Watch Video Solution

5. Which minimum measurements do you require to check if the given figures are congruent:

i. Two rectangles ii. Two rhombuses.

Watch Video Solution

6. State whether the following triangles are congruent or not? Give reasons for your

answer.

Watch Video Solution

7. State whether the following triangles are congruent or not? Give reasons for your

answer.

Watch Video Solution

8. In the given figure, the point P bisects AB and DC. Prove that

$$\Delta APC \cong \Delta BPD$$

`(NCERT_KAN_MAT_IX_C07_E01_008_Q01.png"

width="80%">

Watch Video Solution

9. In the adjacent figure ΔABC and ΔDBC are two triangles such that $\overline{AB}=\overline{BD}$ and

 $\overline{AC}=\overline{CD}$. Show that $\Delta ABC\cong\Delta DBC$.

Exercise 7 1

1. In quadrilateral

ACBD, AC = AD and AB bisects $\angle A$

Show that $\Delta ABC\cong\Delta ABD$.

What can you say about BC and BD?

Watch Video Solution

2. ABCD is a quadrilateral in which AD = BC and

$$\angle DAB = \angle CBA$$
 Prove that

$$(i)\Delta ABD\cong\Delta BAC$$

(ii)
$$BD = AC$$

(iii)
$$\angle ABD = \angle BAC$$

3. AD and BC are equal and perpendiculars to a line segment AB. Show that CD bisects AB.

Watch Video Solution

4. I and m are two parallel lines intersected by another pair of parallel lines p and q . Show

that $\Delta ABC\cong \Delta CDA$.

5.

5. In the adjacent figure,
$$AC = AE, AB = AD \text{ and } \angle BAD = \angle EAC$$

. Show that BC = DE.

Watch Video Solution

6. In right triangle ABC, right angle is at C, M is the mid-point of hypotenuse AB. C is joined toM and produced to a point D such that DM =CM. Point D is joined to point B (see figure).

Show that:

$$(i)\Delta AMC\cong\Delta BMD$$

 $(ii) \angle DBC$ is a right angle

$$(iii)\Delta DBC\cong \Delta ACB$$
 (iv) $CM=rac{1}{2}AB.$

7. In the adjacent figure ABCD is a square and ΔAPB is an equilateral triangle. Prove that $\Delta APD\cong\Delta BPC.$

8. In the adjacent figure ΔABC is isosceles as $\overline{AB}=\overline{AC}, \overline{BA} \text{ and } \overline{CA}$ are produced to Q and P such that $\overline{AQ}=\overline{AP}.$. Show that $\overline{PB}=\overline{QC}.$

9. In the adjacent figure $\Delta ABC,D$ is the midpoint of BC. $DE\perp AB,DF\perp AC$ and DE=DF. Show that $\Delta BED\cong \Delta CFD.$

10. If the bisector of an angle of a triangle also bisects the opposite side, prove that the triangle is isosceles.

Watch Video Solution

11. In the given figure ABC is a right triangle and right angled at B such that

$$\angle BCA = 2\angle BAC$$
.

Show that hypotenuse AC = 2BC.

Watch Video Solution

Exercise 7 2

1. In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :

(i) OB = OC (ii) AO bisects
$$\angle A$$

2. In ΔABC , AD is the perpendicular bisector of BC (See adjacent figure). Show that ΔABC is an isosceles triangle in which AB = AC.

3. ABC is an isosceles triangle in which altitudes BD and CE are drawn to equal sides

AC and AB respectively (see figure) Show that these altitudes are equal.

4. ABC is a triangle in which altitudes BD and CE to sides AC and AB are equal (see figure) . Show that

$$(i)\Delta ABD\cong\Delta ACE$$

(ii)AB=AC i.e., ABC is an isosceles triangle.

5. ΔABC and ΔDBC are two isosceles triangles on the same base BC (see figure). Show that $\angle ABD = \angle ACD$.

Exercise 7 3

1. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that, (i) AD bisects BC (ii) AD bisects $\angle A$.

Watch Video Solution

2. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ

and QR and median PN of Δ PQR. Show that

$$\Delta ABM\cong \Delta PQN$$

(ii) $\Delta ABC\cong\Delta PQR$

Watch Video Solution

3. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

4. $\triangle ABC$ is an isosceles triangle in which AB =

AC. Show that $\angle B = \angle C$.

Watch Video Solution

5. ΔABC is an isosceles triangle in which AB =

AC. Side BA is produced to D such that AD = AB.

Show that BCD is a right angle.

6. ABC is a right angled triangle in which

$$ngle A=90^\circ$$
 and $AB=AC$. Show that

$$\angle B = \angle C$$
.

7. Show that the angles of an equilateral triangle are 60° each.

Watch Video Solution

Exercise 7 4

1. Show that in a right angled triangle, the hypotenuse is the longest side.

Watch Video Solution

2. In adjacent figure, sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC < \angle QCB$. Show that AC > AB.

3. In adjacent figure,

 $\angle B < \angle A$ and $\angle C < \angle D$ Show that AD < BC.

4. AB and CD are respectively the smallest and longest sides of aquadrilateral ABCD (see adjacent figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.

5. In Pr $\,>\,$ PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$

Watch Video Solution

6. If two sides of a triangle measure 4 cm and 6 cm find all possible measurements (positive Integers) of the third side. How many distinct triangles can be obtained?

Watch Video Solution

7. Try to construct a triangle with 5 cm, 8 cm and 1 cm. Is it possible or not? Why? Give your justification?

Watch Video Solution

