

India's Number 1 Education App

MATHS

BOOKS - ML KHANNA

MATRICES

Illustration

1. If
$$A=\begin{bmatrix}1&-2&3\\-4&5&5\end{bmatrix}_{2 imes 3}$$
 and $B=\begin{bmatrix}2&3\\5&5\\2&1\end{bmatrix}$

View Text Solution

2. $A=egin{bmatrix} lpha & eta \ \gamma & \delta \end{bmatrix}$ find adj A and show that $adj(adjA)=|A|^{n-2}A.$

Watch Video Solution

Example

1. Find the rank of the martrix $A=\begin{bmatrix}1&2&3\\2&4&7\\3&6&10\end{bmatrix}$ by reducing into the Echelon form.

$$A=egin{bmatrix}1&3&4&3\3&9&12&9\-1&-3&-4&-3\end{bmatrix}$$
 by reducing into the

Echelon form.

3. Reduce the martix
$$A=\begin{bmatrix}2&4&3\\1&2&-1\\-1&-2&6\end{bmatrix}$$
 to

Echelon form and hence prove that ho(A)=2.

4. Find the rank of the martrix

$$A = egin{bmatrix} 1 & -2 & 1 & -1 \ 1 & 1 & -2 & 3 \ 4 & 1 & -5 & 8 \ 5 & -7 & 2 & -1 \end{bmatrix}$$
 by reducing into the

Echelon form.

Problem Set 1 Multiple Choice Questions

1. If
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 01 \end{bmatrix}$$
 then

$$3A - 4B =$$

C.
$$\begin{bmatrix} -4 & 6 & 3 \\ 6 & 5 & 12 \\ 12 & 15 & 14 \end{bmatrix}$$
D.
$$\begin{bmatrix} -4 & 3 & 6 \\ 6 & 15 & 12 \\ 12 & 5 & 14 \end{bmatrix}$$
Answer: A

A. $\begin{bmatrix} -4 & 3 & 6 \\ 6 & 5 & 12 \\ 12 & 15 & 14 \end{bmatrix}$

B. $\begin{bmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{bmatrix}$

2. If
$$A=egin{bmatrix}1&2\3&4\end{bmatrix}, B=egin{bmatrix}2&3\4&5\end{bmatrix},$$
 $4A-3B+C=O$, then C=

and

A.
$$\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$$
B. $\begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$

C.
$$\begin{bmatrix} -2 & 1 \\ 0 & -1 \end{bmatrix}$$

Answer: B

3. If
$$A=egin{bmatrix}1&0\2&0\end{bmatrix}, B=egin{bmatrix}0&0\1&12\end{bmatrix}$$
 then

A.
$$AB=O,BA=O$$

B.
$$AB = O, BA \neq 0$$

$$\mathsf{C}.\,AB
eq O,BA = O$$

D.
$$AB \neq O, BA \neq O$$

Answer: B

View Text Solution

4. If the matrix AB is zero then

A. A=O or B=O

B. A=O and B=O

C. It is not necessary that either A=O or B=O

D. All these statements are wrong.

Answer: C

Watch Video Solution

- **5.** If A and B are two matrices such that A+B and AB are both defined, then
 - A. A and B are two matrices not necessarily of same order
 - B. A and B are square matrices of same order
 - C. Number of colomns of A=number of rows of B.
 - D. None of these

Answer: B

6. If A is any $m \times n$ matrix such that AB and BA are both defined, then B is a matrix of type

A.
$$m \times n$$

B.
$$n \times m$$

$$\mathsf{C}.\,m imes m$$

$$\mathsf{D}.\,n imes n$$

Answer: B

7. If A and B are square matrices of size n imes n such that $A^2-B^2=(A-B)(A+B)$, then which of the following will be always true

- A. AB=BA
- B. A=B
- C. A or B=O
- D. A or B=I

Answer: A

8. If A is 3×4 matrix and B is a matrix such that A'B and BA' are both defined. Then B is of the type

- A. 3 imes 4
- $\text{B.}\,3\times3$
- $\mathsf{C.}\,4 imes4$
- D. 4 imes 3

Answer: A

9. If
$$A=egin{bmatrix}1&-2&3\\-4&2&5\end{bmatrix}_{2 imes 3}$$
 and $B=egin{bmatrix}2&3\\4&5\\2&1\end{bmatrix}$ then

- A. AB,BA, exist and are equal
- B. AB,BA exist but not equal
- C. AB exists and BA does not exist
- D. AB does not exist and BA exists.

Answer: A

10. Assuming that the sums and products given below are defined which of the following is not true for matrices.

A. AB=AC does not imply B=C

$$B. A + B = B + A$$

$$\mathsf{C.}\left(AB\right)'=B'A'$$

$$\operatorname{D.}AB = O \Rightarrow A = O \operatorname{or} \operatorname{B=O}$$

Answer: D

11. If a matrix has 13 elements, then the possible dimensions (order) it can have are

- A. 1×13 , 13×1
- B. $1 \times 26, 26 \times 1$
- C. 2 imes 13, 13 imes 2
- D. None of these

Answer: C

12. The construction of 3 imes 4 matrix a whose element

$$a_{ij}$$
 is given by $\dfrac{\left(i+j
ight)^2}{2}$ is

A.
$$\begin{bmatrix} 2 & 9/2 & 8 & 25 \\ 9 & 4 & 5 & 18 \\ 8 & 25 & 18 & 49 \end{bmatrix}$$
B.
$$\begin{bmatrix} 2 & 9/2 & 25/2 \\ 9/2 & 5/2 & 5 \\ 25 & 18 & 25 \end{bmatrix}$$
C.
$$\begin{bmatrix} 2 & 9/2 & 8 & 25/2 \\ 9/2 & 8 & 25/2 & 18 \\ 8 & 25/2 & 18 & 49/2 \end{bmatrix}$$

D. None of these

Answer: A

13.
$$\cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$$
 is

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
B.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

equal to

C.
$$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

D. None of these

Answer: A

14. If A is a 2×2 matrix such that

$$\begin{bmatrix}2&1\\3&2\end{bmatrix}A\begin{bmatrix}-3&2\\5&-3\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
 then the sum of the

elements in A is

A.
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathsf{B.} \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

$$\mathsf{C.} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Answer: A

15. What is the order of :
$$[xyz]\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
?

A.
$$3 imes 1$$

$$\mathsf{C.}\,1 imes3$$

D.
$$3 imes 3$$

Answer: B

16. If
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix} = O$$
 then x equals to

A.
$$-3\pm\sqrt{3}$$

$$\mathsf{B.} \; \frac{-9 \pm \sqrt{53}}{2}$$

C. 1

D. None of these

Answer: B

Watch Video Solution

17. If
$$\begin{bmatrix}1&\lambda&1\end{bmatrix}\begin{bmatrix}1&3&2\\0&5&1\\0&3&2\end{bmatrix}\begin{bmatrix}\lambda\\1\\-2\end{bmatrix}=O$$
 then $\lambda=$

A.-1

B. -1/2

D. 1

Answer: A

Watch Video Solution

18. The matrix producet

$$\left[egin{array}{c}1\\-2\\3\end{array}
ight]\left[egin{array}{ccc}4&5&2\end{array}
ight]\left[egin{array}{ccc}2\\-3\\5\end{array}
ight]$$
 equals

A.
$$\begin{bmatrix} 3 \\ -6 \\ 9 \end{bmatrix}$$

B.
$$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$

C.
$$\begin{bmatrix} 3 \\ 6 \\ -9 \end{bmatrix}$$

D. None of these

Answer: D

Watch Video Solution

19. The value of λ for which the matrix product

$$\begin{bmatrix} 2 & 0 & 7 \\ 0 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} -\lambda & 14\lambda & 7\lambda \\ 0 & 1 & 6 \\ \lambda & -4\lambda & -2\lambda \end{bmatrix} \quad \text{is an identify}$$

matrx.

A.
$$\frac{1}{2}$$

$$\overline{3}$$

$$\mathsf{C.}\;\frac{1}{4}$$

D.
$$\frac{1}{5}$$

Answer: C

View Text Solution

 $AB=B \ {
m and} \ BA=A \ {
m then} \ A^2+B^2=$ (A) 2AB (B)

A.
$$2AB$$

 $B.\,2BA$

 $\mathsf{C}.\,A+B$

 $\mathsf{D}.\,AB$

Answer: A

Watch Video Solution

21. If
$$A=\left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight]$$
 then $A^4=$

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathsf{B.} \left[\begin{matrix} 1 & 1 \\ 0 & 0 \end{matrix} \right]$$

$$\mathsf{C.} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Answer: D

22. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
 then value of A^n is

A.
$$\begin{bmatrix} 3n & -4n \\ n & n \end{bmatrix}$$

B.
$$\begin{bmatrix} 2n+&5-n \ n&-n \end{bmatrix}$$

C.
$$\begin{bmatrix} 3^n & \left(-4\right)^n \\ 1^n & \left(-1\right)^n \end{bmatrix}$$

D. None of these

Answer: A

View Text Solution

23. If
$$A=\left[egin{array}{cc} 3 & 1 \ -1 & 2 \end{array}
ight]$$
 then $A^2=$

A.
$$\begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix}$$

B.
$$\begin{bmatrix} 8 & -5 \\ 5 & 3 \end{bmatrix}$$

C.
$$\begin{bmatrix} 8 & -5 \\ -5 & -3 \end{bmatrix}$$
D.
$$\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

Answer: D

24. If
$$A=egin{bmatrix} a&b\\b&a \end{bmatrix}$$
 and $A^2=egin{bmatrix} lphaη\\eta&lpha \end{bmatrix}$ then $(lpha,eta)$ is

A.
$$\left(a^2+b^2,ab\right)$$

B.
$$\left(a^2+b^2,2ab\right)$$

C.
$$\left(a^2+b^2,a^2-b^2\right)$$

D.
$$\left(2ab,a^2+b^2
ight)$$

Answer: C

25. If
$$A=\left[egin{array}{cc} lpha & 2 \ 2 & lpha \end{array}
ight]$$
 and $\left|A^3\right|=125$ then $lpha$ is

A.
$$\pm 1$$

$$B.+2$$

 $C. \pm 3$

 $D. \pm 5$

Answer: B

Watch Video Solution

26. If for a 2×2 matrix $A, A^2 + I = O$, where I is identity matrix then A equals

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathsf{B.} \left[\begin{array}{cc} -i & 0 \\ 0 & -i \end{array} \right]$$

$$\mathsf{C.} \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Answer: C

Watch Video Solution

27. If
$$A+B=\begin{bmatrix}1&0\\1&1\end{bmatrix}$$
 and $A-2B=\begin{bmatrix}-1&1\\0&-1\end{bmatrix}$

then A is equal to

A.
$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$\mathsf{B.} \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$$

c.
$$\begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix}$$

D. None of these

Answer: A

28. If
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 4 & 7 \\ 5 & 1 & 6 \end{bmatrix}$$
 then the value of X where

A+X is a unit matrix is

A.
$$\begin{bmatrix} 0 & -2 & 1 \\ -3 & -3 & -7 \\ -5 & -1 & -6 \end{bmatrix}$$
B.
$$\begin{bmatrix} 0 & -3 & 5 \\ -2 & -3 & 1 \\ -1 & -7 & 6 \end{bmatrix}$$
C.
$$\begin{bmatrix} 0 & -1 & -2 \\ 3 & 3 & 7 \\ 5 & 1 & 6 \end{bmatrix}$$

D. None of these

Answer: B

29. If the matrix
$$egin{bmatrix} 1 & 3 & \lambda+2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{bmatrix}$$
 is singular then $\lambda=$

$$A. -2$$

$$D.-4$$

Answer: D

30. If
$$A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}, B = \begin{bmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{bmatrix}$$

then AB=

A. A

B. B

C. It is not necessary that either A=O or B=O

D. O

Answer: B

31. If
$$A=\left[egin{array}{cc} i & 0 \ 0 & i \end{array}
ight]$$
 then A^2 =

$$A. \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\mathsf{B.} \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right]$$

$$\mathsf{C.}\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$

D.
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer: D

Watch Video Solution

32. If
$$A=egin{bmatrix} lpha & 0 \ 1 & 1 \end{bmatrix}, B=egin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$$
 whenever $A^2=B$

then the value of lpha is

B. -1

C. 4

D. no real value of lpha

Answer: C

Watch Video Solution

33. If
$$A=egin{bmatrix}1&2\3&4\end{bmatrix}, B=egin{bmatrix}a&0\0&b\end{bmatrix}$$
 where $a,b,\ \in N$ If

AB=BA then three exists

A. only one B

B. infinitely many B's

C. more than one but infinite B's

D. not N exists

Answer: D

Watch Video Solution

34. If
$$A=egin{bmatrix}1&0&0\\0&1&0\\a&b&-1\end{bmatrix}$$
 then A^2 is eqal to

A. A

B.-A

C. Null matrix

D. I

Answer: B

Watch Video Solution

35. If
$$A=\begin{bmatrix}1&3\\3&4\end{bmatrix}$$
 and $A^2-\lambda A-5I=O$ then λ is equal to

A. 3

B. 0.05

C. 0.07

D. - 7

Answer: B

View Text Colution

View Text Solution

36. For any
$$2 \times 2$$
 matrix A if A (Adj. A) $= \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ then |A| equals

- A. 0
- B. 10
- C. 20
- D. 100

Answer: B

37. Assuming that the sums and products given below are defined which of the following is not true for matrices.

A.
$$\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$$

$$\mathsf{B.} \left[\begin{array}{cc} 10 & 0 \\ 0 & 10 \end{array} \right]$$

$$\mathsf{C.} \left[\begin{matrix} 0 & 10 \\ 10 & 0 \end{matrix} \right]$$

D.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer: C

38. If
$$A=egin{bmatrix} lpha & 0 & 0 \\ 0 & lpha & 0 \\ 0 & 0 & lpha \end{bmatrix}$$
 then the valueof

- (i) |A||Adj. A| and
- (ii) |Adj. A| is equal to
 - A. α^3
 - B. $lpha^6$
 - C. $lpha^9$
 - D. α^{27}

Answer: B

39. For a 3×3 matrix A if det A=4, then det (Adj. A) equals

A.-4

B.4

 $\mathsf{C.}\ 16$

D.64

Answer: C

40. If
$$A=egin{bmatrix}\cos heta&\sin heta\-\sin heta&\cos heta\end{bmatrix}$$
 and $A(adjA)=\lambda I$ then

 λ is equal to

- A. 1
- B. 2
- C. 3
- D. $\sin \theta \cos \theta$

Answer: A

Watch Video Solution

41. If A is a singular matrix then Adj is

- A. non singular
- B. singular
- C. symmetric
- D. skew symmetric

Answer: B

Watch Video Solution

42. Let A be a 2×2 matrix.

Statement 1: adj(adjA) = A

Statement 2: |adjA| = |A|.

Which statement is true

- A. Statement 1 is right
- B. Statement 2 is right
- C. Both statement are right and statement 2 explain statement 1
- D. Both statement are right and statement 2 does not explain statement 1

Answer: D

43. The inverse of the matrix $A=egin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}$ is equal

to

A. A

B. A'

C.
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
D.
$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Answer: A

44. Let A
$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
. Then the only correct

statement A is

A.
$$A=O$$

B.
$$A = (-1)I$$

C. A^{-1} does not exist

D.
$$A^{2} = I$$

Answer: D

45. The number of 3×3 non singular matrices, with four entries is 1 and all other entries as 0, is

- A. 5
- B. 6
- C. at least 7
- D. less than 4

Answer: C

View Text Solution

46. If I_3 is the identity matrix of order 3 order $\left(I_3\right)^{-1}$ is equal to

- A. 0
- B. $3I_3$
- $\mathsf{C}.\,I_3$
- D. does not exist

Answer: C

47. If $(1 \ 2 \ 3)A = (4 \ 5)$, what is the order of matrix A?

A.
$$3 imes 2$$

$$\text{B.}\,3\times1$$

$$\text{C.}~2\times3$$

$$\mathsf{D.}\,2 imes1$$

Answer: A

48. Let A be an invertible matrix, then which of the following is not true?

A.
$$A^{-1} = |A|^{-1}$$

B.
$$(A^2)^{-1} = (A^{-1})^2$$

C.
$$(A')^{-1} = (A^{-1})$$

D. None of these

Answer: C

49. If
$$A = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$$
 then A is

- A. Idempotent
- B. Involutary
- C. Nilpotent
- D. Scalar

Answer: A

50. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 then A is

- A. Diagonal matrix
- B. Scalar matrix

- C. Nilpotent matrix
- D. Idempotent matrix

Answer: A

51. Let
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 then A is

- A. Nilpotent
- B. Idempotent
- C. Scalar
- D. None of these

Answer: B

Watch Video Solution

52. The matrix
$$\begin{bmatrix} 0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0 \end{bmatrix}$$
 is

- A. symmetric
- B. skew symmetric
- C. diagonal
- D. upper diagonal

Answer: D

53. If A and B symmetric matrices of the same order then AB-BA is a matrix which is

- A. null
- B. unit
- C. symmetric
- D. skew symmetric

Answer: D

54. If
$$A=egin{bmatrix}0&-1&-4\\1&0&-7\\4&7&0\end{bmatrix}$$
 then $A^T=$

B. I

C. A

D.-A

Answer: A

55. If
$$A = \begin{bmatrix} a & p \\ b & q \\ c & r \end{bmatrix}$$
 then Det $\left(AA^T \right)$ is equal to

B.
$$a^2 + b^2 + c^2$$

C.
$$p^2 + q^2 + r^2$$

D. Σap

Answer: B

View Text Solution

56. If
$$A = \begin{bmatrix} \cos lpha & \sin lpha \\ -\sin lpha & \cos lpha \end{bmatrix}$$
 , then what is $A A^T$ equal

to (where A^T is the transpose of A) ?

A. only one B

B. I

C. A

 $\mathsf{D}.-A$

Answer: D

Watch Video Solution

57. If
$$A=egin{bmatrix} -1 & -2 & -2 \ 2 & 1 & -2 \ 2 & -2 & 1 \end{bmatrix}$$
 the adj. A=

A. A

 $\mathsf{B.}\,A^T$

 $\mathsf{C.}\ 3A$

 $\mathrm{D.}\, 3A^T$

Answer: D

Watch Video Solution

58. If I_3 is identity matrix of order 3, then $I_3^{-1} =$

A. O

B. $3I_{3}$

 $\mathsf{C}.\,I_3$

D. Not necessarily exists

Answer: B

59. From the matrix equation AB=AC we can conclude

B=C provided the matrix A is

- A. singular
- B. non singular
- C. symmetric
- D. None of these

Answer: C

60. If A and B are square matrices of order 3 such that |A| = -1, |B| = 3, the the determinant of 3 AB is equal to

- A. 9
- B. 27
- C. 81
- D. 81

Answer: C

61. If reach element of a 3×3 matrix is multiplied by 3,

then the determine of the newly formed matrix is

- A. 3|A|
- B.9|A|
- $\mathsf{C.}\,27|A|$
- D. $\left|A
 ight|^3$

Answer: C

62. If B is a non singular matrix and A is a square matrix, the $\det \left(B^{-1}AB \right) =$

A.
$$\det(A^{-1})$$

B.
$$\det(B^{-1})$$

$$\mathsf{C}.\det(A)$$

$$\mathsf{D}.\det(B)$$

Answer: C

63. Matrix
$$A_\lambda = egin{bmatrix} \lambda & \lambda - 1 \ \lambda - 1 & \lambda \end{bmatrix}, \lambda \in N$$

The value of $|A_1|+|A_2|+\ldots\ldots+|A_{300}|$ is

A.
$$(299)^2$$

$$B.(300)^2$$

$$C.(301)^2$$

D. None of these

Answer: B

64. If A is a square matrix such that |A|=2, then $|A^{\,\prime}|$,

where A' is transpose of A, is equal to

- A. 0
- $\mathsf{B.}-2$
- C.1/2
- D. 2

Answer: C

65. If $A=\left[egin{array}{cc} a & b \\ c & d \end{array}
ight]$ such that ad-bc
eq 0, then A^{-1} is equal to

A.
$$\frac{1}{ad-bc}\begin{bmatrix} d & b \\ -c & a \end{bmatrix}$$

B.
$$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

C.
$$1(ad-bc)egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

D. None of these

Answer: C

Watch Video Solution

66. Which of the following matrices is not invertible

A.
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
B.
$$\begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$$

C.
$$\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$
D.
$$\begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix}$$

Answer: D

67.

Watch Video Solution

$$ax+by=0,$$
 $cx+dy=0$, has a non trivial solution if

linear equations

The system of

A. ad - bc < 0

$$B. ad - bc > 0$$

$$\mathsf{C}.\,ac+bd=0$$

$$D. ad - bc = 0$$

Answer: B

68. If
$$A=\begin{bmatrix}1&-6&2\\0&-1&5\end{bmatrix}$$
 and $B=\begin{bmatrix}2\\2\\1\end{bmatrix}$ then AB

A.
$$[-8 \ 3]$$

B.
$$\begin{bmatrix} -8 \\ 3 \end{bmatrix}$$

$$\mathsf{C.}\begin{bmatrix}2 & -12 & 2\\0 & -2 & 5\end{bmatrix}$$

D.
$$\begin{bmatrix} 2 & -12 & 4 \\ 0 & -2 & -10 \end{bmatrix}$$

Answer: C

Watch Video Solution

69. If
$$A=egin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$$
 then A^2+2A equals

A. A

B. 2A

C. 3A

D. 4A

Answer: B

Watch Video Solution

70. If
$$A=egin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}$$
 then $A^2=$

A. A

B. 2A

C. 3A

D. I

Answer: B

71. If $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is to be square root of the two rowed

unit matrix, then α, β and γ satisfy the relation

A.
$$1+lpha^2+eta\gamma=0$$

B.
$$1-lpha^2-eta\gamma=0$$

$$\mathsf{C.}\,1-\alpha^2+\beta\gamma=0$$

D.
$$1+lpha^2-eta\gamma=0$$

Answer: B

72. If
$$A=egin{bmatrix} a&b\\b&a \end{bmatrix}$$
 and $A^2=egin{bmatrix} lphaη\\eta&lpha \end{bmatrix}$ then $(lpha,eta)$ is

A.
$$lpha=a^2+b^2, eta=ab$$

B.
$$lpha=a^2+b^2, eta=2ab$$

C.
$$lpha=a^2+b^2, eta=a^2-b^2$$

D.
$$\alpha=2ab, \beta=a^2+b^2$$

Answer: D

Watch Video Solution

73. If $A=\left(a_{ij}\right)$ is a 4×4 matrix and C_{ij} , is the cofactor of the element a_{ij} , in Det(A), then the

expression $a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}+a_{14}C_{14}$ equals- $A. \ 0$ $B. \ -1$ $C. \ 1$ $D. \ |A|$

Watch Video Solu

Answer: A

74. If A is a square matrix such that $A^2=A$, then $|\mathsf{A}|$ equals

- A. 0 or 1
- B. 1 or 1
- ${\it C.}-2~{\it or}~2$
- D. -3 or 3

Answer: C

75. If
$$A^2+A=I$$
 then A^{-1} is

- A. A-I
- $\mathsf{B.}\,I-A$

$$\mathsf{C}.\,A+I$$

D. None of these

Answer: B

Watch Video Solution

76. If $A^2-A+I=O$ then inverse of A is

A. A-I

 $\mathsf{B.}\,I-A$

 $\mathsf{C}.\,A+I$

D. A

Answer: B

Watch Video Solution

77. The multiplicative inverse of $A=egin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}$ is equal to

A.
$$\begin{bmatrix} -\cos\theta & \sin\theta \\ -\sin\theta & -\cos\theta \end{bmatrix}$$

$$\mathsf{B.} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

C.
$$\begin{bmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$

D.
$$\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

Answer: C

Watch video Solution

78. The matrix A satisfying the equation

$$egin{bmatrix} 1 & 3 \ 0 & 1 \end{bmatrix} A = egin{bmatrix} 1 & 1 \ 0 & -1 \end{bmatrix}$$
 is

A.
$$\begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix}$$

$$\mathsf{B.} \begin{bmatrix} 1 & -4 \\ 1 & 0 \end{bmatrix}$$

$$\mathsf{C.} \begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$$

D. None

Answer: C

79. If
$$A=BX$$
 and $A=\begin{bmatrix}1&2\\3&-4\end{bmatrix}$ and B is $\begin{bmatrix}1&0\\0&2\end{bmatrix}$

then X=

A.
$$\begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$$

$$\mathsf{B.}\,\frac{1}{2}{\tiny\begin{bmatrix} -2 & 4\\ 3 & 5\end{bmatrix}}$$

$$\mathsf{C.}\,\frac{1}{2}\!\begin{bmatrix}2&4\\3&-5\end{bmatrix}$$

D. None of these

Answer: A

View Text Solution

80. If a,b,c are non-zero real numbers, then the inverse

of the matrix
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
 is equal to :

A.
$$\begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$$
B. $abc \begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$

B.
$$abc \left[egin{array}{cccc} a & 0 & 0 & 0 \ 0 & b^{-1} & 0 \ 0 & 0 & c^{-1} \end{array}
ight]$$

$$\mathsf{C.} \; \frac{1}{abc} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

D.
$$\frac{1}{abc} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

Answer: a

81. If $D=diag[d_1,d_2,\ldots,d_n]$ where $d_i
eq 0 \, orall i=1,2,3,\ldots n$ then D^{-1} is equal to

A. Diagonal matrix

B. I_n

C. $diag(d_1^{-1}, d_2^{-1}, \dots, d_n^{-1})$

D. None

Answer: D

 $(A + B)^{-1} =$

$$\left[egin{array}{cc} 3 & 4 \ 2 & 4 \end{array}
ight], B = \left[egin{array}{cc} -2 & -2 \ 0 & -2 \end{array}
ight]$$

82. If $A = \begin{bmatrix} 3 & 4 \\ 2 & 4 \end{bmatrix}, B = \begin{bmatrix} -2 & -2 \\ 0 & -2 \end{bmatrix}$ then

A. does not exist

B.
$$A^{-1} + B^{-1}$$

C. skew symmetric

D. None of these

Answer: D

View Text Solution

A.
$$diagigl[d_1^{n-1},d_2^{n-1},d_3^{n-1}igr]$$

$$\mathsf{B.}\,A$$

C.
$$diagig[d_1^n,d_2^n,d_3^nig]$$

D. None of these

Answer: C

84. Inverse of the matrix
$$\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
 is

$$10B=\left[egin{array}{ccc} 4&2&2\ -5&0&lpha\ 1&-2&3 \end{array}
ight]$$
 If B is the inverse of A then $lpha$ is

85. If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$

and

Answer: D

A. -2

B. - 1

C. 2

D. 5

86. The inverse of a symmetric matrix is a matrix which is

- A. diagonal
- B. symmetric
- C. skew symmetric
- D. None of these

Answer: B

87.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1}=rac{1}{6}ig(A^2+CA+DIig)$$
 then C and D equal to

A.
$$-11, 6$$

$$B. -6, 11$$

D.
$$-6, -11$$

Answer: A

88. If
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 then $A^{-1} =$

A.
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
B.
$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
C.
$$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

D. None of these

Answer: C

View Text Solution

89. Let
$$F(lpha)=egin{bmatrix}\coslpha&-\sinlpha&0\ \sinlpha&\coslpha&0\ 0&0&1\end{bmatrix}$$
 then

 $F(\alpha)$. $F(\beta)$ is equal to

A.
$$F(\alpha\beta)$$

B.
$$F\left(\frac{\alpha}{\beta}\right)$$

C.
$$F(\alpha + \beta)$$

D.
$$F(\alpha - \beta)$$

Answer: C

90. If $E(\theta)=egin{bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{bmatrix}$, then $E(\alpha)$. $E(\beta)$ is equal to

A.
$$E(0)$$

B.
$$E(\alpha\beta)$$

C.
$$E(\alpha + \beta)$$

D.
$$E(\alpha - \beta)$$

Answer: A

91. If
$$E(\theta) = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$
, and θ and ϕ

differ by an odd multiple of $\pi/2, \quad \mathrm{then} \ E(\theta)E(\phi)$ is

а

A. Null matrix

B. Unit matrix

C. Diagonal matrix

D. None of these

Answer: C

92. If
$$A=\begin{bmatrix}\cos^2\theta&\cos\theta\sin\theta\\\cos\theta\sin\theta&\sin^2\theta\end{bmatrix}$$
 and $B=\begin{bmatrix}\cos^2\phi&\cos\phi\sin\phi\\\cos\phi\sin\phi&\sin^2\phi\end{bmatrix}$ are the two matrices such that the product AB is the null matrix then $\theta-\phi$ is equal to

A. 0

B. multiple of π

C. on odd multiple of $\pi/2$

D. None of these

Answer: C

93. If A and B are matrices given below:

$$A=egin{bmatrix}0&c&-b\-c&0&a\b&-a&0\end{bmatrix}$$
 and $B=egin{bmatrix}a^2&ab∾\ab&b^2&bc\ac&bc&c^2\end{bmatrix}$ then

AB is a

A. A

B.O

C. on odd multiple of $\pi/2$

D. I

Answer: A

94. Let
$$F(lpha)=egin{bmatrix}\coslpha&-\sinlpha&0\ \sinlpha&\coslpha&0\ 0&0&1\end{bmatrix}$$
 where alpha in

R.

Then $[F(\alpha)]^{-1}$ is equal to

A.
$$F(-\alpha)$$

B.
$$F(\alpha^{-1})$$

$$\mathsf{C}.\,F(2lpha)$$

D. None of these

Answer: C

95. If
$$F(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$G(eta) = egin{bmatrix} \coseta & 0 & \sineta \ 0 & 1 & 0 \ -\sineta & 0 & \coseta \end{bmatrix}$$
 , then $[F(lpha)G(eta)]^{-1}$ is

equal to

A.
$$F(-\alpha)G(-\beta)$$

B.
$$F(lpha^{-1})G(eta^{-1})$$

C.
$$G(-\beta)F(-\alpha)$$

D.
$$G(eta^{-1})F(lpha^{-1})$$

Answer: B

96.

If

$$egin{bmatrix} 1 & - an heta \ an heta \end{bmatrix} egin{bmatrix} 1 & an heta \ - an heta & 1 \end{bmatrix}^{-1} = egin{bmatrix} a & -b \ b & a \end{bmatrix},$$

then

A.
$$a = b = 1$$

B.
$$a=\cos 2\theta, b=\sin 2\theta$$

C.
$$a = \sin 2\theta$$
, $b = \cos 2\theta$

D. None of these

Answer: C

97. Which of the following the following is correct?

A. skew symmetric matrix of even order is always singular

B. skew symmetric matrix of odd order is non singular

C. skew symmetric matrix of odd order is singular

D. None of these

Answer: A

98. If A be a skew symmetric matrix of odd order, then

 $\left|A\right|$ is equal to

A. 0

B. 1

 $\mathsf{C.}-1$

D. None

Answer: A

99. If A be a skew symmetric matrix of even order then

|A| is equal to

A. perfect square

B. 0

C. not a perfect square

D. None of these

Answer: D

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 50 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 & 0 \\ 50 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 25 \end{bmatrix}$$

C.
$$\begin{bmatrix} 1 & 25 \\ 0 & 1 \end{bmatrix}$$
D.
$$\begin{bmatrix} 1 & 0 \\ 25 & 1 \end{bmatrix}$$

Answer: D

101. If
$$A=egin{bmatrix} a&0&0\\0&a&0\\0&0&a \end{bmatrix}$$
 then $A^n=$ A. $\begin{bmatrix} a^n&0&0\\0&a^n&0\\0&0&0 \end{bmatrix}$

B.
$$\begin{bmatrix} a^n & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$$
C.
$$\begin{bmatrix} a^n & 0 & 0 \\ 0 & a^n & 0 \\ 0 & 0 & a^n \end{bmatrix}$$
D.
$$\begin{bmatrix} na & 0 & 0 \\ 0 & na & 0 \\ 0 & 0 & na \end{bmatrix}$$

Answer: A

102. If
$$P=egin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}, A=egin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $Q=PAP^T$, then $P^TQ^{2015}P$ is

$$A. \begin{bmatrix} 1 & 2005 \\ 0 & 10 \end{bmatrix}$$

B.
$$\begin{bmatrix} \sqrt{3}/2 & 2005 \\ 1 & 0 \end{bmatrix}$$
C. $\begin{bmatrix} 1 & 2005 \\ \sqrt{3}/2 & 1 \end{bmatrix}$
D. $\begin{bmatrix} 1 & \sqrt{3}/2 \\ 0 & 2005 \end{bmatrix}$

Answer: C

Watch Video Solution

103. If
$$A=egin{bmatrix}1&2&-1\\-1&1&2\\2&-1&1\end{bmatrix}$$
 then det

A. 12^4

B.
$$13^4$$

[adj(adjA)] =

 $C. 14^4$

D. None of these

Answer: A

Watch Video Solution

104. The

$$x + 2y + 3z = 1, 2x + y + 3z = 2, 5x + 5y + 9z = 4$$

equations

have

A. unique solutions

B. infinite many solutions

C. inconsistent

D. None of these

Answer: A

Watch Video Solution

105. The equations 2x-3y+6z=4, 5x+7y-14z=13x+2y-4z=0,

have

A. unique solutions

B. no solution

C. infinite many

D. None of these

Answer: B

Watch Video Solution

106. x + y + z = 6

$$x - y + z = 2$$

$$2x + y - z = 1$$

then x,y,z are respectively

A. 3,2,1

B. 1,2,3

C. 2,1,3

D. None of these

Answer: C

Watch Video Solution

107. The value of a fro which the system of equations

$$ax + by + z = 0, x + ay + z = 0, x + y + z = 0$$

posses non zero solutions are given by

A. 1, 2

B. 1, -1

C. 1

D. None of these

Answer: D

108. There are two column vectors
$$X=\begin{pmatrix}x\\1\end{pmatrix}$$
 and $\begin{pmatrix}1&4\\5&2\end{pmatrix}$ X is parallel to X. If θ is the angle between them, the $\tan\theta$ is

A. 3

B. 5

C. 7

D. 9

Answer: A

109. Let A be the set of all 3×3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them of 0.

The number of matrices in A is

- A. 12
- B. 6
- C. 9
- D. 3

Answer: B

110. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1. Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations

$$Aegin{bmatrix} x \ y \ z \end{bmatrix} = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$$

has a unique solution is

A. less than 4

B. at least 4 but less than 7

C. at least 7 but less than 10

D. at least 0

Answer: B

111. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1. Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations

$$Aegin{bmatrix} x \ y \ z \end{bmatrix} = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$$

is inconsistent is

B. more than 2

C. 2

D. 1

Answer: C

Watch Video Solution

112.

$$A=egin{bmatrix}2&0&1\1&1&0\1&0&1\end{bmatrix},AU_1=egin{bmatrix}1\0\0\end{bmatrix}_{3 imes 1}$$
 ' $AU_2=egin{bmatrix}2\3\0\end{bmatrix}_{3 imes 1}$ and $AU_3=egin{bmatrix}3\2\1\end{bmatrix}_{3 imes 1}$

If $U_1,\,U_2,\,U_3$ are columns of matrix U, then

Determinant of U is

A. 13

B. 15

C. 3

D. 2

Answer: D

View Text Solution

113.

$$A=egin{bmatrix}2&0&1\1&1&0\1&0&1\end{bmatrix},AU_1=egin{bmatrix}1\0\0\end{bmatrix}_{3 imes 1}$$
 ' $AU_2=egin{bmatrix}2\3\0\end{bmatrix}_{3 imes 1}$ and $AU_3=egin{bmatrix}3\2\1\end{bmatrix}_{3 imes 1}$

If $U_1,\,U_2,\,U_3$ are columns of matrix U, then

Sum of elements of U^{-1} is

A.
$$-\frac{1}{3}$$

B.
$$\frac{1}{12}$$

$$c. - \frac{1}{4}$$

114. If
$$A=egin{pmatrix}1&0&0\\2&1&0\\3&2&1\end{pmatrix},U_1,U_2,\ \ \mathrm{and}\ \ U_3$$
 are column

matrices

satisfying

$$AU_1=egin{pmatrix}1\0\0\end{pmatrix}, AU_2=egin{pmatrix}2\3\0\end{pmatrix} ext{ and } AU_3=egin{pmatrix}2\3\1\end{pmatrix}$$
 and

U is 3 imes 3 matrix when columns are $U_1,\,U_2,\,U_3$ then

answer the following questions

The value of (3 2 0) $U\begin{pmatrix} 3\\2\\0 \end{pmatrix}$ is

A. 12

B. 21

C. 19

D. 24

Answer: D

Watch Video Solution

Problem Set 1 Assertion Reason

1. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denoted by tr(A), the sum of diagonal entries of A. Assume that $A^2=I$

Statement 1: If A
eq I and A = -I, then det A=-1

Statement 2: If A
eq I and A=-I, then $\operatorname{tr} A
eq 0$.

2. Let A be a square matrix all of whose entries are integers. If $\det A = \pm 1$ then Prove A^{-1} exists and all its entries.

Watch Video Solution

3. Let A be a 2×2 matrix with non zero entries and let $A^2 = I$, where I is 2×2 identity matrix. Define Tr(A)= sum of diagonal elemets of A and |A| = determinant of matrix A.

Statement 1: Tr(A) = 0

Statement 2: |A| = 1.

A. Statement 1: is true, Statement -2 is true,

Statement -2 is not a correct explanation for statement -1.

B. Statement -1 is true, Statement -2 is false.

C. Statement -1 is false, Statement -2 is true.

D. Statement -1 is true, Statement -2 is true,

Statement -2 is a correct explanation for

Statement -1.

Answer:

Watalayedaa Calatiaa

watch video Solution

Problem Set 1 True And False

1. If
$$A+B=\begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$
 and

$$A-B=egin{bmatrix} 1 & 4 & 4 \ 4 & 2 & 0 \ -1 & 1 & 2 \end{bmatrix}$$
 then $A=egin{bmatrix} 1 & 2 & 3 \ 3 & 2 & 1 \ 0 & 0 & 2 \end{bmatrix}$ and $egin{bmatrix} 0 & -2 & -1 \end{bmatrix}$

$$B = \begin{bmatrix} 0 & -2 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$

- 4A-3B+C=O, then $C=egin{bmatrix} 2 & 1 \ 3 & -1 \end{bmatrix}$.

and

View Text Solution

3. Is the equation given below valid?

$$\begin{bmatrix} 2 & 3 \\ 7 & 8 \\ 9 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 7 & 9 \\ 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$$

4. The matrices A and B commute

$$A = \left[egin{array}{cccc} 1 & 2 & 3 \ 3 & 2 & 0 \ -1 & -1 & -1 \end{array}
ight], B = \left[egin{array}{cccc} -2 & -1 & -6 \ 3 & 2 & 9 \ -1 & -1 & -4 \end{array}
ight]$$

View Text Solution

- 5. Is it possible to define the matrix AB and BA when
- a. A has 3 rows, B has 2 rows.
- b. B has 3 columns and B has 4 columns
- c. A has 4 rows and B has 4 columns.
 - Watch Video Solution

6. If
$$A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$
 then adj A=A.

7. If
$$A=egin{bmatrix} -1 & -2 & -2 \ 2 & 1 & -2 \ 2 & -2 & 1 \end{bmatrix}$$
 the adj. A=

8. If
$$A=\begin{bmatrix}1&-1&1\\2&-1&0\\1&0&0\end{bmatrix}$$
 , find A^2 and show that $A^2=A^{-1}$.

9. If

$$x + 2y + 3z = 6$$

$$3x - 2y + z = 2$$

$$4x + 2y + z = 7$$
 then $x - 1, y = 1, z = 1$.

Watch Video Solution

Problem Set 1 Fill In The Blanks

- 1. Is it possible to define the matrix A + B when
- a. A has 3 rows and B has 2 rows.....
- b. A has 2 columns and B has 4 columns.....

c. A has 3 rows and B has 2 columns.....

2. If $2X - Y = \begin{bmatrix} 3 & -3 & 0 \\ 3 & 3 & 2 \end{bmatrix}$

and

d Both A and B are square matrices of the same order

$$2Y+X=\left[egin{array}{cccc} 4&1&5\ -1&4&-4 \end{array}
ight]$$
 , then $X=$

3. If $\begin{vmatrix} 4 \\ 1 \\ 2 \end{vmatrix} A = \begin{vmatrix} -4 & 0 & 4 \\ -1 & 2 & 1 \\ 2 & 6 & 2 \end{vmatrix}$ then A=.......

4. If A be any $m \times n$ matrix and both AB and BA are defined then B should bematrix.

Watch Video Solution

5. If $A=\left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]$ then $7A^3+4A^2-11A=$

6. If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 then $A^2 =$

7. If
$$A=egin{bmatrix}1&2&2\2&1&2\2&2&1\end{bmatrix}$$
 then $A^2-4A-5I=$

- **8.** If $A=\begin{bmatrix}1&0\\0&0\end{bmatrix}, B=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ then AB=.....
 - **Watch Video Solution**

- **9.** If $A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 1 & 5 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$
- $2A 3B = \dots$
 - **Watch Video Solution**

If
$$A = \begin{bmatrix} 9 & 1 \\ 4 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 5 \\ 6 & 11 \end{bmatrix}$$

and

$$3A+5B+2C=0$$
 then C=.....

Watch Video Solution

11. If
$$A=\begin{bmatrix}2&-2&-4\\-1&3&4\\1&-2&x\end{bmatrix}$$
 is an idempotent matrix,

then x=.....

12. If
$$A=egin{bmatrix}2&1\\1&3\end{bmatrix}$$
 , $B=egin{bmatrix}3&2&0\\1&0&4\end{bmatrix}$, then AB=.....

13. If
$$A = \begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
 then

14. If
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, then

AB+BA=.....

15. If
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 4 & -1 & 3 \end{bmatrix}$$
 then Adj. A=......

- **16.** The inverset of $A = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$ is
 - Watch Video Solution

17. If
$$A=egin{bmatrix}\cos \theta & -\sin \theta & 0 \ \sin \theta & \cos \theta & 0 \ 0 & 0 & 1\end{bmatrix}$$
 then A^{-1} =......

- **19.** The inverse of $\begin{bmatrix} 3 & 3 & i \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ is
 - Watch Video Solution

Self Assessment Test

1. The number of 3 imes 3 matrices A whose entries are either $0 ext{ or } 1$ and for which the system

A[xyz] = [100] has exactly two distinct solution is a. 0

b. 2^9-1 c. 168 d. 2

A. 0

B. $2^9 - 1$

C. 168

D. 2

Answer: A

Watch Video Solution

2. If P is a 3 imes 3 matrix such that $P^T = 2P + I$ whre P^T is the transpose of P and I is the 3×3 identify matrix, then thre exists a column matrix

$$X = egin{bmatrix} x \ y \ z \end{bmatrix}
eq egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$$
 such that

$$A. PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\operatorname{B.}PX=X$$

$$\mathsf{C.}\,PX=2X$$

$$D. PX = -X$$

Answer: D

3. Let $A=egin{pmatrix}1&0&0\\2&1&0\\3&2&1\end{pmatrix}$. If u_1 and u_2 are column

matrices such that
$$Au_1=egin{pmatrix}1\\0\\0\end{pmatrix}$$
 and $Au_2=egin{pmatrix}0\\1\\0\end{pmatrix}$,

then $u_1 + u_2$ is equal to :

A.
$$\begin{pmatrix} -1\\1\\0 \end{pmatrix}$$
B. $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$

$$\mathsf{C.} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

D.
$$\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

Answer: D

4. Let $P=\left[a_{ij}\right]$ be a 3 imes3 matrix and let $Q=\left[b_{ij}\right]$, where $b_{ij}=2^{i+j}a_{ij}$ for $1\leq i,j\leq 3$. If the determinant of P is 2, then the determinant of the matrix Q is

- A. 2^{10}
- B. 2^{11}
- $C. 2^{12}$
- D. 2^{13}

Answer: D

5. Let P and Q be 3 imes 3 matrices such that $P \neq Q$. If $P^3 = Q^3$ and $P^2Q = Q^2P$ then determinant of $\left(P^2 + Q^2\right)$ is equal to

$$A.-2$$

B. 0.01

C. 0

D. - 1

Answer: C

6. Let M and N be two even order non singular skew symmetric matrices than MN=NM. If P^T denotes the transpose of P, then $M^2N^2\big(M^TN\big)^{-1}\big(MN^{-1}\big)^T$ is equal to

A.
$$M^2$$

$$B.-N^2$$

$$\mathsf{C.}-M^2$$

D.
$$MN$$

Answer: C

7. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $\begin{bmatrix} 1ab\omega 1c\omega^2\theta 1 \end{bmatrix}, where \text{ each of } a,b,andc \text{ is either } \omega \text{ or } \omega^2$. Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4 d. 8

- A. 0.02
- B. 0.03
- C. 4
- D. 0.08

Answer: A

8. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3, then the possible value(s) of the determinant of P is (are)

(A) 2 (B) 1 (C) 1 (D) 2

- A.-2
- B. 1
- **C**. 1
- D. 2

Answer: A

9. The number of 3 3 non-singular matrices, with four entries as 1 and all other entries as 0, is (1) 5 (2) 6 (3) at least 7 (4) less than 4

- A. < 4
- B. 5
- C. 6
- D. at least 7

Answer: D

10. Let ω be the complex number $\cos \frac{2\pi}{3} + I \sin \frac{2\pi}{3}$.

Then the number of distinct complex numbers z satisfying

$$\left|egin{array}{cccc} z+1 & \omega & \omega^2 \ \omega & z+\omega^2 & 1 \ \omega^2 & 1 & z+\omega \end{array}
ight|=0$$
 is equal to

- **A.** 1
- B. 2
- C. 0
- D. 4

Answer: A

11. Let k be a positive real number and let

$$A = egin{bmatrix} 2k-1 & 2\sqrt{k} & 2\sqrt{k} \ 2\sqrt{k} & 1 & -2k \ -2\sqrt{k} & 2k & -1 \end{bmatrix} \ b = egin{bmatrix} 0 & 2k-1 & \sqrt{k} \ 1-2k & 0 & 0\sqrt{k} \ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}$$

If $det(Adj(A))+det(Adj(B)) = 10^6$ then [k] is equal to

A. 4

B. 6

C. 0

D. 1

Answer: A

12. Let M be a 3×3 matrix satisfying

$$Megin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} = egin{bmatrix} -1 \ 2 \ 3 \end{bmatrix}, Megin{bmatrix} 1 \ -1 \ 0 \end{bmatrix} = egin{bmatrix} 1 \ 1 \ -1 \end{bmatrix}$$
 $Megin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 12 \end{bmatrix}$ then

and

The sum of the diagonal entries of M is

A. 9

B. 4

C. 1

D. 10

Answer: A

13. If
$$P=\begin{bmatrix}1&\alpha&3\\1&3&3\\2&4&4\end{bmatrix}$$
 is the adjoing of a 3×3 matrix

A and |A|=4 then lpha is equal to

A. 4

B. 11

C. 5

D. 0

Answer: B

Comprehension

1. Let p be an odd prime number and T_p be the following set of 2 x 2 matrices

$$T_p = igg\{A = egin{bmatrix} a & b \ c & a \end{bmatrix}igg\}, a,b,c \in \ ext{ {0,1,2,..., p -1}}$$

The number of A in T_p such that A is either symmetric or skew-symmetric or both and $\det(A)$ is divisible by p is: [Note: the trace of a matrix is the sum of its diagonal entries.]

A.
$$(p-1)^2$$

B.
$$2(p-1)$$

C.
$$(p-1)^2 + 1$$

D.
$$2p - 1$$

Answer: D

Watch Video Solution

2. Let p be an odd prime number and T_p be the following set of 2 x 2 matrices

$$T_p = igg\{A = egin{bmatrix} a & b \ c & a \end{bmatrix}igg\}, a,b,c \in \ ext{ {0,1,2,..., p -1}}$$

The number of A in T_p such that the trace of A is not divisible by p but $\det(A)$ is divisible by p is :

A.
$$(p-1)(p^2-p+1)$$

B.
$$p^3 - (p-1)^2$$

C.
$$(p-1)^2$$

D.
$$(p-1)(p^2-2)$$

Answer: C

Watch Video Solution

3. Let p be an odd prime number and T_p be the following set of 2 x 2 matrices

$$T_p = igg\{A = egin{bmatrix} a & b \ c & a \end{bmatrix}igg\}, a,b,c \in \ ext{ {0,1,2,..., p -1}}$$

The number of A in T_p such that $\det(A)$ is not divisible by p, is :

A. $2p^2$

B. p^3-5p

C.
$$p^3 - 3p$$

C.
$$p^3-3p$$

D. p^3-p^2

Answer: D

