

MATHS

BOOKS - ML KHANNA

AREA OF CURVES

Problem Set 1 Multiple Choice Questions

1. The area of the ellipse
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 is

A. πab

B.
$$\pi ig(a^2+b^2ig)/4$$

 $\mathsf{C}.\,\pi(a+b)$

D. None

Answer: A

2. If
$$A_1, A_2$$
, be the areas of the curves
 $C_1 \quad x^2 + y^2 + 18x + 24y = 0$
and $c_2 \quad \frac{x^2}{14} + \frac{y^2}{13} = 1$ them
A. $A_1 > A_2$
B. $A_1 < A_2$
C. $A_1 = A_2$

D. none of these

Answer: A

3. AOB is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in which OA = a, OB = b, The area between the arc AB and chord AB of the ellipse is

A.
$$rac{1}{2}ab(\pi+2)$$

B. $rac{1}{4}ab(x-4)$
C. $rac{1}{4}ab(\pi-2)$

D. None

Answer: C

Watch Video Solution

4. Find the smaller area enclosed by the circle $x^2 + y^2 = 4$

and the line x + y = 2.

A. $2(\pi-2)$

- $\mathsf{B.}\,(\pi-2)$
- $C.(2\pi 1)$

D. None of these

Answer: B

5. Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ the line $x=\sqrt{3}y$ and x-axis , is A. π B. $\pi/2$ C. $\pi/3$

D. None of these

Answer: C

Watch Video Solution

6. Find the area bounded by the curve $y = \sqrt{x}, x = 2y + 3$ in the first quadrant and X-axis.

A. $2\sqrt{3}$

B. 18

C. 9

D. 34/3

Answer: C

Watch Video Solution

7. The area cut off a parabola $4y=3x^2$ by the straight line

2y = 3x + 12 in square units, is

A. 16

B. 21

C. 27

D. 36

Answer: C

Answer: C

9. The area of the region bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2 is

A. 9/8

B.9/4

C.9/2

D. None of these

Answer: A

10. The area of the region bounded by the parabola $y^2 = 4ax$ and the line y=mx is

A.
$$\frac{5}{3} \frac{a^2}{m}$$

B. $\frac{8}{3} \frac{a^2}{m^3}$
C. $\frac{7}{4} \frac{a^2}{m^2}$

D. None

Answer: B

11. The area bounded by the x-axis, the curve y=f(x), and the lines x=1, x=b is equal to $\sqrt{b^2+1}-\sqrt{2}$ for

all b > 1, then f(x) is $\sqrt{x-1}$ (b) $\sqrt{x+1} \sqrt{x^2+1}$ (d) $\frac{x}{\sqrt{1+x^2}}$ A. $\sqrt{x-1}$ B. $\sqrt{x+1}$ C. $\sqrt{x^2+1}$ D. $\frac{x}{\sqrt{x^2+1}}$

Answer: D

12. Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and

the ordinates $x=rac{\pi}{4} \,\, ext{and} \,\, x=eta>rac{\pi}{4} \,\, ext{is}:$ $\Big\{eta\sineta+rac{\pi}{4}\coseta+\sqrt{2}eta\Big\}$, then $f\Big(rac{\pi}{2}\Big)$ is:

A.
$$\left(1 - \frac{\pi}{4} - \sqrt{2}\right)$$

B. $\left(1 - \frac{\pi}{4} + \sqrt{2}\right)$
C. $\left(\frac{\pi}{4} + \sqrt{2} - 1\right)$
D. $\left(\frac{\pi}{4} - \sqrt{2} - 1\right)$

Answer: B

13. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x=4, y=4 and the coordinate

axes. If S_1, S_2, S_3 are the areas of these parts numbered

from top to bottom, respectively, then

A. 2:1:2

B. 1:1:1

C. 1:2:1

D. 1:2:3

Answer: B

14. The area of the region lying between the line x-y+2=0 and the curve $x=\sqrt{y}$ and $y-a\xi s$, is

B. 9/2

C.10/3

D. None

Answer: C

Watch Video Solution

15. Find the area lying in the first quadrant and bounded by

the curve $y=x^3$ and the line $y=4x_{\cdot}$

A. 2

B. 3

C. 4

Answer: C

Watch Video Solution

16. Area bounded by the curve $y=x^3$, the x-axis and the

ordinates x = -2 and x = 1 is

B.
$$-\frac{15}{4}$$

C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer: D

17. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?

A. 1/2

B. 1/3

C.2/3

D. 1

Answer: C

Watch Video Solution

18. Calculate the area bouded by the parabola $y^2 = 4ax$ and its latus rectum

A.
$$\frac{8}{3}a^2$$

B. $\frac{8}{3}a$
C. $\frac{4}{3}a$
D. $\frac{4}{3}a^2$

Answer: A

19. Let A, be the area of the parabola y2 = 4ax lying between vertex and latus rectum and A_2 , be the area

between latus rectum and double ordinate x = 2a. Then

D. None of these

Answer: B

20. Area of the region bounded by the curve $y^2 = 4x$, yaxis and the line y = 3 is (A) 2 (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$

A. 1 sq. units

B. 9/4 sq. units

C. $6\sqrt{3}$ sq. units

D. None of these

Answer: B

Watch Video Solution

21. What is the area bounded by the curve $y = 4x - x^2 - 3$ and the x-axis?

A. 4/3

B. 3/4

C. 7

D. 3/2

Answer: A

22. Area between the curve $y = 4 + 3x - x^2$ and x-axis in

square units , is

A. 125/3

B. 125/4

C. 125/6

D. None

Answer: C

23. Area bounded by the curves x=1, x=3, xy=1 and

x-axis is

A. log 2

B. log 3

C. log 4

D. None of these

Answer: B

24. The area of the loop between the curve $y = a \sin x$ and

x-axis is (A) a (B) 2a (C) 3a (D) none of these

A. a

B. 2a

C. 3a

D. None

Answer: B

25. If A is the area between the curve $y=\sin x$ and x-axis in the interval $[0,\pi/4]$, then in the same interval , area

between the curve $y = \cos x$ and x-axis, is

$$\mathsf{B}.\,\frac{\pi}{2}-A$$

 $\mathsf{C.1} - A$

D. None of these

Answer: C

26. If A is the area lying between the curve $y = \sin x$ and x-axis between x=0 and $x = \pi/2$. Area of the region between the curve $y = \sin 2x$ and x-axis in the same interval is given by

A. A/2

B.A

C. 2A

D. None of these

Answer: B

Watch Video Solution

27. Area bounded by the curves $y = x \sin x$ and x-axis

between x = 0 and $x = 2\pi$ is

A. 2π

B. 3π

C. 4π

D. None of these

Answer: C

- 0.5
- C. 6

D. 7

Answer: B

29. Area bounded by the curves $y = \sin^4 x, x = 0, x = rac{\pi}{2}$ and y = 0 is

A. 3/8

B. 3/16

C. $3\pi/16$

D. None of these

Answer: C

30. Area of the region bounded by the curves y = tan x, y =

cot x and X-axis in $0 \leq x \leq rac{\pi}{2}$ is

A. log 2
B.
$$rac{1}{2} \log 2$$

C. $rac{1}{2} (\log 2 - 1)$

D. None of these

Answer: A

31. Find the area of the region bounded by the curve $C\colon y= an x, tan\geq ntdrawn o C$ at $x=rac{\pi}{4},$ and the x-

axis.

A.
$$\frac{1}{2}\log 2$$

B. $\frac{1}{2}\left(\log 2 - \frac{1}{2}\right)$
C. $\frac{1}{2}(\log 2 - 1)$

D. None

Answer: B

32. Area lying between the curves $y^2 = 4x$ and y = 2x is

A. 2/3

B. 1/3

C.1/4

D. None of these

Answer: B

Watch Video Solution

33. Find the area bounded by the curves $y = 2x - x^2$ and

the straight line $y = -x_{\cdot}$

A. 9/2

B. 43/6

C.35/6

D. None of these

Answer: A

- **34.** The area of the region bouned by the curve $y = 2x x^2$ and the line y = x is
 - A. 1/2
 - B. 1/3
 - C.1/4
 - D. 1/6

Answer: D

35. Find the area enclosed by the parabola $y=2-x^2$ and

the straight line x + y = 0

A.
$$\frac{17}{6}$$

B. $\frac{34}{7}$
C. $\frac{9}{2}$
D. $\frac{7}{2}$

Answer: C

36. The area of the figure bounded by the curves $y^2 = 2x + 1$ and x - y - 1 = 0 , is

A.
$$\frac{4}{3}$$

B. $\frac{8}{3}$
C. $\frac{16}{3}$

D. None of these

Answer: C

37. Find the area bounded by the parabola $y^2 = 4x$ and

the straight line x + y = 3.

A.
$$\frac{16}{3}$$

B. $\frac{32}{3}$

C.
$$\frac{64}{3}$$

D. None of these

Answer: C

Answer: B

39. If the ordinate x = a divides the area bounded by the curve $y = \cos^{-1} x$ and axis of x. Then value of a is.

A. $2\sqrt{3}$

B. $2\sqrt{2}$

C. 3

D. None of these

Answer: B

View Text Solution

40. Find the area bounded by the curve |x| + y = 1 and axis of x.

A. 4

B. 2

C. 1

D. 1/2

Answer: C

Watch Video Solution

41. Find area enclosed by |x| + |y| = 1.

B. 2

C. 1

 $\mathsf{D.}\,1/2$

Answer: B

Watch Video Solution

42. Find the area bounded by the curve y = (x - 1)(x - 2)(x - 3) lying between the ordinates x = 0 and x = 3.

A.
$$\frac{9}{4}$$

B. $\frac{11}{4}$
C. $\frac{11}{2}$

D. None

Answer: B

43. Area bounded by the curve y = x(x-1)(x-2) and

axis of x is equal to

A. 1

B. 1/2

C.1/4

D. none of these

Answer: B

44. The area bounded by the curve $y^2(2a-x)=x^3$ and

the line x = 2a is

A. $3\pi a^2$

B. $3\pi a^2 / 2$

 $\mathsf{C.}\,3\pi a^2\,/\,4$

D. None of these

Answer: A

45. the area included between the curve $xy^2 = a^2(a-x)$

and y -axis is -

A. $\pi a^2/2$

 $\mathsf{B.}\,\pi a^2$

C. $3\pi a^2$

D. None

Answer: B

46. Area bounded by the loop of the curve

$$ay^2=x^2(a-x)$$
 is equal to

A.
$$\frac{4}{15}a^{2}$$

B. $\frac{8}{15}a^{2}$
C. $\frac{16}{15}a^{2}$

D. None

Answer: B

47. The whole area between the curve
$$y^2(a-x)=x^2(a+x), a>0$$
 and its aympototes is equal to

A.
$$2a^2\Big(1+rac{\pi}{4}\Big)$$

B. $2a^2\Big(1+rac{\pi}{3}\Big)$

C.
$$a^2 \Big(1 + rac{\pi}{4}\Big)$$

D. $a^2 \Big(1 + rac{\pi}{3}\Big)$

Answer: A

View Text Solution

48. The area enclosed between the curve $y = \log_e(x + e)$

and the coordinate axes is

A. 3

B. 4

C. 1

D. 2

Answer: C

$$y^2 = 4ax$$
 and $x^2 = 4by$ is

A.
$$\frac{8}{3}ab$$

B. $\frac{16}{3}ab$
C. $\frac{4}{3}ab$

D. None

Answer: B

50. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is (A) 1 (B) $rac{2}{3}$ (C) $rac{1}{3}$ (D) none of these

A. 1

B. 2/3

C.1/3

D. None of these

Answer: C

Watch Video Solution

51. The area inside the parabola $5x^2 - y = 0$ but outside the parabola $2x^3 - y + 9 = 0$ is

A. $12\sqrt{3}$

B. $6\sqrt{3}$

C. $8\sqrt{3}$

D. $4\sqrt{3}$

Answer: A

52. If the area enclosed between the curves $y = ax^2 andx = ay^2(a > 0)$ is 1 square unit, then find the value of a.

A. $1/\sqrt{3}$

 $\mathsf{B.}\,1/2$

C. 1

D. 1/3

Answer: A

Watch Video Solution

53. The area common to the parabolas $y = 2x^2$ and $y = x^2 + 4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$ (D) $\frac{3}{32}$

A. 16/3

B. 8/3

C. 32/3

D. None of these

Answer: C

54. Find the area of the figure bounded by the parabolas

 $x = -2y^2, x = 1 - 3y^2 \cdot$

A.
$$\frac{8}{3}$$

B. $\frac{6}{3}$
C. $\frac{4}{3}$
D. $\frac{2}{3}$

Answer: C

55. The area common to the circle $x^2 + y^2 = 16a^2$ and the

parabola $y^2=6ax$ is

A.
$$rac{4a^2}{3} \left(4\pi - \sqrt{3}
ight)$$

B. $rac{4a^2}{3} (8\pi - 3)$
C. $rac{4a^2}{3} \left(4\pi + \sqrt{3}
ight)$

Answer: C

View Text Solution

56. Area common to the circle $x^2+y^2=64$ and the parabola $y^2=6ax$ is

A.
$$rac{16}{3} (4\pi + \sqrt{3})$$

B. $rac{16}{3} (8\pi - \sqrt{3})$
C. $rac{16}{3} (4\pi - \sqrt{3})$

D. None

Answer: B

57. Area included between the parabola $y = \frac{x^2}{4}a$ and the witch of Agnesi $y = \frac{8a^3}{x^2 + 4a^2}$ is A. $\frac{a^2}{3}(6\pi - 4)$ B. $\frac{a^2}{3}(4\pi + 3)$

$$\mathsf{C}.\,\frac{a^2}{3}(8\pi+3)$$

D. None

Answer: A

View Text Solution

58. The area of the region between the curves
$$y = \sqrt{\frac{1 + \sin x}{\cos x}}$$
 and $y = \sqrt{\frac{1 - \sin x}{\cos x}}$ bounded by the lines $x = 0$ and $x = \frac{\pi}{4}$ is

A.
$$\int_{0}^{\sqrt{2}-1} \frac{1}{(1+t^2)\sqrt{1-t^2}} dt$$

B.
$$\int_{0}^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$$

C.
$$\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$$

D.
$$\int_{0}^{\sqrt{2}-1} rac{t}{(1+t^2)\sqrt{1-t^2}} dt$$

Answer: B

59. The area of the figure bounded by the curve $ert y ert - 1 - x^2,$ is

A.
$$\frac{2}{3}$$

B. $\frac{4}{3}$
C. $\frac{8}{3}$

D. None

Answer: C

Answer: D

61. The area of region bounded by y = |x - 1| and y = 1

is

A. 1

B. 2

C.1/2

D. None

Answer: A

Watch Video Solution

62. The area of the region bounded by the curvey=|x-2|, x=1, x=3 and the X-axis is

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

63. The area of the region bounded by the curves

 $y=|x-1| ext{ and } y=3-|x|$ is-

A. 2

B. 3

C. 4

D. 6

Answer: C

Watch Video Solution

64. The area bounded by the curve y=xert xert, x-axis and the

ordinates x=1,x=-1 is given by

A. 0

B. 1/3

C. 2/3

D. None

Answer: C

65. Area of the region bounded by the curves $y = 2^x, y = 2x - x^2, x = 0$ and x = 2 is given by :

A.
$$\frac{3}{\log 2} - \frac{4}{3}$$

B. $\frac{3}{\log 2} + \frac{4}{3}$
C. $3\log 2 - \frac{4}{3}$
D. $3\log 2 + \frac{4}{3}$

Answer: A

66. Area of the region bounded by the curve $y = e^x$ and

linesx = 0 and y = e is

A.
$$e-1$$

B. $\int_1^e In(e+1-y)dy$
C. $e-\int_0^1 e^x dx$
D. $\int_0^e In \quad y \quad dy$

Answer: B::C

Watch Video Solution

67. The ratio of the area of the region bounded by the curve $a^4y^2 = (2a-x)x^5$ to the area of the circle whose

radius is a, is given by

A. 4:5

B. 5:4

C. 2:3

D. 3:2

Answer: B

68. Find the value of 'c' for which the area of the figure bounded by the curve, $y = 8x^2 - x^5$, the straight lines x = 1 and x = c and the abscissa axis is equal to 16/3.

B.
$$\sqrt{8-\sqrt{17}}$$

C. 3

D. none

Answer: D

Watch Video Solution

69. The area between the curves $y = \sin x$ and $y = \cos x$ bounded by the lines x = 0 and $x = \pi/2$ is

A.
$$\sqrt{2}-1$$

B. 0

 $\mathsf{C.}\,2\big(\sqrt{3}-1\big)$

D.
$$2\left(\sqrt{2}-1
ight)$$

Answer: D

Watch Video Solution

A. 4

B. 6

C. 1

D. 2

Answer: D

71. The volume of the solid obtained by revolving about yaxis the area enclosed between the ellipse $x^2 + 9y^2 = 9$ and the strangth line x + 3y = 3, in the first quadrant is

A. 3π

B. 4π

 $\mathsf{C.}\,6\pi$

D. 9π

Answer: D

72. The slope of the tangent to a curve $y = f(x)at\{x, f(x)\}$ is 2x + 1. If the curve passes through the point (1, 2), then the area bounded by the curve, the x-axis and the line x = 1 is

A. 5/6

B. 6/5

C.1/6

D. 6

Answer:

73. For which of the following values of m is the area of the regions bounded by the curve $y = x - x^2$ and the line y = mx equal $\frac{9}{2}$? -4 (b) -2 (c) 2 (d) 4

A. -4

B. -2

C. 2

D. 4

Answer:

Problem Set 1 True And False

1. Find the smaller area enclosed by the circle $x^2+y^2=4$

and the line x + y = 2.

2. Area of the region bounded by curves
$$y = x^2 + 2, y = x, x = 0$$
 and $x = 1is \frac{7}{16}$. True or False

5. Area enclosed between the curve $ay = 3ig(a^2-x^2ig)$ and

the X-axis is

8. The area included between the parabolas $y^2 = 4ax(x+a)$ and $y^2 = 4b(b-x)israc{8}{3}\sqrt{ab}(a+b)$

.True False

Problem Set 1 Fill In The Blanks

1. Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4.

4. Find the ratio in which the area bounded by the curves $y^2 = 12xandx^2 = 12y$ is divided by the line x = 3.

5. The area bounded by the normal at (1,2) to the parabole $y^2 = 4x$, x-axis and the curve is

7. Area of the region bounded by the curve $y=\sin^2 x$ and

 $x=0,y=0 \,\, {
m and} \,\, x=\pi/2$ is

8. The area bounded by the hyperbola $x^2 - y^2 = a^2$ between the straigth lines x = a and x = 2a is

10. Area of the region lying between the curve $y = x^3$ and

the line y = x is

11. Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and the parabola $y^2 = 4x$.

Watch Video Solution

12. The line y=mx bisects the area enclosed by the curve

 $y=1+4x-x^2$ and the lines $x=0, x=rac{3}{2}andy=0.$ Then the value of m is $rac{13}{6}$ b. $rac{6}{13}$ c. $rac{3}{2}$ d. 4

Watch Video Solution

13. Sketch the curves and identify the region bounded by

$$x=1/2, x=2, y=\log_e x$$
 and

 $y=2^x$. The area of this region is

them is

Watch Video Solution

15. Find the area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3x} and y=0$

Watch Video Solution

Self Assessement Test

1. The value(s) of $\int_0^1 rac{x^4 (1-x)^4}{1+x^2} dx$ is (are)

A.
$$\frac{22}{7} - \pi$$

B. $\frac{2}{105}$

D.
$$\frac{71}{51} - 3\frac{\pi}{2}$$

Answer: A

Vatch Video Solution

2. The value of the integral

$$\int\limits_{-\pi/2}^{\pi/2} igg\{ x^2 + \log igg(rac{\pi+x}{\pi-x} igg) igg\} \cos x dx$$
 is
A. 0

B.
$$rac{\pi^2}{2}-4$$

C. $rac{\pi^2}{2}+4$
D. $rac{\pi^2}{2}$

Answer: B

3. The value of
$$\int_{\sqrt{\log 2}}^{\sqrt{\log 3}} \frac{x \sin x^2}{\sin x^2 + \sin(\log 6 - x^2)} dx$$
 is
A. $\frac{1}{4} \log \frac{3}{2}$
B. $\frac{1}{2} \log \frac{3}{2}$
C. $1 \log \frac{3}{2}$

D.
$$\frac{1}{6}\log\frac{3}{2}$$

Answer: A

Watch Video Solution

4.
$$\int_0^\pi [\cot x] dx,$$
 where [.] denotes the greatest integer

function, is equal to

A.
$$\frac{\pi}{2}$$

B. 1

$$\mathsf{D.}-rac{\pi}{2}$$

Answer: D

5. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all xarepsilon[0,1], p(0)=1, and p(1) = 41.Then $\int_0^1 p(x) dx$ is equal to A. $\sqrt{41}$ B. 21 C. 41 D. 42

Answer: B

6. If
$$g(x) = \int_0^x \cos^4 t dt$$
, then $g(x + \pi)$ equals
A. $\frac{g(x)}{g(\pi)}$
B. $g(x) + g(\pi)$
C. $g(x) - g(\pi)$
D. $g(x)$. $g(\pi)$

Answer: B

Watch Video Solution

7. Let f be a non-negative function defined on the interval[0,1].

$$\int_0^x \sqrt{1-\left(f'.\,t
ight)^2}.\,dt = \int_0^x f(t)dt, 0 \le x \le 1 \, ext{ and }\,f(0) = 0$$

,then

$$\begin{array}{l} \mathsf{A.} f\left(\frac{1}{2}\right) < \frac{1}{2} \ \text{and} \ f\left(\frac{1}{3}\right) > \frac{1}{3} \\ \mathsf{B.} f\left(\frac{1}{2}\right) > \frac{1}{2} \ \text{and} \ f\left(\frac{1}{3}\right) > \frac{1}{3} \\ \mathsf{C.} f\left(\frac{1}{2}\right) < \frac{1}{2} \ \text{and} \ f\left(\frac{1}{3}\right) < \frac{1}{3} \\ \mathsf{D.} f\left(\frac{1}{2}\right) > \frac{1}{2} \ \text{and} \ f\left(\frac{1}{3}\right) < \frac{1}{3} \end{array}$$

Answer: C

Watch Video Solution

8. Let the straight line x = b divide the area enclosed by

 $y=(1-x)^2, y=0$ and x=0 into two parts

 $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that $R_1 - R_2 = \frac{1}{4}$. Then b equals A. $\frac{3}{4}$ B. $\frac{1}{2}$ C. $\frac{1}{3}$ D. $\frac{1}{4}$

Answer: B

9. The area of the region bounded by the parabola $\left(y-2
ight)^2=x-1$, the tangent to the parabola at the point (2,3) and the x-axis is

A. 3

B. 6

C. 9

D. 12

Answer: C

Watch Video Solution

10. Let $f\!:\![-1,2]
ightarrow [0,\infty)$ be a continuous function

such that $f(x)=f(1-x),\ orall x\in[-1,2].$ If $R_1=\int_{-1}^2xf(x)dx$ and R_2 are the area of the region bounded by y=f(x),x=-1,x=2 and the X-axis. Then :

A. $R_1=2R_2$

- B. $R_1 = 3R_2$
- $\mathsf{C.}\,2R_1=R_2$
- D. $3R_1=R_2$

Answer: C

11. The area of the region enclosed by the curves $y = x, x = e, y = \frac{1}{x}$ and the positive x-axis is A. $\frac{1}{2}$ sq. units

B.1sq.units

C.
$$\frac{3}{2}$$
 sq. units
D. $\frac{5}{2}$ sq. units

Answer: C

Watch Video Solution

12. The area bounded by the curves y = cos x and y = sin x between the ordinates x = 0 and $x = \frac{3\pi}{2}$, is

A.
$$4\sqrt{2}-2$$

 $\mathsf{B.}\,4\sqrt{2}+2$

 $C.4\sqrt{2} - 1$

 $\mathrm{D.}\,4\sqrt{2}+1$

Answer: A

13. The value of
$$\lim_{x
ightarrow 0} rac{1}{x^3} \int_0^x rac{t\ln(1+t)}{t^4+4} dt$$

A. 0

B.
$$\frac{1}{12}$$

C. $\frac{1}{24}$
D. $\frac{1}{64}$

Answer: B

Watch Video Solution

14. Let
$$S$$
 be the area of the region enclosed by
 $y = e^{-x} \hat{} 2, y = 0, x = 0, andx = 1$. Then $S \ge \frac{1}{e}$ (b)
 $S \ge 1 = \frac{1}{e}$ $S \le \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$ (d)
 $S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left(1 - \frac{1}{\sqrt{2}} \right)$
A. $S \ge \frac{1}{e}$
B. $S \le \frac{1}{e}$
C. $S \le \frac{1}{4} \left(1 + \frac{1}{\sqrt{e}} \right)$
D. $S \le \frac{1}{4} \left(1 - \frac{1}{\sqrt{2}} \right)$

Answer: A::B::C::D

Watch Video Solution

15. For any real number x, let [x]= largest integer less than or equalto x. Let f be a real valued function defined on the interval[-10, 10] by $f(x) = \begin{cases} x - [x] & \text{if}[x] \text{ is odd} \\ 1 + [x] - x & \text{if}[x] \text{ is even} \end{cases}$ Then, the value of $\left(\frac{\pi}{10}\right)^2 \left(\int_{-10}^{10} f(x) \cos \pi x dx \text{ is}\right)$ A.4

B. 5

C. 6

D. 1

Answer: A

16. The area (in square units) bounded by the curves $y=\sqrt{x}, 2y-x+3=0,\,\,$ x-axis, and lying in the first quadrant is

A. 9

B. 36

C. 18

D.
$$\frac{27}{4}$$

Answer: A

