© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ML KHANNA

HEIGHTS AND DISTANCES

Problem Set 1 Mcq S

1. The angle of elevation of the top of a tower
from a point 20 metres away from its base is 45°.
The height of the tower is
A. 10 m
B. 20 m
C. 40 m
D. $20 \sqrt{3}$

Answer: B

(D) Watch Video Solution

2. At a point 15 metres away from the base of a 15 metres high house, the angle of elevation of the top is
A. 45°
B. 30°
C. 60°
D. 90°

Answer: A

(D) Watch Video Solution

3. From the top of a light house 60 m high with its base at sea level the angle of depression of aboat
is 15°. The distance of the boat from the light house is
A. $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) 60 m$
B. $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) 60 m$
C. $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^{2} m$
D. None

Answer: B
4. The angle of elevation of the sun when the length of the shadow of a pole is $\sqrt{3}$ times the height of the pole is
A. 30°
B. 45°
C. 60°
D. 15°

Answer: A
5. The angle of elevation of the top of an incomplete vertical pillar at a horizontal distance of 100 m from its base is 45°. If the angle of elevation of the top of the complete pillar at the same point is to be 60°, then the height of the incomplete pillar is to be increased by
A. $50 \sqrt{2} \mathrm{~m}$
B. 100 m
C. $100(\sqrt{3}-1) m$
D. $100(\sqrt{3}+1) \mathrm{m}$

- Watch Video Solution

6. The angle of elevation of the top of a T.V. tower from three points A, B, C in a straight line in the horizontal plane through the foot of the tower are $\alpha, 2 \alpha, 3 \alpha$ respectively. If $\mathrm{AB}=\mathrm{a}$, the height of the tower is
A. $a \tan \alpha$
B. $a \sin \alpha$
C. $a \sin 2 \alpha$
D. $a \sin 3 \alpha$

Answer: C

(D) Watch Video Solution

7. The angle of elevation of the top of a certain tower from a point A on the ground is α, at B is 2α, at C is 3α. If $A B=\frac{4}{3} B C$, then which of the following is true.
A. $\sin \alpha=\sqrt{\frac{5}{12}}$
B. $\cos \alpha=\sqrt{\frac{5}{12}}$
C. $\sin \alpha=\frac{3}{4}$
D. $\cos \alpha=\frac{3}{8}$

Answer: A

(D) Watch Video Solution

8. The angles of depression of two points A and B on a horizontal plane such that $A B=200$ from the top P of a tower PQ of height 100 are $45-\theta$ and $45+\theta$. If the line $A B$ Passes through Q the foot of the tower, then angle θ is equal to
A. 45°
B. 30°
C. 22.5°
D. 15°

Answer: C

- Watch Video Solution

9. An aeroplane flying at a height of 300 m above the ground passes vertically above another plane at an instant when the angles of elevation of two planes from the same point on the ground are
60° and 45°, respectively. What is the height of the lower plane from the ground?
A. $100 \sqrt{3}$
B. $100 / \sqrt{3}$
C. 50
D. $150(\sqrt{3}+1)$

Answer: A

10. $A B C D$ is a square plot. The angle of elevation of

the top of a pole stading at D from A or C is 30° and that from B is θ, then $\tan \theta$ is equal to
A. $\sqrt{6}$
B. $1 / \sqrt{6}$
C. $\sqrt{3} / 2$
D. $\sqrt{2} / 3$

Answer: C

11. A tree is broken by wind, its upper part touches
the ground at a point 10 metres from the foot of
the tree and makes an angle of 45° with the ground. The entire length of the tree is
A. 15 m
B. 20 m
C. $10(1+\sqrt{2}) m$
D. $10(1+\sqrt{2} / 2) m$

Answer: C
(D) Watch Video Solution
12. The angle of elevation of the top of a tower standing on a horizontal plane from a point A is α . After walking a distance d towards the foot of the tower, the angle of elevation is found to be β.

The height of the tower is

$$
\begin{aligned}
& \text { A. } \frac{d \sin \alpha \sin \beta}{\sin (\beta-\alpha)} \\
& \text { B. } \frac{d \sin \alpha \sin \beta}{\sin (\alpha-\beta)} \\
& \text { C. } \frac{d \sin (\beta-\alpha)}{\sin \alpha \sin \beta} \\
& \text { D. } \frac{d \sin (\alpha-\beta)}{\sin \alpha \sin \beta}
\end{aligned}
$$

Answer: A

13. $A B$ is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is 60 o . He moves away from the pole along the line $B C$ to a point D such that
$C D=7 m$. From D the angle of elevation of the point A is 450 . Then the height of the pole is
$\frac{7 \sqrt{3}}{2} \frac{\dot{1}}{\sqrt{3}-1} m$
(2) $\frac{7 \sqrt{3}}{2} \sqrt{3}+1 m$
$\frac{7 \sqrt{3}}{2} \sqrt{3}-1 m(4) \frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}+1} m$
A. $\frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}-1} m$
B. $\frac{7 \sqrt{3}}{2}(\sqrt{3}+1) m$
C. $\frac{7 \sqrt{3}}{2}(\sqrt{3}-1) m$
D. $\frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}+1} m$

Answer: B

- Watch Video Solution

14. A man from the top of a 100 metres high tower observes a car moving towards the tower at an angle of depression of 30°. After some time, the angle of depression becomes 60°. The distance
(in metres) travelled by the car during this time is
A. $100 \sqrt{3}$
B. $\frac{200 \sqrt{3}}{3}$
C. $\frac{100 \sqrt{3}}{3}$
D. $200 \sqrt{3}$

Answer: B

(D) Watch Video Solution

15. At a point on a level plane subtends an angle θ and flag staff of height a at the top of the tower subtends an angle ϕ. Find the height of the tower.
A. $\frac{a \sin \theta \cos \phi}{\cos (\theta+\phi)}$
B. $\frac{a \sin \phi \cos (\theta+\phi)}{\sin \theta}$
C. $\frac{a \cos (\theta+\phi)}{\sin \theta \sin \phi}$
D. None

Answer: B

(D) Watch Video Solution

16. A vertical pole $P S$ has two marks at Q and R such that the portions PQ, PR and PS subtend angles α, β, γ at a point on the ground distant x
from the pole. If $P Q=a, \quad P R=b, P S=c$ and $\alpha+\beta+\gamma=180^{\circ}$, then $x^{2}=$
A. $\frac{a}{a+b+c}$
B. $\frac{b}{a+b+c}$
C. $\frac{c}{a+b+c}$
D. $\frac{a b c}{a+b+c}$

Answer: D
17. The shadow of a tower is found to be 60 ft .
longer when the sun's altitude has become 60°
from 30°. The height of the tower from the ground is
A. $350 \mathrm{ft} . \mathrm{app}$.
B. 400 ft . app.
C. 51 ft . app.
D. None

Answer: C

18. An observer standing on a 300 m high tower

observes two boats in the same direction, their
angle of depression are 60° and 30° respectively. The distance between the boats is
A. 173.2 m
B. 346.4 m
C. 25 m
D. 72 m

Answer: B
19. The angle of elevation of the top of two
vertical towers as seen from the middle point of
the line joining the foot of the towers are 60° and 30° respectively. The ratio of the heights of the tower is
A. $2: 1$
B. $\sqrt{3}: 1$
C. 3: 2
D. $3: 1$

Answer: D
20. Two towers stand on a horizontal plane. P and
Q where $P Q=30 \mathrm{~m}$, are two points on the line joining their feet. As seen from P the angle of elevation of the tops of the towers are 30 and 60 but as seen from Q are 60 and 45 . The distance between the towers is equal to
A. $15(4+\sqrt{3}) m$
B. $15(4-\sqrt{3}) m$
C. $15(3+\sqrt{3}) m$
D. $15(2+\sqrt{3}) m$

Answer: A

D Watch Video Solution

21. Two vertical poles of height a and b subtend the same angle 45° at a point on the line joining their feet, the square of the distance between their tops is
A. $(h+H)^{2}$
B. $2\left(h^{2}+H^{2}\right)$
C. $h^{2}+H^{2}$
D. $\frac{1}{2}\left(h^{2}+H^{2}\right)$

Answer: B

(D) Watch Video Solution

22. Two vertical $A L$ and $B M$ of heights 20 m and 80 m respectively and stand apart on a horizontal plane. If A, B be the feet of the poles and $A M$ and $B L$ intersect at P, then the height of P is equal to
A. 50 m
B. 18 m
C. 16 m
D. 15 m

Answer: C

D Watch Video Solution

23. Angle of depression from the top of a light house of two boats are 45° and 30° due east which are 60 m apart. The height of the light house is
A. $60 \sqrt{3}$
B. $30(\sqrt{3}+1)$
C. $30(\sqrt{3}-1)$
D. None

Answer: C

- Watch Video Solution

24. $P Q$ is a part of a given height a and $A B$ is a tower at some distance, α and β are the angles of elevation of B, the top of the tower at P and Q respectively. The height of the tower is
A. $\frac{a \sin \alpha \sin \beta}{\sin (\alpha-\beta)}$
B. $\frac{a \cos \alpha \cos \beta}{\sin (\alpha-\beta)}$
C. $\frac{a \sin \alpha \cos \beta}{\sin (\alpha-\beta)}$
D. None

Answer: C

(D) Watch Video Solution

25. A ladder rests against a vertical wall at angle α to the horizontal. If is foot is pulled away from the wall through a distance 'a' so that it slides a
distance 'b' down the wall making the angle β with the horizontal , then $\mathrm{a}=$
A. $a=b \tan \frac{\alpha+\beta}{2}$
B. $a=b \cot \frac{\alpha+\beta}{2}$
C. $a \frac{\tan (\alpha-\beta)}{2}$
D. None

Answer: A
26. A man on a cliff observes a boat at an angle of depression 30° which is sailing towards the shore to the point immediately beneath him. Three minutes later the angle of depression of the boat is found to be 60°. Assuming that the boat sails at a uniform speed, determine how much more time it will take to reach the shore.
A. 2 min
B. $1 \frac{1}{2} \mathrm{~min}$
C. 1 min
D. None

Answer: B

- Watch Video Solution

27. A chimeny of 20 m height standing on the top of a building subtends an angle whose tangent is $\frac{1}{6}$ at a distance of 70 m from the foot of the building, then the height of building is
A. 50 m
B. 40 m
C. 60 m

D. None

Answer: A

- Watch Video Solution

28. If a flag staff subtends the same angles at the points A, B, C and D on the horizontal plane through its foot, the points A, B, C and D from a
A. square
B. cyclic quadrilateral
C. rectangle

D. None

Answer: B

- Watch Video Solution

29. PQ is a vertical tower having P as the foot.
A, B, C are three points in the horizontal plane through P. The angles of elevation of Q from A, B, C are equal and each is equal to θ. The sides of the triangle $A B C$ are a, b, c, and area of the triangle $A B C$ is . Then prove that the height of the tower is (abc) $\frac{\tan \theta}{4}$.
A. $(a b c) \tan \theta / 4 \Delta$
B. $(a b c) \cot \theta / 4 \Delta$
C. $(a b c) \sin \theta / 4 \Delta$
D. None

Answer: A

- Watch Video Solution

30. A pole stands at the centre of a rectangular
field and it subtends angles of 15° and 45° at the mid-points of the sides of the field. If the
length of its diagonal is 1200 m , then the height of the flag staff is
A. 400 m
B. 200 m
C. $300 \sqrt{2-\sqrt{3}} m$
D. $300 \sqrt{2}-\sqrt{3}) m$

Answer: c
31. A pole stands vertically, inside a triangular park $\triangle A B C$. If the angle of elevation of the top of the pole from each corner of the park is same, then in $\triangle A B C$ the foot of the pole is at the
A. centroid
B. circumcentre
C. incentre
D. orthocentre

Answer: D

32. A and B are two points in the horizontal plane through O, the foot of a pillar OP of height h such that $\angle A O B=\theta$. If the elevation of the top of the pillar from A and B are also equal to θ, then $A B$ is equal to
A. $h \cot \theta$
B. $h \cos \theta \sec \frac{\theta}{2}$
C. $h \cot \theta \sin \frac{\theta}{2}$
D. $h \cos \theta \operatorname{cosec} \frac{\theta}{2}$

Answer: B

33. A tower stands at the centre of a circular park.
A and B are two points on the boundary of the park such that $A B(=a)$ subtends an angle of 60° at the foot of the tower, and the angle of elevation of the top of the tower from A or B is 30°. The height of the tower is
A. $\frac{2 a}{\sqrt{3}}$
B. $2 a \sqrt{3}$
C. $\frac{a}{\sqrt{3}}$
D. $a \sqrt{3}$

Answer: C

- Watch Video Solution

34. A flag-staff 20 m long standing on a wall 10 m high subtends an angle whose tangent is 0.5 at a point on the ground. If θ is the angle subtended by the wall at this point, then
A. $\tan \theta=1$
B. $\tan \theta=1 / 3$
C. $\tan \theta=3$
D. $\tan \theta=1 / 2$

Answer: A: B

- Watch Video Solution

35. A tower subtends an angle of 30° at a point on the same level as the foot of the tower. At a second point h metre above the first, the depression of the foot of the tower is 60°. The horizontal distance of the tower from the point is
A. $h \cot 60^{\circ}$
B. $\frac{1}{3} h \cot 30^{\circ}$
C. $\frac{h}{3} \cot 60^{\circ}$
D. $h \cot 30^{\circ}$

Answer: A::B

D Watch Video Solution

36. The angle of elevation of the top of the tower observed from each of three points A, B, C on the ground, forming a triangle is the same angle α. If R is the circum-radius of the triangle $A B C$, then find the height of the tower $\mathrm{R} \tan \alpha$.
A. $R \sin \alpha$
B. $R \cos \alpha$
C. $R \cot \alpha$
D. $R \tan \alpha$

Answer: D

(D) Watch Video Solution

37. A flag staff of 5 m high stands on a building of

25 m high. At an observer at a height of 30 m . The
flag staff and the building subtend equal angles .

The distance of the observer from the top of the flag staff is
A. $\frac{5 \sqrt{3}}{2}$
B. $5 \sqrt{\frac{3}{2}}$
C. $5 \sqrt{\frac{2}{3}}$
D. None

Answer: B
38. From the top of a cliff of height 'a' the angle
off depression of the foot of a certain tower is
found to be double the angle of elevation of the top of the tower of height h. if θ be the angle of elevation then its value is

> A. $\cos ^{-1} \sqrt{\frac{2 h}{a}}$
> B. $\sin ^{-1} \sqrt{\frac{2 h}{a}}$
C. $\sin ^{-1} \sqrt{\frac{a}{2-h}}$
D. $\tan ^{-1} \sqrt{3-\frac{2 h}{a}}$

Answer: D

39. If a flag-staff 6 metres high placed o the top of a tower throws a shadow of $2 \sqrt{3} \mathrm{~m}$ along the ground, then the angle (in degrees) that the sun makes with the ground is
A. 60°
B. 30°
C. 45°
D. None
40. The top of a hill observed from the top and bottom of a building of height h is at angles of
elevation α and β. respectively. The height of the bill is
A. $\frac{h \cot \beta}{\cot \beta-\cot \alpha}$
B. $\frac{h \cot \alpha}{\cot \alpha-\cot \beta}$
C. $\frac{h \tan \alpha}{\tan \alpha-\tan \beta}$
D. None

- Watch Video Solution

41. The angles of elevation of a cliff at a point A on the ground and a point $B, 100 \mathrm{~m}$ vertically above A are α and β respectively. The height of the cliff is

$$
\begin{aligned}
& \text { A. } \frac{100 \cot \alpha}{\cot \alpha-\cot \beta} \\
& \text { B. } \frac{100 \cot \beta}{\cot \alpha-\cot \beta} \\
& \text { C. } \frac{100 \cot \beta}{\cot \beta-\cot \alpha} \\
& \text { D. } \frac{100 \cot \beta}{\cot \beta+\cot \alpha}
\end{aligned}
$$

Answer: C

42. The angle of elevation of a cloud from a point h m above the level of water in a lake is α and the angle of depression of its reflection in the lake is β. Then the height of the cloud above the water level is

$$
\begin{aligned}
& \text { A. } \frac{h \sin (\beta-\alpha)}{\sin (\beta+\alpha)} \\
& \text { B. } \frac{h \sin (\beta+\alpha)}{\sin (\beta-\alpha)} \\
& \text { C. } \frac{h \sin (\alpha+\beta)}{\sin (\alpha+\beta)}
\end{aligned}
$$

D. None

Answer: B

D View Text Solution

43. On the level ground, the angle of elevation of a tower is 30°. On moving 20 m nearer, the angle of elevation is 60°. The height of the tower is
A. 10 m
B. 20 m
C. $10 \sqrt{3} m$
D. None

Answer: C

- Watch Video Solution

44. A person standing on the bank of a river observes that the angle subtended by a tree on the opposite of bank is 60°. when he returns 40 m from the bank, he finds the angle to be 30°.

What is the breadth of the river?
A. 40 m
B. 60 m
C. 20 m

D. 30 m

Answer: C

- Watch Video Solution

45. A tower subtends an angle α at a point in the plane of its base and the angle of depression of the foot of the tower at a point b ft. just above A is β. Then, height of the tower is
A. $\mathrm{b} \tan \alpha \cot \beta$
B. $b \cot \alpha \tan \beta$
C. $b \tan \alpha \tan \beta$
D. $b \cot \alpha \cot \beta$

Answer: A

Watch Video Solution

46. From an aeroplane vertically over a straight
horizontal road, the angles of depression of two consecutive milestones on opposite sides of the aeroplane are observed to be α and β. The height of the aeroplane above the road is
A. $\frac{\tan \alpha+\tan \beta}{\tan \alpha \tan \beta}$
B. $\frac{\tan \alpha \tan \beta}{\tan \alpha+\tan \beta}$
C. $\frac{\cot \alpha \cot \beta}{\cot \alpha+\cot \beta}$
D. None

Answer: B

(D) Watch Video Solution

47. Each side of an equilateral triangle subtends
an angle of 60° at the top of a tower hm high located at the centre of the triangle. It a is the
length of each side of the triangle, then prove that $2 a^{2}=3 h^{2}$.
A. $3 a^{2}=h^{2}$
B. $a^{2}=3 h^{2}$
C. $2 a^{2}=3 h^{2}$
D. $3 a^{2}=2 h^{2}$

Answer: C
48. $A B C$ is a triangular park in the form of an equilateral triangle. A pillar at A subtends an angle of 45°. If θ be the angle of elevation of the pillar at D, the middle point of $B C$, then $\tan \theta$ is equal to
A. $\frac{\sqrt{3}}{2}$
B. $\frac{2}{\sqrt{3}}$
C. $\sqrt{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: B
49. Each side of a square subtends an angle of 60° at the tip of a tower of height h metres standing at the centre of the square. If I is the length of each side of the square, then what is h^{2} equal to ?
A. $3 a^{2}=2 h^{2}$
B. $2 a^{2}=3 h^{2}$
C. $2 h^{2}=a^{2}$
D. $h^{2}=2 a^{2}$

Answer: C

D Watch Video Solution

50. $A B$ is a vertical pole. The end A is on the level ground .C is the middle point of $A B . P$ is a point on
the level ground. The portion BC subtends an angles β at P . If $\mathrm{AP}=\mathrm{nAB}$, then $\tan \beta=$

$$
\begin{aligned}
& \text { A. } \frac{n}{n^{2}-1} \\
& \text { B. } \frac{n}{n^{2}+1} \\
& \text { C. } \frac{n}{2 n^{2}+1}
\end{aligned}
$$

D. None

Answer: C

- Watch Video Solution

Problem Set 1 True And False

1. The angle of elevation of a stationary cloud from a point 2500 m m above a lake is 15° and the angle of depression of its image in the lake is
45°. The height the cloud above the lake level is
2. From a light house the angle of depression of two ships on opposite sides of the light house are observed to be 30° and 45°. If the height of the light house be 100 metres, then the distance between the ships of the line joining them passes through the foot of the light house is $100(\sqrt{3}-1)$.
3. From the top of a spire the angle of depression of the top and bottom of a tower of height h are
θ and ϕ respectively. Then the height of the spire and its horizontal distance from the tower are respectively $\frac{h \cos \theta \sin \phi}{\sin (\theta+\phi)}$ and $\frac{h \cos \theta \cos \phi}{\sin (\theta+\phi)}$

D Watch Video Solution

4. The angular depressions of the top and the foot of a chimney as seen from the top of a second chimney which is 150 meters high and standing on the same level as the first are θ and ϕ
respectively. Find the distance between their tops,
when $\tan \theta=\frac{4}{3}, \tan \phi=\frac{5}{2}$.

- Watch Video Solution

5. The height of a house subtends a right angle at the opposite street light. The angle of elevation of light from the base of the house is 60°. If the width of the road be 6 meters, then the height of the house is
6. A vertical tower stands on a horizontal plane and is surmounted by a vertical flag staff of height h. at a point P on the plane, the angle of elevation of the bottom of the flag staff is β and that of the top is α, then the height of the tower is
$\frac{h \tan \beta}{\tan \alpha \tan \beta}$.

D Watch Video Solution

7. What should be the height of a flag where a 20
feet long ladder reaches 20 feet below the flag
(The angle of elevationof the top of the flag at the foot of the ladder is 60° ?

- Watch Video Solution

8. The angle of elevation of the top of a tower
which is incomplete at a point 120 ft . from its base
is 45°. If the elevation at the same point of the top is desired to be 60° then the tower should be raised by $120(\sqrt{3}-1) \mathrm{ft}$.
9. A ladder leaning against a vertical wall is inclined at an angle α to the horizontal. The top of the ladder touches the parapet. On moving its
foot 'a' feet away from the wall, the ladder now
stands inclined at an angle β to the horizon and its top now touching a window. then the distance
of the parapet from the window is a $\cot \frac{\alpha+\beta}{2}$.

- Watch Video Solution

10. A vertical tower 50 ft high stands on a sloping groud. The foot of the tower is at the same level
as the middle point of a vertical flag pole. From the top of the tower the angle of depression of the top and the bottom of the pole are 15° and 45° respectively. Find the length of the pole.

(D) Watch Video Solution

11. Two pillars of height a and b subtend the same angle α at a point on the line joining their feet. If the pillars subtend angles β and γ at another point in the horizontal plane at which the line joining their feet subtends a right angle then $(a+b) \cot ^{2} \alpha=a^{2} \cot ^{2} \beta+b^{2} \cot ^{2} \gamma$

(D) Watch Video Solution

Problem Set 1 Fill In The Blanks

1. The angle of elevation of a cloud from a point h mt . above is θ° and the angle of depression of its reflection in the lake is ϕ. Then, the height is

- Watch Video Solution

2. The width of a road is b feet. On one side of
which there is a window h feet high. A building in
front of it subtends an angle θ at it, then the height of the building is

- Watch Video Solution

3. The angle of elevation of the top of a pillar at any point A on the ground is 15°. On walking 100 ft . towards the pillar, the angle becomes 30°. Height of the pillar and its distance from A are ____and___respectively.
4. The angle of elevation of a tower from a point on the same level as the foot of the tower is 30°.

On advancing 150 metres towards the foot of the tower, the angle of elevation of the tower becomes 60°. Show that the height of the tower is
129.9 metres (Use $\sqrt{3}=1.732$).

D Watch Video Solution

5. The angle of elevation of the top of a tower at a point A on the ground is 30°. On walking 20 meters toward the tower, the angle of elevation is
60°. Find the height of the tower and its distance from A.

- Watch Video Solution

6. The height f a chimney when it is found that on walking towards it 100 ft . in a horizontal line through its base the angular elevation of its top changes from 30° to 45° is

- Watch Video Solution

7. The shadow of a tower standing on a level
ground is found to be 60 metres longer when the sun's altitude is 30° than when it is 45°. The height of the tower is \qquad

D Watch Video Solution

8. A man in a boat rowed away from a cliff 150 m
high takes 2 min , to change the angle from 60° to
45°. The speed of the boat is
9. An aeroplane flying horizontally, 1 km above the ground, is observed at an elevation of 60°, after 10 seconds, its elevation is observed to be 30°.

Find the speed of the aeroplane in $\mathrm{km} / \mathrm{hr}$.

- Watch Video Solution

10. The angle of elevation of the top and bottom of a flag staff fixed at the top of a tower at a point
distant 'a' ft. from the foot of the tower are α and β. The height of the tower is
11. From the top of a cliff 200 ft . high, the angles of depression of the top and bottom of a tower are observed to be 30° and 60° respectively. The height of the tower is \qquad

D Watch Video Solution

12. A balloon moving in a straight line passes
vertically above two points A and B on a horizontal plane 1000 ft . apart, when above A it has an altitude of 60° as seen from B when above B it has an altitude of 45° as seen from A. the
distance of A from the point at which it will touch the plane is

(D) Watch Video Solution

13. A balloon moving in a straight line passes vertically above two points A and B on a horizontal plane 1000 ft . apart. When above A it has an altitude of 60° as seen from B and when above $B 30^{\circ}$ as seen from A. the distance from A of the point at which it will touch the plane is
14. A vertical pole (more than 100 ft . high) consists of two portions the lower being $\frac{1}{3} r d$ of the whole. If the upper portion subtends an angle $\tan ^{-1} \frac{1}{2}$ at a point in a horizontal plane through the foot of the pole and distance 40 ft . from it, then the height of the pole is \qquad

(D) Watch Video Solution

15. The angles of elevation of the top of a tower
standing on a horizontal plane from two points
on a line passing through the foot of the tower at
distances a and b respectively are complementry angles. If the line joning the two points subtend an angle θ at the top of the tower $h=$ $\ldots \ldots$ and $\sin \theta=\ldots$.

(D) Watch Video Solution

16. A tower of x metres height has flag staff at its
top. The tower and the flag staff subtend equal angles at a point distant y metres from the foot of the tower. Then, the length of the flag staff in metres is
17. A wireless pole 25 metres high is fixed on a top of a verandah of a house which is 15 metres high.

At a point R on the ground, directly opposite, the wireless pole and verandah subtend equal angles.

The distance of R from the verandah is

(D) Watch Video Solution

18. A round balloon of radius 'r' subtends an angle α at the eye of the observer, while the angle of
elevation of its centre is β. Find the height of the centre of balloon.

(D) Watch Video Solution

19. A stationary balloon is observed from three points A, B and C on the plane ground and is found that its angle of elevation from each of these points is α, if $\angle A B C=\beta$ and $A C=b$, the height of the balloon is
20. From the top of a pole of height h, the angle of elevation of the top of the tower is α. The pole subtends an angle β at the top of the tower. The height of the tower is \qquad

- Watch Video Solution

21. A tower subtends an angle α at a point in the plane of its base and the angle of depression of the foot of the tower at a point b ft. just above A is β. Then , height of the tower is

Problem Set 2 Mcq S

1. A mean observes that when he moves up a distance c metres on a slope, the angle of depression of a point on the horizontal plane from the base of the slope is 30°, and when he moves up further a distance c metres, the angle of depression of that point is 45°. The angle of inclination of the slope with the horizontal is.
A. 60°
B. 75°
C. 70°
D. None

Answer: B

- Watch Video Solution

Problem Set 2 True And False

1. Two stations due south of a leaning tower
which leans towards the north are respectively at
distance x and y from its foot $(y>x)$. If α and β
be the elevations of the top of the tower from
these stations and θ is inclination of the tower to the horizontal then $\cot \theta$ equals

D Watch Video Solution

2. A tree standing on a horizontal plane is leaning towards East. At two points situated at distances a and b exactly due West of it, the angle of elevation of the top are respectively α and β. Height of the top from the ground is
$(b-a) \tan \alpha \tan \beta$ $\tan \alpha+\tan \beta$

D Watch Video Solution
3. A chimney leans towards North. At equal distances due north and south of it in a horizontal plane the elevation of the top are α, β.

The inclination of the chimney to the vertical is
$\tan ^{-1} \frac{\sin (\alpha-\beta)}{2 \sin \alpha \sin \beta}$
or $\tan ^{-1} \frac{1}{2}(\cot \beta-\cot \alpha)$

D Watch Video Solution

4. A flag leaning towards East is inclined at an
angle θ to the level ground. A man walks a distance l from the foot of the flag towards West
and observes the angle of elevation of the top of the flag to be α. On walking further distance l_{1} in the same direction, the angle of elevation is decreased by β, then
$\tan \theta=\frac{l_{1}}{\left(l+l_{2}\right) \cot \alpha-l \cot (\alpha-\beta)}$

- View Text Solution

Problem Set 2 Fill In The Blanks

1. A train is moving at a constant rate at an angle
θ East of North. Observations of the train are made from a fixed point. It is due north at some
instant. Ten minutes earlier its bearing was α_{1}

West of North whereas ten minutes afterwards its
bearing α_{2} East of North, then $\tan \theta=$ \qquad .

- Watch Video Solution

Problem Set 3 Mcq S

1. $A B C$ is a triangular park with $A B+A C=100 \mathrm{~m}$. a
clock tower is situated at the mid-point of $B C$. The angles of elevation of the top of the tower at A
and B are $\cot ^{-1} \quad 3 \cdot 2$ and $\operatorname{cosec}^{-1} \quad 2 \cdot 6$ respectively. The height of the tower is
A. 16 m
B. 25 m
C. 50 m
D. None

Answer: B

- Watch Video Solution

2. A vertical tower stands on a declicity which is inclined at 15° to the horizon. From the foot of the tower a man ascends the declivity for 80 feet
and then finds that the tower substends an angle of 30°. The height of the tower is
A. $20(\sqrt{6}-\sqrt{2})$
B. $40(\sqrt{6}-\sqrt{2})$
C. $40(\sqrt{6}+\sqrt{2})$
D. None

Answer: B
3. A tower PQ of height h subtends an angle of 45° at a point A on the horizontal plane. At another point B on $A B$ inclined to horizontal at angle of 30°, the elevation of top of the tower is found to be 60°. If $A B=a$, then

$$
\begin{aligned}
& \text { A. } a=h(\sqrt{3}+1) \\
& \text { B. } a=h(\sqrt{3}-1) \\
& \text { C. } h=a(\sqrt{3}+1) \\
& \text { D. } h=a(\sqrt{3}-1)
\end{aligned}
$$

Answer: B
4. From a point on a horizontal plane, the elevation of the top of a hill is 45°. The elevation becomes 75° after walking a distance of 500 m up a slope of inclined at an angle of 15° to the horizon. The height of the hill is
A. $500 \sqrt{6}$
B. $500 \sqrt{3}$
C. $250 \sqrt{6}$
D. $250 \sqrt{3}$

Answer: C

Watch Video Solution

5. At each end of a horizontal base $A B$ of length $2 a$ the angular height of a certain peak is 15° and that at the mid-point C of base $A B$ it is 45°. The height of the peak is
A. $\frac{\sqrt{3}-1}{6} a$
B. $\frac{\sqrt{3}-1}{6} 3^{3 / 4} a$
C. $\frac{3-\sqrt{3}}{2} a$
D. $\frac{\sqrt{3}-1}{2 \sqrt{3}} a$

Answer: B

- Watch Video Solution

6. The angle of elevation of a certain peak when observed from each end of a horizontal base line of length 2 a is found to be θ. When observed from the mid-point of the base the angle of elevation is ϕ. The height of the peak is
A. $\frac{a}{\sqrt{(\cos \theta-\cos \Psi)}}$
B. $\frac{a}{\sqrt{\left(\cot ^{2} \theta-\cot ^{2} \Psi\right)}}$
C. $\frac{a}{\sqrt{\left(\cos ^{2} \theta-\cos ^{2} \Psi\right)}}$
D. None

Answer: B

(D) Watch Video Solution

Problem Set 3 True And False

1. A person stands at a point A due south of a tower and observes his elevation is 60°. He then
walks westwards towards B where the elevation is
45°. At a point C on $A B$ produced he finds it to be 30°, then $A B=2 B C$.

- Watch Video Solution

2. An object is observed from three points A, B, C in the same horizontal plane passing through the base of the object. The angle of elevation at B is twice and at C is thrice that at A. if $A B=a, B C=b$, then the height of the object is $\frac{a}{2 b} \sqrt{(a+b)(3 b-a)}$.
3. A man observes a tower AB of height h from a point P on the ground. He moves a distance d towards the foot of the tower and finds that the angle of elevation is doubled. He further moves a distance " $\frac{3 d}{4}$ in the same direction and finds that the angle of elevation is three times that of at the point P.then (A) $30 h^{2}=35 d^{2}$ (B) $35 h^{2}=36 d^{2}$
(C) $36 h^{2}=35 d^{2}$ (D) $36 h^{2}=35 d^{2}$
4. A balloon is observed simultaneously from three points A, B and C on a straight road directly under it. The angular elevation at B is twice and at C is thrice that at A. If the distance between A and B is 200 metres and the distance between B and C is 100 metres, then find the height of balloon above the road.

D Watch Video Solution

5. DE is a tower standing on a horizontal plane and $A B C D$ is a straight line in the plane. The
height of the tower substends an angle θ at A, 2θ
at B and 3θ at C. if $A B$ and $B C$ be respectively 50 metres and 20 metres then the height of the tower and the distance CD are $\frac{25}{2} \sqrt{7} \mathrm{~m}$ and 17.5 m.

D Watch Video Solution

6. The top of a tower is observed from three point
A, B, C on a straight line leading to the tower. If the
angles of elevation are $\theta, 2 \theta, 3 \theta$ from them, then
$\frac{A B}{B C}=\frac{\cot \theta-\cot 2 \theta}{\cot 2 \theta-\cot 3 \theta}$
7. The angle of elevation of the top of a tower at a point A due south of the tower is α and at β due east of the tower is β. If $A B=d$, then height of the tower is

- Watch Video Solution

8. Three points A, B, C are in a line inclined at an angle θ to the horizon of three points. A is the lowest and C is highest. D is a point vertically above C.
$A B=p, C D=q, \angle D A B=\alpha$ and $\angle D B C=\beta$
, then
$\cos \theta=\frac{p \sin \alpha \cos \beta}{q \sin (\beta-\alpha)}$

Watch Video Solution

9. Top of a mountain is observed from A and B at the sea level. If N is the point vertically below P and

$$
\angle N A B=\alpha, \angle N B A=\beta, \angle N A P=\theta, \angle N B P=\phi
$$

, then $\tan \phi \sin \beta=\tan \theta \sin \alpha$.

D Watch Video Solution

10. A man observes two objects in a straight line in the West. On walking a distance c to the north,
the objects subtend an angle α in front of him and on walking a further distance c to the north, they subtend an angle β. Then the distance between the objects is
$3 c$
$\overline{2 \cot \beta-\cot \alpha}$.

(D) Watch Video Solution

11. A man notices two objects in a straight line due West after walking a distance c due North he
observes that the objects subtend an angle α at his eye and after walking a further distance 2 c due north, they subtend an angle β. Then the distance between the objects is

$8 c$

$\overline{3 \cot \beta-\cot \alpha}$.

- Watch Video Solution

Problem Set 3 Fill In The Blanks

1. A man observes that when he has walked c
metres up an incline, the angular depression of an
object in a horizontal plane through the foot of
the slope in α, and when he has walked a further distance of c metres the depression is β. The inclination of the slope to the horizon is \qquad .

- Watch Video Solution

2. A tower is observed from two stations A and B where B is East of A at a distance 100 metres. The tower is due North of A and due North-West of B.
the angles of elevation of the tower from A and B are complementary, the height of the tower is \qquad
3. The elevation of a tower due North of a station

A is α and at another station B due West of A it is
β. The height of the tower is \qquad
(D) Watch Video Solution
4. The angle of elevation of a tower at a place due south of it is θ and at a place due west of A and at
a distance 'a' from it, the elevation ϕ. The height of the tower is \qquad .
5. PQ is a tower standing on horizontal plane, Q being its foot. Two points A and B are taken on the plane such that $A B=21$ and (c) $Q A B$ is a right angle. It is found that $\cot P A Q=2 / 5$ and \cot $\mathrm{PBQ}=3 / 5$, then the height of tower is \qquad .

D Watch Video Solution

6. A flag staff PN stands upright on a level ground.
A base $A B$ is measured at right. Angle to $A N$ such that points A, B, N lie in the same horizontal plane.

If $\angle P A N=\alpha$ and $\angle P B N=\beta$, then height of flag staff is \qquad .

D Watch Video Solution

7. The angle of elevation of the top of a tower
from a point A on the ground is θ and that from B is ϕ. If $A B=100$ metres and $A B$ is perpendicular to the line joining A with the foot of the tower, then the height of the tower is (given $\cot \theta=3 / 10, \cot \phi=1 / 2)$
8. The angle of elevation of a tower at point A due north of it is 30° and at another point due East of
A is 18°. If $A B=a$, then the height of the tower is \qquad

Watch Video Solution

9. A vertical pole stands at a point O on a horizontal ground. A and B are points on the ground d metres apart. The pole subtends angles α and β at A and B respectively. AB subtends an angle at O . the height of the pole is \qquad .
