©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - ML KHANNA

THE ELLIPSE

Problem Set 1 Multiple Choice Questions

1. Find the eccentricity of an ellipse if its latus rectum
is one-third of its major axis.
A. $2 / 3$
B. $\sqrt{(2 / 3)}$
C. $5 \times 4 \times 3 / 7^{3}$
D. $(3 / 4)^{4}$

Answer: B

- Watch Video Solution

2. The latus rectum of an ellipse is half of its minor axis. Its eccentricity is :
A. $\sqrt{3} / 2$
B. $1 / 4$
C. $1 / 2$
D. none

Answer: A

- Watch Video Solution

3. If the line joining foci subtends an angle of 90° at an extremity of minor axis, then the eccentricity e is
A. $1 / \sqrt{6}$
B. $1 / \sqrt{3}$
C. $1 / \sqrt{2}$

Answer: C

- Watch Video Solution

4. Find the equation of the ellipse whose major axis is 8 and eccentricity $\frac{1}{2}$.
A. $3 x^{2}+4 y^{2}=12$
B. $3 x^{2}+4 y^{2}=48$
C. $4 x^{2}+3 y^{2}=48$
D. $3 x^{2}+9 y^{2}=12$

Answer: B

- Watch Video Solution

5. S and T are foci of an ellipse and B is an end of the minor axis, if STB is an equilateral triangle, the eccentricity of the ellipse, is
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. $2 / 3$

Answer: C

- Watch Video Solution

6. An ellipse has $O B$ as the semi-minor axis, FandF' as its foci, and $\angle F B F^{\prime}$ a right angle. Then, find the eccentricity of the ellipse.

$$
\begin{aligned}
& \text { A. } \frac{1}{4} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } \frac{1}{\sqrt{2}} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

7. if the major axis of an ellipse is three times the length of its minor axis, its eccentricity, is
A. $1 / 3$
B. $1 / \sqrt{3}$
C. $1 / \sqrt{2}$
D. $2 \sqrt{2} / 3$

Answer: D
8. Eccentricity of conic $16 x^{2}+7 y^{2}=112$ is
A. $4 / 3$
B. $7 / 16$
C. $3 / \sqrt{7}$
D. $3 / 4$

Answer: D
9. The eccentricity of the ellipse with centre at the origin which meets the straight line $\frac{x}{7}+\frac{y}{2}=1$ on the axis of x and the straight line $\frac{x}{3}-\frac{y}{5}=1$ on the axis of y and whose axes lie along the axes of coordinates, is
A. $\frac{3 \sqrt{2}}{7}$
B. $\frac{2 \sqrt{3}}{7}$
C. $\frac{\sqrt{3}}{7}$
D. $\frac{2 \sqrt{6}}{7}$

Answer: D
10. The eccentricity of an ellipse whose pair of conjugate diameters are $2 y=x$ and $3 y=-2 x$ is
A. $2 / 3$
B. $1 / 3$
C. $1 / \sqrt{3}$
D. $\sqrt{2 / 3}$

Answer: D

- Watch Video Solution

11. The eccentricity of the ellipse $9 x^{2}+5 y^{2}-30 y=0$ is

A. $1 / 3$
B. $2 / 3$
C. $3 / 4$
D. none of these

Answer: B

- Watch Video Solution

12. The eccentricity of the ellipse
 $25 x^{2}+16 y^{2}-150 x-175=0$ is

A. $2 / 5$
B. $3 / 5$
C. $4 / 5$
D. none of these

Answer: B

- Watch Video Solution

13. The eccentricity of the curve $x^{2}-4 x+4 y^{2}=12$
is
A. $\frac{\sqrt{3}}{2}$
B. $\frac{2}{\sqrt{3}}$
C. $\sqrt{3}$
D. none of these

Answer: A

- Watch Video Solution

14. If e is the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ ($\mathrm{a}<\mathrm{b}$), then,

$$
\begin{aligned}
& \text { A. } b^{2}=a^{2}\left(1-e^{2}\right) \\
& \text { B. } a^{2}=b^{2}\left(1-e^{2}\right) \\
& \text { C. } a^{2}=b^{2}\left(e^{2}-1\right) \\
& \text { D. } b^{2}=a^{2}\left(e^{2}-1\right)
\end{aligned}
$$

Answer: B
15. In an ellipse the distance between its foci is 6 and its minor axis is 8 . Then its 'eccentricity is

$$
\begin{aligned}
& \text { A. } \frac{3}{5} \\
& \text { B. } \frac{1}{\sqrt{5}} \\
& \text { C. } \frac{1}{\sqrt{4}} \\
& \text { D. } \frac{1}{\sqrt{6}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

16. If the distance between the foci of an ellipse is

 equal to its axis, then its eccentricity is$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } \frac{1}{\sqrt{4}} \\
& \text { D. } \frac{1}{\sqrt{6}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

17. An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm , the necessary length of the string and the distance between the pins respectively in cm are
A. $6,2 \sqrt{5}$
B. $6, \sqrt{5}$
C. $4,2 \sqrt{5}$
D. $6+2 \sqrt{5}, 2 \sqrt{5}$

Answer: D

18. If $(5,12)$ and $(24,7)$ are the foci of an ellipse passing through the origin, then find the eccentricity of the ellipse.
A. $\frac{\sqrt{386}}{38}$
B. $\frac{\sqrt{386}}{12}$
C. $\frac{\sqrt{386}}{13}$
D. $\frac{\sqrt{386}}{25}$

Answer: A: B

D Watch Video Solution

19. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is $x=4$, then the equation of ellipse is
A. $3 x^{2}+4 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=12$
D. $4 x^{2}+3 y^{2}-1$

Answer: B
20. If $P=(x, y), F_{1}=(3,0), F_{2}=(-3,0)$, and $16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equal 8 (b) 6 (c) 10 (d) 12
A. 6
B. 8
C. 10
D. 12

Answer: C
21. If P is a point on the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$ whose foci are S and S^{\prime}, then $P S+P S^{\prime}=8$.
A. 6
B. 8
C. 10
D. 12

Answer: C

- Watch Video Solution

22. Let P be a variable point on the elipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with foci F_{1} and F_{2}. If A is the area of the triangle $P F_{1} F_{2}$, then maximum value of A is
A. abe
B. abe(c)
C. 2abe
D. none

Answer: A
23. if r_{1} and r_{2} are distances of points on the ellipse $5 x^{2}+5 y^{2}+6 x y-8=0$ which are at maximum and minimum distance from the origin then
A. 3
B. 4
C. 5
D. none

Answer: C

- Watch Video Solution

24. The line passing through the extremity A of the major exis and extremity B of the minor axis of the ellipse $x^{2}+9 y^{2}=9$ meets is auxiliary circle at the point M. Then the area of the triangle with vertices at A, M, and O (the origin) is 31/10 (b) 29/10 (c) 21/10 (d) 27/10
A. $\frac{31}{10}$
B. $\frac{29}{10}$
C. $\frac{21}{10}$
D. $\frac{27}{10}$

Answer: D
25. An ellipse has $O B$ as the semi-minor axis,

FandF' as its foci, and $\angle F B F^{\prime}$ a right angle. Then, find the eccentricity of the ellipse.

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{3}} \\
& \text { B. } \frac{1}{\sqrt{2}} \\
& \text { C. } \frac{1}{2} \\
& \text { D. none }
\end{aligned}
$$

Answer: B
26. The length of the latus rectum of the ellipse
$5 x^{2}+9 y^{2}=45$ is
A. $5 / 3$
B. $10 / 3$
C. $2 \sqrt{5} / 3$
D. $\sqrt{5} / 3$

Answer: B
27. Find the foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$.
A. $(-1,2)$ and $(-1,-6)$
B. $(-2,1)$ and $(-2,6)$
C. ($-1,-2$) and ($-2,-1$)
D. $(-1,-2)$ and $(-1,-6)$

Answer: A

- Watch Video Solution

28. A man running round a racecourse notes that the

 sum of the distance of two flag-posts from him is always 10 m and the distance between the flag posts is 8 m . The area of the path he encloses is:A. 15π
B. 12π
C. 18π
D. 8π

Answer: A

- Watch Video Solution

29. if S and S are two foci of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(altb) and $P\left(x_{1}, y_{1}\right)$ a point on it then SP+ S'P is equal to
A. $2 a$
B. $2 b$
C. $a+e x_{1}$
D. $b+e y_{1}$

Answer: B

- Watch Video Solution

30. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $1 / 2$. Then the
length of the semimajor axis is (1) $\frac{8}{3}$ (2) $\frac{2}{3}$ (3) $\frac{4}{3}$ (4) $\frac{5}{3}$
A. $\frac{8}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{5}{3}$

Answer: A
31. The eccentric angles of the extremities of latusrectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are given by
A. $\tan ^{-1}\left(\pm \frac{a e}{b}\right)$
B. $\tan ^{-1}\left(\pm \frac{b e}{a}\right)$
C. $\tan ^{-1}\left(\pm \frac{b}{a e}\right)$
D. $\tan ^{-1}\left(\pm \frac{a}{b e}\right)$

Answer: C

- Watch Video Solution

32. The eccentric angle of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the centre of the ellipse is 2 , is
A. 210°
B. 270°
C. 300°
D. 45°

Answer: D
33. the equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is
A. 4
B. 3
C. $\sqrt{12}$
D. $7 / 2$

Answer: A

34. In an ellipse the distance between the foci is 8

 and the distance between the directrices is 25 . The length of major axis, isA. $10 \sqrt{2}$
B. $20 \sqrt{2}$
C. $30 \sqrt{2}$
D. none of these

Answer: A
35. Let E be the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and C be the
circle $x^{2}+y^{2}=9$. Let P and Q be the points (1,2)
and $(2,1)$ respectively. Then,
A. Q lies inside C but outside E
B. Q lies outside both C and E
C. P lies inside both C and E
D. P lies inside C but outside E

Answer: D

36. The distance from the foci of $P\left(x_{1}, y_{1}\right)$ on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ are
A. $4 \pm \frac{5}{4} y_{1}$
B. $5 \pm \frac{4}{5} x_{1}$
C. $5 \pm \frac{4}{5} y_{1}$
D. none of these

Answer: C

- Watch Video Solution

37. If L.R. $=30$, distance between foci $=$ length of minor axis, then eqn. of ellipse is

> A. $\frac{x^{2}}{50}+\frac{y^{2}}{100}=1$
> B. $\frac{x^{2}}{100}+\frac{y^{2}}{50}=1$
> C. $\frac{x^{2}}{50}+\frac{y^{2}}{20}=1$
D. none

Answer:

- Watch Video Solution

38. if the coordinates of the centre, a foucs and adjacent vertex are
$(2,-3),(3,-3)$ and $(4,-3)$ respectively , then the equation of the ellipse Is

$$
\begin{aligned}
& \text { A. } \frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{3}=1 \\
& \text { B. } \frac{(x-2)^{2}}{3}+\frac{(y+3)^{2}}{2}=1 \\
& \text { C. } \frac{(x-2)^{2}}{2}+\frac{(y+3)^{2}}{3}=1 \\
& \text { D. none }
\end{aligned}
$$

Answer: A
39. The equation of the ellipse having foci
$(1,0),(0,-1)$ and minor axis of length 1 is
A. $\frac{x^{2}}{1 / 4}+\frac{y^{2}}{5 / 4}=1$
B. $\frac{x^{2}}{5 / 4}+\frac{y^{2}}{1 / 4}=1$
C. $\frac{x^{2}}{3 / 4}+\frac{y^{2}}{1 / 4}=1$
D. $\frac{x^{2}}{1 / 4}+\frac{y^{2}}{3 / 4}=1$

Answer: A

- Watch Video Solution

40. A bar of given length moves with its extremities on two fixed straight lines at right angles. Show that any point on the bar describes an ellipse.
A. a circle
B. a parabola
C. an ellipse
D. none

Answer: C

- Watch Video Solution

41. Find the equation of the ellipse whose : One focus is $(6,7)$, directrix is $x+y+2$ and eccentricity

$$
\text { is } \frac{1}{\sqrt{3}}
$$

A. $5 x^{2}+2 x y+5 y^{2}-76 x-88 y+506=0$
B. $5 x^{2}-2 x y+5 y^{2}-76 x-88 y+506=0$
C. $5 x^{2}-2 x y+5 y^{2}+76 x+88 y-506=0$
D. none of these

Answer: B

42. Find the equation of the ellipse in the following case: eccentricity $e=\frac{2}{3}$ and length of latus rectum $=5$.
A. $\frac{2 x^{2}}{81}+\frac{2 y^{2}}{45}=1$
B. $\frac{4}{81} x^{2}+\frac{4}{45} y^{2}=1$
C. $\frac{2 x^{2}}{27}+\frac{2 y^{2}}{18}=1$
D. $\frac{4}{27} x^{2}+\frac{4}{18} y^{2}=1$

Answer: B

43. the equation of the ellipse passing through (2,1)

 having $e=1 / 2$, is$$
\begin{aligned}
& \text { А. } 3 x^{2}+4 y^{2}=6 \\
& \text { В. } 3 x^{2}+5 y^{2}=17 \\
& \text { C. } 5 x^{2}+3 y^{2}=23 \\
& \text { D. none }
\end{aligned}
$$

Answer: A

- Watch Video Solution

44. The curve represented by $x=3(\cos t+\sin t), y=4(\cos t-\sin t)$, is
A. ellipse
B. parabola
C. hyperbola
D. circle

Answer: A

- Watch Video Solution

45. The curve with parametric equations

$$
x=1+4 \cos \theta, y=2+3 \sin \theta \text { is }
$$

A. an ellipse
B. a parabola
C. a hyperbola
D. a circle

Answer: A

- Watch Video Solution

46.

The
equation
$\sqrt{(x-3)^{2}+(y-1)^{2}}+\sqrt{(x+3)^{2}+(y-1)^{2}}=6$ represents
A. an ellipse
B. a circle
C. a pair of lines
D. a line

Answer: D
47. If the focal distance of an end of the minor axis of an ellipse (referred to its axes as the axes of $x a n d y$, respectively) is k and the distance between its foci is $2 h$, them find its equation.

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{k^{2}}+\frac{y^{2}}{h^{2}}=1 \\
& \text { B. } \frac{x^{2}}{k^{2}}+\frac{y^{2}}{k^{2}-h^{2}}=1 \\
& \text { C. } \frac{x^{2}}{k^{2}}+\frac{y^{2}}{h^{2}-k^{2}}=1 \\
& \text { D. } \frac{x^{2}}{k^{2}}+\frac{y^{2}}{k^{2}+h^{2}}=1
\end{aligned}
$$

Answer: B

- Watch Video Solution

48. The equation $\frac{x^{2}}{10-a}+\frac{y^{2}}{4-a}=1$ represents an ellipse, if
A. $a<4$
B. $a>4$
C. $4<a<10$
D. $a>10$

Answer: A

- Watch Video Solution

49. The equatio $\frac{x^{2}}{2-r}+\frac{y^{2}}{r-5}+1=0$ represents an ellipse, if
A. $a>2$
B. $a>5$
C. $2<a<5$
D. none of these

Answer: C
50. If the ellipse $\frac{x^{2}}{4}+y^{2}=1$ meets the ellipse $x^{2}+\frac{y^{2}}{a^{2}}=1 \quad$ at four distinct points and $a=b^{2}-5 b+7$, then b does not lie in $[4,5]$ (b)

$$
(-\infty, 2) \cup(3, \infty)(-\infty, 0)(\mathrm{d})[2,3]
$$

A. $[2,3]$
B. $[4,5]$
C. $(-\infty, 0)$
D. $(0, \infty)$

Answer: A
51. the centre of the ellipse $\frac{(x+y-2)^{2}}{9}+\frac{(x-y)^{2}}{16}=1$, is
A. $(0,0)$
B. $(1,1)$
C. $(1,0)$
D. $(0,1)$

Answer: B

- Watch Video Solution

52. The parametric representation of a point on the ellipse whose foci are $(-1,0)$ and $(7,0)$ and eccentricity $1 / 2$, is
A. $(3+8 \cos \theta, 4 \sqrt{3} \sin$ theat $)$
B. $(8 \cos \theta, 4 \sqrt{3} \sin$ theat $)$
C. $(3+4 \sqrt{3} \cos \theta, 8 \sin \theta)$
D. none of the above

Answer: A

- Watch Video Solution

53. If e_{1} is the eccentricity of the conic $9 x^{2}+4 y^{2}=36$ and e_{2} is the eccentricity of the conic $\quad 9 x^{2}-4 y^{2}=36$ then $\quad e 12-e 22=2 \quad$ b.
$e 22-e 12=2$
c. $\quad 2<322-312<3$
d.
$e 22-e 12>3$
A. $e_{1}^{2}+e_{2}^{2}>3$
B. $e_{1}^{2}+e_{2}^{2}=2$
C. $e_{1}^{2}+e_{2}^{2}>4$
D. $e_{1}^{2}+e_{2}^{2}<4$

Answer: A::D

54.

$(5 x-1)^{2}+(5 y-2)^{2}=\left(\lambda^{2}-2 \lambda+1\right)(3 x+4 y-1)^{2}$
represents an ellipse, then find values of λ.
A. $(0,1)$
B. $(0,2)$
C. $(1,2)$
D. $(-1,0)$

Answer: B
55. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right), y_{1}<0, y_{2}<0$, be the end points of the latus rectum of the ellipse $x^{2}+4 y^{2}=4$. The equations of parabolas with latus rectum PQ are

$$
\begin{aligned}
& \text { A. } x^{2}+2 \sqrt{3} y=3+\sqrt{3} \\
& \text { B. } x^{2}-2 \sqrt{3} y=3+\sqrt{3} \\
& \text { C. } x^{2}+2 \sqrt{3} y=3-\sqrt{3} \\
& \text { D. } x^{2}-2 \sqrt{3} y=3-\sqrt{3}
\end{aligned}
$$

Answer: B::C

Problem Set 1 True And False

1. Let S and $\mathrm{S}^{\prime \prime}$ be the fociof the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose eccentricity is i.e. P is a variable point on the ellipse. Consider the locus the incenter of $\Delta P S S^{\prime \prime}$

The eccentricity of the locus oc the P is

(D) Watch Video Solution

Problem Set 1 Fill In The Blanks

1. The egn. of ellipse whose foci are (3, 2) and (1, -2)
and major axis is of length 10 is

D Watch Video Solution

2. Find the equation of the ellipse whose foci are $(2,3),(-2,3)$ and whose semi-minor axes is $\sqrt{5}$.

- Watch Video Solution

3. The following equation represents an ellipse $25\left(x^{2}-6 x+9\right)+16 y^{2}=400$. How should the axes be transformed so that the ellipse is represented by the equation $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
4. An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left(\frac{1}{2}, 1\right)$, its one directix is the common tangent, (nearer to the point P), to the circle $x^{2}+y^{2}=1$ and the hyperbola $x^{2}-y^{2}=1$. The equation of the ellipse, in the standard form, is

D View Text Solution

Problem Set 2 Multiple Choice Questions

1. If the straight line $y=4 x+c$ is a tangent to the ellipse $x^{2} / 8+y^{2} / 4=1$, then c will be equal to
A. ± 4
B. ± 6
C. $\pm \sqrt{132}$
D. ± 8

Answer: C

- Watch Video Solution

2. If any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intercepts lengths h and k on the axes, then.
A. $\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}=1$
B. $\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}=2$
C. $\frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}=1$
D. $\frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}=2$

Answer: C

- Watch Video Solution

3. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at end of latus rectum. Find the area of quadrilateral so formed.
A. 27
B. $27 / 2$
C. $27 / 4$
D. $27 / 55$

Answer: A

- Watch Video Solution

4. From a point on the axis of x common tangents are drawn to the parabola $y^{\wedge}(2)=4 x$ and the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$. If these tangents from an equilateral trianlge with their chord of contact w.r.t parabola, then set of exhaustive values of a is
A. $(0,3)$
B. $\left(\frac{3}{2}, 3\right)$
C. $\left(1, \frac{3}{2}\right)$
D. $\left(0, \frac{3}{2}\right)$

Answer: B

- Watch Video Solution

5. The line $\mathrm{x} \cos \alpha+y \sin \alpha+y \sin \alpha=p$ is tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. if
A. $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$
B. $a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha=p^{2}$
C. $a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$
D. $a^{2} \sin ^{2} \alpha-b^{2} \cos ^{2} \alpha=p^{2}$

Answer: A

- Watch Video Solution

6. If a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ makes equal intercepts of length I on cordinates axes, then the values of I is
A. $a^{2}+b^{2}$
B. $\sqrt{a^{2}+b^{2}}$
C. $\left(a^{2}+b^{2}\right)^{2}$
D. none

Answer: B

- Watch Video Solution

7. An ellipse passes through the point $(4,-1)$ and touches the line $x+4 y-10=0$. Find its equation if its axes coincide with the coordinate axes.
A. $\frac{x^{2}}{16}+\frac{y^{2}}{15}=1$
B. $\frac{x^{2}}{80}+\frac{y^{2}}{5 / 4}=1$
C. $\frac{x^{2}}{20}+\frac{y^{2}}{5}=1$
D. $\frac{x^{2}}{5}+\frac{y^{2}}{16}=1$

Answer: B::C

- Watch Video Solution

8. If a tangent having a slope of $-\frac{4}{3}$ to the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{32}=1$ intersects the major and minor axes in points A and B respectively, then the area of
$\Delta O A B$ is equal to (A) 12 sq. untis (B) 24 sq. units (C)

48 sq. units (D) 64 sq. units
A. 12
B. 24
C. 48
D. 64

Answer: B

- Watch Video Solution

9. The sum of the squares of the perpendiculars on any tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from two points on the minor axis each at a distance $a e$ from the center is $2 a^{2}$ (b) $2 b^{2}$ (c) $a^{2}+b^{2} a^{2}-b^{2}$
A. a^{2}
B. b^{2}
C. $2 a^{2}$
D. $2 b^{2}$

Answer: C

- Watch Video Solution

10. The product of the perpendiculars drawn from the two foci of an ellipse to the tangent at any point of the ellipse is
A. a^{2}
B. b^{2}
C. $4 a^{2}$
D. $4 b^{2}$

Answer: B

- Watch Video Solution

11. The points $(1,-1)$ and $(2,-1)$ are the foci of an ellipse and the line $x+y=5$ is a tangent to this ellipse. The point of contact of the tangent is

> A. $\left(\frac{34}{9}, \frac{11}{9}\right)$
> B. $\left(\frac{32}{9}, \frac{13}{9}\right)$
> C. $\left(-\frac{34}{9}, \frac{79}{9}\right)$
> D. $\left(-\frac{32}{9}, \frac{77}{9}\right)$

Answer: A

- Watch Video Solution

12. If F_{1} and F_{2} be the feet of the perpendiculars from the foci S_{1} and S_{2} of an ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{3}=1$ on the tangent at any point P on the ellipse then $\left(S_{1} F_{1}\right)\left(S_{2} F_{2}\right)$ is equal
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

13. if the tangent at the point $\left(4 \cos \phi, \frac{16}{\sqrt{11}} \sin \phi\right)$ to the ellipse $16 x^{2}+11 y^{2}=256$ Is also a tangent to
the circle $x^{2}+y^{2}-2 x=15$, then the value of ϕ is
A. $\pm \frac{\pi}{2}$
B. $\pm \frac{\pi}{4}$
C. $\pm \frac{\pi}{3}$
D. $\pm \frac{\pi}{6}$

Answer: C

- Watch Video Solution

14. The length of a common tangent to $x^{2}+y^{2}=16$ and $9 x^{2}+25 y^{2}=225$ is
A. $\frac{9}{4}$
B. $\frac{\sqrt{3}}{4}$
C. $\frac{3}{4} \sqrt{7}$
D. $\frac{5}{4} \sqrt{7}$

Answer: C

D View Text Solution

15. If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at a point P , then eccentric angle of P is
A. 0
B. 45°
C. 60°
D. 90°

Answer: B

- Watch Video Solution

16. If $\sqrt{3} b x+a y=2 a b$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at P then eccentric angle of P is :
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: A

- Watch Video Solution

17. The eccentric angle of a point P lying in the first quadrant on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is θ. If OP makes an angle ϕ with x-axis, then $\theta-\phi$ will be maximum when $\theta=$
A. $\tan ^{-1} \sqrt{\frac{a}{b}}$
B. $\tan ^{-1} \sqrt{\frac{b}{a}}$

$$
\text { C. } \frac{\pi}{4}
$$

D. none

Answer: A

D View Text Solution

18. If θ is the angle between the pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point
$(1,2)$, then the value of $\tan ^{2} \theta$ is equal to
A. $\tan ^{-1}(12 / 5)$
B. $\tan ^{-1}(6 / \sqrt{5})$
C. $\tan ^{-1}(12 / \sqrt{5})$
D. $\tan ^{-1}(8 / \sqrt{5})$

Answer: C

- Watch Video Solution

19. Two perpendicular tangents drawn to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ intersect on the curve.
A. $x=a / e$
B. $x^{2}+y^{2}=41$
C. $x^{2}+y^{2}=9$

$$
\text { D. } x^{2}-y^{2}=41
$$

Answer: B

- Watch Video Solution

20. An ellipse slides between two perpendicular lines the locus of its centre, is
A. circle
B. parabola
C. ellipse
D. hyperbola

Answer: A

- Watch Video Solution

21. The line $2 x+y=3$ cuts the ellipse
$4 x^{2}+y^{2}=5$ at points P and Q . If θ is the acute angle between the normals at P and Q , then θ is equal to
A. $1 / 2$
B. $3 / 4$
C. $3 / 5$
D. 5

Answer: C

- Watch Video Solution

22. If the normal at one end of the latus rectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through one end of the monor axis, then prove that eccentricity is constant.

$$
\text { A. } e^{4}-e^{2}+1=0
$$

B. $e^{2}-e+1=0$
C. $e^{2}+e+1=0$
D. $e^{4}+e^{2}-1=0$

Answer: D

- Watch Video Solution

23. Find the equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the positive end of the latus rectum.
A. $x+e y+e^{3} a=0$
B. $x-e y-e^{3} a=0$
C. $x-e y-e^{2} a=0$
D. none

- Watch Video Solution

24. The area of rectangle formed by perpendiculars from the centre of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to the tangent and normal at the point whose eccentric angle is $\pi / 4$ is
A. $\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right) a b$
B. $\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right) a b$
C. $a^{2}+b^{2}$
D. $a^{2}-b^{2}$

- Watch Video Solution

25. If the normal at the point $P(\theta)$ to the ellipse $\frac{x^{2}}{14} / \frac{y^{2}}{5}=1$ intersects it again at the point $\mathrm{Q}(2, \theta)$ then $\cos \theta$ is equal to
A. $2 / 3$
B. $-2 / 3$
C. $3 / 2$
D. $-3 / 2$

Answer: B

- Watch Video Solution

26. The locus of the mid-points of the portion of the tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intercepted between the axes is
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=4$
B. $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=4$
C. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=4$
D. none of these

Answer: B

- Watch Video Solution

27. Tangents are drawn to $x^{2}+3 y^{2}=2$. The locus" of mid-point of intercept made by tangents between the axes is
A. $\frac{1}{x^{2}}+\frac{1}{2 y^{2}}=1$
B. $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1$
C. $\frac{1}{2 x^{2}}+\frac{1}{6 y^{2}}=1$
D. $\frac{1}{2 x^{2}}+\frac{1}{y^{2}}=1$

Answer: C

- Watch Video Solution

28. Tangents are drawn to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at points $P\left(\theta_{1}\right)$ and $Q\left(\theta_{2}\right)$ then the point of intersection of these tangents is
A. $\left(\frac{\operatorname{acos} \frac{\theta_{1}+\theta_{2}}{2}}{\cos \frac{\theta_{1}-\theta_{2}}{2}}, \frac{b \sin \frac{\theta_{1}+\theta_{2}}{2}}{\cos \frac{\theta_{1}-\theta_{2}}{2}}\right)$
B. $\left(\frac{\operatorname{acos} \frac{\theta_{1}-\theta_{2}}{2}}{\cos \frac{\theta_{1}+\theta_{2}}{2}}, \frac{b \sin \frac{\theta_{1}-\theta_{2}}{2}}{\cos \frac{\theta_{1}+\theta_{2}}{2}}\right)$
C. $\left(\frac{\mathrm{a} \sin \frac{\theta_{1}+\theta_{2}}{2}}{\sin \frac{\theta_{1}-\theta_{2}}{2}}, \frac{\mathrm{~b} \cos \frac{\theta_{1}+\theta_{2}}{2}}{\sin \frac{\theta_{1}-\theta_{2}}{2}}\right)$
D. none

- Watch Video Solution

29. The locus of the point of intersection of tangents
to an ellipse at two points sum of whose eccentric
angles is constant is
A. straight line
B. circle
C. parabola
D. ellipse

Answer: A

- View Text Solution

30. The eccentric angles of extremities of a chord of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are θ_{1} and θ_{2}.If this chord passes through the foucs, then
A. $\tan \frac{\theta_{1}}{2} \cdot \tan \frac{\theta_{2}}{2}+\frac{1-e}{1+e}=0$
B. $\cos \frac{\theta_{1}-\theta_{2}}{2}=e \cdot \cos \frac{\theta_{1}+\theta_{2}}{2}$
C. $e=\frac{\sin \theta_{1}+\sin \theta_{2}}{\sin \left(\theta_{1}+\theta_{2}\right)}$
D. $\cot \frac{\theta_{1}}{2} \cdot \cot \frac{\theta_{2}}{2}=\frac{e-1}{e-1}$

Answer: A::B::C::D

D View Text Solution

31. The tangent at a point $P(a \cos \varphi, b \sin \varphi)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets its auxiliary circle at two points, the chord joining which subtends a right angle at the center. Find the eccentricity of the ellipse.
A. $\left(1+\sin ^{2} \theta\right)^{-1}$
B. $\left(1+\sin ^{2} \theta\right)^{-1 / 2}$
C. $\left(1+\sin ^{2} \theta\right)^{-3 / 2}$
D. $\left(1+\sin ^{2} \theta\right)^{-2}$

Answer: B

- Watch Video Solution

32. If the line $x+2 y+4=0$ cutting the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in points whose eccentric angies are 30° and 60° subtends right angle at the origin then its equation is
A. $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$
B. $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$
C. $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$
D. $\frac{x^{2}}{4}+\frac{y^{2}}{8}=1$

Answer: B

- Watch Video Solution

33. If $P Q R$ is an equilateral triangle inscribed in the auxiliary circle of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,(a>b), \quad$ and $\quad P^{\prime} Q^{\prime} R^{\prime} \quad$ is the correspoinding triangle inscribed within the ellipse, then the centroid of triangle $P^{\prime} Q^{\prime} R^{\prime}$ lies at center of ellipse focus of ellipse between focus and center on major axis none of these
A. focus of ellips
B. any vertex of the ellipse
C. centre of the ellipse
D. none

Answer: C

- Watch Video Solution

34. On the ellipse $4 x^{2}+9 y^{2}=1$, the points at which the tangent are parallel to the line $8 x=9 y$ are
A. $\left(\frac{2}{5}, \frac{1}{5}\right)$
B. $\left(-\frac{2}{5}, \frac{1}{5}\right)$
C. $\left(-\frac{2}{5},-1,5\right)$
D. $\left(\frac{2}{5},-\frac{1}{5}\right)$

Answer: B::D

- Watch Video Solution

35. Tangents are drawn to the ellipse $3 x^{2}+5 y^{2}=32$ and $25 x^{2}+9 y^{2}=450$ passing through the point $(3,5)$. The number of such tangents are
A. 2
B. 3
C. 4
D. 0

Answer: B

- Watch Video Solution

36. Let two perpendicular chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ each passing through exactly one of the foci meet at a point P. If from P two tangents are drawn to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then $\angle Q P R=$

$$
\begin{aligned}
& \text { A. } \frac{\pi}{4} \\
& \text { B. } \frac{\pi}{3} \\
& \text { C. } \frac{\pi}{2} \\
& \text { D. } 2 \tan ^{-1} \frac{b}{a}
\end{aligned}
$$

Answer: C

D View Text Solution

37. An ellipse passes through the point $(4,-1)$ and touches the line $x+4 y-10=0$. Find its equation if its axes coincide with the coordinate axes.
A. $\frac{x^{2}}{100}+\frac{y^{2}}{5}=1$
B. $\frac{x^{2}}{80}+\frac{y^{2}}{5 / 4}=1$
C. $\frac{x^{2}}{20}+\frac{y^{2}}{5}=1$
D. none of these

Answer: B::C

- Watch Video Solution

38. Locus of mid-point of the focal chord of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with eccentricity e is

$$
\text { A. } \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{e x}{a}
$$

B. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{e x}{a}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. none

Answer: B

- Watch Video Solution

39. The normal at a variable point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of eccentricity e meets the axes of the ellipse at $Q a n d R$. Then the locus of the midpoint of
$Q R$ is a conic with eccentricity e^{\prime} such that e^{\prime} is independent of e (b) $e^{\prime}=1 e^{\prime}=e$ (d) $e^{\prime}=\frac{1}{e}$
A. $e=1$
B. $e=1 / e$
C. $e^{\prime}=e$
D. none

Answer: C

- Watch Video Solution

40. If $P\left(\theta_{1}\right)$ and $D\left(\theta_{2}\right)$ be the end, points of two semi-conjugate diameters of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose centre is C, then answer the
following questions:
$\theta_{1}-\theta_{2}=$
A. 45°
B. 90°
C. 135°
D. none

Answer: A

D View Text Solution

41. If CP and CD are semi-conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $C P^{2}+C D^{2}=$
A. $\frac{a^{2}+b^{2}}{4}$
B. $\left(a^{2}+b^{2}\right)$
C. $\frac{b^{4}+a^{4}}{b^{2}+a^{2}}$
D. $\frac{a^{4}+b^{4}}{2\left(a^{2}+b^{2}\right)}$

Answer: B

- Watch Video Solution

42. $C P$ and CD are conjugate semi-diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, The locus of the mid-point of $P D$, is
A. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2}$
B. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$
C. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{4}$
D. none

Answer: A

- Watch Video Solution

43. The maximum distance of the centre of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ from the chord of contact of mutually perpendicular tangents of the ellipse is
A. $\frac{9}{5}$
B. $\frac{16}{5}$
C. $\frac{144}{5}$
D. none

Answer: A

- Watch Video Solution

44. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at point A and $\mathrm{B} . \mathrm{Q}$. The coordinates of A and B are
A. $(3,0)$ and $(0,2)$
B. $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
C. $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(-0,2)$
D. $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

Answer: D

- Watch Video Solution

45. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at points
A and B. The orthocenter of the triangle PAB is
A. $\left(5, \frac{8}{7}\right)$
B. $\left(\frac{7}{5}, \frac{25}{8}\right)$
C. $\left(\frac{11}{5}, \frac{8}{5}\right)$
D. $\left(\frac{8}{25}, \frac{7}{25}\right)$

Answer: C

- Watch Video Solution

46. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at points
A and B.

The equation of the locus of the point whose
distance from the point P and the line $A B$ are equal, is:

$$
\begin{aligned}
& \text { A. } 9 x^{2}+y^{2}-6 x y-54 x-62 y+241=0 \\
& \text { B. } x^{2}+9 y^{2}+6 x y-54 x+62 y-241=0 \\
& \text { C. } 9 x^{2}+9 y^{2}-6 x y-54 x-62 y-241=0 \\
& \text { D. } x^{2}+y^{2}-2 x y+27 x+31 y-120=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

1. The line $2 x+3 y=12$ touches the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=2$ at the points $(3,2)$.

- Watch Video Solution

2. Prove that if any tangent to the ellipse is cut by
the tangents at the endpoints of the major axis at $\operatorname{Tand} T^{\prime}$, then the circle whose diameter is \top ' will pass through the foci of the ellipse.

- Watch Video Solution

3. The locus of feet of perpendiculars from the focii

 upon any tangent is an auxilliary circle.
- Watch Video Solution

4. If the portion of the line $x \cos \alpha+y \sin \alpha=p$
intercepted by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ subtends a
right angle at the centre of the ellipse, then the line touches a cirlce of radius $a b / \sqrt{\left(a^{2}+b^{2}\right)}$ concentric with the ellipse.

True or False

Problem Set 2 Fill In The Blanks

1. The condition that the line $I x+m y=n$ be a
tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are

- Watch Video Solution

2. Find the equations of the tangents to the ellipse $3 x^{2}+4^{2}=12$ which are perpendicular to the line $y+2 x=4$.
3. Tangents at the extremities of the latus rectum of an ellipse intersect on the line whose equation is

- Watch Video Solution

4. A tangent of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ cuts
the axes in A and B respectively and touches the ellipse at any point P in the first quadrant, so that P
divides $A B$ into two equal parts. The equation of the
tangent is.

- Watch Video Solution

5. If the normal at any point P on the ellipse cuts the major and mirror axes in G and g respectively and C be the centre of the ellipse, then

- Watch Video Solution

6. The locus of the feet of perpendiculars drawn from
the centre of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ on any tangent to it is

- Watch Video Solution

1. If the chord of contact of the tangents drawn from the point (α, β) to the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ touches the circle $x^{2}+y^{2}=c^{2}$, then the point (α, β) lies on the ellipse $x^{2} / a^{4}+y^{2} / b^{4}=1 / c^{2}$. T or F ?

D Watch Video Solution

Problem Set 3 Fill In The Blanks

1. The condition that the chord of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$, whose middle point is $\left(x_{1}, y_{1}\right)$
subtends a right angle at the centre of the ellipse is

- Watch Video Solution

2. The locus of the middle points of the chords of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ touching the ellipse $x^{2} / \alpha^{2}+y^{2} / \beta^{2}=1$ is.

- Watch Video Solution

3. The locus of the point the chord of contact of tangents from which to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
subtends a right angle at the centre of the ellipse is

- Watch Video Solution

4. A chord PQ of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ subtends a right angle at the centre of the ellipse. The locus of the point of intersection of the tangents to the ellipse at P and Q is

- Watch Video Solution

5. The locus of the point the chord of contact of tangents from which to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ touches the circle $x^{2}+y^{2}=c^{2}$ is

- Watch Video Solution

6. The condition that the chord of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ whose middle point is $\left(x_{1}, y_{1}\right)$ subtends a right angle at the centre of the ellipse is
7. The locus of the poles of normal chords of the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is

- Watch Video Solution

8. The locus of the mid-points of the lines joining the extremities of two semi-conjugate diameters of an ellipse is

- Watch Video Solution

9. The locus of the point of intersection of tangents at the end-points of conjugate diameters of the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is

- Watch Video Solution

10. Tangents are drawn from the points on the line $x-y-5=0$ to $x^{2}+4 y^{2}=4$. Then all the chords of contact pass through a fixed point. Find the coordinates.

- Watch Video Solution

11. The length of the common chord of the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1 \quad$ and the circle

$(x-1)^{2}+(y-2)^{2}=1$ is $\ldots . .$.

- Watch Video Solution

Miscellaneous Exercise Matching Entries

1. Match the entries of List - A and List - B

I.ist-A

(a) S and S^{\prime} are foci and B is end of minor axis of an ellipse. If $\triangle S S^{\prime} B$ is equilateral, then eccentricity of ellipse is .-
(b) If $P(x, y)$ be a point on the ellipse $16 x^{2}+25 y^{2}-400$ and $F_{1}=[3,0), F_{2}=[-3,0]$ then $P F_{1}+P F_{2}=$
(c) A circle with centre at $(0,3)$ passes through the foci of ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Its radius is of length
(d) In an ellipse $C=(2-3), S=(3,-3)$ and A is $(4,-3)$, then the equation of ellipse is

List-B

1. 10
2. $\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{3}=1$
3. $\frac{1}{2}$
4. 4

2. Match the entries of List - A and List - B

List-A
(a) If p_{1}, p_{2} be the lengths of perpendiculars drawn from the two foci of an ellipse to any tangent to it then $p_{1} p_{2}=$
(b) The angle between a pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point (1.2) is

List-B

1. $-\frac{2}{3}$
2. $x-e q-e^{3} g=0$
(c) The equation of normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the positive end of latus rectum is
(d) If the normal at the point $P(\theta)$ to the ellipse $\frac{x^{2}}{14}+\frac{y^{2}}{5}=1$ meets it again .at the point 20 , then $\cos \theta-$

D View Text Solution

3. Locus of the point of intersection of two

perpendicular tengents to

List-A

[a] Circle $x^{2}+y^{2}=a^{2}$
(b) Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(c) Ilyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
(d) Parabola $y^{2}=4 a x$

List-B

1. $x=-a$
2. $x^{2}+y^{2}=a^{2}+a^{2}$
3. $x^{2}+y^{2}=a^{2}+b^{2}$
4. $x^{2}+y^{2}=a^{2}-b^{2}$
5. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is

$$
\begin{align*}
& x^{2}+16 y^{2}=16 \quad \text { (2) } \quad x^{2}+12 y^{2}=16 \tag{3}\\
& 4 x^{2}+48 y^{2}=48 \text { (4) } 4 x^{2}+64 y^{2}=48 \tag{1}
\end{align*}
$$

A. $x^{2}+12 y^{2}=16$
B. $4 x^{2}+48 y^{2}=48$
C. $4 x^{2}+64 y^{2}=48$
D. $x^{2}+16 y^{2}=16$

Answer: A

- Watch Video Solution

2. The normal at a point P on the ellipse $x^{2}+4 y^{2}=16$ meets the x-axis at Q. If M is the midpoint of the line segment $P Q$, then the locus of
M intersects the laius rectums of the given ellipse
at points.

$$
\begin{equation*}
\left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{2}{7}\right) \tag{b}
\end{equation*}
$$

$\left(\pm \frac{(3 \sqrt{5})}{2} \pm \frac{\sqrt{19}}{7}\right.$
$\left(\pm 2 \sqrt{3} \pm \frac{4 \sqrt{3}}{7}\right)$
A. $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{2}{7}\right)$
B. $\left(\pm \frac{3 \sqrt{5}}{2}, \pm \frac{\sqrt{19}}{7}\right)$
c. $\left(\pm 2 \sqrt{3}, \pm \frac{1}{7}\right)$
D. $\left(\pm 2 \sqrt{3}, \pm \frac{4 \sqrt{3}}{7}\right)$

Answer: C

- Watch Video Solution

3. A focus of an ellipse is at the origin. The directrix is
the line $x=4$ and the eccentricity is $1 / 2$. Then the length of the semimajor axis is (1) $\frac{8}{3}$ (2) $\frac{2}{3}$ (3) $\frac{4}{3}$ $\frac{5}{3}$
A. $\frac{5}{3}$
B. $\frac{8}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer: B

- Watch Video Solution

4. An ellipse has $O B$ as the semi-minor axis, $F a n d F$ ' as its foci, and $\angle F B F^{\prime}$ a right angle. Then, find the eccentricity of the ellipse.

> A. $\frac{1}{2}$
> B. $\frac{1}{4}$
> C. $\frac{1}{\sqrt{2}}$
> D. none of these

Answer: C

- Watch Video Solution

5. If tangents are drawn to the ellipse $x^{2}+2 y^{2}=2$,
then the locus of the midpoint of the intercept made by the tangents between the coordinate axes is
$\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$ (b) $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1 \frac{x^{2}}{2}+y^{2}=1$
(d) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
A. $x^{2}+2 y^{2}=4 x^{2} y^{2}$
B. $2 x^{2}+y^{2}=4 x^{2} y^{2}$
C. $2 x^{2}+y^{2}=4$
D. $x^{2}+2 y^{2}=4$

Answer: A
6. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}$ at the end of the latus rectum. The area of the quadrilateral so formed is
A. 27
B. $\frac{27}{2}$
C. $\frac{27}{4}$
D. $\frac{27}{55}$

Answer: A
7. the equation of the circle passing through the foci
of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is
A. 4
B. 3
C. $\sqrt{12}$
D. 7.2

Answer: A
8. The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrices is $x=4$, then the equation of ellipse is
A. $3 x^{2}+4 y^{2}=1$
B. $3 x^{2}+4 y^{2}=12$
C. $4 x^{2}+3 y^{2}=12$
D. $4 x^{2}+3 y^{2}=1$

Answer: B
9. the equation of the circle passing through the foci
of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is
A. $x^{2}+y^{2}-6 y-7=0$
B. $x^{2}+y^{2}-6 y+7=0$
C. $x^{2}+y^{2}-6 y-5=0$
D. $x^{2}+y^{2}-6 y+5=0$

Answer: A

D Watch Video Solution

