©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - ML KHANNA

TANGENTS AND NORMALS

Problem Set 1 Multiple Choice Questions

1. For the curve $x=t^{2}-1, y=t^{2}-t$, the
tangent line is perpendicular to x-axis, where
A. $t=0$
B. $t=\infty$
C. $t=1 / \sqrt{3}$
D. $t=1 / \sqrt{3}$

Answer: A

D Watch Video Solution

2. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5 \quad$ at the
point $(2,-1)$, is
A. $\frac{22}{7}$
B. $\frac{6}{7}$
C. -6
D. None of these

Answer: B

D Watch Video Solution
3. Angle between the .tangents to the curve
$y=x^{2}-5 x+6$ at the points $(2,0)$ and $(3,0)$
is :
A. $\pi / 2$
B. $\pi / 6$
C. $\pi / 4$
D. $\pi / 3$

Answer: A

D Watch Video Solution

4. The tangent of the curve $y=2 x^{2}-x+1$ is parallel to the line $y=3 x+9$ at the point
A. $(3,9)$
B. $(2,-1)$
C. $(2,1)$
D. $(1,2)$

Answer: D

D Watch Video Solution

5
The
tangentto
the
curve
$x^{2}+y^{2}-2 x-3=0$ is parallel to x -axis at
the points
A. $(2 \pm \sqrt{3})$
B. $(1, \pm 2)$
C. $(\pm 1,2)$
D. $(\pm 3,0)$

Answer: B

D Watch Video Solution

6. The points on the curve $y=x^{3}+5$ at which the tangents are perpendicular to the line $x+3 y=2$ are
A. $(6,1),(1,4)$
B. $(1,6),(1,4)$
C. $(6,1)(4,-1)$
D. $(1,6)(-1,4)$

Answer: D

D Watch Video Solution

7. The equation of the tangent at the point $\mathrm{P}(\mathrm{t})$, wheret is any parameter, to the parabola $y^{2}=4 a x$ is
A. $y t=x+a t^{2}$
B. $y=x t+a t^{2}$
C. $y=t x$
D. $y=t a / t$

Answer: A

D Watch Video Solution

8. The tangent to a given curve is perpendicular to x-axis if
A. $\frac{d y}{d x}=0$
B. $\frac{d y}{d x}=1$
C. $\frac{d x}{d y}=0$
D. $\frac{d x}{d y}=1$

Answer: C

- Watch Video Solution

9. Tangents to the folium of descartes $x^{3}+y^{3}$
$=3 a x y$ at the point where it meets the parabola $y^{2}=a x$ are parallel to
A. x-axis
B. y-axis
C. $y=x$
D. none

Answer: B

D Watch Video Solution

10. The values of a for whic.h
$y=x^{2}+a x+25$ touches the axis of x are
A. ± 5
B. ± 10
C. ± 15
D. none

Answer: B

D Watch Video Solution

11. The point on the curve $y^{2}=x$, the tangent at which makes an angle of 45° with x-axis will be given by
A. $\left(\frac{1}{2}, \frac{1}{4}\right)$
B. $\left(\frac{1}{2}, \frac{1}{2}\right)$
C. $(2,4)$
D. $\left(\frac{1}{4}, \frac{1}{2}\right)$

Answer: A

D Watch Video Solution

12. If the tangent to the curve $x+y=e^{x y}$ be parallel to y-axis, then the point of contact is
A. $(1,0)$
B. $(0,1)$
C. $(1,1)$
D. None

Answer: A

D Watch Video Solution

13. If the parametric of a curve given by $x=e^{t} \cos t, y=e t \sin t$, then the tangent to
the curve at the point $t=\pi / 4$ makes with axis of x the angle

A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: D
(Watch Video Solution
14. The slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5 \quad$ at \quad the point (2, -1), is

> A. $\frac{22}{7}$
> B. $\frac{6}{7}$
> C. 6
D. none

Answer: B

D Watch Video Solution
15. The straight line $x+y=a$ will be a tangent to the ellipse $x^{2} / 9+y^{2} / 16=1$ if $\mathrm{a}=$
A. 8
B. ± 5
C. ± 10
D. ± 6

Answer: B
(Watch Video Solution
16. The curve $y-e^{x y}+x=0$ has a vertical tangent at the point :
A. $(1,1)$
B. at no point
C. $(0,1)$
D. $(1,0)$

Answer: D

- Watch Video Solution

17. The points) on the curve $y^{3}+3 x^{2}=12 y$ where the tangent is vertical, is(are) ?? $\left(\pm \frac{4}{\sqrt{3}},-2\right)$ (b) $\left(\pm \sqrt{\frac{11}{3}}, 1\right)(0,0)$
(d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$
A. $\left(\pm \frac{4}{\sqrt{3}},-2\right)$
B. $\left(\pm \sqrt{\frac{11}{3}}, 1\right)$
C. $(0,0)$
D. $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

Answer: D
18. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets the x-axis at
A. $(0, a)$
B. $(2,0)$
C. $(-1 / 2,0)$
D. None of these

Answer: C
19. The equation of the tangent to the curve $y=b e^{-x / a}$ at point where $\mathrm{x}=0$ is
A. $x / a-y / b=1$
B. $y / b-x / a=1$
C. $x / a+y / b=1$
D. None of these

Answer: C

- Watch Video Solution

20. The curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a,b) then the value of n is
A. 2
B. 3
C. 4
D. any real number

Answer: D
21. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-x / a}$ at the point
A. $(a, b / a)$
B. $(-a, b / a)$
C. $(a, a / b)$
D. None of these

Answer: D
22. Equation of tangent to the curve $x=a \cos ^{3} t, y=a \sin ^{3} t$ at ' t ' is
A. $x \sec t-y \operatorname{cosec} t=a$
B. $x \sec t+y \operatorname{cosec} t=a$
C. $x \cos e c t+y \cos e c t=a$
D. None of these

Answer: B

23. The equation of the tangent at the pointt

 on the curve $x=a(t+\sin t), y=a(1-\cos t)$ isA. $y=(x-a t) \cdot \tan (t / 2)$
B. $y=(x+a t) \cdot \tan (t / 2)$
C. $y=(x-a t) \cdot \cot (t / 2)$
D. None of these

Answer: A
24. The tangent to the survey $=x^{2}+3 x$ will pass through the point $(0,-9)$ if $j t$ is drawn at the point
A. $(3,18)$
B. $(1,4)$
C. $(-4,4)$
D. $(-3,0)$

Answer: A::D

D Watch Video Solution
25. If the tangent at $\mathrm{P}(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at Q then the point Q is
A. ($-1,2$)
B. $\left(\frac{9}{4}, \frac{3}{8}\right)$
C. $(4,4)$
D. None of these

Answer: B
26. The co-ordinates of the point on the curve
$y=x^{2}+3 x+4$ the tangent at which passes
through the origin is equal to
A. $(2,14),(-2,2)$
B. $(2,14),(-2,-2)$
C. $(2,14)(2,2)$
D. None of these

Answer: A

D Watch Video Solution
27. Tangents are drawn to the curve $x^{2} y=1-y$ at the points where it is met by the curve $x y=1-y$. The point of intersection of these tangents is.
A. $(0,-1)$
B. $(0,1)$
C. $(1,1)$
D. none

Answer: B
28. If the tangent at $(1,1)$ on $y^{2}=x(2-x)^{2}$
meets the curve again at P then P is
A. $(-1,2)$
B. $(4,4)$
C. $\left(\frac{9}{4}, \frac{3}{8}\right)$
D. none

Answer: C
29. If tangent at any point on the curve $e^{y}=1+x^{2}$ makes an angle θ with +ive direction of x-axis, then
A. $|\tan \theta|>1$
B. $|\tan \theta|<1$
C. $\tan \theta>1$
D. $|\tan \theta| \leq 1$

Answer: D

30. If the tangent at any point on the curve $y=x^{3}-\lambda x^{2}+x+1$ makes an acute angle with the +ive direction of x-axis, then
A. $\lambda>0$
B. $\lambda \leq \sqrt{3}$
C. $-\sqrt{3} \leq \lambda \leq \sqrt{3}$
D. None

Answer: C
31. The number of points on the curve $x^{3 / 2}+y^{3 / 2}=a^{3 / 2}$ where the tangents are equally inclined to the axes is
A. 1
B. 2
C. 4
D. None

Answer: A
32. The point on the curve $\sqrt{x}+\sqrt{y}=2 a^{2}$ at which the tangent is equally inclined to the axes is
A. $\left(4 a^{4}, 0\right)$
B. $\left(0,4 a^{4}\right)$
C. $\left(a^{4}, a^{4}\right)$
D. None
33. If tangent to the curve $x=a t^{2}, y=2 a t$ is perpendicular to x-axis then its point of contact is
A. (a.a)
B. $(0, a)$
C. $(a, 0)$
D. $(0,0)$
34. The area of the triangle formed by the tangent to the curve $\mathrm{y}=8 /\left(4+x^{2}\right)$ at $\mathrm{x}=2$ and the co-ordinate axes is
A. 2 sq. units
B. 4 sq. units
C. 8 sq. units
D. $7 / 2$ sq. units
35. Find the value of |a| for which the area of triangle included between the coordinate axes and any tangent to the curve $x^{a} y=\lambda^{a}$ is constant (where λ is constnat.),
A. $1 / 2$
B. 2
C. $3 / 2$
D. 1

Answer: D

D Watch Video Solution

36. Any tangent at a point $P(x, y)$ to the ellipse $\frac{x^{2}}{8}+\left(y^{2}\right)=1$ meets the coordinate axes in the points A and B such that the area of the triangle $O A B$ is least, then the point P is
A. $(\sqrt{8}, 0)$
B. $(0, \sqrt{18})$
C. $(2,3)$

D. none

Answer: C

D Watch Video Solution

37. The equation of the tangent to the curve
$\mathrm{y}=2 \sin \mathrm{x}+\sin 2 \mathrm{x}$ at $x=\frac{\pi}{3}$ is equal to
A. $2 y=3 \sqrt{3}$
B. $y=3 \sqrt{3}$
C. $2 y+3 \sqrt{3}=0$
D. $y+3 \sqrt{3}=0$

Answer: A

D Watch Video Solution

38. The points on the curve $y=\frac{x}{\left(1-x^{2}\right)}$ where the tangent is inclined at angle $\pi / 4$ to
the x-axis
A. $(0,0),(\sqrt{3},-\sqrt{3} / 2)$
B. $(0,0),(-\sqrt{3}, \sqrt{3} / 2)$
C. $(0,0),(\sqrt{3},, \sqrt{3} / 2)$
D. None of these

Answer: A::B

D Watch Video Solution

39. The point P on the curve
$y=x \tan \alpha-\frac{1}{2} \frac{x^{2}}{u^{2} \cos ^{2} \alpha}, \alpha \in\left(0, \frac{\pi}{2}\right)$ has
a tangent parallel to $y=x+5$. If the ordinate
of P is $\frac{u^{2}}{4}$ then $\alpha=$
A. 15°
B. 30°
C. 45°
D. 60°

Answer: D

D Watch Video Solution

40. Co-ordinates of the point Pon the curve
$y^{2}=2 x^{3} \quad$, the tangent at which is
perpendicular to the line $4 x-3 y+2=0$ are given by
A. $(2,4)$
B. $(0,0)$
C. $(1 / 8,-1 / 16)$
D. None of these

Answer: C
(Watch Video Solution
41. The points on the curve $4 x^{2}-9 y^{2}=36$ tangent at which is perpendicular to the line $5 x+2 y-10=0$ is given by
A. $\left(\frac{\sqrt{117}}{2}, 3\right)$
B. $(\sqrt{18}, 2)$
C. $(\sqrt{18},-2)$
D. none

Answer: D
42. If $y=4 x-5$ is a tangent to the curve $y^{2}=a x^{3}+b$ at $(2,3)$, then
A. $a=2, b=-7$
B. $a=-2, b=7$
C. $a=-2, b=-7$
D. $a=2, b=7$

Answer: A
(Watch Video Solution
43. If the tangent to the curve
$x y+a x+b y=0$ at $(1,1)$ is inclined at an angle $\tan ^{-1} 2$ to axis of x then (a, b) is equal to
A. (-1,-2)
B. $(-1,2)$
C. $(1,-2)$
D. $(1,2)$

Answer: C

44. A function $y=f(x)$ has a second order derivative $f^{\prime \prime}(x)=6(x-1)$. If the graph passes
through the point $(2,1)$ and at this point tangent to the graph is $y=3 x-1$, then function is :

$$
\begin{aligned}
& \text { A. }(x-1)^{3} \\
& \text { B. }(x-1)^{2} \\
& \text { C. }(x+1)^{3} \\
& \text { D. }(x+1)^{2}
\end{aligned}
$$

- Watch Video Solution

45. The equation(s) of the tangent(s) to the curve $y=x^{4}$ from the point $(2,0)$ not on the curve is given by

$$
\text { A. } y=0
$$

B. $y-1=5(x-1)$

$$
\begin{aligned}
& \text { C. } y-\frac{4098}{81}=\frac{2046}{27}\left(x-\frac{8}{3}\right) \\
& \text { D. } y-\frac{32}{243}=\frac{80}{81}\left(x-\frac{2}{3}\right)
\end{aligned}
$$

- Watch Video Solution

46. The tangent and normal at the point
$P\left[a t^{2}, 2 a t\right)$ to the parabola $y^{2}=4 a x$ meet the x-axis in T and G respectively, then the angle at which the tangent at P to the parabola is inclined to the tangent at P to the circle through T, P, G is
A. $\tan ^{-1} t^{2}$
B. $\cot ^{-1} t^{2}$
C. $\tan ^{-1} t$

$$
\text { D. } \cot ^{-1} t
$$

Answer: C

D View Text Solution

47. The equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi \quad$ that are parallel to the line $x+2 y=0$, is
A. $x+2 y=1$
B. $x+2 y=\pi / 2$

C. $x+2 y=\pi / 4$

D. None of these

Answer: B

D Watch Video Solution

48. All points on the curve
$y^{2}=4 a\left(x+a \sin \frac{x}{a}\right) \quad$ at which the
tangents are parallel to the axis of x lie on a
A. Circle
B. Parabola
C. Line
D. None of these

Answer: B

D Watch Video Solution
49. The points of contact of the tangents
drawn from the origin to the curve $y=\sin x$ lie on the curve
A. $x^{2}-y^{2}=x y$
B. $x^{2}+y^{2}=x^{2} y^{2}$
C. $x^{2}-y^{2}=x^{2} y^{2}$
D. None of these

Answer: C

D View Text Solution
50. The angle which the perpendicular from
the origin on the tangent makes with the x -
axis for the curve whose parameteric equations are $x=a \sin ^{3} \theta, y=a \cos ^{3} \theta$ is
A. $\theta / 2$
B. θ
C. 2θ
D. none

Answer: B

D View Text Solution
51. If p_{1} and p_{2} be the lengths of perpendiculars from the origin on the tangent and normal to the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ respectively, then $4 p_{1}^{2}+p_{2}^{2}=$
A. $4 a^{2}$
B. $2 a^{2}$
C. a^{2}
D. none

Answer: C

52. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the x-axis at $P(-2,0)$ and cuts the
y-axis at a point Q where its gradient is 3 , then
$2 a+4 b$ is equal to :

> A. $-\frac{1}{2},-\frac{3}{4}, 3$
> B. $3, \frac{1}{2},-\frac{3}{4}$
> C. $-\frac{3}{4},-\frac{1}{2}, 3$
D. none

- Watch Video Solution

53. If the curve $y=a x^{3}+b x^{2}+c x$ is inclined at 45° to x-axis at $(0,0)$ but touches x-axis at $(1,0)$, then

$$
\text { A. }(1,-2,1)
$$

B. $(1,1,-2)$
C. $(-2,1,1)$
D. $(-1,2,1)$

D Watch Video Solution

54. If the tangent at the point $P\left(a t^{2}, a t^{3}\right)$ on the curve $a y^{2}=x^{3}$ meets the curve again at Q whose para-meter is t^{\prime} then $\mathrm{t}^{\prime}=$
A. 2 t
B. $-t$
C. $t / 2$
D. $-t / 2$

Answer: B

- View Text Solution

55. A curve is given by the equations $x=\sec ^{2} \theta, y=\cot \theta$. If the tangent at Pwhere $\theta=\frac{\pi}{4}$ meets the curve again at Q, then $[P Q]$ is, where [.] represents the greatest integer function, \qquad .
A. $\sqrt{15}$
B. $\frac{3}{2} \sqrt{5}$
C. $\frac{1}{2} \sqrt{15}$
D. none

Answer: B

D Watch Video Solution

56. If the line $a x+b y+c=0$ is a normal to the
curve $x y=1$, then
A. $a>0, b>0$
B. $a>0, b<0$
C. $a<0, b>0$
D. $a<0, b<0$

Answer: B::C

D Watch Video Solution

57. The normal to a given curve is parallel to x - axis if
A. $\frac{d y}{d x}=0$
B. $\frac{d y}{d x}=1$

> C. $\frac{d x}{d y}=0$
> D. $\frac{d x}{d y}=1$

Answer: C

- Watch Video Solution

58. The normal at the.point $(1,1)$ on the curve

$$
2 y=3-x^{2} \text { is }
$$

A. $x+y=0$
B. $x+y+1=0$

$$
\text { C. } x-y+1=0
$$

D. $x-y=0$

Answer: D

D Watch Video Solution

59. The normal to the curve
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
at any θ is such that
A. it makes a constant angle with x-axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these

Answer: C

D Watch Video Solution
60. The equation to the normal to the curve y
$=\sin x$ at $(0,0)$ is
A. $x=0$
B. $y=0$
C. $x+y=0$
D. $x-y=0$

Answer: C

D Watch Video Solution

61. Equation of norinal to the curve
$y=\sin x, a t[\pi, 0]$ is
A. $x+y=\pi$
В. $x+y+\pi=0$
C. $x-y=\pi$
D. $x-y+\pi=0$

Answer: C

D Watch Video Solution

62. Equation of normal to the curve $y=x+\sin x$
$\cos \mathrm{x}$ at $x=\pi / 2$ is
A. $x=\pi$
B. $x=2$
C. $x+\pi=0$
D. $x=\pi / 2$

Answer: D

D Watch Video Solution

63. The normal to the curve
$x=a(1+\cos \theta), y=a \sin \theta$ at ${ }^{\prime} \theta$ ' always
passes through the fixed point
A. (a, a)
B. $(a, 0)$
C. $(0, a)$
D. none of these

Answer: B

D Watch Video Solution

64. Find the equation of normal to the curve
$y(x-2)(x-3)-x+7=0$ at that point at
which the curve meets X -axis.
A. $x-20 y=7$
B. $20 x-y=7$
C. $20 x+y=140$
D. $20 x-y=140$

Answer: C

D Watch Video Solution
65. Equation of normal to the curve $y=x(2-x)$ at the point $(2,0)$ is
A. $x-2 y=2$
B. $2 x+y=4$
C. $x-2 y+2=0$
D. None of these

Answer: A

D Watch Video Solution
66. If the normal to the curve $y=f(x)$ at the point $(3,4)$ makes an angle $3 \pi / 4$ with the positive x-axis, then $f^{\prime}(3)=$
A. -1
B. $-\frac{3}{4}$
C. $\frac{4}{3}$
D. 1

Answer: D

D Watch Video Solution

67. The point on the curve where the normal to the curve $9 y^{2}=x^{3}$ makes equal intercepts with the axes is
A. $\left(4, \frac{8}{3}\right)$
B. $\left(-4, \frac{8}{.3}\right)$
C. $\left(4,-\frac{8}{3}\right)$
D. none

Answer: A::C

D Watch Video Solution

68. The values of parameter 'a' so that the line
$(3-a) x+a y+a^{2}-1=0$ is a normal to
the curve $x y=1$ is/are :
A. $(3, \infty)$
B. $(-\infty, 0)$
C. $(0,3)$
D. none

Answer: A::B

D Watch Video Solution

69. If $P G_{1}$ and $P G_{2}$ be the normals to the
curves $y^{2}=4 a x$ and $a y^{2}=4 x^{3}$ at a common
point other than origin meeting x-axis in G_{1}
and G_{2}, then $G_{1} G_{2}=$
A. 2 a
B. 4 a
C. 6 a
D. none

Answer: B
(Watch Video Solution
70. The abscissa of the point on the curve $a y^{2}=x^{3}$, the normal at which cuts off equal intercepts from the axes is
A. $2 \mathrm{a} / 3$
B. $4 \mathrm{a} / 9$
C. 3 a
D. none

Answer: B

D Watch Video Solution
71. The normal to a curve at $P(x, y)$ meets the x -
axis at G . If the distance of G from the origin is
twice the abscissa of P, then the curve is a (1)
ellipse (2) parabola (3) circle (4) hyperbola
A. ellipse
B. parabola
C. circle
D. hyperbola

Answer: A::D
72. The normal at anypoint $P(c t, c / t)$ on the curve $\mathrm{xy}=c^{2}$ meets the curve at $Q\left(c t_{1}, c / t_{1}\right)$, then $t_{1}=$
A. $-t$
B. $1 / t^{2}$
C. $-1 / t^{3}$
D. none

Answer: C
73. A curve C has the property that if the tangent drawn at any point P on C meets the co-ordinate axis at A and B, then P is the mid-point of $A B$. The curve passes through the point $(1,1)$. Determine the equation of the curve.
A. $x y=1$
B. $y^{2}=2 x-1$
C. $x^{2}=2 y-1$
D. none

Answer: A

D Watch Video Solution

74. The equation of the normal to the curve

$$
y^{2}=a x^{3} \text { at }[\mathrm{a}, \mathrm{a}) \text { is }
$$

A. $x+2 y=3 a$
B. $x-4 y=-a$
C. $4 x+3 y=7 a$

D. none of these

Answer: C

D Watch Video Solution

75. The tangent to the curve $y=a x^{2}+b x$ at
$(2,-8)$ is parallel to x-axis. Then
A. $a=2, b=-2$
B. $a=2, b=-4$
C. $a=2, b=-8$

D. none of these

Answer: C

D Watch Video Solution

76. The equation of the tangent at $(-4,-4)$ on
the curve $x^{2}=4 y$ is
A. $2 x+y=4$
B. $2 x-y=12$
C. $2 x+y=-4$
D. $2 x-y=-4$

Answer: D

D Watch Video Solution

77. The abscissa of the point on the curve $y=a\left[e^{x / a}+e^{-x / a}\right]$ when the tangent is parallel to the x-axis is
A. 0
B. 1
C. a
D. 2 a

Answer: A

D Watch Video Solution

78. The intercept on x-axis made by tangents to the curve $y=a\left[e^{x / a}+e^{-x / a}\right]$ when ihe tangent is parallel to the x-axis is
A. 0
B. 1
C. a
D. 2 a

Answer: A

D Watch Video Solution

79. The equation of the tangent to the curve
$y=x+\frac{4}{x^{2}}$, that is parallel to the x -axis, is

$$
\text { A. } y=0
$$

B. $y=1$
C. $y=2$
D. $y=3$

Answer: D

D Watch Video Solution

Problem Set 1 True And False

1. Prove that the equation of the normal to
$x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ is $y \cos \theta-x \sin \theta=a \cos 2 \theta$,
where θ is the angle which the normal makes
with the axis of x.

- Watch Video Solution

2. Normal to the parabola $y^{2}=4 a x$ is of the
form $y=m x-2 a m-a m^{3}$ where m is the
slope of the tangent.

D View Text Solution
3. Tangent to the parabola $y^{2}=4 a x$ is of the form $y=m x+\frac{a}{m}$ where m is the slope of the tangent.

D Watch Video Solution

4. The normal to the curve
$5 x^{5}-10 x^{3}+x+2 y+6=0$ at $P(0,-3)$
meets the curve again at two points at which equation of tangents to the curve are same.
5. The angle between the tangents at any point P and the line joining P to the origin O is the same at all points of the curve
$\log \left(x^{2}+y^{2}\right)=k \tan ^{-1}(y / x)$

D Watch Video Solution

6. The equation of the tangent to the curve $y=\frac{x(x-1)(x+1)}{(x+3)(x+4)}$ where $\mathrm{x}=0$, is $\mathrm{y}=12 \mathrm{x}$.
7. The point on the curve $x^{3}+y^{3}=3 a x y$ at which the tangent is parallel to x-axis is given by

- Watch Video Solution

2. Let C be the curve $y^{3}-3 x y+2=0$. If H is
the set of points on the curve C , where the tangent is horizontal and V is the set of points
on the curve C , where the tangent is vertical, then $\mathrm{H}=\ldots$ and $\mathrm{V}=\ldots$...

D Watch Video Solution

3. The tangent to the curve $y=4-x^{2}$ at a point P is parallel to the chord connecting the points $A(-2,0)$ and $B(1,3)$. Then the coordinates of P are
4. The curve $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}-2=0$ cut at an angle of
A. 45°
B. 60°
C. 90°
D. 30°

Answer: C

- Watch Video Solution

2. The angle of intersection of the curves

$$
y=x^{2}, 6 y=7-x^{3} \text { at }(1,1) \text {, is }
$$

A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 2$
D. None

Answer: C

3.

The
curves

$$
y=x^{3}+x+1,2 y=x^{3}+5 x, \operatorname{at}(1,3) \text { are }
$$

A. touching each other
B. intersecting orthogonally
C. not intersecting
D. None of these

Answer: A
(Watch Video Solution
4. The angle at which the curve $\mathrm{y}=m e^{\mathrm{mx}}$ intersects the y-axis is

$$
\begin{aligned}
& \text { A. } \cot ^{-1}\left(m^{2}\right) \\
& \text { B. } \tan ^{-1}\left(m^{2}\right) \\
& \text { C. } \frac{\sin ^{-1} 1}{\sqrt{1+m^{4}}} \\
& \text { D. } \sec ^{-1} \sqrt{1+m^{4}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

5. The curves $a x^{2}+b y^{2}=1 \quad$ and
$a^{\prime} x^{2}+b^{\prime} y^{2}=1$ intersect orthogonally if

> А. $1 / a-1 / b=1 / a^{\prime}-1 / b^{\prime}$
> В. $1 / a+1 / b=1 / a^{\prime}+1 / b^{\prime}$
> С. $1 / a+1 / a^{\prime}=1 / b+1 / b^{\prime}$
D. None of these

Answer: A

D Watch Video Solution

6. If the curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$ and $y^{3}=16 x$ intersects at right angles then $a^{2}=$

> A. $\frac{1}{2}$
> B. $\frac{3}{4}$
> C. $\frac{4}{3}$
D. none

Answer: C

D Watch Video Solution

7. The curves $y=e^{-a x} \sin b x$ and $y=e^{-a x}$ touch at the points for which $b x=$

> A. $2 n \pi+\frac{\pi}{2}$
> B. $2 n \pi+\frac{\pi}{3}$
> C. $2 n \pi+\frac{\pi}{4}$
> D. none

Answer: A

D Watch Video Solution
8. Angle of intersection of the curves

$$
y=4-x^{2} \text { and } y=x^{2} \text { is }
$$

A. $\frac{\pi}{2}$
B. $\tan ^{-1}\left(\frac{4}{3}\right)$
C. $\frac{\tan ^{-1}(4 \sqrt{2})}{7}$
D. None

Answer: C
9. The angle between the curves $y^{2}=x$ and

$$
x^{2}=y \text { at }(1,1) \text { is }
$$

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{4}{5}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

C. 45°
D. 90°

Answer: B
(Watch Video Solution
10. Angle of intersection of the curve $x^{2}=32 y$ and $y^{2}=4 x$ at.the point $(16,8)$ is
A. 60°
B. 90°
C. $\tan ^{-1}(4 / 3)$
D. $\tan ^{-1}(3 / 5)$

Answer: D

- Watch Video Solution

11. If the curves $y^{2}=16 x$ and $9 x^{2}+b y^{2}=16$
cut each other at right angles, then the value of b is
A. 2
B. 4
C. $9 / 2$
D. None

Answer: C

D Watch Video Solution
12. If the two curves $y=a^{x}$ and $y=b^{x}$ intersect at an angle α, then $\tan \alpha$ equals

$$
\begin{aligned}
& \text { A. } \frac{\log a-\log b}{1+\log a \log b} \\
& \text { B. } \frac{\log a+\log b}{1-\log a \log b} \\
& \text { C. } \frac{\log a-\log b}{1-\log a-\log b}
\end{aligned}
$$

D. none of these

Answer: A

D Watch Video Solution

13. Out of the four curves given below chciose the curve which intersects the parabola $y^{2}=4 a x$ orthogonally

$$
\text { A. } x^{2}+y^{2}=a^{2}
$$

B. $y=e^{-x / 2 a}$
C. $y=a x$

$$
\text { D. } x^{2}=4 a y
$$

Answer: B
14. The length of the subnormal to the parabola $y^{2}=4 a x$ at any point is equal to
A. $\sqrt{2} a$
B. $2 \sqrt{2} a$
C. $\frac{a}{\sqrt{(2)}}$
D. 2 a

Answer: D

D

15. If at any point (x, y) on a curve subtangent and subnormal are of equal length, then the length of the tangent is
A. $\sqrt{2 y}$
B. $\sqrt{2} y$
C. y
D. none

Answer: B

D Watch Video Solution
16. The length of sub-tangent to the curve $\sqrt{x}+\sqrt{y}=3$ at the point $(4,1)$ is
A. 2
B. $\frac{1}{2}$
C. -3
D. 4

Answer: A
(Watch Video Solution
17. The length of the subtangent to the curve $x^{2}+x y+y^{2}=7$ at $(1,-3)$ is
A. 3
B. 5
C. 15
D. $3 / 5$

Answer: C

- Watch Video Solution

18. The length of the normal at t on the curve

 $x=a(t+\sin t), y=a(1-\cos t)$, isA. asint
B. $2 a \sin ^{3}(t / 2) \sec (t / 2)$
C. $2 \alpha \sin (t / 2) \tan (t / 2)$
D. $2 \alpha \sin (t / 2)$

Answer: C

D Watch Video Solution

19. The length of the normal to the curve $x=a(t$ $+\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1-\cos \mathrm{t})$, "at" $\mathrm{t}=\mathrm{pi} / / 2^{\text {' }}$ is
A. 2 a
B. $a \sqrt{2}$
C. $a / 2$
D. $a / \sqrt{2}$

Answer: B

D Watch Video Solution
20. Sum of squares of intercepts made on coordinate axes hy the tangents to the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is
A. a^{2}
B. $2 a^{2}$
C. $3 a^{2}$
D. $4 a^{2}$

Answer: A

D View Text Solution
21. The portion of the tangent of the curve
$x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$,which is intercepted between
the axes is ($\mathrm{a}>0$)
A. a
B. 2a
C. 3 a
D. none

Answer: A

D Watch Video Solution
22. At a point $(a / 8, a / 8)$ on the curve
$x^{1 / 3}+y^{1 / 3}=a^{1 / 3}(\mathrm{a}>0)$ tangent is drawn. If
the portion of the tangent intercepted betweenthe axes be of length $\sqrt{2}$ then a=
A. 1
B. 2
C. 4
D. 8

Answer: C
23. In the curve $\mathrm{x}=a[\cos t+\log \tan (t / 2)], \mathrm{y}$
$=a \sin t$, the portion of the tangent between
the point of contact and the x-axis is of length
A. 2 a
B. a
C. $a / 2$
D. none

Answer: B
24. The triangle formed by the tangent to the
curve $f(x)=x^{2}+b x-b$ the point $(1,1)$ and
the co-ordinate axes, lies in the first quadrant.
If its area is 2 , then the value of b is
A. -1
B. 3
C. -3
D. 1

Answer: C

- Watch Video Solution

25. The length of the normal at θ on the curve
$x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ is
A. $a \sin ^{2} \theta$
B. $a \sin ^{2} \theta \tan \theta$
C. $a \sin ^{2} \theta \cos \theta$
D. $a \sin ^{3} \theta \tan \theta$

Answer: B

- Watch Video Solution

26. The length of the normal to the curve at (x ,
y) $y=a\left(\frac{e^{x / a}+e^{-x / a}}{2}\right)$ at any point varies as
A. x
B. x^{2}
C. y
D. y^{2}

Answer: D

D Watch Video Solution

27. The value of n for which the length of the
subnormal of the curve $x y^{n}=a^{n+1}$ is
constant
A. 1
B. -1
C. 2
D. -2

Answer: D

D Watch Video Solution

28. If the tangent at P on the curve
$x^{m} y^{n}=d^{m+n}$ meets the co-ordinates axes at
A and B, then $A P: P B=$
A. $m: n$
B. $n: m$
C. $-m: n$
D. $-n: m$

Answer: A

D Watch Video Solution

29. For the parabola $y^{2}=4 a x$, the ratio of the
subtangentto the abscissa is
A. $1: 1$
B. 2:1
C. $x: y$
D. $x^{2}: y$

Answer: B

D Watch Video Solution

30. The tangent at any point. on the curve $x^{4}+y^{4}=a^{4}$ cuts off intercepts p and q on the co-ordinate axes then the value of $p^{-\frac{4}{3}}+q^{-4 / 3}$ is equal to
A. $a^{-4 / 3}$
B. $a^{-1 / 2}$
C. $a^{1 / 2}$
D. none

Answer: A

- Watch Video Solution

Problem Set 2 True And False

1. Angle of intersection of the following curves
$x^{2}+y^{2}=a^{2} \sqrt{2}, x^{2}+y^{2}=a^{2}$, is $\pi / 4$.

D Watch Video Solution

2. Angle of intersection of the following curves
$x y=a^{2}, x^{2}+y^{2}=2 a^{2}$ is 0 i.e. the touch.

- Watch Video Solution

3. Angle of intersection of the following curves

$y^{2}=16 x, 2 x^{2}+y^{2}=4$ is $\pi / 2$

D Watch Video Solution
4. Angle of intersection of the following curves
$y=x^{2}, 6 y=7-x^{2}$ is $\tan ^{-1} 7$.

D Watch Video Solution
5. For the curve $x y=c^{2}$

The intercept between the axes on the tangent at any point is bisected at the point of contact.

D Watch Video Solution

6. For the curve $x y=c^{2}$

The tangent at any point makes with coordinate axes a triangle of constant area.
7. In the curve $x^{m+n}=a^{m-n} y^{2 n}$, mth power of subtangent varies as the nth power of the sub-normal.

- Watch Video Solution

Problem Set 2 Fill In The Blanks

1. If x_{1}, y_{1} be the parts of the axes interceptedby the tangent at any point $[x, y)$ on the curve
$\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$,
$\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}=\ldots \ldots$.

D View Text Solution

Misscellaneous Exercise Assertion And Reason

1. Given : A circle $2 x^{2}+2 y^{2}=5$ and a parabola $y^{2}=4 \sqrt{5} x$

Statement-1 : An equation of the common tangent to these curve is $y=x+\sqrt{5}$

Statement-2 : If the line $\mathrm{y}=m x+\frac{\sqrt{5}}{m}, m \neq 0$
is their common tangent, then m satisfies

$$
m^{4}-3 m^{2}+2=0
$$

D View Text Solution

Self Assessment Test Multiple Choice Questions

1. For the curve $x=t^{2}-1, y=t^{2}-t$, the tangent line is perpendicular to x-axis, where
A. $t=0$
B. $t=\infty$
C. $t=1 / \sqrt{3}$
D. $t=1 / \sqrt{3}$

Answer: A

- Watch Video Solution

2. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5 \quad$ at \quad the
point $(2,-1)$, is
A. $\frac{22}{7}$
B. $6 / 7$
C. -6
D. None of these

Answer: B

- Watch Video Solution

3. The tangent of the curve $y=2 x^{2}-x+1$
is parallel to the line $y=3 x+9$ at the point
A. $(3,9)$
B. $(2,-1)$
C. $(2,1)$
D. $(1,2)$

Answer: D

- Watch Video Solution

4. The tangentto the curve
$x^{2}+y^{2}-2 x-3=0$ is parallel to x -axis at
the points
A. $(2, \pm \sqrt{3})$
B. $(1, \pm 2)$
C. $(\pm 1,2)$
D. $(\pm 3,0)$

Answer: B

- Watch Video Solution

5. Let C be the curve $y^{3}-3 x y+2=0$. If H is
the set of points on the curve C, where the tangent is horizontal and V is the set of points
on the curve C , where the tangent is vertical, then $\mathrm{H}=\ldots$... and $\mathrm{V}=\ldots$...

D Watch Video Solution

6. The curve $x^{3}-3 x y^{2}+2=0$ and
$3 x^{2} y-y^{3}-2=0$ cut at an angle of
A. 45°
B. 60°
C. 90°
D. 30°

Answer: C

D View Text Solution

7. The angle of intersection of the curve $y=x^{2}$ and $6 y=7-x^{2}$ at $(1,1)$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. None of these

Answer: D

- Watch Video Solution

8. The equation of the tangent at the point $\mathrm{P}(\mathrm{t})$, wheret is any parameter, to the parabola $y^{2}=4 a x$ is
A. $y t=x+a t^{2}$
B. $y=x t+a t^{2}$
C. $y=t x$
D. $y=t x q / t$

D Watch Video Solution

9. The normal drawn at a point $\left.\left(a t_{1}^{2}, 2 a t_{1}\right) 1\right)$
on the parabola $y^{2}=4 a x$ meets it again at
the point $\left(a t_{2}^{2}, 2 a t_{2}\right)$, then
A. $t_{1}=2 t_{2}$
B. $t_{1}^{2}=2 t_{2}$
C. $t_{1} t_{2}=-1$
D. None of those

Answer: D

D Watch Video Solution

10. The tangent to a given curve is
perpendicular to x-axis if

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=0 \\
& \text { B. } \frac{d y}{d x}=1 \\
& \text { C. } \frac{d x}{d y}=0 \\
& \text { D. } \frac{d x}{d y}=1
\end{aligned}
$$

Answer: C

D Watch Video Solution

11. The normal to a given curve is parallel to

x - axis if

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=0 \\
& \text { B. } \frac{d y}{d x}=1 \\
& \text { C. } \frac{d x}{d y}=0 \\
& \text { D. } \frac{d x}{d y}=1
\end{aligned}
$$

- Watch Video Solution

12. The point on the curve $y^{2}=x$, the tangent at which makes an angle of 45° with x-axis will be given by
A. $\left(\frac{1}{2}, \frac{1}{4}\right)$
B. $\left(\frac{1}{2}, \frac{1}{2}\right)$
C. $(2,4)$
D. $\left(\frac{1}{4}, \frac{1}{2}\right)$

Answer: D

D View Text Solution

13. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets the x axis at
A. $(0,1)$
B. $(2,0)$
C. $\left(-\frac{1}{2}, 0\right)$
D. None of these

Answer: C

- Watch Video Solution

14. The length of the subnormal to the parabola $y^{2}=4 a x$ at any point is equal to
A. $\sqrt{2} a$
B. $2 \sqrt{2} a$
C. $\frac{a}{\sqrt{(2)}}$
D. $2 a$

Answer: D

D Watch Video Solution

15. The normal at the.point $(1,1)$ on the curve

$$
2 y=3-x^{2} \text { is }
$$

A. $x+y=0$
B. $x+y+1=0$
C. $x-y+1=0$
D. $x-y=0$

Answer: D

D Watch Video Solution

16. The normal to the curve
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
at any θ is such that
A. it makes a constant angle with x-axis,
B. it passes through the origin
C. it is at a constant distance from the origin

D. None of these.

Answer: C

D Watch Video Solution

17. If the parametric equation of a curve is given by $x=e^{t} \cos t, y=e^{t} \sin t$, then the tangent to the curve at the point $t=\pi / 4$ makes with the axis of x the angle
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

D Watch Video Solution

18. The angle of intersection of the curves

$$
y=x^{2}, 6 y=7-x^{3} \text { at }(1,1) \text {, is }
$$

A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. None

Answer: C

- Watch Video Solution

19. The equation of the tangent to the curve
$y=x+\frac{4}{x^{2}}$, that is parallel to the x -axis, is
A. $y=0$
B. $y=1$
C. $y=2$
D. $y=3$

Answer: D

- Watch Video Solution

