©゙doubtnut

MATHS

BOOKS - ML KHANNA

AREA OF CURVES

Problem Set 1 Multiple Choice Questions

1. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. $\pi a b$
B. $\pi\left(a^{2}+b^{2}\right) / 4$
C. $\pi(a+b)$
D. None

Answer: A

- Watch Video Solution

2. If A_{1}, A_{2}, be the areas of the curves
$C_{1} \quad x^{2}+y^{2}+18 x+24 y=0$
and $c_{2} \quad \frac{x^{2}}{14}+\frac{y^{2}}{13}=1$ them
A. $A_{1}>A_{2}$
B. $A_{1}<A_{2}$
C. $A_{1}=A_{2}$
D. none of these

Answer: A

- Watch Video Solution

3. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$, The area between the arc $A B$ and chord $A B$ of the ellipse is
A. $\frac{1}{2} a b(\pi+2)$
B. $\frac{1}{4} a b(x-4)$
C. $\frac{1}{4} a b(\pi-2)$
D. None

Answer: C
4. Find the smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$.
A. $2(\pi-2)$
B. $(\pi-2)$
C. $(2 \pi-1)$
D. None of these

Answer: B

- Watch Video Solution

5. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ the line $x=\sqrt{3} y$ and x-axis , is
A. π
B. $\pi / 2$
C. $\pi / 3$
D. None of these

Answer: C

D Watch Video Solution

6. Find the area bounded by the curve $y=\sqrt{x}, x=2 y+3$ in the first quadrant and X-axis.
A. $2 \sqrt{3}$
B. 18
C. 9
D. $34 / 3$

Answer: C

(Watch Video Solution

7. The area cut off a parabola $4 y=3 x^{2}$ by the straight line
$2 y=3 x+12$ in square units, is
A. 16
B. 21
C. 27
D. 36

Answer: C

- Watch Video Solution

8. The area enclosed between the curves
 $y^{2}=x$ and $y=|x|$ is:

A. $2 / 3$
B. 1
C. $1 / 6$
D. $1 / 3$

Answer: C

(Watch Video Solution

9. The area of the region bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$ is
A. $9 / 8$
B. $9 / 4$
C. $9 / 2$
D. None of these

Answer: A
10. The area of the region bounded by the parabola $y^{2}=4 a x$ and the line $\mathrm{y}=\mathrm{mx}$ is
A. $\frac{5}{3} \frac{a^{2}}{m}$
B. $\frac{8}{3} \frac{a^{2}}{m^{3}}$
C. $\frac{7}{4} \frac{a^{2}}{m^{2}}$
D. None

Answer: B

- Watch Video Solution

11. The area bounded by the x-axis, the curve $y=f(x)$, and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for
all $b>1$, then $f(x)$ is $\sqrt{x-1}$ (b) $\sqrt{x+1} \sqrt{x^{2}+1}$ (d)
$\frac{x}{\sqrt{1+x^{2}}}$
A. $\sqrt{x-1}$
B. $\sqrt{x+1}$
C. $\sqrt{x^{2}+1}$
D. $\frac{x}{\sqrt{x^{2}+1}}$

Answer: D

- Watch Video Solution

12. Let $f(x)$ be a non-negative continuous function such that the area bounded by the curve $\mathrm{y}=f(x)$, x -axis and
the ordinates $x=\frac{\pi}{4}$ and $x=\beta>\frac{\pi}{4}$ is:
$\left\{\beta \sin \beta+\frac{\pi}{4} \cos \beta+\sqrt{2} \beta\right\}$, then $f\left(\frac{\pi}{2}\right)$ is:
A. $\left(1-\frac{\pi}{4}-\sqrt{2}\right)$
B. $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
C. $\left(\frac{\pi}{4}+\sqrt{2}-1\right)$
D. $\left(\frac{\pi}{4}-\sqrt{2}-1\right)$

Answer: B

- Watch Video Solution

13. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate
axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then
A. 2:1:2
B. 1:1:1
C. 1:2:1
D. 1:2:3

Answer: B

- Watch Video Solution

14. The area of the region lying between the line $x-y+2=0$ and the curve $x=\sqrt{y}$ and $y-a \xi s$, is
B. $9 / 2$
C. $10 / 3$
D. None

Answer: C

- Watch Video Solution

15. Find the area lying in the first quadrant and bounded by
the curve $y=x^{3}$ and the line $y=4 x$.
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

16. Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$
17. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?
A. $1 / 2$
B. $1 / 3$
C. $2 / 3$
D. 1

Answer: C

18. Calculate the area bouded by the parabola $y^{2}=4 a x$ and its latus rectum
A. $\frac{8}{3} a^{2}$
B. $\frac{8}{3} a$
C. $\frac{4}{3} a$
D. $\frac{4}{3} a^{2}$

Answer: A

- Watch Video Solution

19. Let A , be the area of the parabola $y 2=4 a x$ lying between vertex and latus rectum and A_{2}, be the area
between latus rectum and double ordinate $x=2 a$. Then $\frac{A_{1}}{A_{2}}=$.
A. $2 \sqrt{ } 2-1$
B. $(2 \sqrt{ } 2+1) / 7$
C. $(2 \sqrt{ } 2-1) / 7$
D. None of these

Answer: B

- Watch Video Solution

20. Area of the region bounded by the curve $y^{2}=4 x, \mathrm{y}$ axis and the line $y=3$ is (A) 2 (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$ A. 1 sq. units
B. $9 / 4$ sq. units
C. $6 \sqrt{ } 3$ sq. units
D. None of these

Answer: B

- Watch Video Solution

21. What is the area bounded by the curve $y=4 x-x^{2}-3$ and the x-axis?
A. $4 / 3$
B. $3 / 4$
C. 7
D. $3 / 2$

Answer: A

- Watch Video Solution

22. Area between the curve $y=4+3 x-x^{2}$ and x-axis in square units, is
A. $125 / 3$
B. $125 / 4$
C. $125 / 6$
D. None
23. Area bounded by the curves $x=1, x=3, x y=1$ and x-axis is
A. $\log 2$
B. $\log 3$
C. $\log 4$
D. None of these

Answer: B
24. The area of the loop between the curve $y=a \sin x$ and x-axis is (A) $a(B) 2 a(C) 3 a(D)$ none of these
A. a
B. 2 a
C. 3 a
D. None

Answer: B

- Watch Video Solution

25. If A is the area between the curve $y=\sin x$ and x -axis in the interval $[0, \pi / 4]$, then in the same interval, area
between the curve $y=\cos x$ and x -axis, is
A. A
B. $\frac{\pi}{2}-A$
C. $1-A$
D. None of these

Answer: C

- Watch Video Solution

26. If A is the area lying between the curve $y=\sin x$ and x -axis between $\mathrm{x}=0$ and $x=\pi / 2$. Area of the region between the curve $y=\sin 2 x$ and x-axis in the same interval is given by
A. $A / 2$
B. A
C. 2A
D. None of these

Answer: B

D Watch Video Solution

27. Area bounded by the curves $y=x \sin x$ and x-axis between $x=0$ and $x=2 \pi$ is
A. 2π
B. 3π
C. 4π
D. None of these

Answer: C

(Watch Video Solution

> 28. The bounded $y=\cos x$ and $x=-\frac{\pi}{2}$ and $x=2 \pi$.and the axis of xin
square units is
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

29. Area bounded by the curves $y=\sin ^{4} x, x=0, x=\frac{\pi}{2}$ and $y=0$ is
A. $3 / 8$
B. $3 / 16$
C. $3 \pi / 16$
D. None of these

Answer: C

30. Area of the region bounded by the curves $y=\tan x, y=$ cot x and X -axis in $0 \leq x \leq \frac{\pi}{2}$ is
A. $\log 2$
B. $\frac{1}{2} \log 2$
C. $\frac{1}{2}(\log 2-1)$
D. None of these

Answer: A

- Watch Video Solution

31. Find the area of the region bounded by the curve $C: y=\tan x, \tan \geq n t d r a w n \rightarrow C$ at $x=\frac{\pi}{4}$, and the x -
axis.
A. $\frac{1}{2} \log 2$
B. $\frac{1}{2}\left(\log 2-\frac{1}{2}\right)$
C. $\frac{1}{2}(\log 2-1)$
D. None

Answer: B

- Watch Video Solution

32. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is
A. $2 / 3$
B. $1 / 3$
C. $1 / 4$
D. None of these

Answer: B

- Watch Video Solution

33. Find the area bounded by the curves $y=2 x-x^{2}$ and the straight line $y=-x$.
A. $9 / 2$
B. $43 / 6$
C. $35 / 6$
D. None of these

Answer: A

D Watch Video Solution

34. The area of the region bouned by the curve $y=2 x-x^{2}$ and the line $y=x$ is
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. $1 / 6$

Answer: D
35. Find the area enclosed by the parabola $y=2-x^{2}$ and the straight line $x+y=0$
A. $\frac{17}{6}$
B. $\frac{34}{7}$
C. $\frac{9}{2}$
D. $\frac{7}{2}$

Answer: C

- Watch Video Solution

36. The area of the figure bounded by the curves
$y^{2}=2 x+1$ and $x-y-1=0$, is
A. $\frac{4}{3}$
B. $\frac{8}{3}$
C. $\frac{16}{3}$
D. None of these

Answer: C

D Watch Video Solution

37. Find the area bounded by the parabola $y^{2}=4 x$ and the straight line $x+y=3$.
A. $\frac{16}{3}$
B. $\frac{32}{3}$
C. $\frac{64}{3}$
D. None of these

Answer: C

- Watch Video Solution

38. The area betweem the curves
$y=\sin ^{-1} x$ and $y=\cos ^{-1} x$ and axis of x is
A. $(\sqrt{2}+1)$
B. $(\sqrt{2}-1)$
C. $(3-2 \sqrt{2})$
D. $(3+2 \sqrt{2})$

- Watch Video Solution

39. If the ordinate $x=a$ divides the area bounded by the curve $y=\cos ^{-1} \mathrm{x}$ and axis of x . Then value of a is.
A. $2 \sqrt{ } 3$
B. $2 \sqrt{ } 2$
C. 3
D. None of these

Answer: B
40. Find the area bounded by the curve $|x|+y=1$ and axis of x .
A. 4
B. 2
C. 1
D. $1 / 2$

Answer: C

- Watch Video Solution

41. Find area enclosed by $|x|+|y|=1$.
A. 4
B. 2
C. 1
D. $1 / 2$

Answer: B

- Watch Video Solution

42. Find the area bounded by the curve $y=(x-1)(x-2)(x-3)$ lying between the ordinates $x=0 a n d x=3$.
A. $\frac{9}{4}$
B. $\frac{11}{4}$
C. $\frac{11}{2}$
D. None

Answer: B

- Watch Video Solution

43. Area bounded by the curve $y=x(x-1)(x-2)$ and axis of x is equal to
A. 1
B. $1 / 2$
C. $1 / 4$
D. none of these
44. The area bounded by the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2 a$ is
A. $3 \pi a^{2}$
B. $3 \pi a^{2} / 2$
C. $3 \pi a^{2} / 4$
D. None of these

Answer: A
45. the area included between the curve $x y^{2}=a^{2}(a-x)$ and y-axis is -
A. $\pi a^{2} / 2$
B. πa^{2}
C. $3 \pi a^{2}$
D. None

Answer: B

- Watch Video Solution

46. Area bounded by the loop of the curve
$a y^{2}=x^{2}(a-x)$ is equal to
A. $\frac{4}{15} a^{2}$
B. $\frac{8}{15} a^{2}$
C. $\frac{16}{15} a^{2}$
D. None

Answer: B

D Watch Video Solution

47. The whole area between the curve
$y^{2}(a-x)=x^{2}(a+x), a>0$ and its aympototes is equal to
A. $2 a^{2}\left(1+\frac{\pi}{4}\right)$
B. $2 a^{2}\left(1+\frac{\pi}{3}\right)$
C. $a^{2}\left(1+\frac{\pi}{4}\right)$
D. $a^{2}\left(1+\frac{\pi}{3}\right)$

Answer: A

- View Text Solution

48. The area enclosed between the curve $y=\log _{e}(x+e)$
and the coordinate axes is
A. 3
B. 4
C. 1
D. 2

Answer: C

(Watch Video Solution

49. The area included between the parabolas
$y^{2}=4 a x$ and $x^{2}=4 b y$ is
A. $\frac{8}{3} a b$
B. $\frac{16}{3} a b$
C. $\frac{4}{3} a b$
D. None

Answer: B
50. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is (A)

1 (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) none of these
A. 1
B. $2 / 3$
C. $1 / 3$
D. None of these

Answer: C

- Watch Video Solution

51. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{3}-y+9=0$ is
A. $12 \sqrt{ } 3$
B. $6 \sqrt{ } 3$
C. $8 \sqrt{ } 3$
D. $4 \sqrt{ } 3$

Answer: A

- Watch Video Solution

52. If the area enclosed between the curves
$y=a x^{2} a n d x=a y^{2}(a>0)$ is 1 square unit, then find the value of a.
A. $1 / \sqrt{3}$
B. $1 / 2$
C. 1
D. $1 / 3$

Answer: A

- Watch Video Solution

53. The area common to the parabolas $y=2 x^{2}$ and $y=x^{2}+4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$ (D) $\frac{3}{32}$
A. $16 / 3$
B. $8 / 3$
C. $32 / 3$
D. None of these

Answer: C

(Watch Video Solution

54. Find the area of the figure bounded by the parabolas
$x=-2 y^{2}, x=1-3 y^{2}$.
A. $\frac{8}{3}$
B. $\frac{6}{3}$
C. $\frac{4}{3}$
D. $\frac{2}{3}$

Answer: C

55. The area common to the circle $x^{2}+y^{2}=16 a^{2}$ and the parabola $y^{2}=6 a x$ is
A. $\frac{4 a^{2}}{3}(4 \pi-\sqrt{ } 3)$
B. $\frac{4 a^{2}}{3}(8 \pi-3)$
C. $\frac{4 a^{2}}{3}(4 \pi+\sqrt{3})$
D. None

Answer: C

D View Text Solution

56. Area common to the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=6 a x$ is
A. $\frac{16}{3}(4 \pi+\sqrt{3})$
B. $\frac{16}{3}(8 \pi-\sqrt{3})$
C. $\frac{16}{3}(4 \pi-\sqrt{3})$
D. None

Answer: B

- View Text Solution

57. Area included between the parabola $y=\frac{x^{2}}{4} a$ and the witch of Agnesi $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}$ is
A. $\frac{a^{2}}{3}(6 \pi-4)$
B. $\frac{a^{2}}{3}(4 \pi+3)$
C. $\frac{a^{2}}{3}(8 \pi+3)$
D. None

Answer: A

- View Text Solution

58. The area of the region between the curves
$y=\sqrt{\frac{1+\sin x}{\cos x}}$ and $y=\sqrt{\frac{1-\sin x}{\cos x}}$ bounded by the
lines $x=0$ and $x=\frac{\pi}{4}$ is
A. $\int_{0}^{\sqrt{2}-1} \frac{1}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
B. $\int_{0}^{\sqrt{2}-1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
C. $\int_{0}^{\sqrt{2}+1} \frac{4 t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$
D. $\int_{0}^{\sqrt{2}-1} \frac{t}{\left(1+t^{2}\right) \sqrt{1-t^{2}}} d t$

Answer: B

- Watch Video Solution

59. The area of the figure bounded by the curve
$|y|-1-x^{2}$, is
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{8}{3}$
D. None

- Watch Video Solution

60. The area bounded by the curves
$y=(x-1)^{2}, y=(x+1)^{2}$ and $y=\frac{1}{4}$ is
A. $1 / 6$
B. $2 / 3$
C. $1 / 4$
D. $1 / 3$

Answer: D

- Watch Video Solution

61. The area of region bounded by $y=|x-1|$ and $y=1$ is
A. 1
B. 2
C. $1 / 2$
D. None

Answer: A

- Watch Video Solution

62. The area of the region bounded by the curve $y=|x-2|, x=1, x=3$ and the X -axis is
A. 1
B. 2
C. 3
D. 4

Answer: A

(Watch Video Solution

63. The area of the region bounded by the curves

$$
y=|x-1| \text { and } y=3-|x| \text { is- }
$$

A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

64. The area bounded by the curve $y=x|x|$, x -axis and the ordinates $x=1, x=-1$ is given by
A. 0
B. $1 / 3$
C. $2 / 3$
D. None

Answer: C

- Watch Video Solution

65. Area of the region bounded by the curves $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by :
A. $\frac{3}{\log 2}-\frac{4}{3}$
B. $\frac{3}{\log 2}+\frac{4}{3}$
C. $3 \log 2-\frac{4}{3}$
D. $3 \log 2+\frac{4}{3}$

Answer: A

66. Area of the region bounded by the curve $y=e^{x}$ and lines $x=0$ and $y=e$ is
A. $e-1$
B. $\int_{1}^{e} \operatorname{In}(e+1-y) d y$
C. $e-\int_{0}^{1} e^{x} d x$
D. $\int_{0}^{e} \operatorname{In} \quad y \quad d y$

Answer: B::C

- Watch Video Solution

67. The ratio of the area of the region bounded by the curve $a^{4} y^{2}=(2 a-x) x^{5}$ to the area of the circle whose
radius is a, is given by
A. 4:5
B. 5:4
C. 2:3
D. 3:2

Answer: B

D View Text Solution

68. Find the value of ' c ' for which the area of the figure bounded by the curve, $y=8 x^{2}-x^{5}$, the straight lines $\mathrm{x}=1$ and $\mathrm{x}=\mathrm{c}$ and the abscissa axis is equal to $16 / 3$.
B. $\sqrt{8-\sqrt{17}}$
C. 3
D. none

Answer: D

- Watch Video Solution

69. The area between the curves $y=\sin x$ and $y=\cos x$ bounded by the lines $x=0$ and $x=\pi / 2$ is
A. $\sqrt{2}-1$
B. 0
C. $2(\sqrt{3}-1)$
D. $2(\sqrt{2}-1)$

Answer: D

- Watch Video Solution

70. The area bounded by $y=x e^{|x|}$ and the lines
$|x|=1, y=0$ is
A. 4
B. 6
C. 1
D. 2
71. The volume of the solid obtained by revolving about y axis the area enclosed between the ellipse $x^{2}+9 y^{2}=9$ and the strangth line $x+3 y=3$, in the first quadrant is
A. 3π
B. 4π
C. 6π
D. 9π

Answer: D
72. The slope of the tangent to a curve $y=f(x) a t\{x, f(x)\}$ is $2 x+1$. If the curve passes through the point $(1,2)$, then the area bounded by the curve, the x -axis and the line $x=1$ is
A. $5 / 6$
B. $6 / 5$
C. $1 / 6$
D. 6

Answer:
73. For which of the following values of m is the area of the regions bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equal $\frac{9}{2} ?-4$ (b) -2 (c) 2 (d) 4
A. -4
B. -2
C. 2
D. 4

Answer:

- Watch Video Solution

1. Find the smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$.

- Watch Video Solution

2. Area of the region bounded by curves
$y=x^{2}+2, y=x, x=0$ and $x=1 i s \frac{7}{16}$.True or False

- Watch Video Solution

3.

Area bounded by the

and the
line $y=4$ is $20 / 3$.True or False

(D) Watch Video Solution

4. Area bounded by the
$y=|x-1|, y=0$ and $|x|=2 i s 5$. True or False
5. Area enclosed between the curve $a y=3\left(a^{2}-x^{2}\right)$ and the X-axis is

- Watch Video Solution

6. The area between the curves $y=x^{2}$ and $y=\frac{2}{1+x^{2}}$ is equal to

- Watch Video Solution

7. The area bounded by the parabola $y=x^{2}$ and the line $y=2 x i s 4 / 3$ sq. units.
8. The area included between the parabolas $y^{2}=4 a x(x+a)$ and $y^{2}=4 b(b-x) i s \frac{8}{3} \sqrt{a b}(a+b)$
.True False

- View Text Solution

9. The area between the parabolas
$y^{2}=4 x, y^{2}=x$ and $x=1, x=4 i s \frac{28}{8}$ sq. units.True or False

- View Text Solution

Problem Set 1 Fill In The Blanks

1. Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, x=0, y=1$ and $y=4$.

- Watch Video Solution

2. Area between the parabola $y^{2}=9 x$ and the line $y=x$ is \qquad

- Watch Video Solution

3. The area common to the curve $y^{2}=x$ and $x^{2}=y$ is
4. Find the ratio in which the area bounded by the curves $y^{2}=12 x a n d x^{2}=12 y$ is divided by the line $x=3$.

- Watch Video Solution

5. The area bounded by the normal at $(1,2)$ to the parabole $y^{2}=4 x$, x -axis and the curve is

$$
f(x)=\left\{\begin{array}{l}
x^{2}: x<0 \\
x: x \geq 0
\end{array}\right.
$$

6. Let
bounded
by the
.Area
$y=f(x), y=0$ and $x^{2}=9 a^{2} i s 9 \frac{a}{2}$ Then $a=$

- Watch Video Solution

7. Area of the region bounded by the curve $y=\sin ^{2} x$ and $x=0, y=0$ and $x=\pi / 2$ is
8. The area bounded by the hyperbola $x^{2}-y^{2}=a^{2}$ between the straigth lines $x=a$ and $x=2 a$ is

D Watch Video Solution

9. Area of the segment cut off from the parabola $y^{2}=4 x$ by the line $y=8 x-1$ is

- Watch Video Solution

10. Area of the region lying between the curve $y=x^{3}$ and the line $y=x$ is
11. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and the parabola $y^{2}=4 x$.

- Watch Video Solution

12. The line $y=m x$ bisects the area enclosed by the curve
$y=1+4 x-x^{2}$ and the lines $x=0, x=\frac{3}{2} a n d y=0$.
Then the value of m is $\frac{13}{6}$ b. $\frac{6}{13}$ c. $\frac{3}{2}$ d. 4

- Watch Video Solution

13. Sketch the curves and identify the region bounded by
$x=1 / 2, x=2, y=\log _{e} x$ and
$y=2^{x}$. The area of this region is
14. Indicate the region bounded by the curves $x^{2}=y, y=x+2$ and x-axis and the area enclosed by them is

- Watch Video Solution

15. Find the area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3 x}$ and $y=0$

- Watch Video Solution

1. The value(s) of $\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x$ is (are)
А. $\frac{22}{7}-\pi$
B. $\frac{2}{105}$
C. 0
D. $\frac{71}{51}-3 \frac{\pi}{2}$

Answer: A

- Watch Video Solution

2. The value of the integral

$$
\int_{-\pi / 2}^{\pi / 2}\left\{x^{2}+\log \left(\frac{\pi+x}{\pi-x}\right)\right\} \cos x d x \text { is }
$$

A. 0
B. $\frac{\pi^{2}}{2}-4$
C. $\frac{\pi^{2}}{2}+4$
D. $\frac{\pi^{2}}{2}$

Answer: B

- Watch Video Solution

3. The value of $\int_{\sqrt{\log 2}}^{\sqrt{\log 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(\log 6-x^{2}\right)} d x$ is
A. $\frac{1}{4} \log \frac{3}{2}$
B. $\frac{1}{2} \log \frac{3}{2}$
C. $1 \log \frac{3}{2}$
D. $\frac{1}{6} \log \frac{3}{2}$

Answer: A

- Watch Video Solution

4. $\int_{0}^{\pi}[\cot x] d x$, where [.] denotes the greatest integer function, is equal to
A. $\frac{\pi}{2}$
B. 1
C. -1
D. $-\frac{\pi}{2}$
5. Let $p(x)$ be a function defined on R such that $p^{\prime}(x)=p^{\prime}(1-x) \quad$ for \quad all $\quad x \varepsilon[0,1], p(0)=1, \quad$ and $p(1)=41$.
Then $\int_{0}^{1} p(x) d x$ is equal to
A. $\sqrt{41}$
B. 21
C. 41
D. 42

Answer: B
6. If $g(x)=\int_{0}^{x} \cos ^{4} t d t$, then $g(x+\pi)$ equals
A. $\frac{g(x)}{g(\pi)}$
B. $g(x)+g(\pi)$
C. $g(x)-g(\pi)$
D. $g(x) . g(\pi)$

Answer: B

D Watch Video Solution
7. Let f be a non-negative function defined on the interval[0,1].
$\int_{0}^{x} \sqrt{1-\left(f^{\prime} \cdot t\right)^{2}} \cdot d t=\int_{0}^{x} f(t) d t, 0 \leq x \leq 1$ and $f(0)=0$,then
A. $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
B. $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)>\frac{1}{3}$
C. $f\left(\frac{1}{2}\right)<\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$
D. $f\left(\frac{1}{2}\right)>\frac{1}{2}$ and $f\left(\frac{1}{3}\right)<\frac{1}{3}$

Answer: C

- Watch Video Solution

8. Let the straight line $\mathrm{x}=\mathrm{b}$ divide the area enclosed by $y=(1-x)^{2}, y=0 \quad$ and $\quad x=0 \quad$ into two parts
$R_{1}(0 \leq x \leq b) \quad$ and $\quad R_{2}(b \leq x \leq 1) \quad$ such \quad that $R_{1}-R_{2}=\frac{1}{4}$. Then b equals
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

D Watch Video Solution

9. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 3
B. 6
C. 9
D. 12

Answer: C

- Watch Video Solution

10. Let $f:[-1,2] \rightarrow[0, \infty)$ be a continuous function such \quad that $\quad f(x)=f(1-x), \forall x \in[-1,2]$.
$R_{1}=\int_{-1}^{2} x f(x) d x$ and R_{2} are the area of the region bounded by $y=f(x), x=-1, x=2$ and the X-axis.

Then :
A. $R_{1}=2 R_{2}$
B. $R_{1}=3 R_{2}$
C. $2 R_{1}=R_{2}$
D. $3 R_{1}=R_{2}$

Answer: C

- Watch Video Solution

11. The area of the region enclosed by the curves
$y=x, x=e, y=\frac{1}{x}$ and the positive x -axis is
A. $\frac{1}{2}$ sq. units
B. 1 sq. units
C. $\frac{3}{2}$ sq. units
D. $\frac{5}{2}$ sq. units

Answer: C

- Watch Video Solution

12. The area bounded by the curves $y=\cos x$ and $y=\sin x$
between the ordinates $\mathrm{x}=0$ and $x=\frac{3 \pi}{2}$, is
A. $4 \sqrt{2}-2$
B. $4 \sqrt{2}+2$
C. $4 \sqrt{2}-1$
D. $4 \sqrt{2}+1$

Answer: A

- Watch Video Solution

13. The value of $\lim _{x \rightarrow 0} \frac{1}{x^{3}} \int_{0}^{x} \frac{t \ln (1+t)}{t^{4}+4} d t$
A. 0
B. $\frac{1}{12}$
C. $\frac{1}{24}$
D. $\frac{1}{64}$

Answer: B
14. Let S be the area of the region enclosed by

$$
\begin{equation*}
y=e^{-x} \wedge 2, y=0, x=0, \text { andx }=1 . \quad \text { Then } S \geq \frac{1}{e} \tag{b}
\end{equation*}
$$

$S \geq 1=\frac{1}{e} \quad S \leq \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right)$
$S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$
A. $S \geq \frac{1}{e}$
B. $S \leq \frac{1}{e}$
C. $S \leq \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right)$
D. $S \leq \frac{1}{4}\left(1-\frac{1}{\sqrt{2}}\right)$

Answer: A::B::C::D

15. For any real number x , let $[x]=$ largest integer less than or equalto x. Let f be a real valued function defined on the interval[$-10,10]$ by
$f(x)= \begin{cases}x-[x] & \text { if }[x] \text { is odd } \\ 1+[x]-x & \text { if }[x] \text { is even }\end{cases}$
Then, the
value of $\left(\frac{\pi}{10}\right)^{2}\left(\int_{-10}^{10} f(x) \cos \pi x d x\right.$ is
A. 4
B. 5
C. 6
D. 1

Answer: A
16. The area (in square units) bounded by the curves
$y=\sqrt{x}, 2 y-x+3=0, \quad$ x-axis, and lying in the first
quadrant is
A. 9
B. 36
C. 18
D. $\frac{27}{4}$

Answer: A

