đず doubtnut

India's Number 1 Education App

PHYSICS

ALLEN

TEST PAPER 3

Physics

1. Find the ratio of de Broglie wavelength of a proton and as α-particle which have been

difference.

A. 2
B. $2 \sqrt{2}$
C. $\frac{1}{2 \sqrt{2}}$
D. $\sqrt{2}$

Answer: B
(Watch Video Solution
2. The ratio of de Broglie wavelengths of a proton and a neutron moving with the same velocity is nearly-
A. 1
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. none of the above

Answer: A

D Watch Video Solution
3. In a TV tube the electron are accelerated by
a potential difference of 10 kV . Then, their deBroglie wavelength is nearly-
A. $1.2 \AA$
B. $0.12 \AA$
C. $12 \AA$
D. $0.01 \AA$

Answer: D

- Watch Video Solution

4. The group velocity of the de Broglie wave packet associated with a particle moving with velocity v is-
A. equal to v
B. less than v
C. greater than v
D. equal to speed of light

Answer: D

D Watch Video Solution
5. If kinetic energy of an electron is increases
by 69% then what is the percentage in its debroglie wavelength :-
A. Decreases by 23.07%
B. Decreases by 15%
C. Increases by 40\%
D. Decreases by 70\%

Answer: A

D Watch Video Solution
6. An α-particle moves in a circular path of
radius 0.83 cm in the presence of a magnetic field of $0.25 W b / m^{2}$. The de-Broglie wavelength associated with the particle will be
A. $10 \AA$
B. $1 \AA$
C. $0.1 \AA \AA$
D. $0.01 \AA$

Answer: B
7. A redioctive nucleus decays as follows :
$X \xrightarrow{\alpha} X_{1} \xrightarrow{\beta} X_{2} \xrightarrow{\alpha} X_{3} \xrightarrow{\alpha} X_{4}$

If the atomic number and the mass number of
X are 72 and 180 then the mass number and atomic number of X_{4} are-
A. 172,70
B. 171,69
C. 172,69
D. 172,68

Answer: B

D Watch Video Solution

8. If the atomic number and the mass number of X are 72 and 180 then the mass number and atomic number of X 4 are-
A. 0.375 gm
B. 0.6 gm
C. 0.9 gm
D. 1 gm

Answer: A

D Watch Video Solution

9. If 20 gm of a radioactive substance due to
radioactive decay reduces to 10 gm in 4 minutes, then in what time 80 gm of the same substance will reduce to 10 gm-
A. 8 minutes
B. 12 minutes
C. 16 minutes

D. 20 minutes

Answer: b

D Watch Video Solution

10. A radioactive nucleus X converts into nucleus Y by emitting B^{+}. If atomic masses of

X and Y are M_{X} and M_{Y} then Q value of reaction will be :-

$$
\text { A. } Q=M_{x} C^{2}
$$

$$
\begin{aligned}
& \text { B. } Q=\left(M_{X}-M_{Y}-M_{e}\right) C^{2} \\
& \text { C. } Q=\left(M_{X}-M_{Y}\right) C^{2} \\
& \text { D. } Q=\left(M_{X}-M_{Y}-2 m_{e}\right) C^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

11. In the given radioactive disintegration series
${ }_{.}{ }_{92}^{235} U \rightarrow{ }_{82}^{207} \mathrm{~Pb}$

Calculate difference between number of α and number of β particles emitted in this series.
A. $6 \alpha, 5 \beta^{-}$
B. $7 \alpha, 4 \beta^{-}$
C. $7 \alpha, 6 \beta^{-}$
D. $4 \alpha, 3 \beta^{-}$

Answer: B

- Watch Video Solution

12. The initial count rate for a radioactive source was found to be 1600 count/sec.and $t=$ 8 sec this rate was 100 count $/ \mathrm{sec}$. What was
the count rate at $t=6[$ in counts $/ \mathrm{sec}]$ -
A. 4000
B. 300
C. 200
D. 150

Answer: C
13. 1 gram of a radioactive element reduces to
$\frac{1}{3}$ gram at the end of 2 days. Then the mass of the element remaining at the end of 6 days is[gram]

> A. $\frac{1}{12}$
> B. $\frac{1}{27}$
> C. $\frac{1}{6}$
> D. $\frac{1}{9}$

Answer: C

D Watch Video Solution

14. The radius of the nucleus of ${ }_{8} O^{16}$ is $3 x \times 10^{-15} \mathrm{~m}$. Its density in $\mathrm{kg} / \mathrm{m}^{3}$ will be about-
A. 2.35×10^{-17}
B. 2.35×10^{14}
C. 10^{14}
D. 2.35×10^{17}

Answer: D

D Watch Video Solution

15. The ratio of the radii of the nuclei ${ }_{13} A l^{27}$
and ${ }_{52} T e^{125}$ is approximately
A. $3: 5$
B. 13:52
C. $40: 177$
D. 14:73

Answer: B

D Watch Video Solution

16. 200 MeV of energy may be obtained per
fission of U^{235}. A reactor is generating 100 kW
of pwer. The rate of nuclear fission in the reaction is
A. 1000
B. 2×10^{8}
C. 3.125×10^{16}

D. 931

Answer: B

D Watch Video Solution

17. The binding energy per nucleon of . ${ }^{16} O$ is
7.97 MeV and that of . ${ }^{17} \mathrm{O}$ is 7.75 MeV . What
is the energy in MeV required to remove a neutron from $\cdot{ }^{17} \mathrm{O}$?
A. 3.52
B. 3.64
C. 4.23
D. 7.8

Answer: A

- Watch Video Solution

18. A particle is projected at an angle 60° from

Horizon from ground with speed u. after some
time it collides with a wall inclined at an angle
30° from horizon. At the time of collision
velocity of particle is perpendicular to the wall.

Find speed of the particle at the time of collision :-

A. u
B. $\frac{u}{\sqrt{3}}$
c. $\frac{2 u}{\sqrt{3}}$
D. $2 u$

Answer: B

D Watch Video Solution

19. Find the angle of projection of a projectile
for which the horizontal range and maximum
height are equal.
A. 45°
B. $\theta=\tan ^{-1}(0.25)$
C. $\theta=\tan ^{-1}(4)$
D. 60°

Answer: C

- Watch Video Solution

20. A particle is projected from ground with
velocity $3 \hat{i}+4 \hat{j} \mathrm{~m} / \mathrm{s}$. Find range of the projectile :-
A. $1.2 m$
B. $3.6 m$
C. $2.4 m$
D. $10 m$

Answer: D

D Watch Video Solution

21. Two particles are projected with speeds u_{1}
and u_{2} in mutually opposite directions from
top of a tower horizontally. Find the time after
which their velocity becomes perpendicular to
each other.

$$
\begin{aligned}
& \text { A. } t=\frac{\sqrt{u_{1} u_{2}}}{g} \\
& \text { B. } t=\frac{u_{1} u_{2}}{g}
\end{aligned}
$$

C. $t=\frac{u_{1} g}{u_{2}}$
D.

Answer: A

D Watch Video Solution

22. An aeroplane flying 490 m above the ground level at $100 \mathrm{~m} / \mathrm{s}$, releases a block. How far on the ground will it strike-

A. 0.1 km

B. 1 km
C. 2 km
D. none of the above

Answer: B

D Watch Video Solution

23. When a negatively charged rod is brought
near the cap of a gold leaf electroscope whese
case is earthed then
(1) Leaves will have induced positive charge
(2) Positive charge is induced on one leat and negative on the other
(3) No charge is induced on the leaves
(4) The leaf has an induced negative charge
A. no charge is induced in the leaves
B. positive charge is induced in both the
leaves
C. negative charge is induced in both the
leaves
D. positive charge is induced in one leaf and negative in the other

Answer: C

- Watch Video Solution

24. When a soap bubble is charged it
A. it contracts
B. it expands
C. It does not undergo any change
D. it bursts

- Watch Video Solution

25. A charge q_{1} exerts some force on a second charge q_{2} If a third charge q_{3} is brought near q_{2}, then the force exerted by q_{1} on q_{2}
A. will increase
B. will decrease
C. will remain unchanged
D. will increase if Q_{3} is of the same sign as
Q_{1} and will decrease if Q_{3} is of opposite
sign

Answer: C

D Watch Video Solution

26. Two particles A and B, each having a charge
Q are placed a distance d apart, Where should
a particle of charge q be placed on the perpendicular bisector of $A B$ so that it experiences maximum force? What is the magnitude of this maximum force?
A. $x=d / \sqrt{2}$
B. $x=d / 2$
C. $x=\frac{d}{2 \sqrt{2}}$
D. $x=d / 3 \sqrt{2}$

Answer: C

D Watch Video Solution

27. An infinite number of charges, each of magnitude q, are placed along x-axis at $x=1 m$,
$2 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m}, 16 \mathrm{~m}$ and so on but the
consecutive charges are of opposite sign starting with +q at $\mathrm{x}=1 \mathrm{~m}$. A point charge q_{0}, kept at the origin, experiences a force of magnitude :

> A. $\frac{q q_{0}}{4 \pi \varepsilon_{0}}$
> B. $\frac{q q_{0}}{5 \pi \varepsilon_{0}}$
> C. $\frac{q q_{0}}{3 \pi \varepsilon_{0}}$
> D. $\frac{q q_{0}}{2 \pi \varepsilon_{0}}$

Answer: B
28. Two pitch balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is r. Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become

A. $\left(\frac{2 r}{3}\right)$
B. $\left(\frac{r}{\sqrt{2}}\right)^{2}$
C. $\left(\frac{r}{\sqrt[3]{2}}\right)$
D. $\left(\frac{2 r}{\sqrt{3}}\right)$

Answer: C

D Watch Video Solution

29. Two very small spheres A and B are charged
with +10 and +20 coulomb respecitvely and
separated by a distance of 80 cm . The electric
field at point on the line joining the centres of
the two spheres will be zero at almost how much distance from A ?
A. 20 cm
B. 33 cm
C. 45 cm
D. 60 cm

Answer: B

D Watch Video Solution
30. Charges $q, 2 q, 3 q$ and $4 q$ are placed at the corners A, B, C and D of a square as shown in the following figure. The direction of electric field at the centre of the square is along

A. $C B$
B. $A B$
C. $B D$
D. $C D$

Answer: D

- Watch Video Solution

31. A charged oil drop is suspended in uniform field of $3 \times 10^{4} \mathrm{Vm}^{-1}$ so that it neither falls nor rises. The charge on the drop will be ... (mass of the charge $=9.9 \times 10^{-15} \mathrm{~kg}$
A. $3.2 \times 10^{-19} C$
B. $3.2 \times 10^{-18} C$
C. $1.6 \times 10^{-18} C$
D. $4.8 \times 10^{-18} C$

Answer: A

D Watch Video Solution
32. The electric field at a distance $\frac{3 R}{2}$ from
the centre of a charged conducting spherical
shell of radius R is E. The electric field at a
distance $\frac{R}{2}$ from the centre of the sphere is -
A. E
B. $3 \frac{E}{2}$
C. $\frac{E}{2}$
D. Zero

Answer: D
(Watch Video Solution
33. Four point +ve charges of same magnitude
(Q) are placed at four corners of a rigid square
frame as shown in fig.The plane of the frame is perpendicular to Z-axis. If a -ve point charge is placed at a distance z away from the above frame then :

A. -ve charge oscillates along the Z-axis
B. it moves away from the frame
C. it moves slowly towards the frame and stays in the plane of the frame
D. It passes through the frame only one

Answer: A

34. A thin semi-circular ring of radius r has a positive charge q distributed uniformly over it. The net field \vec{E} at the centre O is

> A. $\frac{q}{2 \pi^{2} \varepsilon_{0} r^{2}} \hat{j}$
> B. $\frac{q}{4 \pi^{2} \varepsilon_{0} r^{2}} \hat{j}$
> C. $-\frac{q}{4 \pi^{2} \varepsilon_{0} r^{2}} \hat{j}$
> D. $-\frac{q}{4 \pi^{2} \varepsilon_{0} r^{2}} \hat{j}$

Answer: A

- Watch Video Solution

35. Three positive charges of equal value q are placed at the vertices of an equilateral triangle. The resulting lines of force should be sketched as in

Answer: B

- Watch Video Solution

36. A Gaussian surface in figure is shown by dotted line. The electric field on the surface
will be

A. due to q_{1} and q_{2} only
B. due to q_{2} only
C. zero

D. due to all the charges

Answer: C

D Watch Video Solution

37. A charge Q is kept at the corner of a cube.

Electric flux passing through one of the those
faces not touching that charge is
A. $\frac{Q}{6 \varepsilon_{0}}$
B. $\frac{Q}{8 \varepsilon_{0}}$

> C. $\frac{Q}{\varepsilon_{0}}$
> D. $\frac{Q}{2 \varepsilon_{0}}$

Answer: C

D Watch Video Solution

38. A positively charged body ' A ' has been brought near a neutral brass sphere B mounted on a glass stand as shown in the
figure. The potential of B will be :

A. zero
B. negative
C. positive
D. infinite

Answer: C
39. Charges are placed on the vertices of a square as shown in figure below. Let E be the electric field and V be the potential at the centre. If the charges on A and B are interchanged with those on D and C respectively, then :

A. \vec{E} changes, V remains unchanged
B. \vec{E} remains unchanged, V changes
C. Both \vec{E} and changes
D. \vec{E} and V remain unchanged

Answer: A

D Watch Video Solution
40. The variation of potential with distance r from a fixed point is shown in figure. The

electric field at $r=5 \mathrm{~m}$ is:

A. $(2.5) \mathrm{V} / \mathrm{cm}$
B. $(-2.5) V / \mathrm{cm}$
C. $(-2 / 5) V / c m$
D. $(2 / 5) \mathrm{V} / \mathrm{cm}$
41. Three charge $Q,+q$ and $+q$ are placed at the vertices of a right angled isosceles triangle as shown. The net electrostatic energy of the configuration is zero, if Q is equal to
A. $\frac{-q}{1+\sqrt{2}}$
B. $\frac{-\sqrt{2} q}{1+\sqrt{2}}$
C. $-2 q$
D. $+q$

Answer: C
(D) Watch Video Solution

