©゙doubtnut

 India's Number 1 Education App
MATHS

BOOKS - ML KHANNA

RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

EXAMPLE

1. The origin is shifted to $(-2,3)$ then what are the co-ordinates of the point $(3,-5)$ in the new position ?

- Watch Video Solution

2. If the origin is shifted to $(1,-2)$ the co -ordinates of A become $(2,3)$. What are the original co ordinates of A?
3. Determine as to what point the axes of the co-ordinates be shifted so as to remove the first degree terms from the equation
$f(x, y)=2 x^{2}+3 x y+3 y^{2}-12 x+12 y+24=0$

- Watch Video Solution

4. What will be the co ordinates of the point $(4,2 \sqrt{3})$ when the axes are rotated through an angle of 30° in clockwise sense?

- Watch Video Solution

5. What will be the co ordinates of the point in original position if its co ordinates after rotation of axes through an angle 60° be $(2,-\sqrt{3})$?

- Watch Video Solution

6. Let $0<\alpha<\pi / 2$ be a fixed angle. If $P=(\cos \theta, \sin \theta)$ and $Q=(\cos (\alpha-\theta), \sin (\alpha-\theta))$. then Q is obtained from P by
A. clockwise rotation around origin through an angle α
B. Anticlockwise rotation around origin through an angle α
C. reflection in the line through origin with slope $\tan \alpha$
D. reflection in the line through origin with slope $\tan \frac{\alpha}{2}$
7. PQ divides AB in the ratio

- View Text Solution

8. If the given lines be $3 x+4 y-11=0$ and $12 x-5 y-2=0$, then find the bisectors of the angles between them and discriminate which bisects the acute angle or which bisects the obtuse angle .

0
 Watch Video Solution

9. Find the equation of the bisector of acute angle between the lines

$$
5 y-12 x=20 \text { and } 3 x-4 y=8
$$

- Watch Video Solution

PROBLEM SET(1)(MULTIPLE CHOICE QUESTIONS)

1. The triangle formed by the points $A(2 a, 4 a), B(2 a, 6 a)$ and $C(2 a+\sqrt{3} a, 5 a)$ is
A. right angled
B. isosceles
C. equilateral
D. None

Answer: C

2. The points $A(12,8), B(-2,6)$ and $\mathrm{C}(6,0)$ are the vertices of
A. right angled Δ
B. isosceles Δ
C. equilateral Δ
D. None

Answer: A

- Watch Video Solution

3. The points $(1,1),(-1,-1)$ and $(-\sqrt{3}, \sqrt{3})$ are the angular points of a triangle, then the triangle is
A. right angled
B. isoceles
C. equilateral
D. None

Answer: C

- Watch Video Solution

4. If $P(1,2), Q(4,6), R(5,7)$ and $\mathrm{S}(\mathrm{a}, \mathrm{b})$ are the vertices of a parallelogram PQRS then
A. $a=2, b=4$
B. $a=3, b=4$
C. $a=2, b=3$
D. $a=3, b=5$

Answer: C

- Watch Video Solution

5. The extremities of the diagonal of a parallelogram are the points $(3,-4)$ and $(-6,5)$. Third vertex is the point $(-2,1)$, then the fourth vertex is
A. $(1,1)$
B. $(1,0)$
C. $(0,1)$
D. $(-1,0)$

Answer: D

- Watch Video Solution

6. Mid points of the sides Ab and AC of a $\triangle A B C$ are $(3,5)$ and $(-3,-3)$ respectively, then the length of the side $B C$ is
A. 10
B. 20
C. 15
D. 30

Answer: B

7. The coordinates of the mid-points of the sides of a triangle are (4, 2), (3,
$3)$ and (2, 2). What will be the coordinates of the centroid of the triangle?
A. $\left(3, \frac{7}{3}\right)$
B. $(3,3)$
C. $(4,3)$
D. None of these

Answer: A

- Watch Video Solution

8. If the vertex of a triangle is $(1,1)$ and the midpoints of two sides of the triangle through this vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is :
A. $(1,7 / 3)$
B. $(1 / 3,7 / 3)$
C. ($-1,7 / 3$)
D. $(-1 / 3,7 / 3)$

Answer: A

- Watch Video Solution

9. If a vertex of a triangle be $(1,1)$ and the middle points of the two sides through it be $(-2,3)$ and $(5,2)$ then the centroid of the triangle is
A. $\left(\frac{5}{3}, 3\right)$
B. $\left(\frac{5}{3},-3\right)$
C. $\left(-\frac{5}{3}, 3\right)$
D. $\left(-\frac{5}{3},-3\right)$
10. The centroid of a triangle is $(2,3)$ and two of its vertices are $(5,6)$ and $(-1,4)$. The thrid vertex of the triangle is
A. $(2,1)$
B. $(2,-1)$
C. $(1,2)$
D. $(1,-2)$

Answer: B

- Watch Video Solution

11. The co-ordinates of the third vertex of an equilateral triangle whose two vertices are at $(3,4)$ and $(-2,3)$ are

$$
\text { A. }(1,1) \text { or }(1,-1)
$$

B. $\left(\frac{1+\sqrt{3}}{2}, \frac{7-5 \sqrt{3}}{2}\right)$ or $\left(\frac{1-\sqrt{3}}{2}, \frac{7+5 \sqrt{3}}{2}\right)$
C. $(-\sqrt{3}, \sqrt{3})$ or $(\sqrt{3}, \sqrt{3})$
D. None of these

Answer: B

- Watch Video Solution

12. The vertices of a triangle ABC are $(2,1),(5,2)$ and $(3,4)$ respectively. The circumcentre is the point
A. $\left(\frac{3}{4}, \frac{7}{4}\right)$
B. $\left(\frac{13}{4}, \frac{9}{4}\right)$
C. $\left(\frac{11}{4}, \frac{5}{4}\right)$
D. None

Answer: B

13. If a and b are real numbers between 0 and 1 such that the points ($a, 1$),
$(1, b)$ and $(0,0)$ form an equilateral triangle, then a, b are
A. $2-\sqrt{3}, 2-\sqrt{3}$
B. $\sqrt{3}-1, \sqrt{3}-1$
C. $\sqrt{2}-1, \sqrt{2}-1$
D. None of these

Answer: A

- Watch Video Solution

14. Perpendicular from the origin to the line joining the points $(c \cos \alpha, c \sin \alpha)$ and $(c \cos \beta, c \sin \beta)$ divides it in the ratio
A. $2: 1$
B. 1:2
C. $1: 1$
D. None of these

Answer: C

- Watch Video Solution

15. If $A(a, a), B(-a,-a)$ are two vertices of an equilateral triangle then its thrid vertex is
A. $\left(\frac{a \sqrt{3}}{2},-\frac{a \sqrt{3}}{2}\right)$
B. $(-a \sqrt{3}, a \sqrt{3})$
C. $(a \sqrt{3}, a \sqrt{3})$
D. $(-a \sqrt{3},-a \sqrt{3})$

Answer: B::C

16. The range of values of α in the interval $(0, \pi)$ such that the points $(3,5)$ and $(\sin \alpha, \cos \alpha)$ lie on the same side of the line $x+y-1=0$ is
A. $(0, \pi / 4)$
B. $(\pi / 4, \pi / 2)$
C. $(0, \pi / 2)$
D. None

Answer: C

Watch Video Solution

17. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$, the coordinates of vertex A can be
A. $(1,6)$
B. $\left(-\frac{1}{2}, 5\right)$
C. $\left(\frac{5}{6}, 6\right)$
D. $\left(-7, \frac{1}{8}\right)$

Answer: C::D

- Watch Video Solution

18. A point P on y-axis is equisdistant from the points $A(-5,4)$ and $B(3,-2)$. Its co ordinates are
A. $\left(0, \frac{4}{3}\right)$
B. $\left(0, \frac{3}{4}\right)$
C. $\left(0, \frac{3}{7}\right)$
D. $\left(0, \frac{7}{3}\right)$

Answer: D

- Watch Video Solution

19. If the vertices P, Q, R of a triangle $P Q R$ are rational points, which of the following points of the triangle PQR is (are) always rational points(s)?
A. centroid
B. incentre
C. circumcentre
D. orthocentre

Answer: A::C::D

- Watch Video Solution

20. If α, β, γ are the real roots of the equation $x^{3}-3 a x^{2}+3 b x-1=0$
, then the centroid of the triangle whose vertices are the points $\left(\alpha, \frac{1}{\alpha}\right),\left(\beta, \frac{1}{\beta}\right)$ and $\left(\gamma, \frac{1}{\gamma}\right)$ is the point
A. (a, b)
B. $(a,-b)$
C. $(-a, b)$
D. $(-a,-b)$

Answer: A

- Watch Video Solution

21. Let $O(0,0), P(3,4), Q(6,0)$ be the vertices of the triangle OPQ. The point R inside the triangle OPQ is such that the triangles OPR, $P Q R$ are of equal area. The coordinates of R are
A. $\left(\frac{4}{3}, 3\right)$
B. $\left(3, \frac{2}{3}\right)$
C. $\left(3, \frac{4}{3}\right)$
D. $\left(\frac{4}{3}, \frac{2}{3}\right)$

Answer: C

22. Let S_{1}, S_{2}, \ldots. Be squares such that for each $n \geq 1$ the length of a side of S_{n} equals the lengths of a diagonal of S_{n+1}. If the length of a sides of S_{1} is 10 cm , then for which of the following values of n is the area of S_{n} less than 1 square cm ?
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D

(D) Watch Video Solution

23. If the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be equidistant from the points $A(a+b, b-a)$ and $B(a-b, a+b)$, then

$$
\text { A. } a x=b y
$$

B. $b x=a y$
C. $x y=a b$
D. none

Answer: B

(D) Watch Video Solution

24. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right.$, and $\left(a_{2}, b_{2}\right)$ is
$\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of c is
A. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}\right)-\left(a_{1}^{2}-b_{1}^{2}\right)$
B. $\left(a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}\right)$
C. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
D. $\sqrt{\left(a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}\right)}$
25. Vertices of a $\triangle A B C$ are $A(2,2), B(-4,-4), C(5,-8)$. Then length of the median through C is
A. $\sqrt{65}$
B. $\sqrt{117}$
C. $\sqrt{85}$
D. $\sqrt{113}$

Answer: C

- Watch Video Solution

26. If O be the origin and $Q_{1}\left(x_{1}, y_{1}\right)$ and $Q_{2}\left(x_{2}, y_{2}\right)$ be two points then $O Q_{1} . O Q_{2} \cos \left(\angle Q_{1} O Q_{2}\right)$ is equal to
A. $x_{1} y_{2}+x_{2} y_{1}$
B. $\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)$
C. $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$
D. $x_{1} x_{2}+y_{1} y_{2}$

Answer: D

- Watch Video Solution

27. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units, where $x>0, y>0$. The triangle is
A. right angled
B. acute angled
C. obtuse angled
D. isosceles

Answer: C

28. The triangle $O A B$ is right angled where points O, A, B are $(0,0)$ $(\cos \theta, \sin \theta)$ and $(\cos \phi \sin \phi)$ respectively, then θ and ϕ are connected by the relation
A. $\sin \left(\frac{\theta-\phi}{2}\right)=\frac{1}{\sqrt{2}}$
B. $\cos \left(\frac{\theta-\phi}{2}\right)=\frac{1}{\sqrt{2}}$
C. $\cos \left(\frac{\theta-\phi}{2}\right)=-\frac{1}{\sqrt{2}}$
D. $\sin \left(\frac{\theta-\phi}{2}\right)=-\frac{1}{\sqrt{2}}$

Answer: A::B::C::D

- Watch Video Solution

29. The line joining the points $A(b \cos \theta, b \sin \theta)$ and $B(a \cos \phi, b \cos \phi)$ is produced to the point $\mathrm{L}(\mathrm{x}, \mathrm{y})$ so that $A L: L B=b$: a then $x \cos \frac{\theta+\phi}{2}+y \sin \frac{\theta+\phi}{2}=$
A. 1
B. -1
C. 0
D. $a^{2}+b^{2}$

Answer: C

- Watch Video Solution

30. The vertices of a triangle $A B C$ has co -ordinates $(\cos \theta, \sin \theta)$
$(\sin \theta,-\cos \theta),(1,2)$. As θ varies the locus of centroid of the triangle is the circle
A. $x^{2}+y^{2}-2 x-4 y+1=0$
B. $3\left(x^{2}+y^{2}\right)-2 x-4 y+1=0$
C. $x^{2}+y^{2}-2 x-4 y+3=0$
D. None of these

Answer: B

D Watch Video Solution

31. Locus of the centroid of a triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and (1,0) where t is parameter is :
A. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
C. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$

Answer: B

- Watch Video Solution

32. Triangle is formed by the co-ordinates $(0,0),(0,21)$ and $(21,0)$. Find the number of integral co ordinate strictly inside the triangle (integral co
ordinates of both x and y)
A. 190
B. 105
C. 231
D. 205

Answer: A

- Watch Video Solution

33. If $p, x_{1}, x_{2}, \ldots \ldots \ldots x_{i} \ldots$.. And $q, y_{1}, y_{2}, \ldots \ldots \ldots \ldots y_{i} \ldots$ are in A.P. with common differences a and b respectively then the centre of mean position of the points $A_{i}\left(x_{i}, y_{i}\right), i=1,2 \ldots . . .$. n lies on the line
A. $a x-b h=a q-b p$
B. $a x-b y=b q-a p$
C. $b x-a y=a p-b q$
D. $b x-a y=b p-a q$

Answer: D

- Watch Video Solution

34. The vertices of a triangle are the points $A(-36,7), B(20,7)$ and $C(0,-8)$. If G and I be the centroid ad incentre of the triangle, then G I is equal to
A. $\frac{1}{3} \sqrt{397}$
B. $\frac{1}{3} \sqrt{173}$
C. $\frac{1}{3} \sqrt{205}$
D. None

Answer: C

- Watch Video Solution

35. The co ordinates of the base $B C$ of an isosceles triangle are $B(1,3)$ and $C(-2,7)$ then the co-ordinates of its vertex A are
A. $\left(\frac{5}{6}, 6\right)$
B. $\left(-7, \frac{1}{8}\right)$
C. $(1,6)$
D. $\left(-\frac{1}{2}, 5\right)$

Answer: A::B::C::D

- Watch Video Solution

PROBLEM SET(1)(TRUE AND FALSE)

1. The mean point of the vertices of a quadrilateral coincides with the mid point of the line joining the mid points of the diagonals.
2. If the vertices of a trianle $A B C$ be the ponts $(-36,7),(20,7)$ and $(0,-8)$ respectively the the coordinates of its centroid incentre areand respectively.

- Watch Video Solution

2. The vertices of a triangle ABC are $(0,0),(2,-1)$ and $(9,2)$ respectively, then $\cos B=.$.

- Watch Video Solution

3. The set of all real numbers x such that $x^{2}+2 x, 2 x+3$ and $x^{2}+3 x+8$ are the sides of a triangle is

- Watch Video Solution

1. The point $(0,8 / 3),(1,3)$ and $(82,30)$ are the vertices of
A. obtuse angled triangle
B. acute angled triangle
C. right angled triangle
D. isosceles triangle

Answer: C

- Watch Video Solution

2. The straight line $x+y=0,3 x+y-4=0, x+3 y-4=0$ form a triangle which is
A. isosceles
B. equilateral
C. right angled triangle
D. None of these

Answer: A

- Watch Video Solution

3. The straight lines $x+y-4=0,3 x+y-4=0, x+3 y-4=0$ form a triangle which is
A. isosceles
B. right angled
C. equilateral
D. None

Answer: A

4. The points $A(1,-1), B(\sqrt{3}, \sqrt{3})$ and $C(0, \sqrt{3}-1)$ are the vertices of a triangle which is
A. equilateral
B. isosceles
C. right angled
D. obtuse angled

Answer: B::C

- Watch Video Solution

5. The vertices of a triangle are
$A(2,4), B(2,6), C(2+\sqrt{3}, 5)$
The triangle is
A. isosceles
B. rt. Angled isosceles
C. equilateral
D. none

Answer: C

- Watch Video Solution

6. Determine whether the triangle formed by the lines $x-7 y+12=0,7 x+y-16=0$ and $3 x+4 y-4=0$ is
A. equilateral
B. right angled
C. isosceles
D. none

Answer: B::C

7. The number of triangle formed by the curves $x^{3}-x^{2}-x-2=0$ and $4 x^{2}+x^{2} y^{2}+2 y^{2}-2 x y^{2}-12 x+8=0$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

8. The area of a triangle is 5 units. Two of its certices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. Find the coordinates of the third vertex of the triangle.
A. $\left(\frac{7}{2}, \frac{13}{2}\right)$
B. $\left(\frac{5}{2}, \frac{5}{2}\right)$
C. $\left(-\frac{3}{2}, \frac{3}{2}\right)$
D. $(0,0)$

Answer: A::C::D

- Watch Video Solution

9. The vertices of a triangle ABC are $(\lambda, 2-2 \lambda),(-\lambda+1,2 \lambda)$ an ($\quad 4-\lambda, 6-2 \lambda$). If its area be 70 units then number of integral values of λ is
A. 1
B. 2
C. 4
D. 0

Answer: A

10. If the co-ordinates of points A, B, C, D are (6,3),(-3,5),(4,-2) and ($x, 3 x$) respectively and if $\frac{\Delta D B C}{\Delta A B C}=\frac{1}{2}$, then $\mathrm{x}=$
A. $\frac{8}{11}$
B. $\frac{11}{8}$
C. $\frac{7}{9}$
D. 0

Answer: B

- Watch Video Solution

11. Let $A(1, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with $A C$ as its hypotenuse. If the area of the triangle is 1 , then the set of values which k can take is given by:
B. $(0,2)$
C. $(-1,3)$
D. $(-3,-2)$

Answer: C

- Watch Video Solution

12. If the points $(2 k, k),(k, 2 k)$ and (k, k) with $k>0$ enclose a triangle of area 18 square units then the centroid of triangle is equal to
A. $(8,8)$
B. $(4,4)$
C. (-4,-4)
D. $(4 \sqrt{2}, 4 \sqrt{2})$

Answer: D

13. The area of the triangle with vertices at $(-4,1),(1,2),(4,-3)$ is
A. 14
B. 16
C. 15
D. None of these

Answer: A

Watch Video Solution

14. The area of the triangle with vertices at the points $(a, b+c),(b, c+a),(c, a+b)$ is
A. 0
B. $a+b+c$
C. $a b+b c+c a$
D. None of these

Answer: A

- Watch Video Solution

15. If r is the geometric mean of p and q , then the line $p x+q y+r=0$
A. has a fixed direction
B. passes thorugh a fixed point
C. forms with the axs a triangle of constant area
D. sum of its intercepts on the axes is constant

Answer: C

- Watch Video Solution

16. A line passsing through the point $(2,2)$ cuts the axes of co-ordinates at A and B such that area $O A B=k(k>0)$. The intercepts on the axes are the roots of the equation
A. $x^{2}-k x+2 k=0$
B. $x^{2}-2 k x+k=0$
C. $x^{2}=k x+2 k=0$
D. $x^{2}+k x+k=0$

Answer: A

- Watch Video Solution

17. The centroid of a triangle is $(1,4)$ and the co-ordinate of its two vertices are $(4,-3)$ and $(-9,7)$. Then the area of the triangle is
A. $183 / 2$
B. $-183 / 2$
C. 183
D. None of these

Answer: A

- Watch Video Solution

18. Let $A(2,-3) \operatorname{and} B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex C is the line $2 x+3 y=92 x-3 y=73 x+2 y=5$ $3 x-2 y=3$
A. $2 x+3 y=9$
B. $2 x-3 y=7$
C. $3 x+2 y=5$
D. $3 x-2 y=3$

Answer: A

19. Line L is perpendicular to the lines $5 x-y=1$. The area of triangle formed by the line and coordinate axes is 5 . Its equation is
A. $x+5 y=\sqrt{2}$
B. $x+5 y=5 \sqrt{2}$
C. $x+5 y=-5 \sqrt{2}$
D. $x+5 y=-\sqrt{2}$

Answer: B::C

- Watch Video Solution

20. Area of the triangle with vertces $(\mathrm{a}, \mathrm{b}),\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ where a, x_{1}, x_{2} are in G.P with common ratio r and b, y_{1}, y_{2} are in G.P with common ratio s is

$$
\text { A. } a b(r-1)(s-1)(s-r)
$$

B. $\frac{1}{2} a b(r+1)(s+1)(s-r)$
C. $\frac{1}{2} a b(r-1)(s-1)(s-r)$
D. $a b(r+1)(s+1)(r-s)$

Answer: C

- Watch Video Solution

21. The points $\left(x_{r}, y_{r}\right), r=1,2,3$ are the vertices fo an quilateral triangle of side a then the square of the determinant $D=\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$ equals
A. $4 a^{4}$
B. $3 a^{4}$
C. $\frac{3}{4} a^{4}$
D. None of these

Answer: C

- Watch Video Solution

22. $\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}=a^{2}$
$\left(x_{2}-x_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}=b^{2}$ and
$\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}=c^{2}$ then
$\frac{1}{4}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$ is equal to
A. $s(s-a)^{2}$
B. $(s-b)(s-c)^{2}$
C. $s(s-a)(s-b)(s-c)$ wher $2 s=a+b+c$
D. none

Answer: C

- Watch Video Solution

23. If P be a point equidistant from points $A(3,4)$ and $B(5,-2)$ and area of $\Delta P A B$ is 10 square units, then find the co-ordinates of point P.
A. $(7,4)$ or $(13,2)$
B. $(7,2)$ or $(1,0)$
C. $(2,7)$ or $(4,13)$
D. None of these

Answer: B

- Watch Video Solution

24. $P(3,1), Q(6,5)$ and $R(x, y)$ are three points such that the angle PRQ is a right angle and the area of $\triangle P R Q$ is 7 . The number of such points R that are possible is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

25. If P and Q are two points on the line $3 x+4 y=-15$, such that $O P=O Q=$ 9 units, the area of the triangle POQ will be
A. $9 \sqrt{2}$
B. $18 \sqrt{2}$
C. $12 \sqrt{2}$
D. None

Answer: B

26. $P(2,1), Q(4,-1), R(3,2)$ are the vertices of a triangle and if through P and R lines parallel to opposite sides are drawn to intersect in S, then the area of $P Q R S$, is
A. 12
B. 8
C. 6
D. 4

Answer: D

- Watch Video Solution

27. If the extremities of the base of an isosceles triangle are the points ($2 \mathrm{a}, 0$) and $(0, a)$ and the equation of one of its side is $\mathrm{x}=2 \mathrm{a}$, then area of the triangle in sq. units is
A. $5 a^{2}$
B. $\frac{5}{2} a^{2}$
C. $\frac{25}{2} a^{2}$
D. None

Answer: B

- Watch Video Solution

28. The line $x+y=4$ divides the line joining the points $(-1,1)$ and $(5,7)$ in the ratio
A. 2:3
B. 1: 2
C. 1:1
D. 4: 3

Answer: B

29. The line segment joining the points $(-3,-4)$, and $(1,-2)$ is divided by y-axis in the ratio a. 1:3 b. 2:3 c. 3:1 d. 3:2
A. 1:3
B. 2: 3
C. 3:1
D. 3:2

Answer: C

- Watch Video Solution

30. The line segment joining the points $(1,2)$ and $(-2,1)$ is divided by the line $3 x+4 y=7$ in the ratio a. 3:4 b. 4:3 c. 9:4 d. 4:9
A. 3:4
B. 4: 3
C. 9:4
D. $4: 9$

Answer: D

- Watch Video Solution

31. If A and B are the points $(-3,4)$ and $(2,1)$. Then the co -ordinates of pont C on $A B$ produced such that $A C=2 B C$ are
A. $(2,4)$
B. $(3,7)$
C. (7,-2)
D. $\left(-\frac{1}{2}, \frac{5}{2}\right)$

Answer: C

32. P and Q are points on the line joining $A(-2,5)$ and $B(3,1)$ such that $A P=P Q=Q B$. Then the mid pont of $P Q$ is
A. $\left(\frac{1}{2}, 3\right)$
B. $\left(-\frac{1}{2}, 4\right)$
C. $(2,3)$
D. $(1,4)$

Answer: A

- Watch Video Solution

33. A the equation of the lines joining the origin to the points of trisection of the portion of the line $3 x+y=12$ intercepted between the axes are

$$
\text { A. } \begin{aligned}
y & =\frac{1}{2} x \\
y & =2 x
\end{aligned}
$$

B. $y=x$

$$
y=-x
$$

C. $y=\frac{3}{2} x$

$$
y=6 x
$$

D. None

Answer: C

- Watch Video Solution

34. The perpendicular bisector of the line segment joining $P(1,4)$ and Q
$(k, 3)$ has yintercept -4 . Then a possible value of k is (1) 1 (2) $2(3)-2(4)$
-4
A. 1
B. 2
C. -2
D. -4

Answer: D

- Watch Video Solution

35. If a straight line passes through $\left(x_{1}, y_{1}\right)$ and its segment between the axes is bisected at this point then its equation is given by
A. $\frac{x}{x_{1}}+\frac{y}{y_{1}}=2$
B. $2\left(x y_{1}+y x_{1}\right)=x_{1} y_{1}$
C. $x y_{1}+y x_{1}=x_{1} y_{1}$
D. none

Answer: A

- Watch Video Solution

36. The equations of the straight line passing through the point $(4,3)$ and making intercepts on the co ordinate axes whose sum is -1 is:
A. $\frac{x}{2}+\frac{y}{3}=-1, \frac{x}{-2}+\frac{y}{1}=-1$
B. $\frac{x}{2}-\frac{y}{3}=-1, \frac{x}{-2}+\frac{y}{1}=-1$
C. $\frac{x}{2}+\frac{y}{3}=1, \frac{x}{2}+\frac{y}{1}=1$
D. $\frac{x}{2}-\frac{y}{3}=1, \frac{x}{-2}+\frac{y}{1}=1$

Answer: D

- Watch Video Solution

37. A straight line through the point $P(3,4)$ is such that its intercept between the axes is bisected at P. its equation is :
A. $3 x-4 y+7=0$
B. $4 x+3 y=24$
C. $3 x+4 y=25$
D. $x+y=7$
38. The equation of the straight line passing through the origin and the middle point of the intercept of the line $a x+b y+c=0$ between the axes is
A. $a x+b y=0$
B. $a x-b y=0$
C. $b x+a y=0$
D. $b x-a y=0$

Answer: B

- Watch Video Solution

39. Given points $A(4,5), B(-1,-4), C(1,3), D(5,-3)$,then the ratio of the segments into which $A B$ is divided by $C D$ is
A. $13: 20$
B. 11: 19
C. 21: 29
D. None of these

Answer: A

- Watch Video Solution

40. A, B, C are three collinear points such that $A B=2.5$ and the co ordinates of A and C are respectively $(3,4)$ and $(11,10)$ then the co ordinates of the point B are
A. $\left(5, \frac{11}{2}\right)$
B. $\left(5, \frac{5}{2}\right)$
C. $\left(1, \frac{11}{2}\right)$
D. $\left(1, \frac{5}{2}\right)$

D Watch Video Solution

41. Determine the ratio in which the line $y-x+2=0$ divides the line joining the points $(3,-1)$ and $(8,9)$?
A. 1: 2
B. 2: 3
C. $3: 4$
D. 1:1

Answer: B

- Watch Video Solution

42. Consider three points $P=(-\sin (\beta-\alpha),-\cos \beta)$,
$Q=(\cos (\beta-\alpha), \sin \beta)$
and $R=(\cos (\beta-\alpha+\theta), \sin (\beta-\theta)$
where $0<\alpha, \beta, \theta<\frac{\pi}{4}$. Then
A. Plies on the line segment RQ
B. Q lies on the line segment PR
C. R lies on the line segment $Q P$
D. P, Q, R are non collinear

Answer: D

- Watch Video Solution

43. If the lines $3 y+4 x=1, y=x+5$ and $5 y+b x=3$ are concurrent then the value of b is
A. 1
B. 3
C. 6
D. 0

Answer: C

- Watch Video Solution

44. Three lines $p x+q y+r=0, q x+r y+p=0$ and $r x+p y+q=0$ are concurrent , if
A. $\Sigma a^{3}=3 a b c$
B. $\sigma a=0$
C. $\Sigma a^{2}=\Sigma a b$
D. None

Answer: A::B::C::D

- Watch Video Solution

45. a, b, c are the sides of a triangle $A B C$. If the lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ be concurrent then $\triangle A B C$ is
A. right angled
B. isosceles
C. equilateral
D. none

Answer: C

- Watch Video Solution

46. The lines $x+a y+a^{3}=0, x+b y+b^{3}=0$ and $x+c y+c^{3}=0$ where a,b,c are all distinct are concurrent.
A. for all values of a, b, c
B. if $a+b+c=0$
C. if $a^{3}+b^{3}+c^{3}-3 a b c=0$
D. for no values of a, b, c

Answer: B::C

- Watch Video Solution

47. Given the four lines with the equations
$x+2 y-3=0,3 x+4 y-7=0$,
$2 x+3 y-4=0,4 x+5 y-6=0$, then
A. they are all concurrent
B. only three lines are concurrent
C. they are the sides of a quadrilateral
D. None of these

Answer: B

48. The three straight lines $2 x+11 y-5=0,24 x+7 y=20$ and $4 x-3 y-2=0$ are such that
A. they form a triangle
B. they are all concurrent
C. one of them is a bisector of the other two
D. none

Answer: B::C

- Watch Video Solution

49. The three lines $l_{1}=4 x-3 y+2=0, l_{2}=3 x+4 y-4=0$ and
$l_{3}=x-7 y+6=0$
A. form a rt. angled isosceles triangle
B. form a rt. Angled triangle
C. are concurrent
D. None

Answer: C

D Watch Video Solution

50. The point $(-4,5)$ is the vertex of a square and one of its diagonals is
$7 x-y+8=0$. The equation of the other diagonal is
A. $7 x-y=23$
B. $x+7 y=31$
C. $x-7 y=31$
D. None

Answer: B

51. The lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
A. A.P
B. G.P
C. H.P
D. None

Answer: A

- Watch Video Solution

52. If the straight lines $x+2 y-9=0,3 x+5 y-5=0$ and $a x+b y-1=0$ are concurrent, then the straight line $35 x-22 y-1=0$ passes through
A. $(a,-b)$
B. (a, b)
C. $(-a, b)$
D. None

Answer: D

- Watch Video Solution

53. If the lines $a x+y+1=0, x+b y+1=0$ and $x+y+c=0(\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct and $a b, c, \neq 1$) are concurrent then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$
A. 0
B. 1
C. 2
D. None

Answer: B

54. The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are
A. collinear
B. vertices of a rectangle
C. vertices of a parallelogram
D. none

Answer: A

- Watch Video Solution

55. For what value of k are the points
$(k, 2-2 k)(-k+1,2 k) \operatorname{and}(-4-k, 6,6-2 k)$ are collinear?
A. 2,3
B. 1,0
C. $\frac{1}{2},-1$

D. 1,2

Answer: C

- Watch Video Solution

56. The points ($x, 2 x$), $(2 y, y)$ and $(3,3)$ are collinear
A. for all values of (x, y)
B. 2 is A.M. of x, y
C. 2 is G.M. of x, y
D. 2 is H.M. of x, y

Answer: D

- Watch Video Solution

57. If t_{1}, t_{2} and t_{3} are distinct, the points $\left(t_{1} 2 a t_{1}+a t_{1}^{3}\right),\left(t_{2}, 2 a t_{2}+a t_{2}^{3}\right)$ and $\left(t_{3}, 2 a t_{3}+a t_{3}^{3}\right)$
A. $t_{1} t_{2} t_{3}=-1$
B. $t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3}$
C. $t_{1}+t_{2}+t_{3}=0$
D. $t_{1}+t_{2}+t_{3}=-1$

Answer: C

- Watch Video Solution

58. The equations $(b-c) x+(c-a) y+(a-b)=0 \quad$ and $\left(b^{3}-c^{3}\right) x+\left(c^{3}-a^{3}\right) y+a^{3}-b^{3}=0$ will represent the same line if
A. $b=c$
B. $c=a$
C. $a=b$
D. $a+b+c=0$

Answer: A::D

D Watch Video Solution

59. A, B, C are the points (a,p),(b,q) and (c,r) respectively such that a, b, c are in A.P. and p,q,r in G.P. If the points are collinear then
A. $p=q=r$
B. $p^{2}=q$
C. $q^{2}=r$
D. $r^{2}=p$

Answer: A

- Watch Video Solution

60. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in GP, with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
A. lie on a straight line
B. lie on an ellipse
C. lie on a circle
D. are vertices of a triangle

Answer: A

- Watch Video Solution

61. The points $A(a, b+c), B(b, c+a), C(c, a+b)$ are
A. collinear
B. non collinear
C. one is mid point of other two
D. none

- Watch Video Solution

62. If a, b, c are all unequal and different from 1 and the points $\left(\frac{t^{3}}{t-1}, \frac{t^{2}-3}{t-1}\right), t=a, b, c$ are collinear then $a b+b c+c a=$
A. $a b c$
B. $-a b c$
C. $a b c+3 \Sigma a$
D. None

Answer: C

D Watch Video Solution

63. If the points $(a, b),(c, d)$ and (a-c,b-d) are collinear, then
A. $a b=c d$
B. $a c=b d$
C. $a d=b c$
D. None

Answer: C

- Watch Video Solution

64. If $25 p^{2}+9 q^{2}-r^{2}-30 p q=0$, then a point on the line $p x+q y+r=0$ is
A. $(-5,3)$
B. $(1,2)$
C. $(0,0)$
D. $(5,3)$
65. The equation $(1+2 k) x+(1-k) y+k=0, k$ being parameter represents a family of lines. The line which belongs to this family and is at a maximum distance from the point $(1,4)$ is
A. $33 x+12 y+7=0$
B. $12 x+33 y-7=0$
C. $4 x-y+7=0$
D. $12 x-33 y+7=0$

Answer: B

- Watch Video Solution

66. The family of straight lines
$x(a+b)+y(a-b)=2 a$ where a and b are parameters, are
A. concurrent at $(1,-1)$
B. concurrent at $(1,1)$
C. not concurrent
D. None of these

Answer: B

- Watch Video Solution

67. The set of lines $a x+b y+c=0$ where $3 a+2 b+4 c=0$ are concurrent at the point
A. $(3,2)$
B. $(2,4)$
C. $(3 / 4,1 / 2)$
D. None

Answer: C

68. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P then the straight lines $a x+b y+c=0$ will always pass through the point
A. $(1,1)$
B. $(2,2)$
C. (-2,1)
D. $(1,-2)$

Answer: D

- Watch Video Solution

69. The equation of the line which passes through the point $(-3,8)$ and cuts of +ve intercepts on the axes whose sum is 7 is

$$
\text { A. } 3 x-4 y=12
$$

B. $4 x+3 y=12$
C. $3 x+4 y=12$
D. $4 x-3 y=12$

Answer: B

- Watch Video Solution

70. The eq. of the straight line which passes through the point $(1,2)$ and cuts of equal intercepts from the axes will be
A. $x+y=1$
B. $x-y=1$
C. $x+y+1=0$
D. $x-y-3=0$

Answer: C::D

71. The equations of the line the reciprocal of whose intercepts on the axes are a and b is given by
A. $x / a+y / b=1$
B. $a x+b y=1$
C. $a x+b y=a b$
D. $a x-b y=1$

Answer: B

- Watch Video Solution

72. A straight line meets the axes at A and B such that the centroid of $\triangle O A B$ is (a,a). The equation of the line AB is
A. $x+y=a$
B. $x-y=3 a$
C. $x+y=2 a$
D. $x+y=3 a$

Answer: D

- Watch Video Solution

73. IF the co ordinates of the mid points D, E, F of the sides $B C, C A, A B$ of a triangle $A B C$ are $(-1,2),(3,5)$ and $(2,3)$ respectively, the equation of $B C$ is
A. $2 x-y+4=0$
B. $2 x-y-4=0$
C. $2 x-y=0$
D. $2 x+y-4=0$

Answer: A

74. If each of the points $A\left(x_{1}, 4\right), B\left(-2, y_{1}\right)$ lies on the line joining the points $\mathrm{C}(2,-1), \mathrm{D}(5,-3)$ then the point $P\left(x_{1}, y_{1}\right)$ lies on the line
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x 3 y+16=0$
D. $6(x+y)-23=0$

Answer: B::C

- Watch Video Solution

75. The straight lines $a x+5 y=7$ and $4 x+b y=5$ intersected in the point ($2,-1$), the first meets the x-axis in P and Q the second meets the y axis in Q, then thelenght of $P Q$ is
A. $10 \sqrt{7} / 6$
B. $13 / 6$
C. $\sqrt{149} / 6$
D. $\sqrt{99} / 6$

Answer: C

- Watch Video Solution

76. Consider the equation $y-k=m(x-h)$. In this equation, if m and h are fixed and different lines are drawn for different value of k, then
A. the lines will pass through a single point
B. there will be just two lines
C. there will be a set of parallel lines
D. None of these

Answer: C

- Watch Video Solution

77. If a pair of opposite vertices of parallelogram are $(1,3)$ and $(-2,4)$ and the sides are parallel to $5 x-y=0$ and $7 x+y=0$, then the equation of a side through $(1,3)$ is
A. $5 x-y=2$
B. $7 x+y=10$
C. $5 x-y+14=0$
D. $7 x+y+10=0$

Answer: A::B::C::D

- Watch Video Solution

78. If $3 x+4 y+3=0,3 x+4 y-7=0$ and $4 x-3 y-2=0$ be the three sides of a square, then the equation of the fourth side is
A. $4 x-3 y-12=0$
B. $4 x-3 y+8=0$
C. $4 x-3 y-10=0$
D. $4 x-3 y+6=0$

Answer: A::B::C::D

- Watch Video Solution

79. The equations to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$. The equations of its diagonals are
A. $x+4 y=13$ and $y=4 x-7$
B. $4 x+y=13$ and $4 y=x-7$
C. $4 x+y=13$ and $y=4 x-7$
D. $y-4 x=13$ and $y+4 x=7$

Answer: C

80. The point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ and $\mathrm{Q}(\mathrm{b}, \mathrm{a})$ lie on the lines $3 x+2 y-13=0$ and $4 x-y-5=0$. The equation of line PQ is
A. $x-y=5$
B. $x+y=5$
C. $x-y=-5$
D. $x+y=-5$

Answer: B

- Watch Video Solution

81. How are the points $(3,4)$ and $(2,-6)$ situated w.r.t the line $3 x-4 y-8=0 ?$
A. same side
B. opposite side
C. one on the line
D. none

Answer: B

- Watch Video Solution

82. The sides $A B, B C, C D$ and $D A$ of a quadrilateral are $x+2 y=3, x=1, x-3 y=4,5 x+y+12=0 \quad$ respectively. The angles between diagonals $A C$ and $B D$ is
A. 45°
B. 60°
C. 90°
D. 30°

Answer: C

83. The equation of the line through the point $(-5,4)$ such that its segment intercepted by the lines $x+2 y+1=0$ and $x+2 y-1=0$ is of length $\frac{2}{\sqrt{5}}$ is
A. $2 x-y=4$
B. $2 x-y=-14$
C. $2 x-y=0$
D. none

Answer: B

- Watch Video Solution

84. Let PS be the median of the triangle with vertices $P(2,2), Q(6,-1)$ an $R(7,3)$. The equation of the line passing through ($1,-1$) and parallel to PS is
A. $2 x-9 y-7=0$
B. $2 x-9 y-11=0$
C. $2 x+9 y-11=0$
D. $2 x+9 y+7=0$

Answer: D

- Watch Video Solution

85. If $A(9,-9), B(1,3)$ are the ends of a right angled isosceles triangle then the third vertex is
A. $(8,-2)$
B. $(-8,2)$
C. $(8,-8)$
D. None of these

Answer: A

86. A triangle $A B C$ right angled at A has points A and B as $(2,3)$ and $(0,-1)$
respectively. If $\mathrm{BC}=5$ units, then the point C is
A. $(4,2)$
B. $(-4,2)$
C. ($0,-4$)
D. $(3,-3)$

Answer: A

- Watch Video Solution

87. The medians $A D$ and $B E$ of the triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are mutually perpendicular if
A. $b=\sqrt{2} a$
B. $a=\sqrt{2} b$
C. $b=-\sqrt{2} a$
D. $a=-\sqrt{2} b$

Answer: B::D

- Watch Video Solution

88. The line $4 x+y=\lambda$ cuts the axes of co ordinates at A and B . If C is the foot of perendicular drawn from origin O , then $\mathrm{AC}: \mathrm{CB}=$
A. $1: 16$
B. $16: 1$
C. 2:1
D. 1:2

Answer: A

89. The equations of perpendicular bisectors of the sides $A B$ and $A C$ of a triangle ABC are $x-y+5=0$ and $x+2 y=0$ respectively If the point A is $(1,-2)$ the equation of the line $B C$ is
A. $23 x+4 y-40=0$
B. $23 x+14 y+40=0$
C. $14 x+23 y-40=0$
D. $14 x+23 y+40=0$

Answer: C

- Watch Video Solution

90. The side $A B$ of an isosceles triangle is along the axis of x with vertices
$A(-1,0)$ and $A B=A C$. The equation of the side BC when $\angle A=120^{\circ}$ and $B C=4 \sqrt{3}$ is:
A. $\sqrt{3} x+y=3$
B. $x+y=\sqrt{3}$
C. $x+\sqrt{3} y=3$
D. None

Answer: C

- Watch Video Solution

91. A straight line through the point $(2,2)$ intersects the line $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the points A and B respectively. If O be the origin and $\triangle O A B$ be equilateral then the equation of the line AB is
A. $x+y-4=0$
B. $y-2=0$
C. $x-2=0$
D. None

Answer: B

92. The line $a x+b y+c=0$ intersects the line $x \cos \alpha+y \sin \alpha=c$ at the point P and angle between them is $\pi / 4$. If theline $x \sin \alpha-y \cos \alpha$ also passes through the point P, then
A. $a^{2}+b^{2}=c^{2}$
B. $a^{2}+b^{2}=2 c^{2}$
C. $a^{2}+b^{2}=2$
D. $a^{2}+b^{2}=4$

Answer: C

- Watch Video Solution

93. A line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$.Its y-intercept is
A. $1 / 3$
B. $2 / 3$
C. 1
D. $4 / 3$

Answer: D

- Watch Video Solution

94. If the lines $x(\sin \alpha+\sin \beta)-y \sin (\alpha-\beta)=3 \quad$ and $x(\cos \alpha+\cos \beta)+y \cos (\alpha-\beta)=5 \quad$ are \quad perpendicular then $\sin 2 \alpha+\sin 2 \beta$ is equal to:
A. $\sin (\alpha-\beta)-2 \sin (\alpha+\beta)$
B. $\sin 2(\alpha-\beta)-2 \sin (\alpha+\beta)$
C. $2 \sin (\alpha-\beta)-\sin (\alpha+\beta)$
D. $\sin 2(\alpha-\beta)-\sin (\alpha+\beta)$

- Watch Video Solution

$$
\text { 95. The lines } p\left(p^{2}+1\right) x-y+q=0 \quad \text { and }
$$

$$
\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0 \text { are perpendicular to a common line }
$$ for

A. more than two value of p
B. no value of p
C. exactly one value of p
D. exactly two values of p

Answer: C

96. The points $A(x, y), B(y, z)$ and $\mathrm{C}(z, \mathrm{x})$ represents the vertices of a right angled triangle, if
A. $x=y$
B. $y=z$
C. $\mathrm{z}=\mathrm{x}$
D. None of these

Answer: A::B::C

- Watch Video Solution

97. If $A(1,1), B(\sqrt{3}+1,2)$ and $C(\sqrt{3}, \sqrt{3}+2)$ be three vertices of a square then the diagonal through B is
A. $y=(\sqrt{3}-2) x+(3-\sqrt{3})$
B. $y=0$
C. $y=x$
D. None of these

Answer: D

- Watch Video Solution

98. $A(-2,4), B(-1,2), C(1,2)$ and $D(2,4)$ are the vertices of a quadrilateral. The line through vertex B which divides the quadrilateral into two equal areas has the equation
A. $x+y=1$
B. $x-y+3=0$
C. $x+1=0$
D. none

Answer: B

D Watch Video Solution

99. The four sides of a quadrilateal are given by $x y(x-2)(y-3)=0$. A line is drawn parallel to $x-4 y=0$ and it divides the quadrilateral into two equal areas. It equation is given by
A. $x-4 y-5=0$
B. $x-4 y+5=0$
C. $x-4 y+1=0$
D. $x-4 y-1=0$

Answer: B

- Watch Video Solution

100. The vertex C of a triangle $A B C$ moves on the line $L \equiv 3 x+4 y+5=0$. The co-ordinates of the points A and B are $(2,7)$ and $(5,8)$ The locus of centroid of $\triangle A B C$ is a line parallel to:
A. $A B$
B. BC
C. CA
D. L

Answer: D

- Watch Video Solution

101. The three lines $4 x-7 y+10, x+y=5$ and $7 x+4 y=15$ form the sides of a triangle Then the point $(1,2)$ is its
A. centroid
B. incentre
C. orthocentre
D. None of these

Answer: C

102. The equation of the base of an equilateral triangle is $x+y=2$ and the vertex is $(2,-1)$. Length of its side is
A. $\sqrt{\left(\frac{1}{2}\right)}$
B. $\sqrt{\left(\frac{3}{2}\right)}$
C. $\sqrt{\left(\frac{2}{3}\right)}$
D. $\sqrt{2}$

Answer: C

- Watch Video Solution

103. The distance between the lines $4 x+3 y=11$ and $8 x+6 y=15$ is
A. $\frac{7}{2}$
B. $\frac{7}{3}$
C. $\frac{7}{5}$
D. $\frac{7}{10}$

D Watch Video Solution

104. The distance between the lines $3 x+4 y=9$ and $6 x+8 y=15$ is
A. $3 / 2$
B. $3 / 10$
C. 6
D. None of these

Answer: B

Watch Video Solution

105. A variable point $\left(1+\frac{\lambda}{\sqrt{2}}, 2+\frac{\lambda}{\sqrt{2}}\right)$ lies in between two parallel lines $x+2 y=1$ and $2 x+4 y=15$ then the range of λ is given by
A. $0<\lambda<\frac{5 \sqrt{2}}{6}$
B. $-\frac{4 \sqrt{2}}{5}<\lambda<\frac{5 \sqrt{2}}{6}$
C. $-\frac{4 \sqrt{2}}{5}<\lambda<0$
D. None of these

Answer: B

- Watch Video Solution

106. The sum of the abscissas of all the point on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is
A. -4
B. -3
C. 3
D. 4
107. If p_{1}, p_{2}, p_{3} be the length of perpendiculars from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right)$ and ($\left.m^{\prime 2}, 2 m^{\prime}\right)$ respectively on the line $x \cos \alpha+y \sin \alpha+\frac{\sin ^{2} \alpha}{\cos \alpha}=0$ then p_{1}, p_{2}, p_{3} are in:
A. A.P
B. G.P
C. H.P
D. None

Answer: B

- Watch Video Solution

108. Points on the line $x+y=4$ that lie at a unit distance from the line
$4 x+3 y-10=0$ are
A. $(3,1)$ and $(-7,11)$
B. $(-3,7)$ and $(2,2)$
C. $(-3,7)$ and $(-7,11)$
D. None of these

Answer: A

- Watch Video Solution

109. If $2 p$ is the perpendicular distance from the origin to the line $\frac{x}{a}+\frac{y}{b}=1$ then $a^{2}, 8 p^{2}, b^{2}$ are in
A. A.P
B. G.P
C. H.P
D. None

Answer: C

110. If a,b,c are in H.P then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through the fixed point whose coordinates are
A. $(-1,-2)$
B. $(-1,2)$
C. $(1,-2)$
D. $(1,-1 / 2)$

Answer: C

- Watch Video Solution

111. Let the algebric sum of the perpendicular distance from the points $(2,0),(0,2),(1,1)$ to a variable straight line be zero then the line passes through a fixed point whose co ordinates are
A. $(1,1)$
B. $(2,2)$
C. $(0,0)$
D. None of these

Answer: A

- Watch Video Solution

112. If a, b, c are related by $4 a^{2}+9 b^{2}-9 c^{2}+12 a b=0$ then the greatest distance between any two lines of the family of lines $a x+b y+c=0$ is
A. $\frac{4}{3}$
B. $\frac{2}{3} \sqrt{13}$
C. $3 \sqrt{3}$
D. 0

Answer: B

113. If p and p^{\prime} the lengths of perpendicular from origin to the lines $x \sec \theta-y \cos e c \theta=a, x \cos \theta-y \sin \theta=a \cos 2 \theta$, then $4 p^{2}+p^{\prime 2}=$
A. $4 a^{2}$
B. $2 a^{2}$
C. a^{2}
D. none

Answer: C

- Watch Video Solution

114. If the sides of a square lie along the lines $5 x-12 y-65=0$ and $5 x-12 y+26=0$ then its area is
B. 4^{2}
C. 7^{2}
D. 9^{2}

Answer: C

- Watch Video Solution

115. The equation of two sides of a square whose area is 25 sq. units are $3 x-4 y=0$ an $\mathrm{d} 4 x+3 y=0$. Then equations of other two sides of the square are
A. $3 x-4 y \pm 25=0,4 x+3 y \pm 25=0$
B. $3 x-4 y \pm 5=0,4 x+3 y \pm 5=0$
C. $3 x-4 y \pm 5=0,4 x+3 y \pm 25=0$
D. none
116. A and B are two fixed points. The vertex C of a $\Delta B C$ moves such that $\cot A+\cot B=$ constant. Locus of C is a straight line
A. \perp to $A B$
B. parallel to $A B$
C. Inclined at an angle of $A-B$ to AB
D. none

Answer: B

- Watch Video Solution

117. A variable line through (p, q) cuts the axes of co ordinates at A and B respectively. Lines are drawn through A parallel to y-axis and through B parallel to x-axis. If they meet at P, then locus of p is
A. $\frac{x}{p}+\frac{y}{q}=1$
B. $\frac{p}{x}+\frac{q}{y}=1$
C. $\frac{x}{q}+\frac{y}{p}=1$
D. $\frac{q}{x}+\frac{p}{y}=1$

Answer: B

- Watch Video Solution

118. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$ Then the distance between L and K is (1) $\sqrt{17}$ (2) $\frac{17}{\sqrt{15}}$ (3) $\frac{23}{\sqrt{17}}$ (4) $\frac{23}{\sqrt{15}}$
A. $\sqrt{17}$
B. $\frac{17}{\sqrt{15}}$
C. $\frac{23}{\sqrt{17}}$
D. $\frac{23}{\sqrt{15}}$

Answer: C

- Watch Video Solution

119. A variable line cuts the axes of co ordinates in points A and B such that $O A+O B=c$. The locus of foot of perpendicular from origin to the line is
A. $x^{2}+y^{2}=c x y$
B. $x^{2}+y^{2}=2 c x y$
C. $(x+y)\left(x^{2}+y^{2}\right)=c x y$
D. None of these

Answer: C

120. Through the point $(5,12)$ a straight line is drawn to meet the axes is points A and B. If the rectangle OACB is completed, then locus of the vertex C is
A. $\frac{10}{x}-\frac{5}{y}=1$
B. $\frac{12}{x}+\frac{5}{y}=1$
C. $\frac{5}{x}+\frac{12}{y}=1$
D. $\frac{5}{x}-\frac{12}{7}=1$

Answer: C

- Watch Video Solution

121. The line L has intercepts a and b on the coordinate axes. When keeping the origin fixed, the coordinate axes are rotated through a fixed angle,then the same line has intercepts p and q on the rotated axes. Then
A. $a^{2}+b^{2}=p^{2}=q^{2}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
C. $a^{2}+p^{2}=b^{2}=q^{2}$
D. $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

Answer: B

- Watch Video Solution

122. If the expression $x^{2}+4 x y+y^{2}$ transforms to $A x^{2}+B y^{2}$ by rotation of axes through an angle $\theta\left(0 \leq \theta \leq \frac{\pi}{2}\right)$ then θ is equal to
A. $\theta=\pi / 6$
B. $\theta=\pi / 4$
C. $\theta=\pi / 3$
D. 'none of these

Answer: B

123. The point $(4,1)$ undergoes the following three transformations successively
(i) Reflection about the line $\mathrm{y}=\mathrm{x}$
(ii) Transformation through a distance 2 units along the positive direction of x-axis
(iii) Rotation through angle $\pi / 4$ about the origin in the anticlockwise direction. The final position of the point is given by the coordinates
A. $\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
B. $(-2,7 \sqrt{2})$
C. $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
D. $(\sqrt{2}, 7 \sqrt{2})$

Answer: C

- Watch Video Solution

124. The point $\left(\alpha^{2}+2 \lambda+5, \lambda^{2}+1\right)$ lies on the line $x+y=10$ for:
A. all real values of λ
B. some real values of λ
C. $\lambda=1$
D. $\lambda=-2$

Answer: B::C::D

- Watch Video Solution

125. The line $P Q$ whose equation is $x-y=2$ cuts the x-axis at P, and Q is $(4,2)$. The line $P Q$ is rotated about P through 45^{0} in the anticlockwise direction. The equation of the line $P Q$ in the new position is $y=-\sqrt{2}$
(b) $y=2 x=2$ (d) $x=-2$
A. $y=-\sqrt{2}$
B. $y=2$
C. $x=2$
D. $x=-2$

Answer: C

- Watch Video Solution

126. The vertices A and D of square $A B C D$ lie on the positive sides of x axis and y-axis , respectively. If the vertex C is the point $(12,17)$, then the coordinates of vertex B are
(a) $(14,16)(b)(15,3) 17,5)(d)(17,12)$
A. $(14,16)$
B. $(15,3)$
C. $(17,5)$
D. $(17,12)$

Answer: C

127. On the portion of the line $\frac{x}{3}+\frac{y}{4}=1$ intercepted between the axes a square is constructed away from the origin. Coordinates of the vertex of square which is farthest from origin is
A. $(3,8)$
B. $(6,4)$
C. $(7,3)$
D. $(4,7)$

Answer: D

- Watch Video Solution

128. P is a point on either of the two lines $y-\sqrt{3}|x|=2$ at a distance 5 units from their point of intersection The coordinates of the foot of the perpendicular from P on the bisector of the angle between them are
A. $\left\{0, \frac{1}{2}(4+5 \sqrt{3})\right\}$
B. $\left\{\left(0, \frac{1}{2}(4-5 \sqrt{3})\right\}\right.$
C. $\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$
D. None of these

Answer: A

- Watch Video Solution

129.

the lie
$y=x \sqrt{3}$
cuts the
curve $x^{3}+y^{3}+3 x y+5 x^{2}+3 y^{2}+4 x+5 y+1=0$ at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ then OA.OB.OC is equal to
A. $\frac{4}{13}(3 \sqrt{3}-1)$
B. $3 \sqrt{3}+1$
C. $\frac{1}{\sqrt{3}(2+7 \sqrt{3})}$
D. None of these

Answer: C

- Watch Video Solution

130. If the axes are turned through an angle $\tan ^{-1} 2$ then the equation $4 x y-3 x^{2}=a^{2}$ becomes
A. $x^{2}-4 y^{2}=2 a^{2}$
B. $x^{2}-4 y^{2}=a^{2}$
C. $x^{2}+4 y^{2}=a^{2}$
D. $x^{2}-2 x y=a^{2}$

Answer: A

- Watch Video Solution

131. Consider the lines given by
$L_{1}=x+3 y-5=0$
$L_{2}=3 x-k y-1=0$
$L_{3}=5 x+2 y-12=0$
Match the statements/Expression in Column-I with the statements/Expressions in Column-II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in OMR.

Column-I

(A) $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ are concurrent, if
(B) One of $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ is parallel to
at least one of the other two, if
(C) $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ form a triangle, if
(D) $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ do not form a triangle, if
(Q) $\mathrm{k}=-\frac{6}{5}$
(R) $k=\frac{5}{6}$

Column -II

(P) $\mathrm{k}=-9$
(S) $\mathrm{k}=5$

- Watch Video Solution

132. Shifting of origin $(0,0)$ to (h, k)
$f(x, y) \rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
By rotating the axes through an angle θ the equation
$x y-y^{2}-3 y+4=0$ is transformed to the form which does not contain the term of xy then $\sin \theta=$

- Watch Video Solution

133. Shifting of origin $(0,0)$ to (h, k)
$f(x, y) \rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
The equation $2 x y=9$ is transformed to $x^{2}-y^{2}=9$ by rotating the axes through an angle $\pi / 4$. Is this statement true of false?

- Watch Video Solution

134. Shifting of origin $(0,0)$ to (h, k)
$f(x, y) \rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
By rotating the axes through an angle θ in anti clockwise direction the equation $f(x, y)=x^{2}-2 x y+3 y^{2}+4 x-4 y+1=0$,
transforms to the form which does not contain the term of y then $\theta=135^{\circ}$

- Watch Video Solution

135. Shifting of origin $(0,0)$ to (h, k)
$f(x, y) \rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
Axes area rotated through a +ive obtuse agle θ so that the transformed equation of the curve $3 x^{2}-6 x y+3 y^{2}+7 x-3=0$ isfree from the term of xy then the coefficint of x^{2} inthe transformed equation is

- Watch Video Solution

136. BE and CF are two medians of $\triangle A B C$ whose vertex A is $(1,3)$. The equation of BE is $x-2 y+1=0$ and CF is $\mathrm{y}-1=0$.

Determine the following:
The co-ordinates of points B, C and centroid G. The equations of lines $A B$ and AC .

PROBLEM SEI(2)(TRUE AND FALSE)

1. If the vertices of a triangle have integral coordionates, then the triangle the triangle cannot be equilateral.

- Watch Video Solution

2. $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ are the sides of a triangle
whose area is $\frac{1}{2} \frac{\left(c_{1}-c_{2}\right)^{2}}{m_{1}-m_{2}}$.
A. True
B. False
C.
D.

Answer: T

- Watch Video Solution

3. If the lines $p_{r} x+q_{r} y+1=0, r=1,2,3$ be concurrent then the points $\left(p_{r}, q_{r}\right), r=1,2,3$ are collinear.

- Watch Video Solution

4. If $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & 1 \\ a_{2} & b_{2} & 1 \\ a_{3} & b_{3} & 1\end{array}\right|$, then the two triangles with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)$ must be congruent.

- Watch Video Solution

5. The lines $(p-q) x+(q-r) y+(r-p)=0$
$(q-r) x+(r-p) y+(p-q)=0$
$(r-p) x+(p-q) y+(q-r)=0$
are concurrent

- Watch Video Solution

6. If a, b are distinct and different from zero, then $\left(a^{2}, a\right),\left(b^{2}, b\right)$ and $(0,0)$ are collinear.

- Watch Video Solution

7. If x, y, z are different from 1 (one) and are the roots of the equation
$t^{3}+t^{2}+t-4=0$ then the points
$\left(\frac{x^{3}}{x-1}, \frac{x^{2}-3}{x-1}\right),\left(\frac{y^{3}}{y-1}, \frac{y^{2}-3}{y-1}\right),\left(\frac{z^{3}}{z-1}, \frac{z^{2}-3}{z-1}\right)$ are collinear is this statement true?

- View Text Solution

1. If $(-4,5)$ is a vertex of a square and one of its diagonal is $7 x-y+8$ - 0 . Find the equation of other diagonal

- Watch Video Solution

2. The co-ordinates of those points on the line $3 x+2 y=5$ which are equisdistant from the lines $4 x+3 y-7=0$ and $2 y-5=0$ are and \qquad

- Watch Video Solution

PROBLEM SET(3)(MULTIPLE CHOICE QUESTIONS)

1. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is 2 (b) 0 (c) 4 (d) 1
A. 2
B. 0
C. 4
D. 1

Answer: A

D Watch Video Solution

2. The equation of the lines through the point of intersectiono the lines $x-3 y+1=0,2 x+5 y-9=0$ and whose disance from the origin is $\sqrt{5}$ are
A. $3 x+2 y-7=0$

$$
5 x-7 y+12=0
$$

B. $2 x+y-7=0$

$$
3 x-5 y+2=0
$$

C. $2 x+y-5=0$
D. none

Answer: C

- Watch Video Solution

3. Given the family of lines
$a(2 x+y+4)+b(x-2 y-3)=0$. The number of lines belonging to the family at a distance $\sqrt{10}$ from any point $(2,-3)$ is
A. 0
B. 1
C. 2
D. 4

Answer: B

4. The straight line passing through the point of intersection of the straight lines
$x-3 y+1=0$ and $2 x+5 y-9=0$
an having infinite slope and at a distance 2 units from the origin has the equation
A. $x=2$
B. $3 x+y-1=0$
C. $y=1$
D. None of these

Answer: A

- Watch Video Solution

5. The equation of the diagonal through origin of the quadrilateral formed by the lines $x=0, y=0, x+y-1=0$ and $6 x+y-3=0$, is
A. $4 x-3 y=0$
B. $3 x-2 y=0$
C. $x=y$
D. $x+y=0$

Answer: B

- Watch Video Solution

6. A variable line passes through the point of intersection of the lines $x+2 y-1=0$ and $2 x-y-1=0$ and meets the coordinate axes in A and B. The locus of the mid poind of $A B$ is
A. $x+3 y=0$
B. $x+3 y=10$
C. $x+3 y=10 x y$
D. none

Answer: C

D Watch Video Solution

7. The base $B C$ of a triangle $A B C$ is bisected at the point (a, b) and equation to the sides $A B$ and $A C$ are respectively $a x+b y=1$ and $b x+a y=1$. Equation of the median through A is
A. $a x-b y=a b$
B. $(2 b-1)(a x+b y)=a b$
C. $(2 a b-1)(a x+b y-1)=\left(a^{2}+b^{2}-1\right)(b x+a y-1)$
D. $b x-a y=1$

Answer: C

- Watch Video Solution

8. The line through the pont of intersection of lines $a x+b y+c=0$ and $d x+b^{\prime} y+c^{\prime}=0$ which is parallel to y -axis is
A. $x\left(a b^{\prime}-d^{\prime} b\right)+\left(c b^{\prime}-c^{\prime} b\right)=0$
B. $x\left(a b^{\prime}-a^{\prime} b\right)+\left(c b^{\prime}+c^{\prime} b\right)=0$
C. $y\left(a b^{\prime}-a^{\prime} b\right)+\left(a c^{\prime}-d^{\prime} c\right)=0$
D. none

Answer: D

- Watch Video Solution

9. The line parallel to the X-axis and passing through the point of intersection of the lin $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$ where
$(a, b) \neq(0,0)$ is
A. above the axis at a distance $3 / 2$ from it
B. above the x-axis at a distance $2 / 3$ from it
C. below the x-axis at a distance $3 / 2$ from it.
D. below the x-axis at a distance $2 / 3$ from it.

Answer: C

- Watch Video Solution

10. Consider the family of line $(x+y-1)+\lambda(2 x+3 y-5)=0$ and $(3 x+2 y-4)+\mu(x+2 y-6)=0$ Equation of a straight line that belongs to both the families is:
A. $x-2 y-8=0$
B. $x-2 y+8=0$
C. $2 x-y+8=0$
D. $2 x-y+8=0$

Answer: B

11. Equation of a straight line passing through the point of intersection of $x-y+1=0$ and $3 x+y-5=0$ and perpendicular to one of them is
A. $x+y+3=0$
B. $x+y-3=0$
C. $x-3 y+5=0$
D. $x-3 y+5=0$

Answer: B::D

- Watch Video Solution

12. The equation of the line passing though the intersection of $x-\sqrt{3} y+\sqrt{3}-1=0$ and $x+y-2=0$ and making an angle of 15° with the first line is

$$
\text { A. } x-y=0
$$

B. $x-y+1=0$
C.
D.

Answer: A

- Watch Video Solution

13. The point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ lies on
A. $x-y=0$
B. $(x+y)(a+b)=2 a b$
C. $(p x+q y)(a+b)=(p+q) a b c$
D. $(p x-q y)(a-b)=(p-q) a b$

Answer: A::B::C

14. The equation of the straight line whilch is perpendicular to $y=x$ and passes through (3,2) will a given by
A. $x-y=5$
B. $x+y=5$
C. $x+y=1$
D. $x-y=1$

Answer: B

- Watch Video Solution

15. The equation of the line passing through $(1,2)$ and perpendicular to $x+y+1=0$ is
A. $y-x+1=0$
B. $y-x-1=0$
C. $y-x+2=0$
D. $y-x-2=0$

Answer: B

- Watch Video Solution

16. The equation of the right bisector of the line segment joining the points (7,4) and $(-1,-2)$ is
A. $4 x+3 y-10=0$
B. $3 x-4 y+7=0$
C. $4 x+3 y-15=0$
D. none

Answer: C

17. Foot of perpendicular drawn from $(0,5)$ to the line $3 x-4 y-5=0$ is
A. $(1,3)$
B. $(2,3)$
C. $(3,2)$
D. $(3,1)$

Answer: D

Watch Video Solution

18. The equation of the line passing through $(2,3)$ and perpendicular to the line joining $(-5,6)$ and $(-6,5)$ is
A. $x+y+5=0$
B. $x-y+5=0$
C. $x-y-5=0$
D. $x-y-5=0$

Answer: D

D Watch Video Solution

19. A line passes through (2,2) and is perpendicular to the line $3 x+y=3$ its y intercept is
A. $1 / 3$
B. $2 / 3$
C. 1
D. $4 / 3$

Answer: D

- Watch Video Solution

20. The point $(1,3)$ and (5,1) are two opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$, then the other vertices and
A. $(1,1)(2,3)$
B. $(4,4),(2,0)$
C. $(0,0),(5,4)$
D. none

Answer: B

- Watch Video Solution

21. The number of lines that are parallel to $2 x+6 y+7=0$ and have an intercept of length 10 between the co ordinate axes is
A. 1
B. 2
C. 4
D. infinite

- Watch Video Solution

22. The ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x+4 y+5=0$ and $3 x+4 y-5=0$ is
A. $7: 3$
B. 3:7
C. 2: 3
D. None of these

Answer: B

- Watch Video Solution

23. The equation of two sides of a square whose area is 25 square units are $3 x-4 y=0$ and $4 x+3 y=0$. The equation of the other two sides
of the square are

- Watch Video Solution

24. $A(-1,1), B(5,3)$ are opposite vertices of a square in $x y$-plane.

The equation of the other diagonal (not passing throug A, B) of the square is given by
A. $x-3 y+4=0$
B. $2 x-y+3=0$
C. $y+3 x-8=0$
D. $x+2 y-1=0$

Answer: C

- Watch Video Solution

25. In a rhombus $A B C D$ the diagonals $A C$ and $B D$ intersect at the point $(3,4)$. If the point A is $(1,2)$ the diagonal $B D$ has the equation
A. $x-y-1=0$
B. $x+y-1=0$
C. $x-y+1=0$
D. $x+y-7=0$

Answer: D

- Watch Video Solution

26. A square of side 'a' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α ($0<\alpha^{\prime}<$ $\mathrm{pi} / 4$) with the positive direction of x -axis. Find the equation of diagonal not passing through the origin ?
A. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=\alpha$
B. $y(\cos \alpha+\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$
C. $y(\cos \alpha-\sin \alpha)+x(\sin \alpha+\cos \alpha)=\alpha$
D. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=\alpha$

Answer: D

- Watch Video Solution

27. The points
(i) $A(0,-1), B(2,1), C(0,3), D(-2,1)$
are the vertices of a
A. square
B. rectangle
C. parallelogram
D. none

Answer: A::B::C

28. The four lines $a x+b y+c=0$ enclose a
A. square
B. parallelogram
C. rectangle
D. rhombus whose are is $\frac{2 c^{2}}{a b}$

Answer: D

- View Text Solution

29. The area bounded by the curves $y=|x|-1$ and $y=-|x|+1$ is 1 b .

2 c. $2 \sqrt{2}$ d. 4
A. 1
B. 2
C. $2 \sqrt{2}$
D. 4

Answer: B

- Watch Video Solution

30. Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x$ and $y=n x+1$ equals to
A. $\frac{|m+n|}{(m-n)^{2}}$
B. $\frac{2}{|m+n|}$
C. $\frac{1}{|m+n|}$
D. $\frac{1}{|m-n|}$

Answer: D

31. If $A(1,1), B(\sqrt{3}+1,2)$ and $C(\sqrt{3}, \sqrt{3}+2)$ be three vertices of a square then the diagonal through B is
A. $y=(\sqrt{3}-2) x+(3-\sqrt{3})$
B. $y=0$
C. $y=x$
D. None of these

Answer: D

- Watch Video Solution

32. The diagonals of the parallelogram whose sides are $l x+m y+n=0$
$, l x+m y+n^{\prime},=0, m x+l y+n=0, m x+l y+n^{\prime}=0$ include an angle
A. $\pi / 3$
B. $\pi / 2$
C. $\tan ^{-1}\left(\frac{l^{2}-m^{2}}{l^{2}+m^{2}}\right)$
D. $\tan ^{-1}\left(\frac{2 l m}{l^{2}+m^{2}}\right)$

Answer: B

- Watch Video Solution

33. The diagonals of a parallelogram $A B C D$ are along are the lines $x+3 y=4$ and $6 x-2 y=7$. Then $A B C D$ must be a
A. rectangle
B. square
C. cyclic quadrilateral
D. rhombus

Answer: D

34. If the quadrilateral formed by the lines
$a x+b y+c=0, a^{\prime} x+b^{\prime} y+c=0$
$a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=0$
have perpendicular diagonals then
A. $b^{2}+c^{2}=b^{\prime 2}+c^{\prime 2}$
B. $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2}$
C. $a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}$
D. None of these

Answer: C

(D) Watch Video Solution

35. If the area of the rhombus enclosed by lines $l x \pm m y \pm n=0$ be 2
square units, then:
A. $m^{2}=n$
B. $n^{2}=l m$
C. $m=\ln$
D. $n-\ln$

Answer: B

- Watch Video Solution

36. A straight line thorugh $P(1,2)$ is such that its intercept between the axes is bisected at P. Its equations is
A. $x+2 y=5$
B. $x-y+1=0$
C. $x+y-3=0$
D. $2 x+y-4=0$

Answer: D

37. The acute angle between the lines $a x+b y+c=0$ and $(a+b) x=(a-b) y, a \neq b$ is
A. 15°
B. 30°
C. 45°
D. 60°

Answer: C

- Watch Video Solution

38. The line which is parallel to x-axis and crosses the curve $y=\sqrt{x}$ at an angle of $45 a$ is
A. $x=1 / 4$
B. $y=1 / 4$
C. $y=1 / 2$
D. $y=1$

Answer: C

- Watch Video Solution

39. The reflection of the point (4,-13) in the line $5 x+y+6=0$ is
A. $(-1,-14)$
B. $(3,4)$
C. $(1,2)$
D. $(-4,13)$

Answer: A

40. The image of the point $A(1,2)$ by the line mirror $y=x$ is the point B and the image of B by the line mirror $\mathrm{y}=0$ is the point (α, β) then
A. $\alpha=1, \beta=-2$
B. $\alpha=0, \beta=0$
C. $\alpha=2, \beta=-1$
D. None of these

Answer: C

- Watch Video Solution

PROBLEM SET(3)(TRUE AND FALSE)

1. Equation of the line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \cos \theta=a$ is $x \cos \theta-y \sin \theta=a \sin 2 \theta$.
2. Line joining the points ($3,-4$) and $(-2,6)$ is perpendicular to the line joining the points $(-3,6)$ and $(9,-18)$.

- Watch Video Solution

3. The lines $3 x+4 y+7=0$ and $4 x+3 y+5=0$ are perpendicular.

- Watch Video Solution

4. The lines $a x+b y+c=0$ an $A x+B y+C=0$ are perpendicular of $a A+b B=0$.

- Watch Video Solution

5. If $u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is the same straight line u
different straight line not a straight line none of these

- Watch Video Solution

6. The equation of the straight line joining the point (a, b) to the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ is $a^{2} y-b^{2} x=a b(a-b)$

- Watch Video Solution

7. The equation of the line joining the point $(3,5)$ to the point of intersection of the lines $4 x+y-1=0$ and $7 x-3 y-35=0$ is equidistant from the points $(0,0)$ and $(8,34)$.

- Watch Video Solution

8. Area of the parallelogram formed by the lines

$$
a_{1} x+b_{1} y+c_{1}=0, a_{1} x+b_{1} y+d_{1}=0
$$

and $a_{2} x+b_{2} y+c_{2}=0, a_{2} x+b_{2} y+d_{2}=0$ is

$$
\frac{\left[d_{1}-c_{1}\right)\left(d_{2}-c_{2}\right)}{\left[\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)\right]^{1 / 2}}
$$

- Watch Video Solution

PROBLEM SET(3)(FILL IN THE BLANKS)

1. The equation to the straight line passing through the intersection of $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ and (1,2) is

- Watch Video Solution

2. The equation of the straight line passing through the intersection of $x+2 y-19=0, x-2 y-3=0$ and at a distance of 5 from ($-2,4$) are.
3. Area of the parallelogram whose sides are $x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y \sin \alpha=q, x \cos \beta+y \sin \beta=r, x \cos \beta+$ is \qquad

- Watch Video Solution

4. The area enclosed within the curve $|x|+|y|=1$ is:

- Watch Video Solution

5. Let the algebraic sum of the perpendicular distance from the points (2,
$0)$, $(0,2)$, and $(1,1)$ to a variable straight line be zero. Then the line passes through a fixed point whose coordinates are
6. If the straight lines $a x+b y+p=0$ and $x \cos \alpha+y \sin \alpha-p=0$ enclose an angle $\pi / 4$ between them and meet the straight line $x \sin \alpha-y \cos \alpha=0$ in the same point, then the value of $a^{2}+b^{2}$ is equal to \qquad

- Watch Video Solution

7. If $4 A^{2}+9 B^{2}-C^{2}+12 A B=0$, then the family of straight lines $A x+B y+C=0$ is either concurrent at.......or at...........

- Watch Video Solution

PROBLEM SET(4)(MULTIPLE CHOICE QUESTIONS)

1. The incentre of the triangle formed by $x=0, y=0$ and $3 x+4 y=12$ is

$$
\text { A. }\left(\frac{1}{2}, \frac{1}{2}\right)
$$

B. $(1,1)$
C. $\left(1, \frac{1}{2}\right)$
D. $\left(\frac{1}{2}, 1\right)$

Answer: B

- Watch Video Solution

2. The incentre of the triangle formed by axes and the line $\frac{x}{a}+\frac{y}{b}=1$ is
A. $\left(\frac{a}{b}, \frac{b}{2}\right)$
B. $\left(\frac{a}{3}, \frac{b}{3}\right)$
C. $\left[\frac{a b}{a+b+\sqrt{a^{2}+b^{2}}}, \frac{a b}{a+b+\sqrt{a^{2}+b^{2}}}\right]$
D. $\left[\frac{a b}{a+b+\sqrt{a b}}, \frac{a b}{a+b+\sqrt{a b}}\right]$

Answer: C

3. The line $3 x+4 y-24=0$ cuts the x -axis at A and y -axis at B . Then the increntre of a triangle OAB, where O is the origin is
A. $(1,2)$
B. $(2,2)$
C. $(12,2)$
D. $(2,12)$

Answer: B

- Watch Video Solution

4. The orthocentre of the triangle with vertices

$$
\left[2, \frac{(\sqrt{3}-1)}{2}\right],\left(\frac{1}{2},-\frac{1}{2}\right) \text { and }\left(2,-\frac{1}{2}\right) \text { is }
$$

A. $\left[\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right]$
B. $\left(2,-\frac{1}{2}\right)$
C. $\left[\frac{5}{4}, \frac{\sqrt{3}-2}{4}\right]$
D. $\left(\frac{1}{2},-\frac{1}{2}\right)$

Answer: B

- Watch Video Solution

5. Orthocentre of triangle whose vertices are (0,0),(3,4),(4,0) is
A. $\left(3, \frac{7}{3}\right)$
B. $\left(3, \frac{5}{4}\right)$
C. $(5,-2)$
D. $\left(3, \frac{3}{4}\right)$

Answer: D

- Watch Video Solution

6. The orthocenter of the triangle formed by $(0,0),(8,0),(4,6)$ is
A. $(4,8 / 3)$
B. $(3,4)$
C. $(4,3)$
D. $(-3,4)$

Answer: A

- Watch Video Solution

7. Let the vertices of a triangle $(0,0),(3,0)$ and $(0,4)$ its orthocentre is
A. $(0,0)$
B. $(1,4 / 3)$
C. $(3 / 2,2)$
D. None of these

- Watch Video Solution

8. The orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$ is
A. $(1 / 2,1 / 2)$
B. $(1 / 3,1 / 3)$
C. $(0,0)$
D. $(1 / 4,1 / 4)$

Answer: C

D Watch Video Solution

9. Orthocentre of the triangle formed by joining the points $\left(4, \frac{1}{4}\right),\left(3, \frac{1}{3}\right),\left(2, \frac{1}{2}\right)$ is
A. $\left(\frac{1}{24}, 24\right)$
B. $\left(-\frac{1}{24},-24\right)$
C. $\left(-\frac{1}{24}, 24\right)$
D. $\left(\frac{1}{24},-24\right)$

Answer: B

- Watch Video Solution

10. The mid points of the sides of a triangle are $(5,0),(5,12)$ and $(0,12)$. The orthocentre of this triangle is
A. $(0,0)$
B. $(10,0)$
C. $(0,24)$
D. $\left(\frac{13}{3}, 8\right)$
11. The equations to the sides of a triangle are $x-3 y=0,4 x+3 y=5$ and $3 x+y=0$. The line $3 x-4 y=0$ passes through
A. the incentre
B. the centoid
C. the circumcentre
D. the orthocentre of the triangle

Answer: D

- Watch Video Solution

12. The algebraic sum of the perpendicular distance from $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ to a variable line is zero, then the line passes through
A. the orthocentre of $\triangle A B C$
B. the centroid of $\triangle A B C$
C. the circumcentre of $\triangle A B C$
D. None of these

Answer: B

- Watch Video Solution

13. One side of an equilateral triangle is the line $3 x+4 y+8=0$ and its centroid is at $\mathrm{O}(1,1)$. The length of its side is
A. 2
B. $\sqrt{5}$
C. $6 \sqrt{3}$
D. $\sqrt{7}$
14. The circumcentre of the triangle formed by the lines $x y+2 x+2 y+4=0$ and $x+y+2=0$ is
A. $(0,0)$
B. $(-2,-2)$
C. (-1,-1)
D. (-1,-2)

Answer: C

- Watch Video Solution

15. A point equidistant from the line
$4 x+3 y+10=0,5 x-12 y+26=0$ and $7 x+24 y-50=0$ is
B. $(1,1)$
C. $(0,0)$
D. $(0,1)$

Answer: C

- Watch Video Solution

16. If the orthocentre and centroid of a triangle are $(-3,5)$ and $(3,3)$ then its circumcentre is
A. $(6,2)$
B. $(0,8)$
C. $(6,-2)$
D. $(0,4)$

Answer: C

17. Of the three lines $x+\sqrt{3} y=0, x+y=1$ and $x-\sqrt{3} y=0$ two are equations of two altitudes of an equilateral triangle. The centroid of Δ is the point
A. $(0,0)$
B. $\left(\frac{\sqrt{3}}{\sqrt{3}-1}, \frac{1}{\sqrt{3}-1}\right)$
C. $\left(\frac{\sqrt{3}}{\sqrt{3}+1}, \frac{1}{\sqrt{3}+1}\right)$
D. None of these

Answer: A

- Watch Video Solution

18. Vertics of a triangle $A B C$ are the points (0,0),(a,0) and $\left(\frac{a}{2}, \frac{a \sqrt{3}}{2}\right)$. Its incentre is the point
A. $\left(\frac{3 a}{4}, \frac{\sqrt{3} a}{4}\right)$
B. $\left(\frac{a}{2}, \frac{a \sqrt{3}}{6}\right)$
C. $\left(\frac{a}{6}, \frac{a \sqrt{3}}{2}\right)$
D. $\left(\frac{a}{3}, \frac{a \sqrt{3}}{2}\right)$

Answer: A

- Watch Video Solution

19. The vertices of a triangle $O A B$ are $(0,0),(a, 0)$ and $(0, b)$ respectively. The distance between its orthocentre and circumcentre is
A. $(a+b)$
B. $(a-b)$
C. $\frac{1}{2} \sqrt{a^{2}+b^{2}}$
D. $\frac{1}{2} \sqrt{a^{2}-b^{2}}$

Answer: C

20. The vertices of a triangle are (1,2) $(2,1)$ and $\left\{\frac{1}{2}(3+\sqrt{3}), \frac{1}{2}(3+\sqrt{3})\right\}$. The dstnace between its orthocentre and circumcentre is
A. $(3+\sqrt{3})$
B. 2
C. $\sqrt{2}$
D. 0

Answer: C

- Watch Video Solution

21. p_{1}, p_{2}, p_{3} are the distances of points $(1,1),(2,0)$ and $(0,2)$ from a variable line L such that $p_{1}+p_{2}+p_{3}=0$. The line L passes through a fixed point
B. $(1,1)$
C. $(2,1)$
D. none

Answer: D

- Watch Video Solution

22. The incentre of triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: B

23. One vertex of the equilateral triangle with centroid at the origin and one side as $x+y-2=0$ is
A. $(-1,-1)$
B. $(2,2)$
C. $(-2,2)$
D. None of these

Answer: D

- Watch Video Solution

24. Two vertices of a triangle $A B C$ are $B(5,-1)$ and $C(-2,3)$.If the orthocentre of the triangle is the origin , find the thrid vertex.
A. $(4,7)$
B. $(-4,-7)$
C. (-4,7)
D. None of these

Answer: C

- Watch Video Solution

25. If one of the diagonals of a square is along the line $x=2 y$ and one of its vertices is $(3,0)$, then its sides through this vertex are given by the equations
(A) $\quad y-3 x+9=0,3 y+x-3=0$
$y+3 x+9=0,3 y+x-3=0$
(C) $y-3 x+9=0,3 y-x+3=0$
(D) $y-3 x+9=0,3 y+x+9=0$
A. $y-3 x+9=0,3 y+x-3=0$
B. $y+3 x+9=0,3 y+x-3=0$
C. $y-3 x+9=0,3 y-x+3=0$
D. $y-3 x+3=, 3 y+x=9=0$

Answer: B

26. A pair of straight lines drawn through the origin form with the line $2 x+3 y=6$ an isosceles right angled triangled then the sides and the area of the triangle thus formed is
A. $x-5 y=0$
$5 x+y=0$
$\Delta=\frac{36}{13}$
B. $3 x-y=0$

$$
x+3 y=0
$$

$$
\Delta=\frac{12}{17}
$$

C. $5 x-y=0$

$$
\begin{aligned}
& x+5 y=0 \\
& D \leq t a=\frac{13}{5}
\end{aligned}
$$

D. None

Watch Video Solution

27. The equation of two equal sides of an isosceles triangle are $7 x-y+3=$ 0 and $x+y-3=0$ and its third side is passes through the point (1,-10). The equation of the third side is
A. $x-3 y-7=0$ or $3 x+y-31=0$
B. $x-3 y-31=0$ or $3 x+y-7=0$
C. $x-3 y-31=0$ or $3 x+y+7=0$
D. None of these

Answer: A

- Watch Video Solution

28. The equations of the lines through ($-1,1$) and making angle 45 a with the line $x+y=0$ are given by
A. $x^{2}-x y+x-y=0$
B. $x y-y^{2}+x-y=0$
C. $x y+x+y=0$
D. $x y+x+y+1=0$

Answer: C

- Watch Video Solution

29. A ray of light coming from the point $(1,2)$ is reflected at a pont A on the x-axis and then passes through the point $(5,3)$. The co ordinate of the point A is
A. $\left(\frac{13}{5}, 0\right)$
B. $\left(\frac{5}{13}, 0\right)$
C. $(-7,0)$
D. None of these

- Watch Video Solution

30. Let $P Q R$ be a right angled isosceles triangle, right angled at $P(2,1)$. If the equation of the line QR is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is
A. $3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
B. $3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
C. $3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
D. $3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0$

Answer: A

- Watch Video Solution

31. The equation of the bisector of the acute angle between the lines
$3 x-4 y+7=0$ and $12 x+5 y-2=0$ is
A. $21 x+77 y-101=0$
B. $11 x+3 y+20=0$
C. $21 x-7 y+3=0$
D. $11 x-3 y+9=0$

Answer: B

- Watch Video Solution

32. Let $P=(-1,0), Q(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. Then the equation of the bisector of the angle $P Q R$ is
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: D

- Watch Video Solution

33. Area of Δ formed by line $x+y=3$ and \angle bisectors of pair of straight lines $x^{2}-y^{2}+2 y=1$ is
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

34. The equation of the line whilch bisects the obtuse angle between the lines $x-2 y+4=0$ and $4 x-3 y+2=0$ is
A. $(4-\sqrt{5}) x-(3-2 \sqrt{5}) y+(2-4 \sqrt{5})=0$
B. $(3-2 \sqrt{5}) x-(4-\sqrt{5}) y+(2+4 \sqrt{5})=0$
C. $(4+\sqrt{5}) x-(3+2 \sqrt{5}) y+(2+4 \sqrt{5})=0$
D. None of these

Answer: C

- Watch Video Solution

35. The vertices of a triangle ABC are (1,1),(4,-2) and (5,5) respectively. Then equation of perpendiculart dropped from C to the internal bisector of angle A is
A. $y-5=0$
B. $x-5=0$
C. $2 x+3 y-7=0$
D. none

Answer: A

- Watch Video Solution

36. The vertices of a triangle are $A(-1,-7), B(5,1)$ and $C(1,4)$. The equation of the internal bisector of the angle $\angle A B C$ is
A. $3 x-7 y-8=0$
B. $x-7 y+2=0$
C. $3 x-3 y-7=0$
D. None of these

Answer: B

37. The equation(s) of the bisectors(s) of that angles between the lines $x+2 y-11=0,3 x-6 y-5=0$ which contains the point $(1,-3)$ is
A. $3 x=19$
B. $3 y=7$
C. $3 x=19$ and $3 y=7$
D. None of these

Answer: B

- Watch Video Solution

38. The bisector of the acute angle formed between the lines $4 x-3 y+7=0$ and $3 x-4 y+14=0$ has the equation
A. $x+y-7=0$
B. $x-y+3=0$
C. $2 x+y-11=0$
D. $x=2 y-12=0$

Answer: A

- Watch Video Solution

39. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisectors of the acute angle between L_{1} and L_{2} intersect L_{3} at R .

Statement 1 : The ratio PR : RQ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles .

- Watch Video Solution

40. OrthocentreH: It is the point of intersection of altitude of a triangle.The points $\mathrm{O}, \mathrm{G}, \mathrm{H}$ are collinear. If $L_{1}=a_{1} x+b_{1} y+c_{1}+0$ etc. then any line through the intersection of L_{1} and L_{2} i.e. $L_{1}+\lambda L_{2}=0$ and perpendiculart to L_{3} is
$\frac{L_{1}}{a_{1} a_{3}+b_{1} b_{3}}=\frac{L_{2}}{a_{2} a_{3}+b_{2} b_{3}}$.
The vetices of a triangle are $A(p, p \tan \alpha), B(q, q \tan \beta), C(r, r \tan \gamma)$. If circumcentre O of triangle ABC is at the origin and $H(\bar{x}, \bar{y})$ be its orthocentre, then show that

$$
\frac{\bar{x}}{\bar{y}}=\frac{\cos \alpha+\cos \beta+\cos \gamma}{\sin \alpha+\sin \beta+\sin \gamma}
$$

- Watch Video Solution

41. The line $l x+m y+n=0$ bisects the angle between a pair of straight lines of which one is $p x+q y+r=0$, then the equation of the other is \qquad

- Watch Video Solution

42. The vertices of a triangle are $A(p, p \tan \alpha t), B(q, q \tan \beta), C(r, \mathrm{a} n \gamma)$. If the circumcentre O of triangle ABC is at the origin and $H(\bar{x}, \bar{y})$ be its orthocentre then prove that

$$
\frac{\bar{x}}{\bar{y}}=\frac{\cos \alpha+\cos \beta+\cos \gamma}{\sin \alpha+\sin \beta+\sin \gamma}
$$

43. The vertices of a triangle are
$\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right],\left[a t_{2} t_{3}, a\left(t_{2}+t_{3}\right)\right]$
$\left[a t_{3} t_{1}, a\left(t_{3}+t_{1}\right)\right]$
Find the coordinates of its orthocentre.

- Watch Video Solution

44. Prove that the orthocentre of the triangle formed by the three lines $y=m_{1} x+a / m_{1}, y=m_{2} x+a / m_{2}$, and $y=m_{3} x+a / m_{3}$ is $\left\{-a, a\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}+\frac{1}{m_{1} m_{2} m_{3}}\right)\right\}$

- Watch Video Solution

45. The sides of a triangle are
$l_{R}=x \cos \alpha_{r}+y \sin \alpha_{r}-p_{r}=0, r=1,2,3$,
Prove that the orthocentre is given by

$$
\begin{aligned}
& L_{1} \cos \left(\alpha_{2}-\alpha_{3}\right)=L_{2} \cos \left(\alpha_{3}-\alpha_{1}\right) \\
& \quad=L_{3} \cos \left(\alpha_{1}-\alpha_{2}\right)
\end{aligned}
$$

D View Text Solution

46. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle $P Q R$ is
A. $\sqrt{3} x+y=0$
В. $x+\frac{\sqrt{3}}{2} y=0$
C. $\frac{\sqrt{3}}{2} x+y=0$
D. $x+\sqrt{3} y=0$

Answer: A

- Watch Video Solution

47. If one of the lines of $m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$ is a bisector of the angle between the lines $x y=0$, then m is
A. $-\frac{1}{2}$
B. -2
C. 0.01
D. 2

Answer: C

- Watch Video Solution

PROBLEM SET(4)(TRUE AND FALSE)

1. If the line $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line
$y=m x+4$ them $m=\frac{1 \pm 5 \sqrt{2}}{7}$.
2. The vertex of an equilateral triangle is $(2,3)$ and the equation of the opposite side is $x+y=2$. Then, the other two sides are $y-3=(2 \pm \sqrt{3})(x-2)$.

- Watch Video Solution

3. Every point on the line $2 x+11 y-5=0$ is at equal distance from the lines $24 x+7 y=20$ and $4 x-3 y=2$.

- Watch Video Solution

4. The lines $(a+b) x+(a-b) y-2 a b=0$,
$(a-b) x+(a+b) y-2 a b=0$ and $x+y=0$ form and isosceles triangle whose vertical angle is $2 \tan ^{-1}\left(\frac{b}{a}\right)$.
A. True
B. False
C.
D.

Answer: F

- Watch Video Solution

PROBLEM SET(4)(FILL IN THE BLANKS)

1. Equation of the straight lines through the point ($3,-2$) and inclined at 60° to the line $\sqrt{3} x+y=1$ are

Watch Video Solution
2. The opposite angular points of a square are $(3,4)$ and $(1,-1)$ then the other two vertices areand
3. The opposite vertices of a square are $(1,2)$ and $(3,8)$, then the equation of a diagonal of the square passing through the point $(1,2)$, is

- Watch Video Solution

4. The vertices of a triangle are $\left[a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right],\left[a t_{2}, a\left(t_{2}+t_{3}\right)\right]$ and $\left[a t_{3} t_{1}, a\left(t_{3}+t_{1}\right)\right]$. The co ordinates of the orthocentre of the triangle are.......

- Watch Video Solution

5. The line $l x+m y+n=0$ bisects the angle between a pair of straight lines of which one is $p x+q y+r=0$, then the equation of the other is

- Watch Video Solution

1. The direction in which a straight line must be drawn through the point $(1,2)$ so that its point of intersection with the $x+y=4$ may be at a distance $\frac{\sqrt{6}}{3}$ from theis point is
A. $30^{\circ}, 60^{\circ}$
B. $15^{2}, 75^{\circ}$
C. || to x-axis
D. || to y-axis

Answer: B

- Watch Video Solution

2. If the straight line drawn thriough the point $P(\sqrt{3}, 2)$ and making an angle $\pi / 6$ with x -axis meets the line. $\sqrt{3} x-4 y+8=0$ at Q then the length $P Q$ is
A. 4
B. 5
C. 6
D. none

Answer: C

- Watch Video Solution

3. Each side of a square of length 6 and its centre is at the point $(4,5)$. If one of its diagonals is parallel to the line $y=x$ then the co ordinates of the vertics of the square are

- Watch Video Solution

4. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0, \quad$ and $x-y-5=0 \quad$ at B, C and D respectively if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$,then the equation of the lines is
A. $2 x+3 y+22=0$
B. $5 x-4 y+7=0$
C. $3 x-2 y+3=0$
D. none

Answer: A

- Watch Video Solution

5. The equation of the lines through the point $(2,3)$ and making an intercept of length 2 units between the lines $y+2 x=3$ and $y+2 x=6$ are
A. $x+3=0$

$$
3 x+4 y=12
$$

B. $y-2=0$

$$
4 x-3 y=6
$$

C. $x-2=0$
$3 x+4 y=18$
D. none

Answer: C

- Watch Video Solution

6. A line is such that its segments between the straight lines $5 x-y=4$ and $3 x+4 y-4=0$ is bisected at the point $(1,5)$. Its equation is
A. $23 x-7 y+6=0$
B. $7 x+4 y+3=0$
C. $83 x-35 y+92=0$
D. none

Answer: C

7. If one vertex of an equilateral triangle of side a lies at the oringin an d the other lies on the line $x-\sqrt{3} y=0$, the co ordinates of the third vertex are
A. $(0, a)$
B. $(\sqrt{3} a / 2,-a / 2)$
C. $(0,-a)$
D. $(-\sqrt{3} a / 2, a / 2)$

Answer: A::B::C::D

- Watch Video Solution

8. If the centroid and a vertex of an equilateral triangle are $(2,3)$ and $(4,3)$ respectively, then the other two vertices are
A. $(1,2 \pm \sqrt{3})$
B. $(1,3 \pm \sqrt{3})$
C. $(2,2 \pm \sqrt{3})$
D. $(2,3 \pm \sqrt{3})$

Answer: B

- Watch Video Solution

9. The distance of the point (3,5) from the line $2 x+3 y-14=0$ measured parallel to the line $x-2 y=1$ is
A. $\frac{7}{\sqrt{5}}$
B. $\frac{7}{\sqrt{13}}$
C. $\sqrt{5}$
D. $\sqrt{13}$

Answer: C

10. A line is drawn from $P\left(x_{1}, y_{1}\right)$ in the direction θ with the x-axis, to meet $a x+b y+c=0$ at Q . Then the length PQ is equal to
A. $\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{\left(a^{2}+b^{2}\right)}}\right|$
B. $-\frac{a x_{1}+b y_{1}+c}{a \cos \theta+b \sin \theta}$
C. $\frac{a x_{1}+b y_{1}+c}{a \cos \theta+b \sin \theta}$
D. $-\frac{a x_{1}+b y_{1}+c}{a \sin \theta+b \cos \theta}$

Answer: B

- Watch Video Solution

11. The point $\mathrm{A}(2,1)$ is translated parallel to the line $x-y=3$ by a distance 4 units. If the new position A^{\prime} is in third quadrant, then the co ordinates of A^{\prime} are
A. $(2+2 \sqrt{2}, 1+2 \sqrt{2})$
B. $(-2+\sqrt{2},-1-2 \sqrt{2})$
C. $(2-2 \sqrt{2}, 1-2 \sqrt{2})$
D. None of these

Answer: C

- Watch Video Solution

12. The point $P(1,1)$ is translated parallel to $2 x=y$ in the first quadrant through a unit distance. The coordinates of the new position of P are
A. $\left(1 \pm \frac{2}{\sqrt{5}}, 1 \pm \frac{1}{\sqrt{5}}\right)$
B. $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$
C. $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$
D. $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

Answer: B

13. If a line joining two points $A(2,0), B(3,1)$ is rotated about A in anticlockwise direction through an angle 15° such that the point B goes to C in the new positon, then the coordinates of C are
A. $\left(2+\frac{1}{\sqrt{2}}, \sqrt{3}\right)$
B. $\left(2+\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}\right)$
C. $\left(2+\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)$
D. $\left(2-\frac{1}{\sqrt{2}},-\frac{\sqrt{3}}{2}\right)$

Answer: B

- Watch Video Solution

14. If the line $y-\sqrt{3} x+3=0$ cuts the parabola $y^{2}=x+2$ at A and B , then PA, PB is equal to [where P is $(\sqrt{3}, 0)$]
A. $\frac{4(\sqrt{3}+2)}{3}$
B. $\frac{4(2-\sqrt{3})}{3}$
C. $\frac{4 \sqrt{3}}{2}$
D. $\frac{2(\sqrt{3}+2)}{3}$

Answer: A

- Watch Video Solution

15. A straight line through the origin ' O ' meets the parallel lines $4 x+2 y=9$ and $2 x+y=-6$ at points P and Q respectively. Then the point ' O ' divides the segment PQ in the ratio
A. $1: 2$
B. 3: 4
C. 2:1
D. $4: 3$

D Watch Video Solution

16. Two sides of a rhombus OABC (O being origin) lying entirely in first or third quadrant of area 2 sq. units are $y=\frac{1}{\sqrt{3}} x$ and $y=\sqrt{3} x$. Then possible co ordinates of B are
A. $(1+\sqrt{3}, 1+\sqrt{3})$
B. $(-1-\sqrt{3},-1-\sqrt{3})$
C. $(\sqrt{3}-1, \sqrt{3}-1)$
D. none

Answer: A::B::C::D

- Watch Video Solution

17. The point $P(2,1)$ is shifted through a distance $3 \sqrt{2}$ units measured parallel to the line $x+y=1$ in the direction of decreasing ordinates, to reach at Q . The image of Q with respect to given line is
A. $(3,-4)$
B. $(-3,2)$
C. $(0,-1)$
D. none

Answer: A

- Watch Video Solution

18. A line making an angle θ with the +ive direction of x-axis passes through $\mathrm{P}(5,6)$ to meet the line $x=6$ at Q and $y=6$ at R then OR is:
A. $\frac{2(\cos \theta+3 \sin \theta)}{\sin 2 \theta}$
B. $\frac{2(3 \cos \theta+\sin \theta)}{\sin 2 \theta}$
C. $\frac{2(3 \cos \theta-\sin \theta)}{\sin 2 \theta}$
D. $\frac{2(\cos \theta-3 \sin \theta)}{\sin 2 \theta}$

Answer: C

- View Text Solution

PROBLEM SET(5)(TRUE AND FALSE)

1. A line through the variable point $A(k+1,2 k)$ meets the lines
$7 x+y-16=0,5 x-y-8=0, x-5 y+8=0 \quad$ at $\quad B, C, D$, respectively. Prove that $A C, A B, A D$ are in HP.

- Watch Video Solution

1. The equation of the straight lines through the point $(2,3)$ and making an intercept of length 3 between the straight lines $4 x+3 y=3$ and $4 x+3 y=12$ are \qquad

- Watch Video Solution

PROBLEM SET(6)(MULTIPLE CHOICE QUESTIONS)

1. If $P(1,0), Q(-1,0)$ and $R(2,0)$ are three given points, then the locus of point S satisfying the relation $S Q^{2}+S R^{2}=2 s P^{2}$ is
A. a straight line parallel to x-axis
B. circle through origin
C. circle with centre at the origin
D. a straight line|| to y-axis

Answer: D

2. A and B are two fixed points. The vertex C of triangle $A B C$ moves such that $\cot A+\cot B=$ constant. The locus of C is a straight line

A. perpendicular to $A B$
B. parallel to $A B$
C. inclined at an angle $(A-B)$ to AB
D. None of these

Answer: B

3. The equation $\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4$ represents
A. a circle
B. a pair of lines
C. a parabola
D. an ellipse

Answer: B

- Watch Video Solution

4. The locus of the mid point of the portion intercepted between ther axes by the line $x \cos \alpha+y \sin \alpha=p$ where p is constant is
A. $x^{2}+y^{2}+4 p^{2}$
B. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
C. $x^{2}+y^{2}=\frac{4}{p^{2}}$
D. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{2}{p^{2}}$

Answer: B

D Watch Video Solution

5. For a variabkle line $\frac{x}{a}+\frac{y}{b}=1$ where $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$ the locus of the foot of perpendicular drawn from origin to it is
A. $x^{2}+y^{2}=c^{2} / 2$
B. $x^{2}+y^{2}=c^{2}$
C. $x^{2}+y^{2}=2 c$
D. None of these

Answer: A

- Watch Video Solution

6. If the sum of the distances of a point from two perpendicular lines in a planes is 1 , then its locus is
A. square
B. circle
C. straight line
D. two intersecting

Answer: B

- Watch Video Solution

7. If the distance of any point (x, y) from the origin is defined as $d(x, y)=\max \{|x|,|y|\}, d(x, y)=a$ none zero constant, then the locus is
A. a circle
B. parallel straight lines
C. a square
D. a triangle

Answer: B

- Watch Video Solution

PROBLEM SET(6)(TRUE AND FALSE)

1. The line $\frac{x}{a}+\frac{y}{b}=1$ moves in such a way that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$ where ic si a constnat. The locus of the foot of perpendicular from the origin on the given line is $x^{2}+y^{2}=c^{2}$

- Watch Video Solution

2. The line $\frac{x}{a}+\frac{y}{b}=1$ cuts the axes in A and B and a line perpendicular to $A B$ cuts the axes in P and Q. Locus of the points of intersection of $A Q$ and BP is $x^{2}+y^{2}+a x+b y=0$.

- Watch Video Solution

3. The ends A and B of a straight line segment of constant length c slide upon the fixed rectangular axes $O X$ and $O Y$, respectively. If the rectangle OAPB be completed, then the locus of the foot of the perpendicular drawn from P to $A B$ is

(D) Watch Video Solution

PROBLEM SET(6)(FILL IN THE BLANKS)

1. Find the locus of a point whose sum of the distances from the origin and the line $x=2$ is 4 units. Sketch the path.

- Watch Video Solution

2. The ends of a rod of length I move on two mutually perpendicular lines.

The locus of a point on the rod which divides it in the ratio 1:2 is
3. A variable straight line drawn through the point of intersection of lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ meets the co ordinates axes in A and B. Locus of the mid point of $A B$ is \qquad

- Watch Video Solution

4. The locus of P such that area of $\triangle P A B=12$ sq. units where $A=(2,3)$ and $B(-4,5)$ is $\ldots .$.

- Watch Video Solution

5. Locus of the mid points of the portion of the line $x \cos \theta+y \sin \theta=p$ intercepted between the axes is \qquad

- Watch Video Solution

6. A point moves so that square of its distance from the point $(3,-2)$ is numerically equal to its distance from the line $5 x-12 y=3$. The equation of its locus is \qquad

- Watch Video Solution

7. A line intersects x-axis at $A(7,0)$ and y-axis at $B(0,-5)$. A variable line $P Q$ which is perpendicular to $A B$ intersects x-axis at P and y-axis at Q. If $A Q$ and $B P$ intersect at r then locus of R is \qquad

- Watch Video Solution

8. A straight line passes through a fixed point (h, k). The locus of the feet of perpendiculars on it drawn from the origin is \qquad

- Watch Video Solution

1. The triangle joinilng the points $A(2,7), B(4,-1), C(-2,6)$ is
A. equilateral
B. Right angled
C. isosceles
D. None of these

Answer: B

- Watch Video Solution

2. The area of the triangle with vertices at $(-4,1),(1,2),(4,-3)$ is
A. 14
B. 16
C. 15
D. None of these

- Watch Video Solution

3. The area of the triangle with vertices at the point $(a, b+c),(b, c+a),(c, a+b)$ is
A. 0
B. $a+b+c$
C. $a b+b c+c a$
D. none of these

Answer: A

- Watch Video Solution

4. The eq. of the straight line which passes through the point $(1,-2)$ and cuts of equal intercepts from the axes will be
A. $x+y=1$
B. $x-y=1$
C. $x+y+1=0$
D. $x-y-2=0$

Answer: C

- Watch Video Solution

5. The equation of the straight line whilch is perpendicular to $y=x$ and passes through (3,2) will a given by
A. $x-y=5$
B. $x+y=5$
C. $x+y=1$
D. $x-y=1$
6. The equation of the line passing through (1,2) and perpendicular to $x+y+1=0$ is
A. $y-x+1=0$
B. $y-x-1=0$
C. $y=x+2=0$
D. $y-x-2=0$

Answer: C

- Watch Video Solution

7. If $P(1,0),, Q=(-1,0)$ and $\mathrm{R}=(2,0)$ are thre given points then the locus of point S satisfying the relation $S Q^{2}+S R^{2}=2 S P^{2}$ is
A. a st. line parallel to x-axis
B. circle through origin
C. circle with centre at the origin
D. a straight line parallel to y-axis.

Answer: A

- Watch Video Solution

8. If A and B are the points $(-3,4)$ and $(2,1)$. Then the co -ordinates of pont
C on $A B$ produced such that $A C=2 B C$ are
A. $(2,4)$
B. $(3,7)$
C. $(7,-2)$
D. $\left(-\frac{1}{2}, \frac{5}{2}\right)$

Answer: C

9. P and Q are points on the line joining $A(-2,5)$ and $B(3,1)$ such that $A P=P Q=Q B$. Then the mid pont of $P Q$ is
A. $\left(\frac{1}{2}, 3\right)$
B. $\left(-\frac{1}{2}, 4\right)$
C. $(2,3)$
D. $(1,4)$

Answer: B

- Watch Video Solution

10. If the lines $3 y+4 x=1, y=x+5$ and $5 y+b x=3$ are concurrent then the value of b is
A. 1
B. 3
C. 6
D. 0

Answer: A

D Watch Video Solution

11. The distance between the lines $3 x+4 y=9$ and $6 x+8 y=15$ is
A. $3 / 2$
B. $3 / 10$
C. 6
D. None of these

Answer: B

12. Let the vertices of a triangle $(0,0),(3,0)$ and $(0,4)$ its orthocentre is
A. $(0,0)$
B. $(1,4 / 3)$
C. $(3 / 2,3)$
D. None of these

Answer: B

- Watch Video Solution

13. The line $3 x+4 y-24=0$ cuts the x -axis at A and y -axis at B . Then the increntre of a triangle OAB, where O is the origin is
A. $(1,2)$
B. $(2,2)$
C. $(12,12)$
D. $(2,12)$

- Watch Video Solution

14. Three
$3 x+4 y+6=0, \sqrt{2} x+\sqrt{3} y+2 \sqrt{2}=0$ and $4 x+7 y+8=0$ are (A)
sides of triangle (B) concurrent (C) parallel (D) none of these
A. sides of a triangle
B. concurrent at (1,1)
C. parallel
D. None of these

Answer: D

15. The three lines $a x+b y+c=0$,
$b x+c y+a=0, c x+a y+b=0$
are concurrent only when
A. $a+b+c=0$
B. $a^{2}+b^{2}+c^{2}=a b+b c+c a$
C. $a^{3}+b^{3}+c^{3}=3 a b$
D. None of these

Answer: B

- Watch Video Solution

16. The line $(p+2 q) x+(p-3 q) y=p-q$ for different values of p and q passes through the point
A. $(3 / 2,5 / 2)$
B. $(2 / 5,2 / 5)$
C. $(3 / 5,3 / 5)$
D. $(2 / 5,3 / 5)$

Answer: D

- Watch Video Solution

17. The equation $\sqrt{(x-2)^{2}+y^{2}}+\sqrt{(x+2)^{2}+y^{2}}=4$ represents
A. circle
B. pair of a lines
C. a parabola
D. an ellipse

Answer: B

18. All points lying inside the triangle formed by the point (1,3),(5,0) and $(-1,2)$ satisfy
A. $3 x+2 y \geq 0$
B. $2 x+y-13 \geq 0$
C. $2 x-3 y-12 \leq 0$
D. $-2 x+y \geq 0$

Answer: A

- Watch Video Solution

19. The locus of the mid point of the portion intersection between the axes by the line $x \cos \alpha+y \sin \alpha=p$ where p is constant is
A. $x^{2}+y^{2}=4 p^{2}$
B. $\left(1 / x^{2}\right)+\left(1 / y^{2}\right)=4 / p^{2}$
C. $x^{2}+y^{2}=4 / p^{2}$
D. $\left(1 / x^{2}\right)+\left(1 / y^{2}\right)=2 / p^{2}$

Answer: C

- Watch Video Solution

20. The straight line passing through the point of intersection of the straight lines
$x-3 y+1=0$ and $2 x+5 y-9=0$
an having infinite slope and at a distance 2 units from the origin has the equation
A. $x=2$
B. $3 x+y-1=0$
C. $y=1$
D. None of these
21. The points $(1,1),(-1,-1)$ and $(-\sqrt{3}, \sqrt{3})$ are the angular points of a triangle, then the triangle is
A. right angled
B. isosceles
C. equilateral
D. None of these

Answer: A

- Watch Video Solution

22. The points $\left(0, \frac{8}{3}\right),(1,3)$ and $(82,30)$ are vertices of
A. obtuse angled triangle
B. acute angled tirangle
C. right angled triangle
D. none

Answer: D

- Watch Video Solution

23. The straight lines $x+y=0,3 x+y-4=0, x+3 y-4=0$ form a triange which is
A. isosceles
B. equilateral
C. right angled
D. None of these

Answer: A

- Watch Video Solution

24. The straight lines $x+y-4=0,3 x+y-4=0, x+3 y-4=0$ form a triangle which is
A. isosceles
B. Right angled
C. equilateral
D. none

Answer: A

- Watch Video Solution

25. The diagonals of parallelogram PQRS are along the lines $x+3 y=4$ and $6 x-2 y=7$. Then PQRS must be a
A. rectangle
B. square
C. cyclic quadrilateral
D. rhombus

Answer: C

- Watch Video Solution

26. The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are
A. collinear
B. vertices of a rectangle
C. vertices of a parallelogram
D. None of these

Answer: B

- Watch Video Solution

27. The equation of a line through $(2,-3)$ parallel to y-axis is
A. $y=-3$
B. $y=2$
C. $x=2$
D. $x=-3$
28. The equations of the line the reciprocal of whose intercepts on the axes are a and b is given by
A. $x / a+y / b=1$
B. $a x+b y=1$
C. $a x+b y=a b$
D. $a x-b y=1$

Answer: B
29. The line L has intercepts a and b on the coordinate axes. When keeping the origin fixed, the coordinate axes are rotated through a fixed angle,then the same line has intercepts p and q on the rotated axes. Then
A. $a^{2}+b^{2}=p^{2}+q^{2}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
C. $a^{2}+p^{2}=b^{2}+q^{2}$
D. $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

Answer: D

- Watch Video Solution

30. The locus of the orthocentre of the triangle formed by the lines
$(1+p) x-p y+p(1+p)=0$
$(1+q) x-q y+q(1+q)=0$ and $y=0$ where $p \neq q$ is
A. a parabola
B. a hyperbola
C. an ellipse
D. a straight line

Answer: A

D Watch Video Solution

31. Orthocentre of the triangle formed by the lines $x+y=1$ and $\mathrm{xy}=0$ is
A. $(0,0)$
B. $(0,1)$
C. $(1,0)$
D. $(-1,1)$

Answer: D

32. The incentre of triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: B

- Watch Video Solution

33. The orthocentre of the triangle with vertices

$$
\left[2, \frac{(\sqrt{3}-1)}{2}\right],\left(\frac{1}{2},-\frac{1}{2}\right) \text { and }\left(2,-\frac{1}{2}\right) \text { is }
$$

A. $\left(\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right)$
B. $\left(2,-\frac{1}{2}\right)$
C. $\left(\frac{5}{4}, \frac{\sqrt{3}-2}{4}\right)$
D. $\left(\frac{1}{2},-\frac{1}{2}\right)$

Answer: D

- Watch Video Solution

34. Consider three points $P=(-\sin (\beta-\alpha),-\cos \beta)$,
$Q=(\cos (\beta-\alpha), \sin \beta)$
and $R=(\cos (\beta-\alpha+\theta), \sin (\beta-\theta)$
where $0<\alpha, \beta, \theta<\frac{\pi}{4}$. Then
A. Plies on the line segment RQ
B. Q lies on the line segment PR
C. R lies on the line segment $Q P$
D. P,Q,R are non collinear

Answer: B

35. The locus of a point which moves so that its distance from x-axis is double of its distance from y-axis it
A. $x=2 y$
B. $y=2 x$
C. $y=2 x+3$
D. $x=5 y+1$

Answer: C

Watch Video Solution

36. Let P be the point $(1,0)$ and Q a point on the locus $y^{2}=8 x$. The locus of mid-point of $P Q$ is :
A. $x^{2}+4 y+2=0$
B. $x^{2}-4 y+6=0$
C. $y^{2}-4 x+2=0$
D. $y^{2}+4 x+2=0$

Answer: B

- Watch Video Solution

37. Locus of the centroid of a triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and $(1,0)$ where t is parameter is :
A. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
C. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$

Answer: B

38. The line $y=x$ meets $y=k e^{x}, k \leq 0$ at
A. no point
B. one point
C. two points
D. None of these

Answer: C

- Watch Video Solution

39. Let $O(0,0), P(3,4), Q(6,0)$ be the vertices of the triangle $O P Q$. The point R inside the triangle OPQ is such that the triangles OPR, $\mathrm{PQR}, \mathrm{OQR}$ are of equal area. The coordinates of R are
A. $\left(3, \frac{2}{3}\right)$
B. $\left(\frac{4}{3}, 3\right)$
C. $\left(3, \frac{4}{3}\right)$
D. $\left(\frac{4}{3}, \frac{2}{3}\right)$

Answer: D

- Watch Video Solution

40. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on line $2 x+3 y=1$, then the locus of the vertex C is the line :
A. $3 x-2 y=6$
B. $2 x-3 y=7$
C. $3 x+2 y=5$
D. $2 x+3 y=9$

Answer: A::C::D

41. If the vertices P, Q, R of a triangle $P Q R$ are rational points, which of the following points of the triangle PQR is (are) always rational points(s)?
A. centroid
B. incentric
C. circumcentre
D. orthocentre

- Watch Video Solution

42. A straight line through the vertex P of a trinagle $P Q R$ intesect the side $Q R$ at a point S and the circumcentre of the triangle $P Q R$ at the point T. If S is not the centre of the circumcircle, then
A. $\frac{1}{P S}+\frac{1}{P T}<\frac{2}{\sqrt{Q W \times S R}}$
B. $\frac{1}{P S}+\frac{1}{S T}>\frac{2}{\sqrt{Q S \times S R}}$
C. $\frac{1}{P S}+\frac{1}{S T}<\frac{4}{Q R}$
D. $\frac{1}{P S}+\frac{1}{S T}>\frac{4}{Q R}$

Answer: B::D

- Watch Video Solution

43. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x axis.The equation of the reflected ray is
A. $y=x+\sqrt{3}$
B. $\sqrt{3} y=x-\sqrt{3}$
C. $y=\sqrt{3} x-\sqrt{3}$
D. $\sqrt{3} y=x-1$

Answer: B

44. The lines $3 x+4 y+7=0$ and $4 x+3 y+5=0$ are perpendicular.

- Watch Video Solution

45. The lines $a x+b y+c=0$ an $A x+B y+C=0$ are perpendicular of $a A+b B=0$.

- Watch Video Solution

46. The points $(1,2)$ and $(3,4)$ are on the same side of line $2 x-3 y+5=0$

- Watch Video Solution

47. If the points $(-2,-5),(2,-2),(8, a)$ are collinear, then the value of a is
48. A, B, C are the points $(-2,-1),(0,3),(4,0)$. Then the co ordinates of the point D such that $A B C D$ is parallelogram are......

Watch Video Solution

49. If the sum of the distances of a point from two perpendicular lines in a planes is 1 , then its locus is
A. square
B. circle
C. straight line
D. two intersecting

Answer: A

50. BE and CF are two medians of $\triangle A B C$ whose vertex A is $(1,3)$. The equation of BE is $x-2 y+1=0$ and CF is $\mathrm{y}-1=0$.

Determine the following:
The co-ordinates of points B, C and centroid G. The equations of lines $A B$ and AC .

- Watch Video Solution

MISCELLANEOUS EXERCISE

1. Match the entries of list A and List B

List-A
(a) If the sum of the + ive intercepts on the axes made by a line passing through the point $(-3,8)$ be 7 , then its eqn. is ...
(b) If $P(a, b)$ lies on $3 x+2 y-13=0$ and $Q(b, a)$ lies on $4 x-y-5=0$ then the equation of line $P Q$ is ...
(c) The line $x-y-2=0$ cuts x-axis at A. The equation of the line tbrough A perpendicular to $a x+b y+c=0$ is ...
(d) The incentre of triangle whose vertices are the points $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is ...
(e) The segment of the line intercepted between the lines $5 x-y-4=0$ and $3 x+4 y-4=0$ is bisected at the point $[1,5)$. Its equation is ...
3. $4 x+3 y=12$

List-B

1. $x+y=5$
2. $83 x-35 y+92=0$
3. $b x-a y-2 b=0$
4. $(1,1 / \sqrt{3})$
5. In the adjoining figure the sides $A B, B C$ and $C A$ of the triangle $A B C$ are $2 x+y=0, x+p y=q$ and $x-y=3$ respectively. The point P inside the triangle is $(2,3)$ then match the entries of column I and column II.

Column I

P\{23) is
(a) Centroid
(b) Orthocentre
(c) Circumcentre

Column II

Value of $p+q$
(i) 47
(ii) 30
(iii) 65
(iv) 74

- View Text Solution

| 3. Consider | the | lines | give |
| :---: | :---: | :---: | :---: | by

Column I

(A) L_{1}, L_{2}, L_{3} are concurrent, if
(B) One of L_{1}, L_{2}, L_{3} is parallel to at least one of the other two, if
(C) L_{1}, L_{2}, L_{3} form a triangle, if
(D) L_{1}, L_{2}, L_{3} do not form a triangle, if
(r) $k=5 / 6$

Column II
(p) $\dot{k}=-9$
(q) $k=-6 / 5$
(s) $k=5$
4. Match the entries of col. I with col II in the following: the vertices of a triangle are $\mathrm{A}(\mathrm{a}, \mathrm{O}), \mathrm{B}(0, \mathrm{~b})$ and $\mathrm{C}(\mathrm{a}, \mathrm{b})$.

Column I

(a] Centroid of Δ
(b) Orthonentre
(c) Ciccumcentre
(d) Foot of altitude from C

Column II

(p) $(a / 2 b / 2)$
(a) (a, b)
(r) $12 \sigma / 3,2 a / 3)$
(s) $\left(\frac{a^{3}}{a^{2}+b^{2}}, \frac{b^{3}}{a^{2}+b^{2}}\right)$

Watch Video Solution

5. The vertices of a triangle ABC are $\mathrm{A}(1,-2), \mathrm{B}(-7,6)$ and $C(1 / 5,2 / 5)$
(a) 1 Kq. of right bisector of $A B$
(b) K (4. of side $B C$:
(c) Eq. of altitude through C
(d) Eq. of needian through A

Column II

(p) $26 x+17 y+8=0$
(q) $14 x+28 y-40=0$
(r) $x-y+5=0$
(8) $5 x-5 y-9=0$

- View Text Solution

6. If $A(2 a, 4 a), B(2 a, 6 a)$ be two vertices of a triangle $A B C$ and C be the third vertex then match the entries of points in col. With the nature of Δ in col
II.

Column I

(a) $(4 a, 5 a)$
(b) $[(2+\sqrt{3}] a, 5 a \mid$
(c) $(B a, 4 a)$
(d) $(a, 3 a)$

Column II

(p) equilateral
(q) rt. angled
(r) obluse angled
(s) isosceles

View Text Solution

7. Match the entries of col.I with col. Il under the following conditions:

Column 1

(a) The x-co-ordinate of the point of internection of lines $3 x+4 y=9$ and $y=m x+1$ is an intoger. Then $m=$
(b) The line $2 x-3 y-5=0$ cuts the axis of co-ordinales in $A(a, 0)$ and $B(0, b)$ and the line $y=m x+m^{2}$ passes through (a, b), Isen $m=$
(c) If the point $(3,4)$ lies on the locus of the point of intersection of the lines $x \cos \alpha+y \sin \alpha-m$ and $x \sin \alpha-y \cos \alpha=n$ such that $3 m-4 n=5$, then $m=$
(d) If the line $y=m x-\frac{8}{m}$ munts the cuirve $y^{2}=4 x$ at a point where the curve moels the line $y=2$, then $m=$

Columan II

(p) $m=-1$
(q) $m=-2$
(r) $m=4$
(s) $m=-4$

View Text Solution

ASSERTION/REASON

1. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line
$L_{3}: y+2=0$ at P and Q respectively. The bisectors of the acute angle
between L_{1} and L_{2} intersect L_{3} at R .

Statement 1 : The ratio PR : RQ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles .

- Watch Video Solution

COMPREHENSION

1. Shifting or origin $(0,0)$ to (b,k)
$f(x, y) \Rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
$f(x, y) \Rightarrow f(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$
Now Answer the following questions:
(i) By rotating the axes through an angle θ the equation $x y-y^{2}-3 y+4=0$ is transformed to the form whcih does not contain the term of xy then $\sin \theta=$ \qquad

- Watch Video Solution

2. Shifting or origin $(0,0)$ to (b,k)
$f(x, y) \Rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
$f(x, y) \Rightarrow f(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$
Now Answer the following questions:
The equation $2 x y=9$ is transformed to $x^{2}-y^{2}=9$ by rotating the axes through an anlge $\pi / 4$, is this statement true of false?

- Watch Video Solution

3. Shifting or origin $(0,0)$ to (b,k)
$f(x, y) \Rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
$f(x, y) \Rightarrow f(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$
Now Answer the following questions:
By rotating the axes through an angle θ in anti clockwise direction the equation $f(x, y)=x^{2}-2 x y+3 y^{2}+4 x-4 y+1=0$
transforms to the form whcih does not contain the term of y then
$\theta=135^{\circ}$

(D) Watch Video Solution

4. Shifting or origin $(0,0)$ to (b,k)
$f(x, y) \Rightarrow f(x+h, y+k)$
Rotation of axes through an angle θ
$f(x, y) \Rightarrow f(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$
Now Answer the following questions:
Axes are rotated through a+ive obtuse angle θ so that the transformed equation of the curve $3 x^{2}-6 x y+3 y^{2}+7 x-3=0$ is free from the term of $x y$ then the coefficient of x^{2} in the transformed equation is.

- Watch Video Solution

5. $A_{1}\left(x_{1}, y_{1}\right), A_{2}\left(x_{2}, y_{2}\right), A_{3}\left(x_{3}, y_{3}\right)$..........are a point in a plane such that
$A_{1} A_{2}$ is bisected at $G_{1}, G_{1} A_{3}$ is divided in the ratio $1: 2 a t G_{2}, G_{2} A_{4}$ is divided in the ratio $1: 3$ at G_{3}. The process is continued until all n points are exhausted then find the co ordinates of the final point G_{n}.
6. $A_{1}\left(x_{1}, y_{1}\right), A_{2}\left(x_{2}, y_{2}\right), A_{3}\left(x_{3}, y_{3}\right)$..........are a point in a plane such that If $x_{1}=a, y_{1}=b$ and x_{i} s form an A.P. with common difference 2 and y_{i} 's form an A.P with common difference 4,then find the co-ordinates of G, the centroid.

- Watch Video Solution

7. $A_{1}\left(x_{1}, y_{1}\right), A_{2}\left(x_{2}, y_{2}\right), A_{3}\left(x_{3}, y_{3}\right)$..........are a point in a plane such that If $x_{1}, y_{1}=2$ and x_{i} 's form a G.P. with common ratio 2 and y_{i} 's form a G.P. with common ratio 3, then find the co ordinates of G .

- Watch Video Solution

8. $A_{1}\left(x_{1}, y_{1}\right), A_{2}\left(x_{2}, y_{2}\right), A_{3}\left(x_{3}, y_{3}\right) \ldots a r e ~ a ~ p o i n t ~ i n ~ a ~ p l a n e ~ s u c h ~ t h a t ~$ If a straight line be such that algebraic sum of the perpendicular drawn from the points $A_{1}, A_{2}, \ldots \ldots \ldots \ldots \ldots A_{n}$ is zero then prove that the straight line passes is the centroid G of the given points.

(D) Watch Video Solution

9. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of a triangle ABC and $a x+b y+c=0$ is the equation of the line L , then answer the following questions.

If the centroid of the triangle $A B C$ is at the origin and algebraic sum of the length of the perpendicular from the vertices of the triangle on the line L is equal to 1 , then prove that sum of the squares of the reciprocal of intercepts made by L on the co-ordinate axes is 9 .

- Watch Video Solution

10. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of a triangle ABC and $a x+b y+c=0$ is the equation of the line L , then answer the following questions.

If a line $a x+b y+c=0$ cuts the sides BC, CA and AB of triangle ABC at points P, Q and R respectively The prove that
$\frac{B P}{P C} \cdot \frac{C Q}{Q A} \cdot \frac{A R}{R B}=-1$

- View Text Solution

11. $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of a triangle ABC and $a x+b y+c=0$ is the equation of the line L , then answer the following questions.

If P divides $B C$ in ratio 2:1 and Q divides $C A$ in ratio 1:3 then R divides $A B$ in the what ratio (P, Q, R are the points as in problem 1)

- Watch Video Solution

