

MATHS

BOOKS - ML KHANNA

HEIGHTS AND DISTANCES

Problem Set 1 Mcq S

1. The angle of elevation of the top of a tower from a point 20 metres away from its base is 45° . The height of the tower is

A. 10 m

B. 20 m

C. 40 m

D. $20\sqrt{3}$

Answer: B

2. At a point 15 metres away from the base of a 15 metres high house, the angle of elevation of the top is

A. $45^{\,\circ}$

B. 30°

 $\mathsf{C.}\,60^{\,\circ}$

D. 90°

Answer: A

3. From the top of a light house 60 m high with its

base at sea level the angle of depression of aboat

is 15° . The distance of the boat from the light house is

A.
$$\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)60m$$

B.
$$\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)60m$$

C.
$$\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^2m$$

D. None

Answer: B

4. The angle of elevation of the sun when the length of the shadow of a pole is $\sqrt{3}$ times the height of the pole is

A. $30^{\,\circ}$

B. 45°

C. 60°

D. 15°

Answer: A

5. The angle of elevation of the top of an incomplete vertical pillar at a horizontal distance of 100 m from its base is 45° . If the angle of elevation of the top of the complete pillar at the same point is to be 60° , then the height of the incomplete pillar is to be increased by

A. $50\sqrt{2}$ m

B. 100 m

C. $100\left(\sqrt{3}-1
ight)$ m

D. $100\left(\sqrt{3}+1
ight)$ m

Answer: C

6. The angle of elevation of the top of a T.V. tower from three points A,B,C in a straight line in the horizontal plane through the foot of the tower are α , 2α , 3α respectively. If AB=a, the height of the tower is

A. $a \tan lpha$

B. $a \sin \alpha$

C. $a \sin 2\alpha$

D. $a \sin 3 \alpha$

Answer: C

7. The angle of elevation of the top of a certain tower from a point A on the ground is α , at B is 2α , at C is 3α . If $AB = \frac{4}{3}BC$, then which of the following is true.

A.
$$\sin \alpha = \sqrt{\frac{5}{12}}$$

B. $\cos \alpha = \sqrt{\frac{5}{12}}$
C. $\sin \alpha = \frac{3}{4}$

D.
$$\cos \alpha = \frac{3}{8}$$

Answer: A

Watch Video Solution

8. The angles of depression of two points A and B on a horizontal plane such that AB= 200 from the top P of a tower PQ of height 100 are $45 - \theta$ and $45 + \theta$. If the line AB Passes through Q the foot of the tower, then angle θ is equal to B. 30°

C. 22.5°

D. 15°

Answer: C

Watch Video Solution

9. An aeroplane flying at a height of 300 m above the ground passes vertically above another plane at an instant when the angles of elevation of two planes from the same point on the ground are $60^\circ~{
m and}~45^\circ,~{
m respectively}.$ What is the height of

the lower plane from the ground?

A. $100\sqrt{3}$ B. $100/\sqrt{3}$ C. 50

D. $150\left(\sqrt{3}+1
ight)$

Answer: A

10. ABCD is a square plot. The angle of elevation of the top of a pole stading at D from A or C is 30° and that from B is θ , then $\tan \theta$ is equal to

Answer: C

11. A tree is broken by wind, its upper part touches the ground at a point 10 metres from the foot of the tree and makes an angle of 45° with the ground . The entire length of the tree is

A. 15 m

B. 20 m

C. $10(1+\sqrt{2})m$

D. $10ig(1+\sqrt{2}/2ig)m$

Answer: C

12. The angle of elevation of the top of a tower standing on a horizontal plane from a point A is α . After walking a distance d towards the foot of the tower, the angle of elevation is found to be β . The height of the tower is

A.
$$\frac{d \sin \alpha \sin \beta}{\sin(\beta - \alpha)}$$

B.
$$\frac{d \sin \alpha \sin \beta}{\sin(\alpha - \beta)}$$

C.
$$\frac{d \sin(\beta - \alpha)}{\sin \alpha \sin \beta}$$

D.
$$\frac{d \sin(\alpha - \beta)}{\sin \alpha \sin \beta}$$

Answer: A

13. AB is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60o. He moves away from the pole along the line BC to a point D such that CD = 7m. From D the angle of elevation of the point A is 45o. Then the height of the pole is (1)

14. A man from the top of a 100 metres high tower observes a car moving towards the tower at an angle of depression of 30° . After some time, the angle of depression becomes 60° . The distance (in metres) travelled by the car during this time is

15. At a point on a level plane subtends an angle θ and flag staff of height a at the top of the tower subtends an angle ϕ . Find the height of the tower.

A.
$$\frac{a \sin \theta \cos \phi}{\cos(\theta + \phi)}$$

B.
$$\frac{a \sin \phi \cos(\theta + \phi)}{\sin \theta}$$

C.
$$\frac{a \cos(\theta + \phi)}{\sin \theta \sin \phi}$$

16. A vertical pole PS has two marks at Q and R such that the portions PQ, PR and PS subtend angles α , β , γ at a point on the ground distant x

from the pole. If PQ=a, PR=b,PS=c and $lpha+eta+\gamma=180^\circ$, then $x^2=$

A.
$$\frac{a}{a+b+c}$$
B.
$$\frac{b}{a+b+c}$$
C.
$$\frac{c}{a+b+c}$$
D.
$$\frac{abc}{a+b+c}$$

Answer: D

17. The shadow of a tower is found to be 60 ft. longer when the sun's altitude has become 60° from 30° . The height of the tower from the ground is

A. 350 ft. app.

B. 400 ft. app.

C. 51 ft. app.

D. None

Answer: C

18. An observer standing on a 300 m high tower observes two boats in the same direction, their angle of depression are 60° and 30° respectively. The distance between the boats is

A. 173.2 m

B. 346.4 m

C. 25 m

D. 72 m

Answer: B

19. The angle of elevation of the top of two vertical towers as seen from the middle point of the line joining the foot of the towers are 60° and 30° respectively. The ratio of the heights of the tower is

A. 2:1

B. $\sqrt{3}: 1$

C. 3:2

D. 3:1

Answer: D

20. Two towers stand on a horizontal plane. P and Q where PQ = 30 m, are two points on the line joining their feet. As seen from P the angle of elevation of the tops of the towers are 30 and 60 but as seen from Q are 60 and 45. The distance between the towers is equal to

A.
$$15ig(4+\sqrt{3}ig)m$$

- B. $15(4-\sqrt{3})m$
- C. $15(3+\sqrt{3})m$
- D. $15 ig(2 + \sqrt{3}ig) m$

Answer: A

21. Two vertical poles of height a and b subtend the same angle 45° at a point on the line joining their feet, the square of the distance between their tops is

A.
$$(h+H)^2$$

B.
$$2ig(h^2+H^2ig)$$

 $\mathsf{C}.\,h^2+H^2$

D.
$$rac{1}{2}ig(h^2+H^2ig)$$

Watch Video Solution

22. Two vertical AL and BM of heights 20 m and 80 m respectively and stand apart on a horizontal plane. If A, B be the feet of the poles and AM and BL intersect at P, then the height of P is equal to

A. 50 m

B. 18 m

C. 16 m

D. 15 m

Answer: C

23. Angle of depression from the top of a light house of two boats are 45° and 30° due east which are 60 m apart. The height of the light house is

A. $60\sqrt{3}$

B.
$$30(\sqrt{3}+1)$$

C.
$$30(\sqrt{3}-1)$$

D. None

Answer: C

Watch Video Solution

24. PQ is a part of a given height a and AB is a tower at some distance, α and β are the angles of elevation of B, the top of the tower at P and Q respectively. The height of the tower is

A.
$$\frac{a \sin \alpha \sin \beta}{\sin(\alpha - \beta)}$$

B.
$$\frac{a \cos \alpha \cos \beta}{\sin(\alpha - \beta)}$$

C.
$$\frac{a \sin \alpha \cos \beta}{\sin(\alpha - \beta)}$$

D. None

Answer: C

25. A ladder rests against a vertical wall at angle α to the horizontal . If is foot is pulled away from the wall through a distance 'a' so that it slides a

distance 'b' down the wall making the angle β with the horizontal , then a =

A.
$$a = b \ anrac{lpha+eta}{2}$$

B. $a = b \ ext{cot}rac{lpha+eta}{2}$
C. $arac{ an(lpha-eta)}{2}$

D. None

Answer: A

26. A man on a cliff observes a boat at an angle of depression 30° which is sailing towards the shore to the point immediately beneath him. Three minutes later the angle of depression of the boat is found to be 60° . Assuming that the boat sails at a uniform speed, determine how much more time it will take to reach the shore.

A. 2 min

B.
$$1\frac{1}{2}$$
 min

C.1 min

D. None

27. A chimeny of 20 m height standing on the top of a building subtends an angle whose tangent is $\frac{1}{6}$ at a distance of 70 m from the foot of the building, then the height of building is

A. 50 m

B. 40 m

C. 60 m

D. None

Answer: A

Watch Video Solution

28. If a flag staff subtends the same angles at the points A,B,C and D on the horizontal plane through its foot, the points A,B,C and D from a

A. square

B. cyclic quadrilateral

C. rectangle

D. None

Answer: B

Watch Video Solution

29. PQ is a vertical tower having P as the foot. A,B,C are three points in the horizontal plane through P. The angles of elevation of Q from A,B,C are equal and each is equal to θ . The sides of the triangle ABC are a,b,c, and area of the triangle ABC is . Then prove that the height of the tower is (abc) $\frac{\tan \theta}{4}$. A. $(abc) an heta/4\Delta$

B. $(abc)\cot heta/4\Delta$

C. $(abc)\sin heta/4\Delta$

D. None

Answer: A

30. A pole stands at the centre of a rectangular field and it subtends angles of 15° and 45° at the mid-points of the sides of the field. If the

length of its diagonal is 1200 m, then the height

of the flag staff is

A. 400 m

B. 200 m

C.
$$300\sqrt{2-\sqrt{3}}m$$

D. $300\sqrt{2}-\sqrt{3}ig)m$

Answer: c

31. A pole stands vertically , inside a triangular park \triangle ABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in \triangle ABC the foot of the pole is at the

A. centroid

B. circumcentre

C. incentre

D. orthocentre

Answer: D

32. A and B are two points in the horizontal plane through O,, the foot of a pillar OP of height h such that $\angle AOB = \theta$. If the elevation of the top of the pillar from A and B are also equal to θ , then AB is equal to

A. $h \cot \theta$

B.
$$h \cos \theta \sec \frac{\theta}{2}$$

C. $h \cot \theta \quad \sin \frac{\theta}{2}$
D. $h \cos \theta \csc \frac{\theta}{2}$

Answer: B

33. A tower stands at the centre of a circular park . A and B are two points on the boundary of the park such that AB(=a) subtends an angle of 60° at the foot of the tower , and the angle of elevation of the top of the tower from A or B is 30° . The height of the tower is

A.
$$\frac{2a}{\sqrt{3}}$$

B. $2a\sqrt{3}$
C. $\frac{a}{\sqrt{3}}$
D. $a\sqrt{3}$

Answer: C

34. A flag-staff 20 m long standing on a wall 10 m high subtends an angle whose tangent is 0.5 at a point on the ground. If θ is the angle subtended by the wall at this point, then

A. an heta = 1

B. $\tan \theta = 1/3$

C. an heta = 3

D. an heta = 1/2

Answer: A::B

Watch Video Solution

35. A tower subtends an angle of 30° at a point on the same level as the foot of the tower. At a second point h metre above the first, the depression of the foot of the tower is 60° . The horizontal distance of the tower from the point is

A. $h \cot 60^\circ$

B.
$$\frac{1}{3}h \cot 30^{\circ}$$

C. $\frac{h}{3}\cot 60^{\circ}$

D. $h {
m cot}~ 30^{\,\circ}$

Answer: A::B

36. The angle of elevation of the top of the tower observed from each of three points A,B , C on the ground, forming a triangle is the same angle α . If R is the circum-radius of the triangle ABC, then find the height of the tower R tan α . A. $R\sinlpha$

B. $R \cos \alpha$

C. $R \cot \alpha$

D. $R \tan lpha$

Answer: D

37. A flag staff of 5m high stands on a building of 25m high. At an observer at a height of 30 m. The flag staff and the building subtend equal angles .

The distance of the observer from the top of the

flag staff is

A.
$$\frac{5\sqrt{3}}{2}$$

B. $5\sqrt{\frac{3}{2}}$
C. $5\sqrt{\frac{2}{3}}$

D. None

Answer: B

38. From the top of a cliff of height 'a' the angle off depression of the foot of a certain tower is found to be double the angle of elevation of the top of the tower of height h. if θ be the angle of elevation then its value is

A.
$$\cos^{-1} \sqrt{\frac{2h}{a}}$$

B. $\sin^{-1} \sqrt{\frac{2h}{a}}$
C. $\sin^{-1} \sqrt{\frac{a}{2-h}}$
D. $\tan^{-1} \sqrt{3 - \frac{2h}{a}}$

Answer: D

39. If a flag-staff 6 metres high placed o the top of a tower throws a shadow of $2\sqrt{3}$ m along the ground, then the angle (in degrees) that the sun makes with the ground is

A. 60°

B. 30°

C. 45°

D. None

Answer: A

40. The top of a hill observed from the top and bottom of a building of height h is at angles of elevation α and β . respectively. The height of the bill is

A.
$$\frac{h \cot \beta}{\cot \beta - \cot \alpha}$$

B.
$$\frac{h \cot \alpha}{\cot \alpha - \cot \beta}$$

C.
$$\frac{h \tan \alpha}{\tan \alpha - \tan \beta}$$

D. None

Answer: B

41. The angles of elevation of a cliff at a point A on the ground and a point B, 100 m vertically above A are α and β respectively. The height of the cliff is

Answer: C

42. The angle of elevation of a cloud from a point h m above the level of water in a lake is α and the angle of depression of its reflection in the lake is β . Then the height of the cloud above the water level is

A.
$$rac{h\sin(eta-lpha)}{\sin(eta+lpha)}$$

B. $rac{h\sin(eta+lpha)}{\sin(eta-lpha)}$
C. $rac{h\sin(lpha+eta)}{\sin(lpha+eta)}$

D. None

Answer: B

43. On the level ground, the angle of elevation of a tower is 30° . On moving 20 m nearer, the angle of elevation is 60° . The height of the tower is

A. 10 m

B. 20 m

C. $10\sqrt{3}m$

D. None

Answer: C

44. A person standing on the bank of a river observes that the angle subtended by a tree on the opposite of bank is 60° . when he returns 40 m from the bank, he finds the angle to be 30° . What is the breadth of the river?

A. 40 m

B. 60 m

C. 20 m

D. 30 m

Answer: C

Watch Video Solution

45. A tower subtends an angle α at a point in the plane of its base and the angle of depression of the foot of the tower at a point b ft. just above A is β . Then , height of the tower is

A. b tan $\alpha \cot \beta$

B. $b \cot \alpha \tan \beta$

 $\mathsf{C}.\,b\tan\alpha\tan\beta$

D. $b \cot \alpha \cot \beta$

Answer: A

46. From an aeroplane vertically over a straight horizontal road, the angles of depression of two consecutive milestones on opposite sides of the aeroplane are observed to be α and β . The height of the aeroplane above the road is

D. None

Answer: B

47. Each side of an equilateral triangle subtends an angle of 60° at the top of a tower hm high located at the centre of the triangle. It a is the

length of each side of the triangle, then prove that $2a^2 = 3h^2$.

A.
$$3a^2=h^2$$

$$\mathsf{B.}\,a^2=3h^2$$

C.
$$2a^2=3h^2$$

D.
$$3a^2=2h^2$$

Answer: C

48. ABC is a triangular park in the form of an equilateral triangle. A pillar at A subtends an angle of 45° . If θ be the angle of elevation of the pillar at D, the middle point of BC, then $\tan \theta$ is equal to

Answer: B

49. Each side of a square subtends an angle of 60° at the tip of a tower of height h metres standing at the centre of the square. If I is the length of each side of the square, then what is h^2 equal to ?

A.
$$3a^2=2h^2$$

- $\mathsf{B.}\,2a^2=3h^2$
- $\mathsf{C.}\,2h^2=a^2$

D. $h^2=2a^2$

Answer: C

50. AB is a vertical pole. The end A is on the level ground .C is the middle point of AB. P is a point on the level ground . The portion BC subtends an angles β at P. If AP = nAB, then tan β =

A.
$$\displaystyle rac{n}{n^2-1}$$

B. $\displaystyle rac{n}{n^2+1}$
C. $\displaystyle rac{n}{2n^2+1}$

D. None

Answer: C

Watch Video Solution

Problem Set 1 True And False

1. The angle of elevation of a stationary cloud from a point 2500m m above a lake is 15° and the angle of depression of its image in the lake is 45° . The height the cloud above the lake level is

Watch Video Solution

2. From a light house the angle of depression of two ships on opposite sides of the light house are observed to be 30° and 45° . If the height of the light house be 100 metres, then the distance between the ships of the line joining them passes through the foot of the light house is $100(\sqrt{3}-1)$.

3. From the top of a spire the angle of depression of the top and bottom of a tower of height h are θ and ϕ respectively. Then the height of the spire and its horizontal distance from the tower are respectively $\frac{h\cos\theta\sin\phi}{\sin(\theta+\phi)}$ and $\frac{h\cos\theta\cos\phi}{\sin(\theta+\phi)}$

Watch Video Solution

4. The angular depressions of the top and the foot of a chimney as seen from the top of a second chimney which is 150 meters high and standing on the same level as the first are θ and ϕ

respectively. Find the distance between their tops,

when
$$an heta = rac{4}{3}, an \phi = rac{5}{2}.$$

5. The height of a house subtends a right angle at the opposite street light. The angle of elevation of light from the base of the house is 60° . If the width of the road be 6 meters, then the height of the house is

6. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. at a point P on the plane, the angle of elevation of the bottom of the flag staff is β and that of the top is α , then the height of the tower is

 $\frac{h\tan\beta}{\tan\alpha\tan\beta}.$

Watch Video Solution

7. What should be the height of a flag where a 20 feet long ladder reaches 20 feet below the flag

(The angle of elevation of the top of the flag at the

foot of the ladder is 60° ?

8. The angle of elevation of the top of a tower which is incomplete at a point 120 ft. from its base is 45° . If the elevation at the same point of the top is desired to be 60° then the tower should be raised by $120(\sqrt{3}-1)$ ft.

Watch Video Solution

9. A ladder leaning against a vertical wall is inclined at an angle α to the horizontal. The top of the ladder touches the parapet. On moving its foot 'a' feet away from the wall, the ladder now stands inclined at an angle β to the horizon and its top now touching a window. then the distance of the parapet from the window is a $\cot \frac{\alpha + \beta}{2}$.

Watch Video Solution

10. A vertical tower 50ft high stands on a sloping groud. The foot of the tower is at the same level

as the middle point of a vertical flag pole. From the top of the tower the angle of depression of the top and the bottom of the pole are 15° and 45° respectively. Find the length of the pole.

11. Two pillars of height a and b subtend the same angle α at a point on the line joining their feet. If the pillars subtend angles β and γ at another point in the horizontal plane at which the line joining their feet subtends a right angle then $(a + b)\cot^2 \alpha = a^2 \cot^2 \beta + b^2 \cot^2 \gamma$

Problem Set 1 Fill In The Blanks

1. The angle of elevation of a cloud from a point h mt. above is θ° and the angle of depression of its reflection in the lake is ϕ . Then, the height is

Watch Video Solution

2. The width of a road is b feet. On one side of which there is a window h feet high. A building in

front of it subtends an angle θ at it, then the

height of the building is____

3. The angle of elevation of the top of a pillar at any point A on the ground is 15° . On walking 100 ft. towards the pillar, the angle becomes 30° . Height of the pillar and its distance from A are _____and____respectively.

Watch Video Solution

4. The angle of elevation of a tower from a point on the same level as the foot of the tower is 30° . On advancing 150 metres towards the foot of the tower, the angle of elevation of the tower becomes 60° . Show that the height of the tower is 129.9 metres (Use $\sqrt{3} = 1.732$).

Watch Video Solution

5. The angle of elevation of the top of a tower at a point A on the ground is 30° . On walking 20 meters toward the tower, the angle of elevation is

 $60^{\,\circ}$. Find the height of the tower and its distance

from A.

6. The height f a chimney when it is found that on walking towards it 100 ft. in a horizontal line through its base the angular elevation of its top changes from 30° to 45° is____

7. The shadow of a tower standing on a level ground is found to be 60 metres longer when the sun's altitude is 30° than when it is 45° . The height of the tower is____

8. A man in a boat rowed away from a cliff 150 m

high takes 2 min, to change the angle from 60° to

 $45^{\,\circ}$. The speed of the boat is

9. An aeroplane flying horizontally , 1km above the ground , is observed at an elevation of 60° ,after 10 seconds , its elevation is observed to be 30° . Find the speed of the aeroplane in km/hr.

Watch Video Solution

10. The angle of elevation of the top and bottom of a flag staff fixed at the top of a tower at a point distant 'a' ft. from the foot of the tower are α and β . The height of the tower is____

11. From the top of a cliff 200 ft. high, the angles of depression of the top and bottom of a tower are observed to be 30° and 60° respectively. The

height of the tower is____

12. A balloon moving in a straight line passes vertically above two points A and B on a horizontal plane 1000 ft. apart, when above A it has an altitude of 60° as seen from B when above B it has an altitude of 45° as seen from A. the
distance of A from the point at which it will touch

the plane is ____

13. A balloon moving in a straight line passes vertically above two points A and B on a horizontal plane 1000 ft. apart. When above A it has an altitude of 60° as seen from B and when above B 30° as seen from A. the distance from A of the point at which it will touch the plane is____

14. A vertical pole (more than 100 ft. high) consists of two portions the lower being $\frac{1}{3}$ rd of the whole. If the upper portion subtends an angle $\tan^{-1}\frac{1}{2}$ at a point in a horizontal plane through the foot of the pole and distance 40 ft. from it, then the height of the pole is ____

15. The angles of elevation of the top of a tower standing on a horizontal plane from two points on a line passing through the foot of the tower at

distances a and b respectively are complementry angles. If the line joning the two points subtend an angle θ at the top of the tower then h = and $\sin \theta =$.

Watch Video Solution

16. A tower of x metres height has flag staff at its top. The tower and the flag staff subtend equal angles at a point distant y metres from the foot of the tower. Then, the length of the flag staff in metres is

17. A wireless pole 25 metres high is fixed on a top of a verandah of a house which is 15 metres high. At a point R on the ground, directly opposite, the wireless pole and verandah subtend equal angles. The distance of R from the verandah is____

18. A round balloon of radius 'r' subtends an angle

lpha at the eye of the observer, while the angle of

elevation of its centre is β . Find the height of the

centre of balloon.

19. A stationary balloon is observed from three points A, B and C on the plane ground and is found that its angle of elevation from each of these points is α , if $\angle ABC = \beta$ and AC = b, the height of the balloon is____

Watch Video Solution

20. From the top of a pole of height h, the angle of elevation of the top of the tower is α . The pole subtends an angle β at the top of the tower. The

height of the tower is____

21. A tower subtends an angle lpha at a point in the

plane of its base and the angle of depression of

the foot of the tower at a point b ft. just above A

is β . Then , height of the tower is

1. A mean observes that when he moves up a distance c metres on a slope, the angle of depression of a point on the horizontal plane from the base of the slope is 30^{0} , and when he moves up further a distance c metres, the angle of depression of that point is 45^{0} . The angle of inclination of the slope with the horizontal is.

A. 60°

C. 70°

D. None

Answer: B

Watch Video Solution

Problem Set 2 True And False

1. Two stations due south of a leaning tower which leans towards the north are respectively at distance x and y from its foot (y > x). If α and β be the elevations of the top of the tower from these stations and θ is inclination of the tower to

the horizontal then $\cot heta$ equals

2. A tree standing on a horizontal plane is leaning towards East. At two points situated at distances a and b exactly due West of it, the angle of elevation of the top are respectively α and β . Height of the top from the ground is $\frac{(b-a)\tan\alpha\tan\beta}{\tan\alpha+\tan\beta}$

3. A chimney leans towards North. At equal distances due north and south of it in a horizontal plane the elevation of the top are α , β .

The inclination of the chimney to the vertical is

$$an^{-1}rac{\sin(lpha-eta)}{2\sinlpha\sineta} \ {
m or}\ {
m tan}^{-1}rac{1}{2}(\coteta-\cotlpha)$$

4. A flag leaning towards East is inclined at an angle θ to the level ground. A man walks a distance *l* from the foot of the flag towards West

and observes the angle of elevation of the top of the flag to be α . On walking further distance l_1 in the same direction, the angle of elevation is decreased by β , then

$$an heta = rac{l_1}{(l+l_2) {
m cot}\, lpha - l \, {
m cot}(lpha - eta)}$$

View Text Solution

Problem Set 2 Fill In The Blanks

1. A train is moving at a constant rate at an angle θ East of North. Observations of the train are made from a fixed point. It is due north at some

instant. Ten minutes earlier its bearing was α_1 West of North whereas ten minutes afterwards its bearing α_2 East of North, then $\tan \theta =$ ____.

Problem Set 3 Mcq S

1. ABC is a triangular park with AB+AC=100 m. a clock tower is situated at the mid-point of BC. The angles of elevation of the top of the tower at A and B are \cot^{-1} $3 \cdot 2$ and \csc^{-1} $2 \cdot 6$ respectively. The height of the tower is

A. 16 m

B. 25 m

C. 50 m

D. None

Answer: B

Watch Video Solution

2. A vertical tower stands on a declicity which is inclined at 15° to the horizon. From the foot of the tower a man ascends the declivity for 80 feet

and then finds that the tower substends an angle

of $30\,^\circ\,$. The height of the tower is

A.
$$20(\sqrt{6}-\sqrt{2})$$

B. $40(\sqrt{6}-\sqrt{2})$
C. $40(\sqrt{6}+\sqrt{2})$

D. None

Answer: B

3. A tower PQ of height h subtends an angle of 45° at a point A on the horizontal plane. At another point B on AB inclined to horizontal at angle of 30° , the elevation of top of the tower is found to be 60° . If AB=a,, then

A.
$$a=hig(\sqrt{3}+1ig)$$

B. $a=hig(\sqrt{3}-1ig)$
C. $h=aig(\sqrt{3}+1ig)$
D. $h=aig(\sqrt{3}-1ig)$

Answer: B

4. From a point on a horizontal plane, the elevation of the top of a hill is 45° . The elevation becomes 75° after walking a distance of 500 m up a slope of inclined at an angle of 15° to the horizon. The height of the hill is

A. $500\sqrt{6}$

- B. $500\sqrt{3}$
- C. $250\sqrt{6}$

D. $250\sqrt{3}$

Answer: C

5. At each end of a horizontal base AB of length 2a the angular height of a certain peak is 15° and that at the mid-point C of base AB it is 45° . The height of the peak is

D.
$$rac{\sqrt{3}-1}{2\sqrt{3}}a$$

Answer: B

Watch Video Solution

6. The angle of elevation of a certain peak when observed from each end of a horizontal base line of length 2a is found to be θ . When observed from the mid-point of the base the angle of elevation is ϕ . The height of the peak is

A.
$$rac{a}{\sqrt{(\cos heta-\cosarPsi)}}$$

$$\mathsf{B}.\,\frac{a}{\sqrt{\left(\cot^2\theta-\cot^2\varPsi\right)}}$$

C.
$$rac{a}{\sqrt{(\cos^2 heta - \cos^2 arPsi)}}$$

Answer: B

Problem Set 3 True And False

1. A person stands at a point A due south of a tower and observes his elevation is 60° . He then

walks westwards towards B where the elevation is

 $45^{\,\circ}$. At a point C on AB produced he finds it to be

 30° , then AB=2BC.

> Watch Video Solution

2. An object is observed from three points A,B,C in the same horizontal plane passing through the base of the object. The angle of elevation at B is twice and at C is thrice that at A. if AB=a, BC=b, then the height of the object is $\frac{a}{2b}\sqrt{(a+b)(3b-a)}$.

Watch Video Solution

3. A man observes a tower AB of height h from a point P on the ground. He moves a distance dtowards the foot of the tower and finds that the angle of elevation is doubled. He further moves a distance " $\frac{3d}{4}$ in the same direction and finds that the angle of elevation is three times that of at the point P .then (A) $30h^2 = 35d^2$ (B) $35h^2 = 36d^2$ (C) $36h^2 = 35d^2$ (D) $36h^2 = 35d^2$

Watch Video Solution

4. A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that at A. If the distance between A and B is 200 metres and the distance between B and C is 100 metres, then find the height of balloon above the road.

Watch Video Solution

5. DE is a tower standing on a horizontal plane and ABCD is a straight line in the plane. The

height of the tower substends an angle θ at A, 2θ at B and 3θ at C. if AB and BC be respectively 50 metres and 20 metres then the height of the tower and the distance CD are $\frac{25}{2}\sqrt{7}$ m and 17.5 m.

Watch Video Solution

6. The top of a tower is observed from three point

A,B,C on a straight line leading to the tower. If the

angles of elevation are θ , 2θ , 3θ from them, then

- $rac{AB}{BC} = rac{\cot heta \cot2 heta}{\cot2 heta \cot3 heta}$

Watch Video Solution

7. The angle of elevation of the top of a tower at a point A due south of the tower is α and at β due east of the tower is β . If AB=d, then height of the tower is

Watch Video Solution

8. Three points A,B,C are in a line inclined at an angle θ to the horizon of three points. A is the lowest and C is highest. D is a point vertically above if C

 $AB = p, CD = q, \angle DAB = lpha \ ext{and} \ \angle DBC = eta$

, then

$$\cos heta=rac{p\sinlpha\coseta}{q\sin(eta-lpha)}$$

Watch Video Solution

9. Top of a mountain is observed from A and B at the sea level. If N is the point vertically below P and

 ${{ \angle NAB}}=lpha, {{ \angle NBA}}=eta, {{ \angle NAP}}= heta, {{ \angle NBP}}=\phi$

, then $an \phi \sin \beta = an \theta \sin \alpha$.

10. A man observes two objects in a straight line in the West. On walking a distance c to the north, the objects subtend an angle α in front of him and on walking a further distance c to the north, they subtend an angle β . Then the distance between the objects is

 $rac{3c}{2\coteta-\cotlpha}.$

Watch Video Solution

11. A man notices two objects in a straight line due West after walking a distance c due North he

observes that the objects subtend an angle α at his eye and after walking a further distance 2c due north, they subtend an angle β . Then the distance between the objects is 8c

 $\overline{3\coteta-\cotlpha}$.

Watch Video Solution

Problem Set 3 Fill In The Blanks

1. A man observes that when he has walked c metres up an incline, the angular depression of an object in a horizontal plane through the foot of the slope in α , and when he has walked a further distance of c metres the depression is β . The inclination of the slope to the horizon is ____.

Watch Video Solution

2. A tower is observed from two stations A and B where B is East of A at a distance 100 metres. The tower is due North of A and due North-West of B. the angles of elevation of the tower from A and B are complementary, the height of the tower is .

3. The elevation of a tower due North of a station

A is α and at another station B due West of A it is

 β . The height of the tower is ____.

Watch Video Solution

4. The angle of elevation of a tower at a place due south of it is θ and at a place due west of A and at a distance 'a' from it, the elevation ϕ . The height of the tower is ____.

Watch Video Solution

5. PQ is a tower standing on horizontal plane, Q being its foot. Two points A and B are taken on the plane such that AB=21 and (c) QAB is a right angle. It is found that cot PAQ=2/5 and cot PBQ=3/5, then the height of tower is ____.

6. A flag staff PN stands upright on a level ground. A base AB is measured at right. Angle to AN such that points A,B,N lie in the same horizontal plane. If $\angle PAN = \alpha$ and $\angle PBN = \beta$, then height of

flag staff is ____.

7. The angle of elevation of the top of a tower from a point A on the ground is θ and that from B is ϕ . If AB=100 metres and AB is perpendicular to the line joining A with the foot of the tower, then the height of the tower is _____ (given $\cot \theta = 3/10, \cot \phi = 1/2$)

Watch Video Solution

8. The angle of elevation of a tower at point A due north of it is 30° and at another point due East of A is 18° . If AB=a, then the height of the tower is____.

9. A vertical pole stands at a point O on a horizontal ground. A and B are points on the ground d metres apart. The pole subtends angles α and β at A and B respectively. AB subtends an angle at O. the height of the pole is ____.

