d'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ML KHANNA

CO-ORDINATE GEOMETRY OF THREE DIMENSION

Passage 1 Diraction Cisines Of A Line And Angle Between Two Lines

1. (a) If a makes angle α, β, γ with co-oedinate axes, them $\cos \alpha, \cos \beta, \cos \gamma$ denoted by $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are called the direction cosines of the line. Also $l^{2}+m^{2}+n^{2}=1$.
(b) Any three numbers a,b,c such that

$$
\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=\sqrt{\frac{l^{2}+m^{2}+n^{2}}{a^{2}+b^{2}+c^{2}}}=\frac{1}{\sum a^{2}}
$$

are caqlled direction ratios

$$
\begin{aligned}
& \text { (c) Condition of perpandicularity of two lines } \\
& \cos \theta=1_{1} l_{2}, m_{1} m_{2},+n_{1}=n_{2}=0 a s \theta=\pi / 2
\end{aligned}
$$

or $\frac{a_{1}}{a_{2}}+b_{1} b_{2}+c_{1} c_{2}=0$
Condition of parallelism of two lines $l_{1}=1_{2}, m_{1}=m_{2}, n_{1}=n_{2}$, d.c.'s equal
or $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$,i.e.,D.R.'s are proportial
(e) D.r,'s of a line joining two points
$x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$

The direction-cosines of the line which is equally inclined to the axis are
A. 1,1,1
B. $\frac{1}{\sqrt{ } 3}, \frac{1}{\sqrt{ } 3}, \frac{1}{\sqrt{ } 3}$
C. $-\frac{1}{\sqrt{ } 3},-\frac{1}{\sqrt{ } 3},-\frac{1}{\sqrt{ } 3}$
D. None

Answer: bc

D View Text Solution

2. (a) If a makes angle α, β, γ with co-oedinate axes, them $\cos \alpha, \cos \beta, \cos \gamma$ denoted by I,m,n are called the direction cosines of the
line. Also $l^{2}+m^{2}+n^{2}=1$.
(b) Any three numbers a, b, c such that
$\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=\sqrt{\frac{l^{2}+m^{2}+n^{2}}{a^{2}+b^{2}+c^{2}}}=\frac{1}{\sum a^{2}}$
are caqlled direction ratios
(c) Condition of perpandicularity of two lines
$\cos \theta=1_{1} l_{2}, m_{1} m_{2},+n_{1}=n_{2}=0 a s \theta=\pi / 2$
or $\frac{a_{1}}{a_{2}}+b_{1} b_{2}+c_{1} c_{2}=0$
Condition of parallelism of two lines $l_{1}=1_{2}, m_{1}=m_{2}, n_{1}=n_{2}$, d.c.'s equal
or $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$,i.e.,D.R.'s are proportial
(e) D.r,'s of a line joining two points
$x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$ or $\frac{a_{1}}{a_{2}}+b_{1} b_{2}+c_{1} c_{2}=0$
The angle between the lines whose d.c.'s are connected by the relations
$l^{2}+m^{2}-n^{2}=0,1+m+n=0$ is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: c

- View Text Solution

3. (a) If a makes angle α, β, γ with co-oedinate axes, them $\cos \alpha, \cos \beta, \cos \gamma$ denoted by I,m,n are called the direction cosines of the line. Also $l^{2}+m^{2}+n^{2}=1$.
(b) Any three numbers a, b, c such that

$$
\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=\sqrt{\frac{l^{2}+m^{2}+n^{2}}{a^{2}+b^{2}+c^{2}}}=\frac{1}{\sum a^{2}}
$$

are caqlled direction ratios
(c) Condition of perpandicularity of two lines
$\cos \theta=1_{1} l_{2}, m_{1} m_{2},+n_{1}=n_{2}=0 a s \theta=\pi / 2$
$\frac{a_{1}}{a_{2}}+b_{1} b_{2}+c_{1} c_{2}=0$
Condition of parallelism of two lines $l_{1}=1_{2}, m_{1}=m_{2}, n_{1}=n_{2}$, d.c.'s equal
or $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$,i.e.,D.R.'s are proportial
(e) D.r,'s of a line joining two points
$x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$
or $\frac{a_{1}}{a_{2}}+b_{1} b_{2}+c_{1} c_{2}=0$
If $l_{1}, m_{1} . n_{1}$ and l_{2}, m_{2}, n_{2} are D.C.'s of two lines inclined to each other at an angle θ, then the D,c.'S of the internal and external bisectors of the angle between these are
A. $\frac{l_{2}+l_{2}}{2 \sin (\theta / 2)}, \frac{m_{2}+m_{2}}{2 \sin (\theta / 2)}, \frac{n_{2}+n_{2}}{2 \sin (\theta / 2)}$
B. $\frac{l_{2}+l_{2}}{2 \cos (\theta / 2)}, \frac{m_{2}+m_{2}}{2 \cos (\theta / 2)}, \frac{n_{2}+n_{2}}{2 \cos (\theta / 2)}$
C. $\frac{l_{2}-l_{2}}{2 \sin (\theta / 2)}, \frac{m_{2}-m_{2}}{2 \sin (\theta / 2)}, \frac{n_{2}-n_{2}}{2 \sin (\theta / 2)}$
D. $\frac{l_{2}-l_{2}}{2 \cos (\theta / 2)}, \frac{m_{2}-m_{2}}{2 \cos (\theta / 2)}, \frac{n_{2}-n_{2}}{2 \cos (\theta / 2)}$

Answer: bc

D View Text Solution

4. The Lines

$$
\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} \text { and } \frac{x}{2}=\frac{y+2}{2}=\frac{z-3}{-2} \text { are }
$$

A. parallel
B. intersecting
C. skew
D. at rt. angles

Answer: d

- View Text Solution

Passage 2 The Plane Answer The Following Qurstion Based Upon Above Passage

1. The angle between the planes $2 x-y+3 z=6$ and $x+y+2 z=7$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: c

2. The equation of a condition of two plqanes being parellel or perpendicular.
(a) Every equation of first degree in x,y,z,i.e., $A x+B y+C z+D=0$ represents a plane The coefficients of x, y, z are the direction ratios of the normal to the plane.
(b) Angle between two planes is equal to the angle between the normal to the planes.

$$
\therefore \quad \cos \theta=\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{\sum A_{1}^{2}} \cdot \sqrt{\sum A_{2}^{2}}}
$$

Planes are perpendiculer if $\sum A_{1}, A_{2}=0$ and parallel if $\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}$
(c) Planes parallel to co-ordinate planes are $x=\gamma, y=\gamma$ or $z=\gamma$.

Planes perpendicular to co-ordinet planes $x=0, y=0, z=0$ are $b y+c z+d=0(\mathrm{x}$ missing $), a x+c z+d=0$
(y missing),$a x+b y+d=0(\mathrm{z}$ missing $)$
A plane is at unit distance from origin. It cuts coordinate axes at P, Q, R respectively. If the locus of centroid of the $\triangle P Q R$ is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=k$, then $k=$
A. 3
B. 1
C. 2
D. 9

Answer: d

- View Text Solution

3. The equation of a condition of two planes being parallel or perpendicular.
(a) Every equation of first degree in x,y,z,i.e., $A x+B y+C z+D=0$ represents a plane The coefficients of x, y, z are the direction ratios of the normal to the plane.
(b) Angle between two planes is equal to the angle between the normal to the planes.

$$
\therefore \quad \cos \theta=\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{\sum A_{1}^{2}} \cdot \sqrt{\sum A_{2}^{2}}}
$$

Planes are perpendicular if $\sum A_{1}, A_{2}=0$ and parallel if
$\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}$
(c) Planes parallel to co-ordinate planes are $x=\gamma, y=\gamma$ or $z=\gamma$.

Planes perpendicular to co-ordinet planes $x=0, y=0, z=0$ are
$b y+c z+d=0(\mathrm{x}$ missing $), a x+c z+d=0$
(y missing), $a x+b y+d=0(\mathrm{z}$ missing $)$
Find the equation of the plane through the intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-z+5=0$ and perpendicular to the plane $5 x+3 y+6 z+8=0$ is
A. $7 x-2 y+3 z+81=0$
B. $23 x+14 y-9 z+48=0$
C. $15 x+15 y-50 z+173=0$
D. None

Answer: c

4. The equation of a condition of two plqanes being parellel or perpendicular.
(a) Every equation of first degree in x,y,z,i.e., $A x+B y+C z+D=0$ represents a plane The coefficients of x, y, z are the direction ratios of the normal to the plane.
(b) Angle between two planes is equal to the angle between the normal to the planes.
$\therefore \quad \cos \theta=\frac{A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}}{\sqrt{\sum A_{1}^{2}} \cdot \sqrt{\sum A_{2}^{2}}}$
Planes are perpendiculer if $\sum A_{1}, A_{2}=0$ and parallel if $\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}$
(c) Planes parallel to co-ordinate planes are $x=\gamma, y=\gamma$ or $z=\gamma$. Planes perpendicular to co-ordinet planes $x=0, y=0, z=0$ are $b y+c z+d=0(\mathrm{x}$ missing $), a x+c z+d=0$
(y missing),$a x+b y+d=0(\mathrm{z}$ missing $)$
The equation of the plane which bisects the line joining the points $(3,2,2),(5,4,6)$ at right angle is

$$
\text { A. } x+y+2 z-15=0
$$

B. $x+2 y+z-15=0$
C. $2 x+y+z-15=0$
D. $x+y+z-8=0$

Answer: a

- View Text Solution

Passage 3 Equation Of A Line Intersection Of A Line And Plane Answer The Following Qurstion Based Upon Above Passage

1. (a) $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$, say, represent the equation of a line through the point (x_{1}, y_{1}, z_{1}) where I,m,n are d.c.'s of the line.
(b) Angle between line and a plane $a x+c z+d=0$, It is complement of the angle between line and normal to the plane

$$
\therefore \quad \cos \left(90^{\circ}-\theta\right)=\frac{a l+b m+c n}{\sqrt{\sum a^{2}} \cdot \sqrt{\sum l^{2}}}
$$

(d)(i) Line is parallel to plane \Rightarrow it is perpendiculer to normal

$$
\therefore \quad a l+b m+c n=0
$$

(ii) Line is parallel to plane \Rightarrow it is parallel to normal $\therefore \quad \frac{a}{1}=\frac{b}{m}=\frac{c}{n}$
(iii) Line to lie in the plane

$$
\Rightarrow a l+b m+c n=0 \text { and } a x_{1}+b y_{1}+c z_{1}+d=0
$$

Equation of the line passing through the point $(2,3,4)$ and perpandiculer to plane $2 x+3 y+z+5=0$ is
A. $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{3}$
B. $\frac{x-2}{3}=\frac{y-3}{2}=\frac{z-4}{1}$
C. $\frac{x-2}{1}=\frac{y-3}{3}=\frac{z-4}{2}$
D. $\frac{x-2}{1}=\frac{y-3}{3}=\frac{z-4}{2}$

Answer: c

- View Text Solution

2. (a) $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$, say, represent the equation of a line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ where $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are d.c.'s of the line.
(b) Angle between line and a plane $a x+c z+d=0$, It is complement of
the angle between line and normal to the plane
$\therefore \quad \cos \left(90^{\circ}-\theta\right)=\frac{a l+b m+c n}{\sqrt{\sum a^{2}} \cdot \sqrt{\sum l^{2}}}$
(d)(i) Line is parallel to plane \Rightarrow it is perpendiculer to normal
$\therefore \quad a l+b m+c n=0$
(ii) Line is parallel to plane \Rightarrow it is parallel to normal
$\therefore \quad \frac{a}{1}=\frac{b}{m}=\frac{c}{n}$
(iii) Line to lie in the plane

$$
\Rightarrow a l+b m+c n=0 \text { and } a x_{1}+b y_{1}+c z_{1}+d=0
$$

The equation of the plane containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and the point $(0,7,-7)$ is
A. $x+y+z=1$
B. $x+y+z=2$
C. $x+y+z=0$
D. none of these

Answer: c

3. (a) $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$, say, represent the equation of a line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ where $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are d.c.'s of the line.
(b) Angle between line and a plane $a x+c z+d=0$, It is complement of the angle between line and normal to the plane
$\therefore \quad \cos \left(90^{\circ}-\theta\right)=\frac{a l+b m+c n}{\sqrt{\sum a^{2}} \cdot \sqrt{\sum l^{2}}}$
(d)(i) Line is parallel to plane \Rightarrow it is perpendicular to normal

$$
\therefore \quad a l+b m+c n=0
$$

(ii) Line is parallel to plane \Rightarrow it is parallel to normal

$$
\therefore \quad \frac{a}{1}=\frac{b}{m}=\frac{c}{n}
$$

(iii) Line to lie in the plane

$$
\Rightarrow a l+b m+c n=0 \text { and } a x_{1}+b y_{1}+c z_{1}+d=0
$$

The direction cosines of two lines at right angles are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}. Then the d.c.'s of a line \perp to both the given lines are
A. $m_{1} n_{2}-m_{2} n_{1}-n_{1} l_{2}-n_{2} l_{1}, l_{1} m(2)-l_{2} m_{1}$
B. $l_{1}+l_{2}, m_{1}+m_{2}, n_{1}+n_{2}$
C. $l_{2}-l_{2}, m_{1}-m_{2}, n_{1}+n_{2}$
D. None of these

Answer: a

- View Text Solution

4. (a) $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}=r$, say, represent the equation of a line through the point $\left(x_{1}, y_{1}, z_{1}\right)$ where I,m,n are d.c.'s of the line.
(b) Angle between line and a plane $a x+c z+d=0$, It is complement of the angle between line and normal to the plane
$\therefore \quad \cos \left(90^{\circ}-\theta\right)=\frac{a l+b m+c n}{\sqrt{\sum a^{2}} \cdot \sqrt{\sum l^{2}}}$
(d)(i) Line is parallel to plane \Rightarrow it is perpendiculer to normal

$$
\therefore \quad a l+b m+c n=0
$$

(ii) Line is parallel to plane \Rightarrow it is parallel to normal

$$
\therefore \quad \frac{a}{1}=\frac{b}{m}=\frac{c}{n}
$$

(iii) Line to lie in the plane

$$
\Rightarrow a l+b m+c n=0 \text { and } a x_{1}+b y_{1}+c z_{1}+d=0
$$

Passage

1. Section of a sphere by a plane.
(a) $x^{2}+y^{2}+z^{2}+2 v y+2 w z+d=09$ represent a sphere with center
at $(-u,-v,-w)$ and $r=\sqrt{u^{2}+v^{2}+w^{2}-d}$
The section of a sphere by a plane is a circle.lf its redius be a than
$a=\sqrt{u^{2}+v^{2}+w^{2}-d}$
(b) The section of a sphere by a plane is a circle. If its radius be a then $a=\sqrt{r^{2}-p^{2}}$, where p mis perpendiculer from center to given plane.

if the plane passes through the center of the sphere, then this section is called great circle.

In this case $p=0 \quad \therefore \quad a=r, i . e .$, its center and radius is this case $p=0 \quad \therefore \quad a=r, i . e$. , its centre and radius is the same as of given sphere

If $S=0$ and $p=0$ be the equations of a sphere and a plane, then $s+\gamma P=0$ represents a sphere through the circle $S=0, P=0$

The equation of a sphere passing through origin and the points, $(a, 0,0),(0, b, 0)$ and $(0,0, c)$

The plane $x / a+y / b+z / c=1$ meets the co-ordinate axes in the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and O be the origin. The sphere $O A B C$ is
A. $x^{2}+y^{2}+z^{2}+a x+b y+c z=0$
B. $x^{2}+y^{2}+z^{2}=a+b+c=0$
C. $x^{2}+y^{2}+z^{2}-2 a x-2 b y-2 c z=0$
D. $x^{2}+y^{2}+z^{2}-a x-b y-c z=0$

Answer: d

- View Text Solution

2. Section of a sphere by a plane.
(a) $x^{2}+y^{2}+z^{2}+2 v y+2 w z+d=09$ represent a sphere with center at $(-u,-v,-w)$ and $r=\sqrt{u^{2}+v^{2}+w^{2}-d}$

The section of a sphere by a plane is a circle.lf its redius be a than
$a=\sqrt{u^{2}+v^{2}+w^{2}-d}$
(b) The section of a sphere by a plane is a circle. If its radius be a then $a=\sqrt{r^{2}-p^{2}}$, where p mis perpendiculer from center to given plane.

if the plane passes through the center of the sphere, then this section is called great circle.

In this case $p=0 \quad \therefore \quad a=r, i . e .$, its center and radius is this case $p=0 \quad \therefore \quad a=r, i . e .$, its centre and radius is the same as of given sphere

If $S=0$ and $p=0$ be the equations of a sphere and a plane, then $s+\gamma P=0$ represents a sphere through the circle $S=0, P=0$

The co-ordinates of the center and the radius of the circle $x+2 y+2 z=15, x^{2}+y^{2}+z^{2}-2 y-4 z=11$ are
A. $(4,3,1), \sqrt{5}$
B. $(3,4,1), \sqrt{6}$
C. $(1,3,4), \sqrt{7}$
D. None

Answer: c

- View Text Solution

3. Section of a sphere by a plane.
(a) $x^{2}+y^{2}+z^{2}+2 v y+2 w z+d=09$ represent a sphere with center at $(-u,-v,-w)$ and $r=\sqrt{u^{2}+v^{2}+w^{2}-d}$

The section of a sphere by a plane is a circle.lf its redius be a than $a=\sqrt{u^{2}+v^{2}+w^{2}-d}$
(b) The section of a sphere by a plane is a circle. If its radius be a then $a=\sqrt{r^{2}-p^{2}}$, where p mis perpendiculer from center to given plane.

if the plane passes through the center of the sphere, then this section is called great circle.

In this case $p=0 \quad \therefore \quad a=r, i . e .$, its center and radius is this case $p=0 \quad \therefore \quad a=r, i . e .$, its centre and radius is the same as of given sphere

If $S=0$ and $p=0$ be the equations of a sphere and a plane, then $s+\gamma P=0$ represents a sphere through the circle $S=0, P=0$

The equation of the sphere touching the three co-ordinate planes is
A. $\sum x^{2}+(x+y+z)+2 a^{2}=0$
B. $\sum x^{2}-(x+y+z)+2 a^{2}=0$
c. $\sum x^{2} \pm(x+y+z)+2 a^{2}=0$
D. $\sum x^{2} \pm 2 a x \pm 2 a y \pm 2 a z \pm 2 a^{2}=0$

Answer: d

- View Text Solution

Problem Set 1

1. A, B, C are three points on the axis of x, y and z respectively at distance $\mathrm{a}, \mathrm{b}, \mathrm{c}$ from the orgain O , then the co-ordinates of the point which is equidistant from A, B, C and O is
A. (a, b, c)
B. $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
C. $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
D. None

- Watch Video Solution

2. The ratio in which the sphere $x^{2}+y^{2}+z^{2}=504$ divides the line joining the points $(12,-4,8)$ and $(27,-9,18)$ is
A. $-2: 3$
B. 2:3
C. 3:4
D. 1:2

Answer: A::B

D Watch Video Solution

3. Find the ratio in which the $y-z$ plane divides the join of the points $(-2,4,7) \operatorname{and}(3,-5,8)$.
A. 2:3
B. 3:2
C. $-2: 3$
D. $4:-3$

Answer: A::B

- Watch Video Solution

4. If $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear, then R divides $P Q$ in the ratio
A. 2:1 internally
B. 2:1 externally
C. 3:2 internally
D. 3:2 externally
5. $A(3,2,0), B(5,3,2), C(-9,6,-3)$ are the vertices of a triangle ABC . If the bisector of $\angle B A C$ meets BC at D , then coordinates of D are
A. $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
B. $\left(-\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$
C. $\left(\frac{19}{8},-\frac{57}{16}, \frac{17}{16}\right)$
D. $\left(\frac{19}{8}, \frac{57}{16},-\frac{17}{16}\right)$

Answer: C

- Watch Video Solution

6. The co-ordinates of the point which divides the line joining $(2,3,4)$ and $(3,-4,7)$ in the ratio $2: 4$ are :
B. $(1,10,1)$
C. $(10,-10,10)$
D. $(1,1,10)$

Answer: B

- Watch Video Solution

7. The minimum distance of the point $(1,2,3)$ from
x-axis is
A. $\sqrt{13}$
B. $\sqrt{5}$
C. $\sqrt{10}$
D. None of these

Answer: A

8. The locus of $x^{2}+y^{2}+z^{2}=0$ is
A. $(0,0,0)$
B. a sphere
C. a circle
D. None of these

Answer: A

Watch Video Solution

9. A parallelepiped is formed by planes drawn through the points $P(6,8,10)$ and $(3,4,8)$ parallel to the coordinate planes. Find the length of edges and diagonal of the parallelepiped.
A. 2
B. 3
C. 4
D. 5

Answer: A::B::C

- Watch Video Solution

10. If α, β, γ be angles which a straighat line makes with the positive direction of the axes, then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is equal to (A) 4 (B) 1
(C) 2 (D) 3
A. 2
B. 3
C. 4
D. None

Answer: A

11. A line line makes the same angle θ with each of the x and z-axes. If the angle β, which it makes with y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$ then $\cos ^{2} \theta$ equals
A. $\frac{2}{3}$
B. $\frac{1}{5}$
C. $\frac{3}{5}$
D. $\frac{2}{5}$

Answer: C

- Watch Video Solution

12. A line makes angles α, β, γ and δ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{8}{3}$
D. 1

Answer: B

- Watch Video Solution

13. Which of the following triplets give the direction cosines of a line ?
A. $1,1,1$
B. $1,-1,1$
C. 1,1,-1
D. $\frac{1}{\sqrt{ } 3}, \frac{1}{\sqrt{ } 3}, \frac{1}{\sqrt{ } 3}$

Answer: D

14. The points $A(1,-6,10), B(-1,-3,4), C(5,-1,1)$ and $D(7,-4,7)$ are the vertices of a
A. parallelogram
B. rhombus
C. rectangle
D. square

Answer: B

Watch Video Solution

15. A straight line which makes an angle of 60° with each of Y and Z-axis, the angle this lines makes with X -axis is
A. 45°
B. 30°
C. 75°
D. 60°

Answer: A

- Watch Video Solution

16. If a line makes an angle $\frac{\pi}{4}$ with the positive directions of each of X axis and Y-axis, then the angle that the line makes with the positive direction of the Z -axis is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

17. A line passes through the point $(6,-7,-1)$ and $(2,-3,1)$. The direction cosines of the line so directed that the angle made by it with the positive direction of x-axis is acute, are
A. $\frac{2}{3},-\frac{2}{3},-\frac{1}{3}$
B. $-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$
C. $\frac{2}{3},-\frac{2}{3}, \frac{1}{3}$
D. $\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$

Answer: A

- Watch Video Solution

18. If P is a point in space such that $O P$ is inclined to $O X$ at 45° and $O Y$ to 60° then OP inclined to ZO at 75°
A. 75°
B. 60° or 120°
C. 75° or 105°
D. 255

Answer: B

- Watch Video Solution

19. The projections of a line segment on the coordinate axes are 12,4,3 respectively. The length and direction cosines of the line segment are
A. $13,<12 / 13,4 / 13,3 / 13>$
B. $19,<12 / 19,4 / 19,3 / 19>$
C. $11,<12 / 11,14 / 11,3 / 11>$
D. None of these

Answer: A

- Watch Video Solution

20. The direction cosines of the line joining the points $(4,3,-5)$ and $(-2,1-8)$ are
A. $\langle 2,4,-13\rangle$
B. $\langle 6,2,3\rangle$
C. $\langle 6 / 7,2 / 7,3 / 7\rangle$
D. None of these

Answer: C

- Watch Video Solution

21. If (a, b, c) and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ are the direction ratios of two perpendicular lines, then
A. $a / a^{\prime}=b / b^{\prime}=c / c^{\prime}$
B. $\mathrm{aa}{ }^{\prime}+\mathrm{bb} \mathrm{b}^{\prime}+\mathrm{cc}{ }^{\prime}=0$
C. $a a^{\prime}+b b^{\prime}+c c^{\prime}=1$
D. None

Answer: C

- Watch Video Solution

22. If $A(6,3,2), B(5,1,4), C(3,-4,7), D(0,2,5)$ be from points, the projection of the sement $C D$ on the line $A B$ is
A. $-\frac{13}{3}$
B. $-\frac{13}{7}$
C. $-\frac{3}{13}$
D. $-\frac{7}{13}$

Answer: A

23. The angle between the lines whose direction ratios are $1,1,2, \sqrt{3}-1,-\sqrt{3}-1,4$ is
A. $\cos ^{-1}\left(\frac{1}{65}\right)$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

24. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
A. 45°
B. 30°
C. 0°
D. 90°

Answer: D

- Watch Video Solution

25. Find the angle between the lines whose direction cosines are connected by the relations $l+m+n=0 a n d 2 / m+2 n l-m n=0$.
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{2 \pi}{3}$
D. $\frac{3 \pi}{3}$

Answer: C

- Watch Video Solution

26.

$$
(1,1,2),(\sqrt{3}-1,-\sqrt{3}-1,4),(\sqrt{3}-1, \sqrt{3}-1,4) \text { enclose }
$$

A. an isosceles triangle
B. a right angled tringle
C. an equilateral tringle
D. a right angled isosceles triangle

Answer: C

- Watch Video Solution

27. The co-ordinates of a point P are $(3,12,4)$ with respect to origin 0 , then the direction cosines of OP are
A. 3,12,4
B. $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$
C. $\frac{3}{\sqrt{13}}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}$
D. $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$

Answer: D

- Watch Video Solution

28. The vertices of a triangle $A B C$ are $A(-1,2,-3), B(5,0,-6), C(0,4,-1)$. Then the direction rations of the external bisector of $\angle C$ are :
A. 0,0,1
B. 1,-1,1
C. $-1,0,0$
D. none

Answer: C

29.

$A(-1,2,-3), B(5,0,-6), C(0,4,-1)$.Then the direction ratios of the external bisector of $\angle B A C$ are :
A. $11,20,21$
B. $-11,20,20$
C. $-11,20,23$
D. none

Answer: C

- Watch Video Solution

30. The cosine of the angle between any two diagonals of a cube is
A. $1 / 3$
B. $1 / 2$
C. $2 / 3$
D. $1 / \sqrt{3}$

Answer: A

- Watch Video Solution

31. The direction rations of the diagonals of a cube which joins the origin to the opposite corner are (when the three concurrent edges of the cube are coordinate axes)
A. $\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$
B. 1,1,1
C. 2,-2,1
D. 1,2,3

Answer: B

- Watch Video Solution

32. In three dimensional geometry $a x+b y+c=0$ represents (A) a plane perpendicular to z-axis (B) a plane perpendicular to xy plane (C) a straighat line on xy plane (D) a plane parallel to z-axis
A. $x y$-plane
B. yz-plane
C. zx-plane
D. none

Answer: A

- Watch Video Solution

33. Prove that the straight lines whose direction cosines are given by the relations $a l+b m+c n=0$ and $f m n+g n l+h l m=0$ are Perpendicular to each other if $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$, and parallel if $a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}-2 b c g h-2 c a h f-2 a b f g=0$.

$$
\text { A. } \sqrt{a f}+\sqrt{b g}+\sqrt{c h}=0
$$

B. $\frac{a^{2}}{f}+\frac{b^{2}}{g}+\frac{c^{2}}{n}=0$
C. $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$
D. $a^{2} f^{2}+b^{2} g^{2}+c^{2} h^{2}-2 b c g h-2 c a h f-2 a b f g=0$

Answer: C

- Watch Video Solution

34. If the direction ratio of two lines are given by $3 l m-4 \ln +m n=0$ and $l+2 m+3 n=0$, then the angle between the lines, is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$
35. The plane $2 x+y+2 z=9$ intersects the coordinate axes at A,B,C.The orthocentre of the triangle $A B C$ is
A. $(2,1,2)$
B. $\left(\frac{3}{2}, 3, \frac{3}{2}\right)$
C. $\left(\frac{3}{13}, \frac{1}{13}, \frac{3}{13}\right)$
D. $\left(\frac{9}{7}, \frac{27}{7}, \frac{9}{7}\right)$

Answer: A

- Watch Video Solution

36. If the line $x=y=z$ intersects the line
$x \sin A+y \sin B+z \sin C=2 d^{2}$
$x \sin 2 A+y \sin 2 B+z \sin 2 C=d^{2}$
where $A+B+C=\pi$, then $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=$
A. $\frac{1}{8}$
B. $\frac{1}{12}$
C. $\frac{1}{16}$
D. $\frac{1}{32}$

Answer: C

- Watch Video Solution

Problem Set 2

1. The line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is parallel to the plane
A. $2 x+y-2 z=0$
B. $3 x+4 y+5 z=7$
C. $x+y+z=2$
D. $2 x+3 y+4 z=0$

- Watch Video Solution

2. A plane meets the coordinate axes in A, B, C such that the centroid of triangle ABC is the point (p, q, r). If the equation of the plane is $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=k$ then $k=$
A. $\frac{x}{y}+\frac{y}{q}+\frac{z}{r}=0$
B. $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=1$
c. $\frac{x}{p}+\frac{y}{q}+\frac{z}{r}=2$
D. None

Answer: D

- Watch Video Solution

3. The plane passing through the point $(-2,-2,2)$ and contanining the line joining the points $(1,1,1)$ and $(1,-1,2)$ marks intercepts a,b,c on the axes of coordinates. The value of $a+b+c$ is
A. 12
B. 6
C. -4
D. -3

Answer: C

- Watch Video Solution

4. If the centroid of tetrahedron OABC where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are given by $(\mathrm{a}, 2,3)$, $(1, b, 2)$ and $(2,1, c)$ respectively is $(1,2,-1)$ then distance of $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from origin is
A. $\sqrt{ }(107)$
B. $\sqrt{ }(14)$
C. $\sqrt{ }(170 / 14)$
D. None of these

Answer: A

- Watch Video Solution

5. The four points $(0,4,3)(-1,-5,-3)$,
$(-2-2,1)$ and $(1,1,-1)$ lie in the plane
A. $4 x+3 y+2 z-9=0$
B. $9 x-5 y+6 z+2=0$
C. $3 x+4 y+7 z-5=0$
D. None

Answer: B

6. The equation of the plane passing through the point
$(-2,-2,2)$ and containing the line joining the points $(1,1,1)$ and $(1,-1,2)$ is
A. $x+2 y-3 z+4=0$
B. $3 x-4 y+1=0$
C. $5 x+2 y-3 z+1=0$
D. $x-3 y-6 z+8=0$

Answer: D

- Watch Video Solution

7. If the planes ax+by $+c z=1$ meets the co-ordinates axes in the points
$\mathrm{A}, \mathrm{B}, \mathrm{C}$, then the centroid of $\triangle A B C$ is
A. $(3 a, 3 b, 3 c)$
B. $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
C. $\left(\frac{3}{a}, \frac{3}{b}, \frac{3}{c}\right)$
D. $\left(\frac{1}{3 a}, \frac{1}{3 b}, \frac{c}{3 c}\right)$

Answer: D

- Watch Video Solution

8. If O is the original and A is the point (a, b, c) then the equation of the plane throught A and at right angles to OA is .
A. $a(x-a)-b(x-b)-c(x-c)=0$
B. $a(x+a)+b(x+b)+c(x+c)=0$
C. $a(x-a)+b(x-b) c+(x-c)=0$
D. None of these

Answer: C

9. The distance between the two parallel planes
$a x+b y+c z+d=0$
and $a x+b y+c z+d^{\prime}=0$
A. $\frac{\left|d-d^{\prime}\right|}{\sqrt{ }\left(a^{2}+b^{2}+c^{2}\right)}$
B. $\frac{\left|d+d^{\prime}\right|}{\sqrt{ }\left(a^{2}+b^{2}+c^{2}\right)}$
C. $\frac{d}{\sqrt{ }\left(a^{2}+b^{2}+c^{2}\right)}$
D. None of these

Answer: A

- Watch Video Solution

> 10. Distance between two $2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
A. $\frac{3}{2}$
B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{9}{2}$

Answer: C

- Watch Video Solution

11. If from a point $P(a, b, c)$ prpendiculars $P A a n d P B$ are drawn to $y z a n d z x$ - planes, find the eqution of th plane $O A B$.
A. $b c x+c a y+a b z=0$
B. $b c x+c a y-a b z=0$
C. $b c x-c a y+a b z=0$
D. $-b c x+c a y+a b z=0$

Answer: B

12. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\vec{P} Q$ is parallel to the plane $x-4 y+3 z=1$ is a. $1 / 4 \mathrm{~b} .-1 / 4 \mathrm{c}$.
$1 / 8$ d. $-1 / 8$
A. $\frac{1}{4}$
B. $-\frac{1}{4}$
C. $\frac{1}{8}$
D. $-\frac{1}{8}$

Answer: A

- Watch Video Solution

Problem Set 3

1. Find the vector equation of the plane through the points ($2,1,-1$) and $(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$.
A. $18 x+17 y+4 z=49$
B. $18 x-17 y+4 z=49$
C. $18 x+17 y-4 z+49=0$
D. None of these

Answer: A

- Watch Video Solution

2. The direction ratios of a normal to the plane through $(1,0,0) \operatorname{and}(0,1,0)$, which makes and angle of $\frac{\pi}{4}$ with the plane $x+y=3$, are a. $\langle 1, \sqrt{2}$, b. $\langle 1,1, \sqrt{2}\rangle$ c. $\langle 1,1,2\rangle$ d. ‘<>'
A. 1,1,2
B. $\sqrt{ } 2,1,1$
C. $1, \sqrt{ } 2,1$
D. $1,1, \sqrt{ } 2$

Answer: D

- Watch Video Solution

3. The two points $(1,1,1)$ and $(-3,0,1)$ with respect to the plane $3 x+4 y-12 z+13=0$ lie on
A. opposite side
B. same side
C. on the plane
D. None of these

Answer: B

4. The equation of the plane passing through $(2,3,-4)$ and $(1,-1,3)$ and parallel to x-axis is

4 (B)The equation of plane passing through $(0,1,0)$ and perpendicular to $y=0$, then the perpendicular distance from $(0,0,0)$ to the plane is zero.
A. $7 y-4 z-5=0$
B. $4 y-7 z-5=0$
C. $4 y+7 z+5=0$
D. $7 y+4 z-5=0$

Answer: D

- Watch Video Solution

5. Equation of the line passing through the point $(1,2,3)$ and parellel to the plane $2 x+3 y+z+5=0$ is

$$
\text { A. } \frac{x-1}{-1}=\frac{y-2}{1}=\frac{z-3}{-1}
$$

B. $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{1}$
C. $\frac{x-1}{1}=\frac{y-2}{4}=\frac{z-3}{7}$
D. $\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{2}$

Answer: A

- Watch Video Solution

6. The equation of the plane through the line of intersection of planes $a x+b y+c z+d=0, a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ and parallel to the line $y=0, z=0$ is
A. $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right)=0$
B. $\left(a b^{\prime}-a^{\prime} b\right) x+\left(b c^{\prime}-b^{\prime} c\right) y+\left(a d^{\prime}-a^{\prime} d\right) z=0$
C. $\left(a b^{\prime}-a^{\prime} b\right) y+\left(b c^{\prime}-b^{\prime} c\right) z+\left(a d^{\prime}-a^{\prime} d\right)=0$
D. none of these
7. The equation of the plane containing the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ is
$A(x-\alpha)+B(y-\beta)+C(z-\gamma)=0$ where
A. $A \alpha+B \beta+C \gamma=0$
B. $A l+B m+C n=0$
C. $\frac{A}{l}=\frac{B}{m}=\frac{C}{n}$
D. none

Answer: B

- Watch Video Solution

8. The point at which the line joining the points $(2,-3,1)$ and $(3,-4,-5)$ intersects the plane $2 x+y+z=7$ is
A. $(2,1,0)$
B. $(3,2,5)$
C. $(1,-2,7)$
D. None

Answer: C

- Watch Video Solution

9. If the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on the plane $2 x-4 y+z=7$, the value of k is
A. 7
B. -7
C. 1
D. no real value
10. Distance of the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$ from the point $(-1,-5,-10)$ is
A. 13
B. 9
C. 5
D. None

Answer: A

- Watch Video Solution

11. The direction cosines of a line equally inclines to three mutually perpendicular lines having D.C.'s
as $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right),\left(l_{3}, m_{3}, n_{3}\right)$ are
A. $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}, n_{1}+n_{2}+n_{3}$
B. $\frac{l_{1}+l_{2}+l_{3}}{\sqrt{3}}, \frac{m_{1}+m_{2}+m_{3}}{\sqrt{3}}, \frac{n_{1}+n_{2}+n_{3}}{\sqrt{3}}$
C. $\frac{l_{1}+l_{2}+l_{3}}{3}, \frac{m_{1}+m_{2}+m_{3}}{3}, \frac{n_{1}+n_{2}+n_{3}}{3}$
D. none of these

Answer: B

- Watch Video Solution

12. The equation of a plane through the line of intersection of planes $2 x+3 y+z-1=0$ and $x+5 y-2 z+7=0$ and parallel to line $y=0=z:$
A. $4 x+7 y-5 z+15=0$
B. $13 y-3 z+13=0$
C. $7 x-5 y+15=0$
D. $7 y-5 z-15=0$

D Watch Video Solution

13. Two system of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ from the origin, then:
A. $\sum \frac{1}{a^{2}}+\sum \frac{1}{a^{\prime^{2}}}=0$
B. $\sum \frac{1}{a^{2}}-\sum \frac{1}{a^{\prime^{2}}}=0$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime^{2}}}+\frac{1}{b^{\prime^{2}}}+\frac{1}{c^{\prime^{2}}}=0$
D. $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime^{2}}}-\frac{1}{b^{\prime^{2}}}-\frac{1}{c^{\prime^{2}}}=0$

Answer: B

D Watch Video Solution

14. Distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line whose direction cosines are proportional to
$2,3,-6$ is
A. $\frac{1}{5}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. 1

Answer: D

- Watch Video Solution

15. The foot of perpendicular drawn from the point $(1,3,4)$ to the plane $2 x-y+z=-3$ is
A. $(1,2,3)$
B. $(3,1,4)$
C. $(3,-1,4)$
D. $(-1,4,3)$

- Watch Video Solution

16. The image of the point $(-1,3,4)$ in the plane $x-2 y=0$ is
A. $(15,11,4)$
B. $\left(-\frac{17}{3},-\frac{19}{3}, 1\right)$
C. $(8,4,4)$
D. $\left(\frac{9}{5},-\frac{13}{5}, 4\right)$

Answer: D

- Watch Video Solution

17. The line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-1}{-1}$ intersects the curve $x y=c^{2}, z=0$, if c is equal to
A. $\pm \sqrt{5}$
B. $\pm \sqrt{3}$
C. $\pm \sqrt{5}$
D. ± 1

Answer: A

- Watch Video Solution

18. The coordinates of the foot of the perpendicular drawn from the point $A(1,0,3)$ to the join of the points $B(4,7,1)$ and $C(3,5,3)$ are
A. $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$
B. $(5,7,17)$
C. $\left(\frac{5}{3},-\frac{7}{3}, \frac{17}{3}\right)$
D. $\left(-\frac{5}{3}, \frac{7}{3},-\frac{17}{3}\right)$
19. If $a x+b y+c z=p$, then minimum value of $x^{2}+y^{2}+z^{2}$ is $\left(\frac{p}{a+b+c}\right)^{2}$ (b) $\frac{p^{2}}{a^{2}+b^{2}+c^{2}} \frac{a^{2}+b^{2}+c^{2}}{p^{2}}$ (d) $\left(\frac{a+b+c}{p}\right)^{2}$
A. $\frac{P}{\sum a}$
B. $\frac{P^{2}}{\sum a^{2}}$
C. $\frac{\sum a^{2}}{P}$
D. 0

Answer: B

- Watch Video Solution

20. The image of the point $A(1,0,0)$ in the line $\frac{x-1}{2}=\frac{x+1}{-3}=\frac{z+10}{8}$ is :
A. $(3,-4,-2)$
B. $(1,-1,10)$
C. $(5,-8,-4)$
D. $(2,-1,8)$

Answer: C

- Watch Video Solution

21. Find the angle between line $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-2}{4}$ and the plane $2 x+y-3 z+4=0$.
A. $\cos ^{-1}(-4 / \sqrt{406})$
B. $\sin ^{-1}(-4 / \sqrt{406})$
C. 30°
D. None of these

Answer: B

22. P is a fixed point (a, a, a) on a line through the origin equally inclined to the axes, then any plane through $P \perp$ to OP , makes intercepts on the axes, the sum of whose reciprocals is equal to
A. α
B. $\frac{3}{2} a$
C. $3 \frac{a}{2}$
D. $\frac{1}{a}$

Answer: D

- Watch Video Solution

23. The length of the perpendicular from $P(1,6,3)$ to the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3} i s$
A. 3
B. $\sqrt{11}$
C. $\sqrt{13}$
D. 5

Answer: C

- Watch Video Solution

24. The equation of line which passes through the intersection of the planes $x+2 y-3 z-4=0$ and $3 x-8 y+z+2=0$ is
A. $\frac{x-2}{22}=\frac{y-1}{10}=\frac{z-0}{14}$
B. $\frac{x-2}{-22}=\frac{y-1}{-10}=\frac{z-0}{-14}$
C. $\frac{x+2}{22}=\frac{y+1}{10}=\frac{z-0}{14}$
D. None of these

Answer: B

25. If $(q+r) x+(r+p) y+(p+q) z=k$
$\operatorname{and}(q-r) x+(r-p) y+(p-q) z=k$
represent the equation of a line then the equation of the line through origin and parallel to given lines is :
A. $\frac{x}{q^{2}-r^{2}}=\frac{y}{r^{2}-p^{2}}=\frac{z}{p^{2}-q^{2}}$
B. $\frac{x}{p^{2}-q r}=\frac{y}{q^{2}-p r}=\frac{z}{r^{2}-p q}$
C. $\frac{x}{q}=\frac{y}{r}=\frac{z}{p}$
D. none

Answer: B

- View Text Solution

26. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then cos α equals $\frac{1}{\sqrt{3}} \frac{1}{2} 1 \frac{1}{\sqrt{2}}$
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

27. A line passes through two points $A(2,-3,-1)$ and $B(8,-1,2)$. The coordinates of a point on this lie at distance of 14 units from a are

- Watch Video Solution

28. Equation of a line passing through $(-1,2,-3)$ and perpendicular to the plane $2 x+3 y+z+5=0$ is

$$
\text { A. } \frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-1}
$$

B. $\frac{x+1}{-1}=\frac{y-2}{1}=\frac{z+3}{1}$
C. $\frac{x+1}{2}=\frac{y-2}{3}=\frac{z+3}{1}$
D. none of these

Answer: C

- Watch Video Solution

29. Equation of a line passing through ($1,-2,3$) and parallel to the plane $2 x+3 y+z+5=0$ is
A. $\frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-1}$
B. $\frac{x-1}{3}=\frac{y+2}{3}=\frac{z-3}{1}$
C. $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-1}$
D. none of these

Answer: A

30. The S.D between the lines $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is equal to
A. $3 \sqrt{30}$
B. $\sqrt{30}$
C. $2 \sqrt{30}$
D. None of these

Answer: A

- View Text Solution

31. If the lines
$\mathrm{x}=\mathrm{ay}+\mathrm{b}, \mathrm{z}=\mathrm{cy}+\mathrm{d}$ and $x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}$ are perpendicular, then
A. $a a^{\prime}+c c^{\prime}+1=0$
B. $a d+=1$
C. $a d+=0$
D. None

Answer: A

D Watch Video Solution

32. The lines $\frac{x-a+b}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$,
$\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-a-d}{\beta+\gamma}$
are coplanar, and the equation to the plane in which they lie is
A. $x+y+z=0$
B. $x-y+z=0$
C. $x-2 y+z=0$
D. $x+y+z=0$

Answer: C

$x=1+s, y=-3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$ with parameters s and t respectively, are coplanar, then λ equals (A) $-\frac{1}{2}$
(B) -1 (C) -2 (D) 0
A. -2
B. -1
C. $-\frac{1}{2}$
D. 0

Answer: A

Watch Video Solution

34. If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then k is equal to

$$
\text { A. } 2 / 9
$$

B. $9 / 2$
C. 0
D. -1

Answer: B

- Watch Video Solution

35. Consider the planes $3 x-6 y-2 z=15 a n d 2 x+y-2 z=5$.

Statement 1:The parametric equations of the line intersection of the given planes are $x=3+14 t, y=2 t, z=15 t$. Statement 2 : The vector $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of the given planes.

Watch Video Solution

36. The lines $\frac{x-2}{\gamma}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplaner if γ is
A. 1,-1
B. 3,-3
C. 0,-3
D. $0,-1$

Answer: C

- View Text Solution

37. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the yz-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.Then
A. $a=2, b=8$
B. $a=4, b=6$
C. $a=6, b=4$
D. $a=8, b=2$

Answer: c

38. If the straight lines
$\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then integer k is equal to
A. -5
B. 5
C. 2
D. -2

Answer: A

- Watch Video Solution

39. Find the distance of a point $(2,4,-1)$ from the line
$\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$.
A. 3
B. 5
C. 7
D. 9

Answer: C

- Watch Video Solution

40. Distance of the point $\left(x_{1}, y_{1}, z_{1}\right)$ from the line
$\frac{x-x_{2}}{1}=\frac{y-y_{2}}{m}=\frac{z-z_{2}}{n}$
where I, m, n are direction cosines of the line, is
A.

$$
\left[\left(x_{1}-x_{2}\right)^{z}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{1}+z_{2}\right)^{2}-\left\{l\left(x_{1}-x_{2}\right)+m\left(y_{1}-y_{2}\right)\right.\right.
$$

B. $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
C. $\sqrt{\left(x_{2}-x_{1}\right) l+\left(y_{2}-y_{1}\right) m+\left(z_{2}-z_{1}\right) n}$
D. none of these
41. If a line makes angles α, β, γ with co-ordinate axes, then $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=$
A. -2
B. -1
C. 1
D. 2

Answer: B

Watch Video Solution

42. The angle between the line $\frac{x+1}{3}=\frac{y-1}{2}=\frac{z-2}{4}$ and the plane $2 x+y-3 z+4=0$ is such that $\sin \theta=\frac{1}{3}$, then the value of θ is :
A. 0
B. 30°
C. 45°
D. 90°

Answer: C

- View Text Solution

43. If the angle θ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda z}+4=0$ is such that $\sin \theta=\frac{1}{3}$, the value of λ is
A. $\frac{3}{4}$
B. $-\frac{4}{3}$
C. $\frac{5}{3}$
D. $-\frac{3}{5}$

Answer: C

44. The angle between the lines
$2 x=3 y=-z$ and $6 x=-y=-4 z$ is
A. 0
B. 30°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

45. The direction ratios of the line $x-y+z-5=0=x-3 y-6$ are
A. $3,1,-2$
B. $2,-4,1$
C. $\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}}$
D. $\frac{2}{\sqrt{41}},-\frac{4}{\sqrt{41}}, \frac{1}{\sqrt{41}}$,

Answer: A

- Watch Video Solution

46. A line with direction cosines proportional to $2,1,2$ meet each of the lines $x=y+a=z n d x+a=2 y=2 z$. The coordinastes of each of the points of intersection are given by (A) $(3 a, 2 a, 3 a),(a, a, 2 a)$
$(3 a, 2 a, 3 a),(a, a, a 0$
(C)
$(3 a, 3 a, 3 a),(a, a, a)$
$92 a, 3 a, 3 a),(2 a, a, a 0$
A. (3a,3a,3a),(a,a,a)
B. (3a,2a,3a),(a,a,a)
C. (3a,2a,3a),(a,a,2a)
D. (2a,3a,2a),(2a,a,a)

Answer: B

47. Read the following passage and answer the questions. Consider the lines
$L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$
$L_{2}: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
Q. The unit vector perpendicular to both $L-(1)$ and L_{2} is
A. $\frac{-\hat{i}+7 \hat{j}+7 \hat{k}}{\sqrt{99}}$
B. $\frac{-\hat{i}-7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
C. $\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
D. $\frac{7 \hat{i}-7 \hat{j}-\hat{k}}{\sqrt{99}}$

Answer: B

- Watch Video Solution

48. Consider the line L1 : x 1 y 2 z 1312 +++ ==, L2 : x2y2z3 123
A. 0
B. $\frac{17}{\sqrt{3}}$
C. $\frac{41}{3} \sqrt{3}$
D. $\frac{17}{5} \sqrt{3}$

Answer: D

- Watch Video Solution

49. The distance of the point $(1,1,1)$ from the plane passing through the point ($-1,-2,-1$) and whose normal is perpandicular to both the lines L_{1} and L_{2} is
A. $\frac{2}{\sqrt{75}}$
B. $\frac{7}{\sqrt{75}}$
C. $\frac{13}{\sqrt{75}}$
D. $\frac{23}{\sqrt{75}}$

Answer: C

- View Text Solution

50. Consider the following linear equations
$a x+b y+c z=0$
$b x+c y+a z=0$
$c x+a y+b z=0$
Match the conditions/expressions in Column-I with statements in

Column-II.

Column-I

(a) $a+b+c \neq 0$ and
$a^{2}+b^{2}+c^{2}$
$=a b+b c+c a$
(b) $a+b+c=0$ and
$a^{2}+b^{2}+c^{2}$
$\neq a b+b c+c a$
(c) $a+b+c \neq 0$ and
$a^{2}+b^{2}+c^{2}$
$\neq a b+b c+c a$
(d) $a+b+c=0$ and
$a^{2}+b^{2}+c^{2}$
$=a b+b c+c a$

Column-II
(p) the equations
represent planes
meeting only at a single point
(q) the equations
represent the line
$x=y=z$
(r) the equations
represent identical
planes
(s) the equations
represent the whole
of the three
dimensional space

- View Text Solution

Problem Set 4

1. The equation of the sphere circumscribing the tetrahedron whose faces
are $x=0, y=0, z=0$ and $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, is equal to
A. $x^{2}+y^{2}+z^{2}=a^{2}+b^{2}+c^{2}$
B. $x^{2}+y^{2}+z^{2}-a x+b y+c z=0$
C. $x^{2}+y^{2}+z^{2}-2 a x+2 b y+2 c z=0$
D. none of these

Answer: B

- Watch Video Solution

2. If a sphere of constant radius k passes through the origin and meets the axis in A, B, C then the centroid of the triangle $A B C$ lies on :
A. $9\left(x^{2}+y^{2}+z^{2}\right)=k^{2}$
B. $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$
C. $x^{2}+y^{2}+z^{2}=k^{2}$
D. $x^{2}+y^{2}+z^{2}=4 k^{2}$

Answer: B

3. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the coordinate axes at A,B and C respectively. Find the equation of the sphere OABC.
A. $x^{2}+y^{2}+z^{2}+a x+b y+c z=0$
B. $x^{2}+y^{2}+z^{2}-a x+b y+c z=0$
C. $x^{2}+y^{2}+z^{2}+2 a x+2 b y+2 c z=0$
D. $x^{2}+y^{2}+z^{2}-2 a x+2 b y+2 c z=0$

Answer: A

- Watch Video Solution

4. A sphere of constant radius $2 k$ passes through the origin and meets the axes in $A, B, a n d C$. The locus of a centroid of the tetrahedron
$O A B C$ is a. $\quad x^{2}+y^{2}+z^{2}=4 k^{2}$
b. $x^{2}+y^{2}+z^{2}=k^{2}$
c.
$2\left(k^{2}+y^{2}+z\right)^{2}=k^{2}$ d. none of these
A. $x^{2}+y^{2}+z^{2}=4 k^{2}$
B. $x^{2}+y^{2}+z^{2}=k^{2}$
C. $2\left(x^{2}+y^{2}+z^{2}\right)=k^{2}$
D. none of these

Answer: B

(Watch Video Solution

5. The center of the sphere which passes through $(a, 0,0),(0, b, 0),(0,0, c)$ and $(0,0,0)$ is
A. $\left(\frac{a}{2}, 0,0\right)$
B. $\left(0, \frac{b}{2}, 0\right)$
C. $\left(0,0, \frac{c}{2}\right)$
D. $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
6. Find the equation of the sphere which passes through the point $(1,0,0)$, ($0,1,0$) and $90,0,1)^{`}$ and has its radus as small as possible.
A. $3 \sum x^{2}-2 \sum x-1=0$
B. $\sum x^{2}-2 \sum x-1=0$
C. $3 \sum x^{2}-2 \sum x+1=0$
D. $\sum x^{2}-\sum x+1=0$

Answer: A

- Watch Video Solution

7. The plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ at the point

$$
\text { A. }(1,-4,-2)
$$

B. $(-1,4,-2)$
C. $(-1,-4,2)$
D. $(1,4,-2)$

Answer: B

- Watch Video Solution

8. The equation of the sphere concentric with the sphere $x^{2}+y^{2}+z^{2}-2 x-6 y-8 z-5=0$ and which passes through the origin is
A. $x^{2}+y^{2}+z^{2}-2 x-6 y-8 z=0$
B. $x^{2}+y^{2}+z^{2}-6 y-8 z=0$
C. $x^{2}+y^{2}+z^{2}=0$
D. None of these
9. Equation of the sphere with center $(1,-1,1)$ and radius equal to that of sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y-6 z=1$ is
A. $x^{2}+y^{2}+z^{2}+2 x-2 y+2 z+1=0$
B. $x^{2}+y^{2}+z^{2}-2 x+2 y-2 z-1=0$
C. $x^{2}+y^{2}+z^{2}+2 x+2 y-2 z+1=0$
D. none of these

Answer: B

- Watch Video Solution

10. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are
A. $(4,3,5)$
B. $(4,3,-3)$
C. $(4,9,-3)$
D. None of these

Answer: C

- Watch Video Solution

11. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are
A. $(4,9,-3)$
B. $(4,-3,3)$
C. $(4,3,5)$
D. $(4,3,-3)$

Answer: C

D Watch Video Solution

12. Find the number of sphere of radius r touching the coordinate axes.
A. 4
B. 6
C. 8
D. none of these

Answer: C

Watch Video Solution

13. The radius of the circular section of the sphere $x^{2}+y^{2}+z^{2}=25$ by plane $x+y+z=3 \sqrt{3}$ is
A. 3
B. 4
C. 5
D. none of these

Answer: B

- Watch Video Solution

14. The radius of the circle in which the sphere $x^{I 2}+y^{2}+z^{2}+2 z-2 y-4 z-19=0 \quad$ is cut by the plane $x+2 y+2 z+7=0$ is a. 2 b. 3 c. 4 d. 1
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

15. The center of the circle
$x^{2}+y^{2}+z^{2}-3 x+4 y-2 z-5=0$
and $5 x-2 y+4 z+7=0$ is :
A. $\left(\frac{3}{2},-2,1\right)$
B. $(1,1,1)$
C. $(-1,-1,-1)$
D. $(0,0,0)$

Answer: C

Watch Video Solution
16. The center of a sphere which touches the lines $y=x, z=c$ and $y=-x, z=-c$ lies on
A. $x y+2 c z=0$
B. $y z+2 c x=0$
C. $z x+2 c y=0$
D. none

Answer: A

- Watch Video Solution

17. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is a. 39 b. 26 c. $41-\frac{4}{13} \mathrm{~d}$. 13
A. 26
B. $11 \frac{4}{13}$
C. 13
D. 39

Answer: C

- Watch Video Solution

> 18. The intersection of $x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}=z^{2}-3 x+3 y+4 z=8$ is the same as the intersection of one of the spheres and the plane a.
$x-y-z=1$ b. $x-2 y-z=1$ c. $x-y-2 z=1$ d. $2 x-y-z=1$
A. $x-y-z=1$
B. $x-2 y-z=1$
C. $x-y-2 z=1$
D. $2 x-y-z=1$
19. If the plane $2 a x-3 a y+4 a z+6=0$ passes through the mid point of the line joining the centre of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=$
, then α equals
A. -2
B. 2
C. -1
D. 1

Answer: A

- Watch Video Solution

Miscellaneous Exercise True And False

1. Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR.

Watch Video Solution

2. Show that the joint of the points $(1,2,3),(4,5,7)$ is parallel to the join of the points $(-4,3,-6),(2,9,2)$.

- Watch Video Solution

3. The line, joining the points $(1,2,3)(-1,-2,-3)$ is parallel to to the line joining points $(-2,1,5),(3,3,2)$.

- Watch Video Solution

4. Three concurrent lines with direction cosines
$\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right) \quad$ are coplanar if

$\left|\begin{array}{lll}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right|=0$.

- View Text Solution

5. Show that the three lines drawn from the origin with direction cosines proportional to 1,-1,1,2,-3,0 and 1,0,3 are coplanar

- Watch Video Solution

6. If a variable line in two adjacent position has direction cosines l, m, n and $l+\delta l, m+\delta m, n+\delta n$ and $\delta \theta$ is the angel between two positions, then $(\delta l)^{2}+(\delta m)^{2}+(\delta n)^{2}=$

- Watch Video Solution

7. Find the angle between the lines whose direction cosines are connected by the relations $l+m+n=0 a n d 2 / m+2 n l-m n=0$.

- Watch Video Solution

8. Show that the straight lines whose direction cosines are given by the equations $a l+b m+c n=0 a n d \widehat{ } 2+z m^{2}=v n^{2}+w n^{2}=0$ are parallel or perpendicular as $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$ or $a^{2}(v+w)+b^{2}(w+u)+c^{2}(u+v)=0$.

- Watch Video Solution

9. The equation of the plane through the points $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$ is parallel to the axis of y i.e. perpendicular to xz-plane.

- Watch Video Solution

10. The equation of the plane through the points $(2,2,1)$ and $(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$ is $3 x+4 y+z-9=0$

- Watch Video Solution

11. The equation of the plane through the intersection of the planes $x-2 y+3 z+4=0$ and $2 x-3 y+4 z-7=0 \quad$ and \quad the point $(1,-1,1)$ is $9 x-13 y+17 z-39=0$.

- Watch Video Solution

12. A variable plane at a constant distance p from the origin meets the axes in A, B and C. Through A, B, C planes are draw parallel to the coordinate planes, the locus of their point of intersection is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$
13. A variable plane is at a constant distance p from the origin and meets the coordinate axes in A, B, C. Show that the locus of the centroid of the tehrahedron $O A B C i s x^{-2}+y^{-2}+z^{-2}=16 p^{-2}$.

- Watch Video Solution

14. A plane a constant distance p from the origin meets the coordinate axes in A, B, C. Locus of the centroid of the triangle $A B C$ is

- Watch Video Solution

15. The equation $2 x^{2}-6 y^{2}-12 z^{2}+18 y z+2 z x+x y=0$ represents a pair of planes, the angle between them is $\cos ^{-1}\left(\frac{16}{21}\right)$

- Watch Video Solution

16. The lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and
$\frac{x}{2}=\frac{y+2}{2}=\frac{z-3}{-2}$ are parallel.

- Watch Video Solution

17. The lines $\frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{0}$ and
$\frac{x-2}{0}=\frac{y+3}{0}=\frac{z-4}{1}$ are parallel.

- Watch Video Solution

18. The plane $x-2 y+z-6=0$ and the line $x / 1=y / 2=z / 3^{\prime}$ are related as the line (A) meets the plane obliquely (B) lies in the plane (C) meets at righat angle to the plane (D) parallel to the plane

- Watch Video Solution

19. Find the length of the perpendicular from point $(3,4,5)$ on the line $\frac{x-2}{2}=\frac{y-3}{5}=\frac{z-1}{3}$.

Watch Video Solution

20. Find the angle between the lines in which the planes:
$3 x-7 y-5 z=1,5 x-13 y+3 z+2=0$
cut the plane $8 x-11 y+2 z=0$.

- Watch Video Solution

21. The lines
$2 x+3 y-4 z=0,3 x-4 y+z=7$
$5 x-y-3 z+12=0, x-7 y+5 z-6=0$ are parellel.

- Watch Video Solution

22. The lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ are coplanar, intersecting at $(1,3,2)$ and the equation of the plane in which they lie is $17 x-47 y-24 z+172=0$.

- Watch Video Solution

23. A sphere of constant radius k, passes through the origin and meets the axes at $A, B a n d C$. Prove that the centroid of triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.

- Watch Video Solution

24. A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points $A, B, a n d C$. Show that eh locus of the centre of the sphere $O A B C i s \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.

- Watch Video Solution

25. If any tangent plane to the sphere
$x^{2}+y^{2}+z^{2}$ makes intercepts a, b and c on the Co-ordinate axes, then
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{r^{2}}$

- Watch Video Solution

26. Two spheres of radii r_{1} and r_{2}, cut orthogonally. The radius of the common chord is $1 \frac{r_{1} r_{2}}{\sqrt{ }\left(r_{1}^{2}+r_{2}^{2}\right)}$

- Watch Video Solution

27. The smallest radius of the sphere passing through the points
$(1,0,0),(0,1,0)$ and $(0,0,1)$ is equal to $\sqrt{\frac{2}{3}}$.

- Watch Video Solution

1. A point P lies on the line whose end points are $A(1,2,3)$ and $B(2,10,1)$. If z -co-ordinate of P is 7 , then its other coordinate is \qquad

- Watch Video Solution

2. The distance of the point $(1,2,0)$ from the point where the line joining $A(2,-3,1)$ and $B(3,-4,-5)$ cuts the plane $2 x-y+z=7$ is

- Watch Video Solution

3. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.

- Watch Video Solution

 angles between the four diagonals are given by $\cos ^{-1}\left(\frac{ \pm a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}\right)$

- Watch Video Solution

5. The equation of the plane through the point $(4,0,1)$ and parallel to the plane $4 x+3 y-12 z+6=0$ is

- Watch Video Solution

6. What are the intercepts of the plane $4 x+3 y-12 z+6=0$ on the axes?

- Watch Video Solution

7. The equation of the plane through $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=9$ is

- Watch Video Solution

8. The points in which the line $\frac{x+1}{-1}=\frac{y-12}{5}=\frac{z+7}{2}$ cuts the surface $11 x^{2}-5 y^{2}+z^{2}=0$ are

- Watch Video Solution

$$
\begin{aligned}
& \text { 9. } \begin{array}{c}
\text { Equation } \\
3 x \\
3 x+2 y-z-4=0,4 x+y-2 z+3=0
\end{array} \text { the the symmetrical form is }
\end{aligned}
$$

- Watch Video Solution

10. Find the shortest distance between the following lines: $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$

- Watch Video Solution

11. The equation of the plane which contains the line $x=\frac{y-3}{2}=\frac{z-5}{3}$, and which is perpendicular to the plane $2 x+7 y-3 z=1$ is \qquad

- Watch Video Solution

12. The equation of the plane through the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and parallel to the co-ordinate axes are

- Watch Video Solution

13. The equation of the perpendicular from $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and the foot of perpandicular are and

Watch Video Solution

14. The equation of a sphere through the foue points $(0,0,0),(-a, b, c),(a, b,-c)$ is

- View Text Solution

15. The equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the point $(1,2,3)$ is

- Watch Video Solution

16. The equation of the sphere on the join of $(2,3,5),(4,9,-3)$ as diameter is

Matching Entries Match The Enteries Of Column li With Those Of Column li Under The Following Conditions

Column-1

(a) $a+b+c \neq 0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$
(b) $a+b+c=0$ and $a^{2}+b^{2}+c^{2} \not a b+b c+c a$
(c) $a+b+c \neq 0$ and $a^{2}+b^{2}+c^{2} \neq a b+b c+c a$
(d) $a+b+c=0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$
1.

View Text Solution
 (3)

2. Match the following Column I to Column II

Column-I

(a) A plane parallel to plane $3 x-7 y+z=5$.
(b) A plane perpendicular to the plane $3 x+7 y+2 z=5$
(c) A plane passing through the point $(2,2,2)$ is
(d) A plane making intercepts $3,7,2$ on the co-ordinate axes.

Column-II
(p) the equations represent planes meeting only at a single point
(q) the equations represent the line $x=y=z$
(r) the equations ropresent identical planes
(s) the equations represent the whole of the three dimensional space
————

3. Match the following Column I to Column II

Column-I
(a) $\frac{x-2}{3}=\frac{y-7}{4}=\frac{z+5}{2}$
(b) $\frac{x+1}{3}=\frac{y-3}{4}=\frac{z+7}{2}$
(c) $\frac{x-5}{1}=\frac{y+2}{3}=\frac{z-2}{4}$
(d) $\frac{x}{2}=\frac{y-2}{5}=\frac{z+6}{1}$

Column-II
(p) perp. to plane $3 x+4 y+2 z=1$
(q) passes through $(2,7,-5)$
(r) d.c.'s are $\frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}}, \frac{1}{\sqrt{30}}$
(5) lies.in the plane $7 x-y-z=35$

Watch Video Solution

Column-I

(a) Point on the line at a distance $10 \sqrt{2}$ from $(2,3,4)$
(b) Point on the line common to plane $x+y+z+3=0$
(c) Point on the line at a distance $\sqrt{29}$ from origin
(d) Point on the line common to the planex $+y-z+3=0$

Column-II

(p) $(-1,-1,-1)$
(q) $[2,3,4)$
(r) $[8,11,14]$
(s) $(-4,-5,-6)$
4.

1. Consider the planes $3 x-6 y-2 z=15 a n d 2 x+y-2 z=5$.

Statement 1:The parametric equations of the line intersection of the
given planes are $x=3+14 t, y=2 t, z=15 t$. Statement 2: The vector $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of the given planes.

- Watch Video Solution

2. Statement-1 : The point $A(1,0,7)$ is the mirror image of the point $B(1,6$, 3) in the line : $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ Statement-2 : The line: $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ bisects the line segment joining $\mathrm{A}(1,0,7)$ and $\mathrm{B}(1$, 6, 3). Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.

- Watch Video Solution

3. Statement 1: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$.

Statement 2: The plane $x-y+z=5$ bisects the line segment joining $A(3,1,6)$ and $B(1,3,4)$

- Watch Video Solution

4. Consider three planes $P_{1}: x-y+z=1$
$P_{2}: x+y-z=-1$
and

$$
P_{3}: x-3 y+3 z=2
$$

Let L_{1}, L_{2}, L_{3} be the lines of intersection of the planes P_{2} and P_{3}, P_{3} and P_{1}, P_{1} and P_{2} respectively.

Statement I Atleast two of the lines L_{1}, L_{2} and L_{3} are non-parallel.
Statement II The three planes do not have a common point.

- Watch Video Solution

1. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is a. 39 b. 26 c. $41-\frac{4}{13} \mathrm{~d}$. 13
A. 26
B. $11 \frac{4}{13}$
C. 13
D. 39

Answer: C

- Watch Video Solution

2. The line $\mathrm{x}+\mathrm{y}=3$ meets the circle $x^{2}+y^{2}-4 x+6 y-3=0$ at A and B.
A variable line meets the axes at P and Q respectively so that $A Q$ meets $B P$ at R at a right angle. Show that the locus of R is $x^{2}+y^{2}-8 x+2 y+9=0$
3. Circle of constant radius r are draw to pass through the ends of a variable diameter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Prove that locus of their centres is the curve

$$
\left(x^{2}+y^{2}\right)\left(a^{2} x^{2}+b^{2} y^{2}+a^{2} b^{2}\right)=r^{2}\left(a^{2} x^{2}+b^{2} y^{2}\right)
$$

- Watch Video Solution

4. If the point $P(a, b, c)$, with reference to (E), lies on the plane $2 x+y+z=$ 1 , then the value of $7 a+b+c$ is
A. 0
B. 12
C. 7
D. 6

Answer: D

5. Let a, b, and c be three real numbers satistying $[a, b, c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=[0,0,0]$ Let ω be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\omega)>0 . I f a=2$ with b nd c satisfying (E) then the vlaue of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is equa to (A) -2 (B) 2 (C) 3 (D) -3
A. -2
B. 2
C. 3
D. -3

Answer: A

- Watch Video Solution

6. Let $b=6$ with a and c satisfying (1). If α and β are the roots of the

$[a b c]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ $\left.\begin{array}{lll}7 & 3 & 7\end{array}\right]$

 isA. 6
B. 7
C. $\frac{6}{7}$
D. ∞

Answer: B

- View Text Solution

Self Assignment Test

1. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in ratio $3: 2$,Then k equals
A. $29 / 5$
B. 5
C. 6
D. $11 / 5$

Answer: C

- Watch Video Solution

2. A line is drawn through the point $(1,2)$ to meet the coordinate axes at P and Q such that it forms a triangle $O P Q$, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is $(1)-\frac{1}{4}(2)-4$ (3) -2 (4) $-\frac{1}{2}$
A. $-1 / 4$
B. -4
C. -2
D. $-1 / 2$

D Watch Video Solution

3. If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0, i s 5$, then the foot of the perpendicular from P to the place is a. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$ b. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$ C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$ d. $\left(\frac{2}{3},-\frac{1}{3},-\frac{5}{3}\right)$
A. $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
B. $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
D. $\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$

Answer: A

4. A line with positive direction cosines passes through the point $P(2,-1$,
2) and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. The length of the line segment $P Q$ equals
A. 1
B. $\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer: C

- Watch Video Solution

5. An equation of a plane parallel to the plane $x-2 y+2 z-5=0$ and at a unit distance from the origin is
A. $x-2 y+2 z-3=0$
B. $x-2 y+2 z+1=0$
C. $x-2 y+2 z-1=0$
D. $x-2 y+2 x+5=0$

Answer: A

- Watch Video Solution

6. The equation of a plane passing through the line of intersection of the planes $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=2$ and $\mathrm{x} \mathrm{y}+\mathrm{z}=3$ and at a distance 23 from the point (3, 1,1) is (A) $5 \mathrm{x} 11 \mathrm{y}+\mathrm{z}=17$ (B) 2 x y 321 (C) $\mathrm{x}+\mathrm{y}+\mathrm{z}=3$ (D) x 2 y 12
A. $5 x-11 y+z=17$
B. $\sqrt{2} x y=3 \sqrt{2}-1$
C. $x+y+z=\sqrt{3}$
D. $x-\sqrt{2} y=1-\sqrt{2}$

Answer: A

7. The equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is :
A. $x+2 y-2 z=0$
B. $3 x+2 y-2 z=0$
C. $x-2 y+z=0$
D. $5 x+2 y-4 z=0$

Answer: C

D Watch Video Solution

8. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect then the value of k is (A) $\frac{2}{9}$ (B) $\frac{9}{2}$ (C) 0 (D) -1
A. $\frac{2}{9}$
B. $\frac{9}{2}$
C. 0
D. none of these

Answer: B

- Watch Video Solution

9. If the distance between the plane $A x-2 y+z=d$ and the plane containing
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$, then
|d| is equal to....
A. 6
B. -6
C. $1 / 6$
D. none of these

- Watch Video Solution

10. Distance between two parallel planes
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
A. $\frac{3}{2}$
B. $\frac{1}{2}$
C. $\frac{7}{2}$
D. $\frac{5}{2}$

Answer: C

- Watch Video Solution

11. If the lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{x-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar,then k can have
A. any value
B. exactly one value
C. exactly two values
D. exactly three values

Answer: C

- Watch Video Solution

