

MATHS

BOOKS - ML KHANNA

PAIR OF STRAIGHT LINES

Problem Set 1 Multiple Choice Questions

1. The angle between the lines given by the equation
$$\lambda y^2 + ig(1-\lambda^2ig)xy - \lambda x^2 = 0$$
 is

A. $45^{\,\circ}$

B. $60\,^\circ$

 $\mathsf{C.}\,90^{\,\circ}$

D. $15^{\,\circ}$

Answer: C

2. The angle between the pair of striaght lines $y^2 \sin^2 heta - xy \sin^2 heta + x^2 (\cos^2 heta - 1) = 0$ is A. $\pi/3$ B. $\pi/4$

C. $2\pi/3$

D. none of these

Answer: D

Watch Video Solution

3. The angle between the straight lines $x^2 + 4xy + y^2 = 0$ is

A. $30^{\,\circ}$

B. 45°

C. 60°

D. $90\,^\circ$

Answer: C

Watch Video Solution

4. The lines given by the equation $ig(y^2-4xy-x^2ig)(x+y-1)=0$ form

a triangle which is

A. equilateral

B. isosceles

C. right angled

D. obtuse angled

Answer: C

5. The angle between the lines given by the equation $\alpha y^2 + (1 - \alpha^2)xy - \alpha x^2 = 0$ is same as the angle between the lines A. $5x^2 + 2xy - 3y^2 = 0$ B. $5x^2 + 16xy + 5y^2 = 0$ C. xy = 0D. $x^2 - 2xy - 3y^2 = 0$

Answer: C

Watch Video Solution

6. The angle between the pair of lines given by the equation $x^2+2xy-y^2=0$ is

A. $\pi/3$

B. $\pi/6$

C. $\pi/2$

Answer: C

7. Which of the following pair of straight lines intersect at right angle?

A.
$$2x^2 = y(x+2y)$$

B.
$$(x + y)^2 = x(y + 3x)$$

$$\mathsf{C.}\,2y(x+y)=xy$$

D.
$$y = - + 2x$$

Answer: A

8. Prove that the straight lines joining the origin to the point of intersection of the straight line hx + ky = 2hk and the curve $(x - k)^2 + (y - h)^2 = c^2$ are perpendicular to each other if $h^2 + k^2 = c^2$.

- A. 0
- B.a
- $\mathsf{C}. a^2$
- $\mathsf{D.}-1$

Answer: C

Watch Video Solution

9. If the straight lines joining origin to the points of intersections of the line x + y = 1 with the curve $x^2 + y^2 + x - 2y - m = 0$ are perpendicular to each other than the value of m should be

A. 0

B. 1/2

C. 1

D. = -1

Answer: B

Watch Video Solution

10. The straight lines joining origin to the points of intersection of the straight line 3x - y - 2 = 0 and the curve $7x^2 - 4xy + 8y^2 + 2x - 4y - 8 = 0$ are inclined to each other at angle

A. $\pi/4$

B. $\pi/3$

C. $\pi/2$

D. none of these

Answer: C

11. The lines joining the origin to the points of intersection of the curve

$$ax^2+2hxy+by^2+2gx=0$$

and $a_1x^2+2b_1xy+b_1y^2+2g_1x=0$ are \perp then

A.
$$rac{a+b}{g_1} = rac{a_1+b_1}{g}$$

B. $(a+b)g_1 = (a_1+b_1)g$
C. $(a-b)g = (a_1-b_1)g_1$

D. none of these

Answer: B

12. The lines joining the origin to the points of intersection of the line 4x - 3y = 10 with the circle $x^2 + y^2 + 3x - 6y - 20 = 0$ are mutually perpendicular.

A. parallel

B. perpendicular

C. inclined at the angle of 45°

D. nione

Answer: A

Watch Video Solution

13. Show that all chords of the curve $3x^2 - y^2 - 2x + 4y = 0$, which subtend a right angle at the origin, pass through a fixed point. Find the coordinates of the point.

A. (1,-2)

B. (1,2)

C. (-1,2)

D. (-1,-2)

Answer: A

Watch Video Solution

14. if $h^2=ab$, then the lines represented by $ax^2+2hxy+by^2=0$ are

A. parallel

B. perpendicular

C. coincident

D. none of these

Answer: C

15. The angle between the pair of straight lines $x^2 + 4y^2 - 7xy = 0$ is

A. $\tan^{-1}(1/3)$ B. $\tan^{-1}(1/2)$ C. $\tan^{-1}(\sqrt{3})/5)$ D. $\tan^{-1}(5/\sqrt{3})$

Answer: C

Watch Video Solution

16. The difference of tangents of the angles which the lines given by

 $x^2ig(an^2lpha+\cos^2lphaig)-2xy anlpha+y^2\sin^2lpha=0$ make with the x -axis is

A. 1

B. 2

 $C.\sin 2\theta$

D. $2\sin\theta$

Answer: B

17. If the slope of the lines given by $a^2x^2 + 2hxy + b^2y^2 = 0$ be three times of the other , then h is equal to

Answer: C::D

18. The equation $ax^2 = 2hxy + by^2 = 0$ represented a pair of coincident

lines through the origin if

A.
$$h^2 = ab$$

B. $2h = ab$
C. $a = bh$
D. $b = ah$

Answer: A

19. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product then c has the value

- A. 1
- $\mathsf{B.}-1$
- C. 2
- $\mathsf{D.}-2$

Answer: C

 $6x^2-xy+4cy^2=0$ is 3x+4y=0, then c=

- A. 1
- B. -1
- C. 3
- $\mathsf{D.}-3$

Answer: D

Watch Video Solution

21. The straight lines

 $ig(A^2-3B^2ig)x^2+8ABXy+ig(B^2-3A^2ig)y^2=0$ form with the line

Ax + By + C = 0 an equilateral triangle of area

A.
$$\frac{c^2}{\sqrt{2}. (A^2 + B^2)}$$

B. $\frac{c^2}{\sqrt{3}. (A^2 + B^2)}$
C. $\frac{c^2}{A^2 + B^2}$

D. none of these

Answer: B

22. The angle between the straight lines represented by $(x^2+y^2)\sin^2lpha=(x\coslpha-y\sinlpha)^2$ is

A. α

 $\mathrm{B.}\,2\alpha$

 $\mathsf{C}.\,\pi-2\alpha$

D. none of these

Answer: B::C

23. Equation of pair of straight lines drawn thrugh (1,1) and perpendicular to the pair of lines $3x^2 - 7xy - 2y^2 = 0$ is

A.
$$2x^2 + 7xy - 11x + 6 = 0$$

B.
$$2(x-1)^2 + 7(x-1)(y-1) - 3y^2 = 0$$

$$\mathsf{C.} \ 2{(x-1)}^2 + 7{(x-1)}{(y-1)} + 3{(y-1)}^2 = 0$$

D. none of these

Answer: D

Watch Video Solution

24. Two of the lines represented by the equation $ax^3 + 3bx^2 = 3cxy^2 + dy^3 = 0$ will be perpendicular if

A.
$$a^2 + d^2 + 3(ac + bd) = 0$$

$$\mathsf{B}.\,a^2+d^2+3(ac+bd)=0$$

C.
$$a^2 + d^2 + 3(ac - bd) = 0$$

D. none of these

Answer: A

View Text Solution

25. Equation $ax^3 - 9yx^2 - y^2x + 4y^3 = 0$ represents three straight

lines. If two of the lines are perpendicular then a=

A. 5

 $\mathsf{B.}-5$

C. 4

 $\mathsf{D.}-4$

Answer: A::D

26. Area of the triangle formed by the lines $y^2 - 9xy + 18x^2 = 0$ and y = 9 is A. 27/4B. 0 C. 9/3D. 27

Answer: A

Watch Video Solution

27. The equation $3x^2 - 8xy - 3y^2 = 0$ and x + 2y = 3 represent the sides of a triangle which is

A. equilateral

B. right angled

C. isosceles

D. isosceles rt. Angled

Answer: D

Watch Video Solution

28. If a pair of lines $x^2 - 2px - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ is such

that each pair bisects the angle between the other pair, then

A.
$$pq=-1$$

B. $pq=1$
C. $\displaystyle rac{1}{p}+\displaystyle rac{1}{q}=0$
D. $\displaystyle \displaystyle rac{1}{p}-\displaystyle rac{1}{q}=0$

Answer: A

29. The two sets of pair of lines given $byax^2 - 2xy + by^2 = 0$ and $bx^2 - 2xy + ay^2 = 0$ be such that each pair bisects the angle between the other pair,

A. a - b = 2B. a + b = 0C. a + b = 2D. a - b = -2

Answer: A::B::D

Watch Video Solution

30. If the pair of straight lines $ax^2 + 2hxy - ay^2 = 0$ and $bx^2 + 2gxy - by^2 = 0$ be such that each bisects the angle between the other then

A. ag + bh = 0

B.
$$bg + ah = 0$$

C. $gh + ab = 0$
D. $h^2 - ab = 0$

Answer: C

Watch Video Solution

31. If one of the lines of the pair $ax^2 + 2hxy + by^2 = 0$ bisects the angle between positive direction of the axes, then a, b and h satisfy the relation.

A.
$$a+b=2|h|$$

- $\mathsf{B.}\,a+b=\ -\ 2h$
- $\mathsf{C}.\,a-b=\,-\,2|h|$

D.
$$(a - b)^2 = 4h^2$$

Answer: B

32. The given between one of the lines give by $ax^2 + 2hxy + by^2 = 0$ and one of the lines $ax^2 + 2hxy + by^2 + \lambda(x^2 + y^2) = 0$ is equal to the angle between the other two lines of the system then λ =

A. 2 B. 3

C. 4

D. any real number

Answer: D

Watch Video Solution

33. The equation to the pair of lines through the origin which are perpendicular to the lines represented by $ax^2 + 2hxy + by^2 = 0$ is

A.
$$bx^2+2hxy+ay^2=0$$

$$\mathsf{B}.\,bx^2 + 2hxy - bh^2 = 0$$

$$\mathsf{C}.\,bx^2 - 2hxy + ay^2 = 0$$

D. none of these

Answer: C

Watch Video Solution

34. The image of the pair of lines represented by $ax^2 + 2hxy + by^2 = 0$

by the line mirror y=0 is

A.
$$ax^2 - 2hxy + by^2 = 0$$

$$\mathsf{B}.\,ax^2-2hxy-by^2=0$$

C.
$$bx^2-2hxy+ay^2=0$$

D.
$$bx^2+2hxy+ay^2=0$$

Answer: A

35. $3x^2 + 8xy - 3y^2 = 0$ represents a pair of lines AB and BC

 $3x^2+8xy-3y^2+2x-4y-1=0$ represents two lines CD and DA.

A. The equation of CD is

B. The nature of the quadrilateral ABCD is

C. Area of quadrilaterla is......

D. The coordinates of point D are......

Answer: A::C::D

D Watch Video Solution

Problem Set 1 True And False

1. Each of the lines given by the equation $(x_1y-xy_1)^2=a^2ig(x^2+y^2ig)$ is

at a distance d from the point (x_1, y_1) .

2. The equation of the straight lines joining the orign to the points of intersection of the line x - y = 2 and the curve $5x^2 + 12xy - 8y^2 + 8x - 4y + 12 = 0$ are $y = \pm 2x$. Are these lines

equally inclined to the axes?

> Watch Video Solution

3. The lines joining the origin to the points of intersection of the line 4x - 3y = 10 with the circle $x^2 + y^2 + 3x - 6y - 20 = 0$ are mutually perpendicular.

Watch Video Solution

4. The lines y=mx bisects the angle between the lines $ax^2+2hxy+by^2=0$ if $hig(1-m^2ig)-m(a-b)=0.$

5. The straight lines $ax^2+2hxy+by^2=0$ have the same pair of bisector as those of the lines given by $a^2x^2+2h(a+b)xy+b^2y^2=0$

Problem Set 1 Fill In The Blanks

1. The product of the perpendicular drawn from the point (x_1, y_1) on the

lines represented by $ax^2 + 2hxy + by^2 = 0$ is

2. If the lines joining the origin to the points of intersection of the lines y = mx + c will the circle $x^2 + y^2 = a^2$ be perpendicular then the required condition is.....

3. The equation to the pair of lines passing through origin and perpendicular to

 $2x^2 + 5xy + 2y^2 + 10x + 5y = 0$ is

Watch Video Solution

Problem Set 2 Multiple Choice Questions

1. If $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ represents a pair of straight

lines, then the value of λ is

A. 1

B. 4

C. 3

D. 2

Answer: D

2. If the equation $12x^2-10xy+2y^2+11x-5y+\lambda=0$ represents a pair of straight lines then $\lambda=$

A. 1

B. 2

C. 3

D. none of these

Answer: B

Watch Video Solution

3.
$$x^2 + k_1 y^2 + 2k_2 y = a^2$$
 represents a pair of perpendicular straight

lines I

A.
$$k_1=1, k_2=a$$

B. $k_1 = 1, k_2 = -a$

C.
$$k_1 = \ -1, k_2 = \ -a$$

D.
$$k_1 = -1, k_2 = a$$

Answer: C::D

4. The equation
$$ax^2 + by^2 + \lambda x + \lambda y = 0, (\lambda \neq 0)$$
 represents a pair of straight lines if

A. b + c = 0

B. c + a = 0

C. a + b = 0

D. none of these

Answer: C

5. If $kx^2 + 10xy + 3y^2 - 15x - 21y + 18 = 0$ represents a pair of

straight lines, then k=

A. 3

B. 4

C.-3

D. none of these

Answer: A

Watch Video Solution

6. The four straight lines given by the equations $12x^2 + 7xy - 12y^2 = 0$

and $12x^2+7xy-12y^2-x+7y-1=0$ lie along the sides of a

A. square

B. parallelogram

C. rectangle

D. rhombus

Answer: A

7. The equation

 $x^2y^2 - 2xy^2 - 3y^2 - 4x^2y + 8xy + 12y = 0$ represents

A. a pair of lines

B. a pair of lines and a circle

C. a pair of lines and a parabola

D. four lines forming a square

Answer: D

8. The three lines given by $y^3 - 9x^2y = 0$ form a triangle which is

A. equilateral

B. isosceles

C. right angled

D. none of these

Answer: D

Watch Video Solution

9. The equation $y^2 - x^2 + 2x - 1 = 0$, represents

A. a pair of straight lines

B. a circle

C. a parabola

D. an ellipse

Answer: A

10. The quadrilatera formed by the pair of lines xy + x + y + 1 = 0, xy + 3x + 3y + 9 = 0 is

A. parallelogram

B. rhombus

C. rectangle

D. square

Answer: D

11. The circumcentre of the triangle formed by the lines xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is

A. (0,0)

B. (-1,-1)

C. (-1,-2)

D. (-2,-2)

Answer: B

Watch Video Solution

12. If xy + x + y + 1 = 0, x + ay - 3 = 0 are concurrent then a=

A. 3

 $\mathsf{B.4}$

C. 2

D. none of these

Answer: B

13. If by rotating the axes through an angle θ the general equation of second degree

 $ax^2+2hxy+by^2+2gx+2fy+c=0$ is free form the term of xy, then an2 heta is

A.
$$\frac{a-b}{2h}$$

B. $\frac{2h}{a+b}$
C. $\frac{a+b}{2h}$
D. $\frac{2h}{a-b}$

Answer: D

14. The equation $6x^2 - xy - 12y^2 - 8x + 29y - 14 = 0$ represents a

pair of lines and angle between them is

A.
$$\tan^{-1}\left(-\frac{17}{6}\right)$$

B. $\tan^{-1}\left(\frac{3}{4}\right)$
C. $\pi/4$
D. $\pi/3$

Answer: A

Watch Video Solution

15. If the equation $2x^2 - 3xy - ay^2 + x + by - 1 = 0$ represents two perpendicular lines (a,b) is

A. (2,3)

B. (3,2)

C. (-2,3)

D. (2, -9/2)

Answer: A::D

17. The distance between pair of parallel lines $9x^2 - 24xy + 16y^2 - 12x + 16y - 12 = 0$ is

ŀ	٩.	5

B. 8 C. $\frac{8}{5}$ D. $\frac{5}{8}$

Answer: C

Watch Video Solution

18. The angle between the straight lines $x^2-y^2-2y-1=0$ is

A. $90\,^\circ$

B. $60\,^\circ$

C. 75°

D. $36^{\,\circ}$

Answer: A

19. If the angle between the two lines represented by $2x^2+5xy+3y^2+7y+4=0$ is an^{-1} m, then m=

A. 1/5

- B. 1
- C.7/5

D. 7

Answer: A

Watch Video Solution

20. If $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ represents a pair of straight lines and θ is the angle between them, then $\cos ec^2\theta =$

A. 3

B. 9

C. 10

D. 100

Answer: C

21. The point of intersection of two lines given by
$$2x^2 - 5xy + 2y^2 - 3x + 3y + 1 = 0$$
 is

A.
$$\left(\frac{1}{2}, \frac{1}{3}\right)$$

B. $\left(-\frac{1}{7}, -\frac{1}{7}\right)$
C. $\left(-\frac{1}{3}, \frac{1}{3}\right)$
D. $\left(\frac{1}{3}, -\frac{1}{3}\right)$

Answer: D

22. The equation $8x^2+8xy+2y^2+26x+13y+15=0$ represents a

pair of parallel straight lines. The distance between them is

A.
$$\frac{7}{\sqrt{5}}$$

B. $\frac{\sqrt{7}}{5}$
C. $\frac{7}{2\sqrt{5}}$

D. none of these

Answer: C

Watch Video Solution

23. If the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel lines, then

A.
$$\frac{a}{h} = \frac{b}{h} = \frac{f}{g}$$

B. $\frac{a}{h} = \frac{h}{b} = \frac{f}{g}$
C. $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$

D. none of these

Answer: C

Watch Video Solution

24. If the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel lines, then

A.
$$\sqrt{\frac{g^2 - ac}{h^2 + a^2}}$$

B.
$$2\sqrt{\frac{g^2 - ac}{a(a+b)}}$$

C.
$$\sqrt{\frac{g^2 + ac}{a(a+b)}}$$

D.
$$2\sqrt{\frac{g^2 + ac}{a(a+b)}}$$

Answer: B

1. Match the entries of List A and List B

List A

- (a) The Lines joining the points of intersection of the line 4x-y=10 with t
- (b) The two lines given $a^2x^2 + 2hxy + b^2y^2 = 0$ are such that slop of or
- (c) If the equation $12x^2 10xy + 2y^2 + 11x 5y + \lambda = 0$ represents a
- $(d) \quad ext{If} \quad x^2 3xy + (\lambda)y^2 + 3x 5y + 2 = 0 \quad ext{represents a pair of straight}$

Watch Video Solution

2. Match the entries of of col. I with those of col. II.

The lines given by left hand side in col. I have the property mentioned in

col. II.

	Column I
(a)	$6x^{2} + 5xy - 6y^{2} - x + 5y - 1 = 0$
(b)	$30x^2 + 36xy + 6y^2 - 35x - 11y + 5 = 0$
(c)	$30x^2 + 41xy + 6y^2 - 35x - 11y + 5 = 0$
(d)	$6x^{2} + 12xy + 6y^{2} - 7x - 7y + 1 = 0$

- Column II
- (p) parallel
- (q) perpendicular
- (r) $I_x = 5/6$
- (s) I_y = 1/6

View Text Solution

Self Assessment Test

1. Separate equations of liens, for a pair of lines, whose equation is

$$x^2 + xy - 12y^2 = 0$$
 are
A. $x + 4y = 0$ and $x + 3y = 0$
B. $2x - 3y = 0$, $x - 4y = 0$
C. $x - 6y = 0$ and $x - 3y = 0$
D. $x + 4y = 0$ and $x - 3y = 0$

Answer: D

Watch Video Solution

2. The gradient of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ is twice that of the other, then

A.
$$h^2 = ab$$

 $\mathsf{B}.\, h = a + b$

 ${\sf C}.\,8h^2=9ab$

 $\mathsf{D}.\,9h^2=8ab$

Answer: C

3. The values of λ for which the equation $x^2 - y^2 - x - \lambda y - 2 = 0$ represents a pair of straight lines are

A. 3, -3

- B. -3, 1
- C.3, 1
- D. -1, 1

Answer: A

4. The acute angle between the lines joining the orign to points of intersection of the line $\sqrt{3}x + y = 2$ and the circle $x^2 + y^2 = 4$ is

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: B

Watch Video Solution

5. The angle between the lines represented by the equation $4x^2-24xy+11y^2=0$ are

A.
$$\tan^{-1}\frac{3}{4}$$
, $\tan^{-1}\left(\frac{-3}{4}\right)$
B. $\tan^{-1}\frac{1}{3}$, $\tan^{-1}\left(\frac{-1}{3}\right)$
C. $\tan^{-1}\frac{4}{3}$, $\tan^{-1}\left(\frac{-4}{3}\right)$

D. none of these

Answer: C

6. Condition that the two lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ to be perpendicular is

A. ab = -1

 $\mathsf{B}.\,a+b=0$

 $\mathsf{C}.\,a=b$

 $\mathsf{D}.\,ab=1$

Answer: B

7. Distance between two lines represented by the pair of straight lines

$$x^2-6xy+9y^2+3x-9y-4=0$$
 is

View Text Solution

8. The distance between the pair of parallel lines $x^2 + 2xy + y^2 - 8ax + 8ay - 9a^2 = 0$ A. $2\sqrt{5}a$ B. $\sqrt{10a}$ C. 10aD. $5\sqrt{2}a$

Answer: D

9. The equations to a pair of opposite sides of a parallelogram are $x^2-5x+6=0$ and $y^2-6y+5=0.$ The equations of its diagonals are

A.
$$x + 4y = 13, y = 4x - 7$$

B.
$$4x + y = 13, 4y = x - 7$$

C.
$$4x + y = 13, y = 4x - 7$$

D. none of these

Answer: C

10. If the bisectors of the lines
$$x^2-2pxy-y^2=0$$
 be $x^2-2qxy-y^2=0$ then

A. pq+1=0

B. pq - 1 = 0

$$\mathsf{C}.\, p+q=0$$

 $\mathsf{D}.\, p+q=1$

Answer: A