# ©゙doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - ML KHANNA

## NUMERICAL METHODS

## Problem Set 1 Multiple Choice Questions

1. The equation $f(x)=0$ possesses same signs for
$f(a)$ and $f(b)$, then
A. at least one root of the equation lies in

$$
a<x<b
$$

B. either no root or an even number of roots lie in the interval $a<x<b$
C. any number of roots may lie in $a<x<b$
D. none of these

Answer: B

## 2. If all the roots of the equation $x^{2}-3 x+k=0$

 are real, then k lies in the intervalA. $(-0,-1)$
B. $(-2,2)$
C. $(1,0)$
D. none of these

Answer: B

- Watch Video Solution

3. Using successive bisection method the approximate value of a root of the equation
$x^{3}-9 x+1=0$ lying between $x=2$ and $x=4$
at the end of fourth iteration is
A. 2.88
B. 2.75
C. 2.65
D. none of these

Answer: A

- View Text Solution

4. Using method of interval halving, the equation $x^{4}-x^{3}-2 x^{2}-6 x-4=0$ has the approximate
value of the root lying between 2 and 3 upto third iteration
A. 2.735
B. 2.69
C. 2.63
D. none of these

Answer: C
5. Applying Newton's iterative formula the value of $\sqrt{29}$ upto three decimal places is
A. 5.384
B. 5.381
C. 5.387
D. none of these

## Answer: C

D View Text Solution
6. The approximate value of $(10)^{1 / 3}$ by Newton's formula correct to four places of decimal is
A. 2.1547
B. 2.1545
C. 2.1544
D. none of these

## Answer: C

D View Text Solution
7. The approximate value of the reciprocal of 3 by iteration using $X_{0}=0.3$ upto four decimal places is
A. 0.331
B. 0.3325
C. 0.3333
D. none of these

Answer: C

D View Text Solution
8. Using Newton-Raphson's method, the approximate value of the root of the equation $x^{4}-x-10=0$ near to the values 2 , correct to three decimal places is
A. 1.856
B. 1.735
C. 1.674
D. none of these

Answer: A
9. The root of the equation $x^{2}-5 x+2=0$ correct to three decimal places by the Newton-Raphson method is
A. $0: 438$
B. 4.562
C. 3.753
D. none of these

Answer: A::B

- View Text Solution

10. The root of the equation $f(x)=0$ in the interval $(a, b)$ is given by
A. $\frac{a f(b)-b f(a)}{b-a}$
B. $\frac{b f(a)-a f(b)}{f(b)-f(a)}$
C. $\frac{a f(b)-b f(a)}{f(b)-f(a)}$
D. none of these

Answer: C
11. The Newton-Raphson method for finding the root of an equation $f(x)=0$ is

$$
\begin{aligned}
& \text { A. } x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)} \\
& \text { B. } x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& \text { C. } x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\end{aligned}
$$

D. none of these

## Answer: B

12. Let $f(x)=0$ be an equation and $x_{1}, x_{2}$, be.two real numbers such that $f\left(x_{1}\right) f\left(x_{2}\right)<0$, then $f(x)=0$ has
A. at least one root or an odd number of roots in $\left(x_{1}, x_{2}\right)$
B. any number of roots in $\left(x_{1}, x_{2}\right)$
C. no root or an even number of roots in $\left(x_{1}, x_{2}\right)$
D. none of these

## Answer: A

13. Using Regula False method the real root of the equation $x-x^{4}-x^{3}-1=0$ lying between 1 and 2 upto second approximation is
A. 1.526
B. 1.416
C. 1.234
D. none of these

## Answer: B

14. In Simpson's one-third rule the integrand $\int_{a}^{b} f(x) d x$ assumes the shape of a curve given by
A. Parabola
B. hyperbola
C. circle
D. none of these

Answer: A
15. The evaluation of the definite integral $\int_{a}^{b} f(x) d x$ by Simpson's one-third rule requires the interval $[\mathrm{a}, \mathrm{b}$ ] to : be divided into number of sub-intervals of equal width
A. 2 n intervals
B. $2 \mathrm{n}+1$ intervals
C. $3 n$ intervals of equal width
D. any number of intervals

Answer: A
16. Trapezoidal rule for evaluation of so $\int_{a}^{b} f(x) d x$ requires the interval ( $a, b$ ) to be equally divided into
A. $2 n$ intervals
B. $2 \mathrm{n}+1$ intervals
C. $3 n$ intervals
D. any number of intervals

Answer: D
17.
value of the definite integral $\int_{0}^{4} e^{x} d x$ by Simpson's rule is
A. 53.6
B. 53.7
C. 53.873
D. none of these

Answer: C
18. Calculating $\int_{2}^{10} \frac{d x}{1+x}$ by dividing the range into eight equal parts, the approximate value upto three places of decimal is
A. 1.234
B. 1.356
C. 1.298
D. 1.3

Answer: D

D View Text Solution
19. The value of the integral $\int_{2}^{10} \frac{d x}{1+x}$ on dividing the interval $(0,2)$ into four equal parts by Trapezoidal rule is
A. 1.1234
B. 1.1183
C. 1.1167
D. none of these

Answer: C

D View Text Solution
20. In two consecutive roots of the equation $f(x)=0$. are $\alpha, \alpha+h$, where his small, then h is given by

> A. $\frac{f(\alpha)}{f^{\prime}(\alpha)}$
> B. $\frac{f^{\prime}(\alpha)}{f(\alpha)}$
C. $\frac{-f^{\prime}(\alpha)}{f(\alpha)}$
D. $-\frac{f(\alpha)}{f^{\prime}(\alpha)}$

## Answer: D

- View Text Solution

21. The equation $x^{3}-3 x+4=0$ has only one real root. Its first approximate value by the method of false position in the interval $(-3,-2)$ is
A. -2.125
B. 2.125
C. -2.812
D. 2.812

Answer: A

D View Text Solution

1. The first approximation to a real zero of the polynomial $x^{3}-2 x-5$ upto 3 decimal places by the 'false position' method is
A. 2.578
B. 2.057
C. 2.058
D. none of these

## Answer: C

2. The formula where $\left(f\left(x_{n-1}\right)\right.$ and $\left.f\left(x_{n}\right)\right)$ have opposite sign at each step $n \geq 1$ of method of
false opsition of successive approximation to find the approximate value of a root of the equation $f(x)=0$ is
A.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{f\left(x_{n}\right)}\left(x_{n}-x_{n-1}\right)
$$

B.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}\left(x_{n}-x_{n-1}\right)
$$

C.

$$
x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)+f\left(x_{n-1}\right)}{f\left(x_{n}\right)}\left(x_{n}-x_{n-1}\right)
$$

## D. none of these

## Answer: B

## - View Text Solution

3. Approximate value of $\int_{x_{0}}^{x_{0}+n h} d x$ by trapezoidal rule is
A. $\frac{h}{2}\left(y_{0}+y_{n}+\left(y_{1}+y_{2}+\ldots .+y_{n_{1}}\right)\right)$
B.

$$
\frac{h}{2}\left[y_{0}+y_{n}+4\left(y_{1}+y_{3}+\ldots .\right)+2\left(y_{2}+y_{4} \ldots\right)\right]
$$

C. both (a) and (b)

## D. none of these

## Answer: A

## D View Text Solution

4. By the application of Simpson's $1 / 3$ rule for numerical integration, with two sub-intervals the value of $\int_{0}^{1} \frac{d x}{1+x}$ is
A. $\frac{17}{24}$
B. $\frac{17}{36}$
C. $\frac{25}{36}$
D. $\frac{25}{17}$

## Answer: C

## D View Text Solution

5. If $\int_{a}^{b} f(x) d x$ is numerically integrated by

Simpson's rule then in any pair of consecutive subintervals by which of the following curves, the curve $y=f(x)$ is approximated
A. straight line
B. parabola

## C. circle

D. ellipse

## Answer: B

## - View Text Solution

6. If $y=2 x^{3}-2 x^{2}+3 x-5$ then for $x=2$ and
$\Delta x=0.1$, the value of $\Delta y$ is
A. 2.002
B. 1.9
C. 0
D. 0.9

## Answer: B

## - Watch Video Solution

7. The approximate value of $\sqrt[5]{33}$ correct to 4 decimal places is
A. 2.0000
B. 2.1001
C. 2.0125
D. none of these

Answer: C

## - View Text Solution

8. The value of the root nearest to the 2 after first
iteration of the equation $x^{4}-X-10=0$ by
Newton-Raphson method
A. 2.321
B. 2.125
C. 1.983
D. 1.871

## - View Text Solution

9. Let $f(0)=1, f(1)=2.72$, then the trapezoidal
rule gives approximate value of so $\int_{0}^{1} f(x) d x$
A. 3.72
B. 1.86
C. 1.72
D. 0.86
10. Simpson's $\frac{1}{3}$ rule for evaluation $\int_{a}^{b} f(x) d x$ requires the interval $[a, b]$ to be divides into
A.an even number of sub-intervals of equal

## width

B. any number of sub-intervals
C. any number of sub-intervals of equal width
D. none of these

