

MATHS

BOOKS - ML KHANNA

THEORY OF QUADRATIC EQUATIONS

Problem Set - 1

1. If lpha and eta are the roots of $ax^2+bx+c=0$, then the value of

$$\left\{rac{1}{alpha+b}+rac{1}{aeta+b}
ight\}$$
 is

A.
$$\frac{a}{bc}$$

B.
$$\frac{b}{ca}$$

C.
$$\frac{c}{ab}$$

D. none

Watch Video Solution

2. If lpha and eta are the roots of $ax^2+bx+c=0$, then the value of $(alpha+b)^{-2}+(aeta+b)^{-2}$ is equal to

A.
$$\frac{b^2 - 2ac}{a^2c^2}$$

B.
$$\dfrac{c^2-2ab}{a^2b^2}$$

C.
$$\frac{a^2-2bc}{b^2c^2}$$

D. none

Answer: A

Watch Video Solution

3. If lpha and eta are the roots of $4x^2+3x+7=0$, the value of $\dfrac{1}{lpha^3}+\dfrac{1}{eta^3}$ is

B.
$$\frac{63}{16}$$
C. $\frac{225}{343}$

A. $-\frac{27}{64}$

D. 'none of these

Answer: C

Watch Video Solution

4. If
$$lpha$$
 and eta are the roots of the equation $x^2+px+p^2+q=0$, then the value of $lpha^2+lphaeta+eta^2+q=$

A. 0

B. 1

C. q

D. 2q

Answer: A

5. If lpha and eta are the roots of $ax^2+bx+c=0$, then the value of the expression $(alpha+b)^{-3}+(aeta+b)^{-3}$ is equal to

A.
$$\dfrac{a^3-3abc}{b^3c^3}$$

B.
$$\frac{b^3-3abc}{c^3a^3}$$

$$\mathsf{C.} \; \frac{c^3 - 3abc}{\alpha^3 b^3}$$

D. none

Answer: B

Watch Video Solution

6. If lpha,eta are roots of $ax^2-2bx+c=0$, then $lpha^3eta^3+lpha^2eta^3+lpha^3eta^2$ is

A.
$$\dfrac{c^2(c+2ab)}{a^3}$$

B.
$$\frac{bc^3}{a^3}$$

C.
$$\frac{c^2}{a^3}$$

D. 'none

Answer: D

Watch Video Solution

7. If $lpha,\,eta$ are the roots of the equation $8x^2-3x+27=0$, then the value

of
$$\left(rac{lpha^2}{eta}
ight)^{1/3} + \left(rac{eta^2}{lpha}
ight)^{1/3}$$
 is

A.
$$1/4$$

B. 1/3

C.7/2

D. 4

Answer: A

If α, β are the roots of the equation $x^2-ig(1+n^2ig)x+rac{1}{2}ig(1+n^2+n^4ig)=0$, then $lpha^2+eta^2$ is

A.
$$n^2$$

8.

B.
$$2n^2$$

C.
$$n^2+2$$

$$\mathsf{D}.-n^2$$

Answer: A

9. If
$$\alpha,\beta$$
 are the roots of $ax^2+bx+c=0$, then $\alpha\beta^2+\alpha^2\beta+\alpha\beta$ is equal to

A.
$$\frac{c(a-b)}{a^2}$$

$$C. - \frac{bc}{a^2}$$

D. none

Answer: A

Watch Video Solution

- If α, β are the 10. of roots $ax^2+bx+c=0 \,\, ext{and} \,\, lpha+eta, \, lpha^2+eta^2, \, lpha^3+eta^3$ are in G.P., then
 - A. $\Delta
 eq 0$
 - B. $b\Delta = 0$
 - $\mathsf{C}.\,cb
 eq 0$
 - $D. c\Delta = 0$

Answer: D

11. If p and q are the roots of $x^2+px+q=0$, the A. p=1 B. p=1 or 0

C. p=-2

D. p=-2 or 0

Answer: B

12. If p,q are the roots of the equation $x^2+px+q=0$ where both p and q are non-zero, then (p,q)=

A. (1,2)

B. (1,-2)

C. (-1,2)

D. (-1,-2)

Watch Video Solution

13. If 1 - p is a root of the quadratic equation $x^2+px+1-p=0$, then its roots are

- A. 0,1
- B. -1, 1
- C. 0, -1
- D. -1, 2

Answer: C

Watch Video Solution

14. If $a(p+q)^2+2bpq+c=0abda(p+r)^2+2bpr+c=0(a
eq 0)$,

then $qr=p^2$ b. $qr=p^2+rac{c}{a}$ c. $qr=p^2$ d. none of these

A.
$$p^2+rac{a}{c}$$

$$\mathsf{B.}\,p^2+\frac{c}{a}$$

C.
$$p^2+rac{a}{b}$$
D. $p^2+rac{b}{a}$

Watch Video Solution

15. Let
$$lpha,eta$$
 be the roots of the equation $x^2-px+r=0$ and $rac{lpha}{2},2eta$ be

the roots of the equation $x^2-qx+r=0$, the value of r is (2007, 3M)

 $rac{2}{9}(p-q)(2q-p)$ (b) $rac{2}{9}(q-p(2p-q))$ $rac{2}{9}(q-2p)(2q-p)$

 $rac{2}{\Omega}(2p-q)(2q-p)$

A.
$$\frac{2}{0}(p-q)(2q-p)$$

B.
$$rac{2}{9}(q-p)(2p-q)$$

C.
$$\frac{2}{9}(q-2p)(2q-p)$$

D.
$$\frac{2}{9}(2p-q)(2q-p)$$

Answer: D

Watch Video Solution

16. Let a, b, c, p, q be the real numbers. Suppose α, β are the roots of the equation $x^2+2px+q=0$. and $lpha, rac{1}{eta}$ are the roots of the equation $ax^2+2bx+c=0$, where $eta
otin \{-1,0,1\}$. Statement $\left(p^2-q
ight)\left(b^2-ac
ight)\geq 0$ Statement 11 $b
ot\in pa$ or $c
ot\in qa$.

Watch Video Solution

17. If a and b $(\
eq 0)$ are the roots of the quadratic $x^2 + ax + b = 0$ then the least value of $x^2+ax+b(x\in R)$ is

A.
$$-\frac{9}{4}$$

$$\mathsf{B.}\;\frac{9}{4}$$

$$\mathsf{C.}-\frac{1}{4}$$

D.
$$\frac{1}{4}$$

Answer: A

Watch Video Solution

- **18.** If α and β be the roots of $x^2+px-q=0$ and γ,δ the roots of $x^2+px+r=0$ 0, then the value of $(\alpha-\gamma)(\alpha-\delta)=(\beta-\gamma)(\beta-\delta)$ =
 - A. q+r
 - B. r+q
 - $\mathsf{C}.\,p+q+r$
 - D. none

Answer: A

Watch Video Solution

19. If one root of $5x^2+13x+k=0$ be the reciprocal of the other root then the value of k is

B. k=5

C. k=1/6

D. k=6

Answer: B

Watch Video Solution

20. The difference between the roots of the equation $x^2+kx+1=0$ is less than $\sqrt{5}$,then the set of possible values of k is

 $A.(3,\infty)$

B. $(-3, \infty)$

C. (-3, 3)

D. $(-\infty, -3)$

Answer: A

21. If the roots of $x^2-bx+c=0$ are two consecutive integers, then

$$b^2-4c$$
 is 0 (b) 1 (c) 2 (d) none of these

- A. 1
- B. 2
- C. 3
- D. 4

Answer: A

Watch Video Solution

22. If the equation $\frac{x^2-bx}{ax-c}=\frac{m-1}{m+1}$ has roots equal in magnitude but opposite in sign, then m is equal to

A.
$$\frac{a+b}{a-b}$$

B.
$$\frac{a-b}{a+b}$$
C. $\frac{b-a}{b+a}$

Watch Video Solution

23. If the equation
$$\frac{a}{x-a}+\frac{b}{x-b}=1$$
 has two roots equal in magnitude and opposite in sign then the value of a + b is

- A. 0

B. 1

- C. -1
- D. none

Answer: A

24. The set of values of p for which the roots of the equation

 $3x^2+2x+p(p-1)=0$ are of opposite signs is :

- A. $(-\infty,0)$
- B.(0,1)
- $\mathsf{C}.\left(1,\infty\right)$
- D. $(0, \infty)$

Answer: B

Watch Video Solution

25. If product of roots of the equation $mx^2+6x+(2m-1)=0$ is -1 then m equals

- A. 1
- B. 1/3

$$D. - 1/3$$

Watch Video Solution

26. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

A.
$$2bc = ac + c^2$$

$$\mathsf{B.}\,2ab=bc+c^2$$

$$\mathsf{C.}\, 2ac = ab + b^2$$

D. none

Answer: c

27. If $\sin \theta$ and $\cos \theta$ are the roots of the equation $lx^2 + mx + n = 0$,

then

A.
$$l^2-m^2+2\ln=0$$

B.
$$l^2 + m^2 + 2 \ln = 0$$

C.
$$l^2-m^2-2\ln=0$$

D.
$$l^2+m^2-2\ln=0$$

Answer: A

Watch Video Solution

28. Find the value of a for which the sum of the squares of the roots of the equation $x^2-(a-2)x-a-1=0$ assumes the least value.

- A. 0
- B. 1
- C. 2

Watch Video Solution

29. If the θ and $\sec\theta$ are rots of the equation $ax^2+bx+x=0$, then

A.
$$a^3 + b^3 + c^3 - 3abc = 0$$

B.
$$a^2 - b^2 + 2ac = 0$$

C.
$$a^4 + 4ab^2c - b^4 = 0$$

D. none of these

Answer: C

30. The roots of the equation $x^2+px+q=0$ are $\tan 22^\circ$ and $\tan 23^\circ$ then

A.
$$p + q = 1$$

$$\mathsf{B.}\, p + q = \ -1$$

C.
$$p - q = 1$$

D.
$$p - q = -1$$

Answer: D

31. If the roots of the quadratic equation $x^2+px+q=0$ are $\tan 30^0 and tan 15^0$, respectively, then find the value of 2+q-p.

A. 0

B. 1

C. 2

Answer: D

Watch Video Solution

32. If, in a $\triangle PQR$, right angled at R,

$$an\!\left(rac{P}{2}
ight)$$
 and $an\!\left(rac{Q}{2}
ight)$ are the roots of the equation

$$ax^2+bx+c=0, a
eq 0$$
, then

Answer: A

33. If tan A and tan B are the roots of the quadratic equation

$$x^2-px+q=0$$
, then the value $\sin^2(A+B)$ is

A.
$$\frac{p^2}{p^2+q^2}$$

B.
$$\frac{p^2}{(p+q)^2}$$

$$\mathsf{C.1} - \frac{p}{\left(1 - q\right)^2}$$

D.
$$\frac{p^2}{(1-q)^2+p^2}$$

Answer: D

Watch Video Solution

34. If lpha and eta are the roots of $x^2-p(x+1)-c=0$, then the value of

$$\frac{\alpha^2+2\alpha+1}{\alpha^2+2\alpha+c}+\frac{\beta^2+2\beta+1}{\beta^2+2\beta+c}$$
 is

A. 2

B. 1

C. -1

Watch Video Solution

35. If lpha, eta are the roots of $6x^2-2x+1=0$ and $s_n=lpha^n+eta^n$ then

$$\displaystyle \mathop{L}_{n o \infty} \mathop{\sum}_{r=1}^{n} s_{r}$$
 is

A.
$$\frac{5}{17}$$

B. 0

c.
$$\frac{3}{37}$$

D. none

Answer: B

36. If $lpha,\,eta$ be the roots of $ax^2+2bx+c=0$ and $lpha+\delta,\,eta+\delta$ be those

of
$$Ax^2+2Bx+C=0$$
, then the value of $\left(b^2-ac
ight)/\left(B^2-AC
ight)$ is

A.
$$\left(\frac{a}{A}\right)^2$$

$$\operatorname{B.}\left(\frac{A}{a}\right)^2$$

D. 1

Answer: A

37. let
$$lpha, eta$$
 be roots of $ax^2+bx+c=0$ and γ, δ be the roots of $px^2+qx+r=0$ and D_1 and D_2 be the respective equations .if $lpha, eta, \gamma, \delta$ in $A.\,P.\,$ then $\frac{D_1}{D_2}$ is

A.
$$\frac{a^2}{b^2}$$

B.
$$\frac{a^2}{A^2}$$

C.
$$\dfrac{b^2}{B^2}$$
D. $\dfrac{c^2}{C^2}$

Watch Video Solution

38. If the roots of the equation $x^2+px+q=0$ differ from the roots of the equation $x^2+qx+p=0$ by the same quantity, then the value of p+q is

A. -1

B. -2

C. -4

D. none

Answer: C

39. The ratio of the roots of the equation $ax^2+bx+c=0$ is same as the ratio of the roots of equation $px^2+qx+r=0$. If D_1 and D_2 are the discriminants of $ax^2+bx+c=0$ and $px^2+qx+r=0$ respectively then $D_1:D_2=$

A.
$$\frac{a^2}{A^2}$$
B. $\frac{b^2}{B^2}$

c.
$$\frac{c^2}{C^2}$$

D. none of these

Answer: B

Watch Video Solution

40. If a,b,c are in G.P. then the roots of the equation $ax^2+bx+c=0$ are in the ratio

A.
$$\frac{1}{2}ig(-1+i\sqrt{3}ig)$$

C.
$$rac{1}{2}ig(1+i\sqrt{3}ig)$$
D. $rac{1}{2}ig(1-i\sqrt{3}ig)$

B. $\frac{1}{2} \left(-1 - i\sqrt{3} \right)$

Answer: A::B

Watch Video Solution

41. If the ratio of the roots of
$$a_1x^2+b_1x+c_1=0$$
 be equal to the ratio of the roots of $a_2x^2+b_2+c_2=0$, then $\frac{a_1}{a_2},\frac{b_1}{b_2},\frac{c_1}{c_2}$ are in

- A. A.P.
- B. G.P.
- C. H.P.
- D. None

Answer: B

42. If the roots of the equation $x^2+px+q=0$ are in the same ratio as those of the equation $x^2+lx+m=0$. Then which one of the following is correct ?

A.
$$p^2m=l^2q$$

$${\rm B.}\pm^2\,=q^2l$$

C.
$$p^2l=q^2m$$

D.
$$p^2m=q^2l$$

Answer: A

Watch Video Solution

43. If the sum of the roots of the equation $ax^2+bx+c=0$ is equal to the sum of the reciprocal of their squares, then $bc^2,\,ca^2$ and ab^2 are in

A. A.P.

B. G.P.

C. H.P.

D. None

Answer: A

Watch Video Solution

44. Let lpha and eta be roots of the equation $X^2-2x+A=0$ and let γ and δ be the roots of the equation $X^2-18x+B=0$. If $lpha<eta<\gamma<\delta$ are

in arithmetic progression then find the valus of A and B.

A. (3,77)

B.(3,7)

C. (-3,77)

D. (3,-7)

Answer: C

45. α , β be the roots of the equation $x^2 - 3x + a = 0$ and γ , δ the roots of $x^2 – 12x + b = 0$ and numbers $lpha, eta, \gamma, \delta$ (in this order) form an increasing G.P., then

D. p=4, q=32

Answer: B

46. Let
$$\alpha,\beta$$
 be the roots of $x^2-x+p=0$ and γ,δ be the roots of $x^2-4x+q=0$. $If\alpha,\beta,\gamma,\delta$ are in G.P. then integral values of p,q, are respectively.

A.
$$-2, -32$$

B. -2, 3

C. -6, 3

D. -6, -32

Answer: A

Watch Video Solution

 $q^2 - p^2 = (\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$.

47. If
$$lpha,\,eta$$
 are roots of $x^2\pm px+1=0 and\gamma,\,\delta$ are the roots of $x^2+qx+1=0$, then prove that

A. p^2-q^2

 $\mathsf{B.}\,q^2-p^2$

 $\mathsf{C}.\,p^2$

D. q^2

Watch Video Solution

48. The condition that the roots of the equation $ax^2+bx+c=0$ be such that one root is n times the other

A.
$$na^2 = bc(n+1)^2$$

$$\mathsf{B.}\, nb^2 = ca(n+1)^2$$

$$\mathsf{C.}\, nc^2 = ab(n+1)^2$$

D. none

Answer: B

Watch Video Solution

49. If one root of

$$(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$$

is twice the other, then what is the value of 'a'?

A.
$$\frac{2}{3}$$

$$\mathsf{B.}-\frac{2}{3}$$

$$\mathsf{C.}\ \frac{1}{3}$$

$$\mathsf{D.}-\frac{1}{3}$$

Answer: A

Watch Video Solution

50. If the roots of the equation $ax^2+bx+c=0$ are in the ratio $m\!:\!n$ then

A.
$$mna^2=(m+n)c^2$$

B.
$$mnb^2=(m+n)ac$$

C.
$$mnb^2=\left(m+n
ight)^2\!ac$$

D. none of these

Answer: C

Watch Video Solution

51. If the roots of the equation $ax^2+bx+c=0$ are of the form $(k+1)/kand(k+2)/(k+1), then(a+b+c)^2$ is equal to $2b^2-ac$ b. a62 c. b^2-4ac d. b^2-2ac

A.
$$b^2-4ac$$

$${\rm B.}\,b^2-2ac$$

$$\mathsf{C.}\,2b^2-ac$$

D.
$$\Sigma a^2$$

Answer: A

52. If one root of the equation $ax^2 + bx + c = 0$ be the square of the other, then

A.
$$a^3+bc(b+c)=3abc$$

$$\mathtt{B.}\,b^3 + ac(a+c) = 3abc$$

$$\mathsf{C.}\,c^3 + ab(a+b) = 3abc$$

D. none

Answer: B

Watch Video Solution

53. If one root of the equation $x^2 + px + q = 0$ is square or the other then

A.
$$p^3 - a(3p-1) + a^2 = 0$$

B.
$$p^3 - q(3p+1) + q^2 = 0$$

C.
$$p^3 + q(3p - 1) + q^2 = 0$$

D.
$$p^3 + q(3p+1) + q^2 = 0$$

Answer: A

Watch Video Solution

54. If $lpha,eta,\gamma,\delta$ be the roots of $x^4+x^2+1=0$, then the equation whose roots are $lpha^2, eta^2, \gamma^2, \delta^2$ is

A.
$$\left(x^{2}+x+1\right) ^{2}=0$$

$$\mathsf{B.}\left(x^2-x+1\right)^2=0$$

C.
$$x^4 + x^2 + 1 = 0$$

D.
$$x^4 - x^2 + 1 = 0$$

Answer: A

View Text Solution

55. For the equation $3x^2 + px + 3 = 0$, p > 0, if one of the root is square of the other, then p is equal to 1/3 b. 1 c. 3 d. 2/3

A.
$$1/3$$

B. 1

C. 3

D.2/3

Answer: C

56. If one root
$$x^2-x-k=0$$
 is square of the other, then $k=2\pm\sqrt{5}$ b. $2\pm\sqrt{3}$ c. $3\pm\sqrt{2}$ d. $5\pm\sqrt{2}$

A.
$$2\pm\sqrt{3}$$

B.
$$3\pm\sqrt{2}$$

C.
$$2\pm\sqrt{5}$$

D.
$$5\pm\sqrt{2}$$

Answer: C

Watch Video Solution

57. If one root of the equation $8x^2-6x-a-3=0$ is the square of the other values of a are:

A.
$$4, -24$$

$$C. -4, -24$$

$$D. -4, 24$$

Answer: D

58. If lpha, eta are the roots fo the equation $\lambda ig(x^2-xig) + x + 55 = 0.$ If λ_1

and λ_2 are two values of λ for which the roots lpha, eta are related by

$$rac{lpha}{eta}+rac{eta}{lpha}=rac{4}{5}$$
 find the value of $rac{\lambda_1}{\lambda_2}+rac{\lambda_2}{\lambda_1}$

- A. 150
- B. 254
- C. 180
- D. 100

Answer: B

- **59.** If $ax^2 + bx + c = 0$ is satisfied by every value of x, then
 - A. b,c=0
 - B. c=0
 - C. a=0

Answer: D

Watch Video Solution

- **60.** Let f (x) =(px+q) cos x + (rx+s) sin x and $f'(x) = x \cos x \, orall x \in R$ then
 - A. p=-1
 - B. q=1
 - C. r=1
 - D. s=-1

Answer: B::C

61. The number of values of
$$\lambda$$
 for which $\left(\lambda^2-3\lambda+2\right)x^2+\left(\lambda^2-5\lambda+6\right)x+\lambda^2-4=0$ is an identity in x is

62. If $p(x+1)^2+qig(x^2-3x-2ig)+x+1=0$ be an identity in x, then

B. 2

C. -2

D. 0

Answer: A

Watch Video Solution

p,q are

B. 1,-1

C. 0,0

D. none

Answer: D

Watch Video Solution

63. If $lpha,eta,\gamma$ are the roots of the equaion $x^3+px^2+qx+r=0$, then $\left(1-lpha^2
ight)\left(1-eta^2
ight)\left(1-\gamma^2
ight)$ is equal to

A.
$$\left(1+q
ight)^2-\left(p+r
ight)^2$$

$$\mathsf{B.}\left(1+q\right)^2+\left(p+r\right)^2$$

C.
$$(1-q)^2 + (p-r)^2$$

D. none of these

Answer: A

64. If
$$lpha, eta$$
 are the roots of the equation $2x^2+6x+b=0, (b<0)$ then $rac{lpha}{eta}+rac{eta}{lpha}$ is less than

65. If α, β are roots of the equation

Answer: B

$$ax^2+3x+2=0 (a<0), ext{then}rac{lpha^2}{eta}+rac{eta^2}{lpha}$$
 is greater than

D. none of these

Answer: D

Watch Video Solution

66. The value of a for which the sum of the squares of the roots of

$$2x^2-2(p-2)x-p-1=0$$
 is least, is

A. p=1

 $\operatorname{B.} p = \frac{3}{2}$

 $\mathsf{C}.\,p=2$

 $\mathsf{D}.\,p=\,-\,1$

Answer: B

67. The real quadratic equation whose one root is $2-\sqrt{3}$ is

A.
$$x^2 - 4x + 1 = 0$$

B.
$$x^2 + 4x - 1 = 0$$

$$\mathsf{C.}\,x^2-4x-1=0$$

D. none of these

Answer: A

Watch Video Solution

68. If α and β are the roots of the equation $ax^2+bx+c=0$, then the equation whose roots are $\frac{1}{\alpha+\beta}, \frac{1}{\alpha}+\frac{1}{\beta}$ is

A.
$$acx^2 + \left(a^2 + bc\right)x + bc = 0$$

$$\mathsf{B}.\,bcx^2+\big(b^2+ac\big)x+ab=0$$

C.
$$abx^2+\left(c^2
ight)+ab\big)x+ca=0$$

D. none of these

Answer: B

Watch Video Solution

69. If $\alpha \neq \beta$ and $\alpha^2=5\alpha-3$ and $\beta^2=5\beta-3$. find the equation whose roots are α/β and β/α .

A.
$$x^2 - 5x - 3 = 0$$

$$B. \, 3x^2 + 12x + 3 = 0$$

$$\mathsf{C.}\,3x^2 - 19x + 3 = 0$$

D. none

Answer: C

Watch Video Solution

70. Let lpha and eta are the roots of the equation $x^2+x+1=0$ Then. The equation whose roots are $lpha^{19},\,eta^7$ is :

$$\mathsf{B.}\,x^2-x+1=0$$

A. $x^2 - x - 1 = 0$

D.
$$x^2 + x + 1 = 0$$

C. $x^2 + x - 1 = 0$

Answer: D

Watch Video Solution

71. If
$$x^2-x+1=0$$
 then the value of x^3 is

- A. 1
- B. -1
- C. -1, 1

Answer: B

D. 0

72. Let α and β be the roots of the equation $x^2 + ax + 1 = 0, a \neq 0$.

Then the equation whose roots are $-\left(alphla+rac{1}{eta}
ight)$ and $-\left(rac{1}{lpha}+eta
ight)$ is

A.
$$x^2 = 0$$

B.
$$x^2 + 2bx + 4 = 0$$

C.
$$x^2 - 2bx + 4 = 0$$

D.
$$x^2 - bx + 1 = 0$$

Answer: C

73. The equation whose roots are such that their A.M. = 9 and G.M. = 4 is

A.
$$x^2 + 18x + 16 = 0$$

B.
$$x^2 - 18x + 16 = 0$$

C.
$$x^2 + 18x - 16 = 0$$

D.
$$x^2 - 18x - 16 = 0$$

Answer: B

Watch Video Solution

74. Ramesh and Mahesh solve an equation. In solving Ramesh commits a mistake in constant term and find the roots are 8 and 2. Mahesh commits a mistake in the coefficient of x and find the roots -9 and -1. The corret roots are

- A. -8, 2
- B. 9,1
- C. 9,-1
- D. -8, -2

Answer: B

75. Two candidates attempt to solve a quadratic equation of the form $x^2+px+q=0$. One starts with a wrong value of p and finds the roots to be 2 and 6. The other starts with a wrong value of q and finds the roots to be 2,-9. The correct roots are

- A. 3,4
- B. 5,3
- C. -3. -4
- D. none

Answer: C

Watch Video Solution

76. If 8,2 are the roots of $x^2+ax+\beta=0$ and 3,3 are the roots of

 $x^2 + \alpha x + b = 0$, then the roots of $x^2 + ax + b = 0$ are

A. 8, -1

B. -9, 2

C. -8, -2

D. 9,1

Answer: D

Watch Video Solution

the roots of the equation (x-lpha)(x-eta)+c=0 are :

77. Let $lpha,\,eta$ be the roots of the equation $(x-a)(x-b)=c,\,c
eq 0$ then

A. a,c

B.b,c

C. a,b

D. a+b,b+c

Answer: C

78. In a quadratic equation with leading coefficient 1, a student read the coefficient 16 of x wrong as 19 and obtain the roots as -15 and -4. The correct roots are

- A. 6,10
- B.-6, -10
- C. -7, -9
- D. none of these

Answer: B

Watch Video Solution

79. Two students while solving a quadratic equation in x, one copied the constant term incorrectly and got the roots 3 and 2. The other copied the constant term and coefficient of x^2 correctly as -6 and 1 respectively. The correct roots are

A. 3,-2

B. -3, 2

C. -6, -1

D. 6, -1

Answer: D

Watch Video Solution

A.
$$ax^2 - b\sqrt{bx} + b^2 = 0$$

80. A quadratic equation whose roots are $\dfrac{a}{\sqrt{a}\pm\sqrt{(a-b)}}$ is

$$\mathsf{B.}\,bx^2 - 2a\sqrt{ax} + a^2 = 0$$

$$\mathsf{C.}\,ax^2-abx+b=0$$

$$\mathsf{D.}\,a^2x^2+abx+b^2=0$$

Answer: B

81. If
$$\dfrac{1}{a+\sqrt{b}}$$
 (b not a perfect square) be a root of a quadratic equation,

then its form is

A.
$$(a^2-b)x^2-2bx+1=0$$

B.
$$(a^2 - b)x^2 - 2ax + 1 = 0$$

$$\mathsf{C.}\, x^2 - 2ax + \left(a^2 - b^2\right) = 0$$

D. none

Answer: B

Watch Video Solution

82. The quadratic equation whose roots are A.M. and H.M. between the roots of the equation $ax^2+bx+c=0$, is

A.
$$\left(abx^2+cb^2+ac\right)x+bc=0$$

B.
$$2abx^2 + \left(b^2 + 4ac\right)x + 2bc = 0$$

C.
$$2abx^2+ig(b^2+acig)x+bc=0$$

D. none

Answer: B

Watch Video Solution

83. If $\alpha+\beta=3,$ $\alpha^3+\beta^3=7$, then α and β are the roots of

A.
$$3x^2 + 9x + 7 = 0$$

$$B. 9x^2 - 27x + 20 = 0$$

C.
$$2x^2 - 6x + 15 = 0$$

D. none

Answer: B

84. If x^2-3x+2 is a factor of $x^4-px^2+q=0$, then p,q are

- A. 2,3
- B. 4,5
- C. 5,4
- D. 0,0

Answer: C

Watch Video Solution

85. If the roots of the equation $x^2-5x+16=0$ are α,β and the roots of the equation $x^2+ax+b=0$ are $\alpha^2+\beta^2$ and $\frac{\alpha\beta}{2}$, then (a,b) is

- A. (1,56)
- B. (1,-56)
- C. (-1,56)

Answer: D

Watch Video Solution

- **86.** The roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are
 - A. $\frac{c-a}{b-c}$, 1
 - B. $\frac{a-b}{b-c}$, 1
 - C. $\frac{b-c}{a-b}$, 1
 - D. $\frac{c-a}{a-b}$, 1

Answer: B

87. If one root of the equation $ix^2-2(i+1)x+(2-i)=0$ is 2-i, then the other root is

88. The number of real roots of the equation $2^{2x^2-7x+5}=1$ is

$$\mathsf{A.}-i$$

B.2 + i

C. i

D.2-i

Answer: A

- - A. 0
 - B. 1
 - C. 2
 - D. 4

Answer: C

Watch Video Solution

89. The equation $(x-a)^3 + (x-b)^3 + (x-c)^3 = 0$ has

A. all roots real

B. one real, two complex

C. three real roots a,b,c

D. none

Answer: B

Watch Video Solution

90. The number of real roots of equation $(x-1)^2+(x-2)^2+(x-3)^2=0$ is

B. 1

C. 0

D. 3

Answer: C

Watch Video Solution

91. If
$$lpha,eta$$
 be the roots of $ax^2+bx+c=0$, then those of $ax^2+2bx+4c=0$ are

A.
$$lpha/2,eta/2$$

B. 2α , 2β

$$\mathsf{C.}-2\alpha,\;-2\beta$$

 $D. -\alpha, -\beta$

Answer: B

92. If p ad q are non-zero constants, the equation $x^2+px+q=0$ has roots α and β , then the equation $qx^2+px+1=0$ has roots

A.
$$\alpha$$
 and $1/\beta$

$$B.1/\alpha$$
 and β

$$C.1/\alpha$$
 and $1/\beta$

D. none of these

Answer: C

Watch Video Solution

93. The quadratic equation whose roots are reciprocal of the roots of the equation $ax^2+bx+c=0$ is :

$$\operatorname{A.} cx^2 + bx + a = 0$$

B. $bx^2 + cx + a = 0$

 $\operatorname{C.} cx^2 + ax + b = 0$

D. $bx^2 + ax + c = 0$

Answer: A

Watch Video Solution

94. If $x=2+2^{2/3}+2^{2/3}$, then the value of x^3-6^2+6x is 3 b. 2 c. 1 d.

-2

A. 3

B. 2

C. 1

D. none of these

Answer: B

95. The number of roots of the equation, $x-\frac{2}{x-1}=1-\frac{2}{x-1}$ is 0

A. 1

B. 2

C. 0

D. infinitely many

Answer: C

Watch Video Solution

96. If a,b,c are real $x^3-3b^2x+2c^3$ is divisible by x-a and x-b, then

A. a = -b = -c

 $\mathsf{B.}\,a=2b=2c$

C. a = b = c or a = -2b = -2c

D. none of these

Answer: C

Watch Video Solution

- **97.** If $x^2-2x\cos\theta+1=0$, then the value of $x^{2n}-2x^n\cos n\theta+1$ is equal to
 - A. $\cos 2n\theta$
 - $\mathtt{B.}\sin 2n\theta$
 - C. 0
 - D. some real number other than 0

Answer: C

98. If a and β^2 are the roots $8x^2$ -10x+3=0' then the equation whose roots are $(a+i\beta)^{100}$ and $(a-i\beta)^{100}$ can be`

A.
$$x^2-x+1=0$$

$$\mathtt{B.}\,x^2+x+1=0$$

C.
$$x^2 - x - 1 = 0$$

D.
$$x^2 + x - 1 = 0$$

Answer: B

Watch Video Solution

99. If α,β are the roots of $ax^2+bx+c=0$, the equation whose roots are $2+\alpha,2+\beta$ is

A.
$$ax^2 + x(4a - b) + 4a - 2b + c = 0$$

B.
$$ax^2 + x(4a - b) + 4a + 2b + c = 0$$

C.
$$ax^2 + x(b-4a) + 4a + 2b + c = 0$$

D.
$$ax^2 + x(b-4a) + 4a - 2b + c = 0$$

Answer: D

Watch Video Solution

- **100.** The value of x for which $\log_3\left(2^{1-x}+3\right)$, $\log_9 4$ and $\log_{27}\left(2^x-1\right)^3$ form an A.P. is
 - A. 11/6

B.6/11

- $C. \log_2(11/6)$
- D. 1

Answer: D

101. The inequality |2x-3|<1 is valid when x lies in the interval :

- A. (3,4)
- B. (1,2)
- C. (-1,2)
- D. (-4,3)

Answer: B

102. If the product of the roots of the equation $x^2-3kx+2e^{2\ln k}-1=0$ is 7 then the roots of the equation are real for k equal to

- **A.** 1
- B. 2
- C. 3

Answer: B

Watch Video Solution

103. Find the number of quadratic equations, which are unchanged by squaring their roots.

- A. 2
- B. 4
- C. 6
- D. none of these

Answer: B

104. If roots of an equation $x^n - 1 = 0$ are $1, a_{1,2}, a_{n-1}$, then the value of $(1-a_1)(1-a_2)(1-a_3)(1-a_{n-1})$ will be n b. n^2 c. n^n d. 0

A. 0

B. 1

C. n

 $D. n^2$

Answer: C

- **105.** If $7^{\log 7\left(x^2-4x+5
 ight)}=x-1$, x may have values
 - - A. 2,3
 - B. 7
 - C. -2, -3
 - D. 2, -3

Answer: A

Watch Video Solution

106. If a+b+c=0 then $x^{a^{2/bc}}$. $x^{b^{2/ca}}$. $x^{c^{2/ab}}$ is equal to

A. 1

B. x

 $\mathsf{C.}\,x^2$

D. x^3

Answer: D

Watch Video Solution

107. If $x=(\beta-\gamma)(\alpha-\delta)$ $y=(\gamma-\alpha)(\beta-\delta), z=(\alpha-\beta)(\gamma-\delta),$ then the value of $x^3+y^3+z^3-3xyz$ is

B.
$$lpha^6+eta^6+\gamma^6+\delta^6$$

C.
$$lpha^6eta^6\gamma^6\delta^6$$

D. none of these

Answer: A

Watch Video Solution

108. If α, β, γ are the roots of the equation $x^3 + ax + b = 0$, then

$$\frac{\alpha^3+\beta^3+\gamma^3}{\alpha^2+\beta^2+\gamma^2}=$$

A.
$$\frac{3b}{2a}$$

B.
$$\frac{-3b}{2a}$$

Answer: A

109. If α, β, γ are the roots if the equation $x^3 - 3x + 11 = 0$ then the equation whose roots are $(\alpha + \beta), (\beta + \gamma), (\gamma + \alpha)$ is

A.
$$x^3 + 3x + 11 = 0$$

B.
$$x^3 - 3x - 11 = 0$$

C.
$$x^3 + 3x - 11 = 0$$

D. none

Answer: B

Watch Video Solution

110. If lpha+ieta is one of the roots of the equation $x^3+qx+r=0$, then

2lpha is one of the roots of the equation :

A. $x^2 - qx + r = 0$

$$B. x^3 - qx - r = 0$$

$$\mathsf{C.}\,x^3+qx-r=0$$

D. none

Answer: C

Watch Video Solution

111. If the equation $x^3+ax^2+b=0 (b eq 0)$ has a double root then

A.
$$4a + 27b^3 = 0$$

B.
$$4a^3 + 27b = 0$$

$$\mathsf{C.}\,27a+4b^3=0$$

D. none

Answer: B

112. If lpha,eta arethe roots of the equation $x^2-ax+b=0$ and $A_n=lpha^n+eta^n$ then which of the following is

true? (A)
$$A_{n+1}=aA_n+bA-(n-1)$$
 (B)

$$A_{n+1} = bA_n + aA - (n-1)$$
 (C) $A_{n+1} = aA_n - bA - (n-1)$ (D)

$$A_{n+1} = bA_n \pm aA - (n-1)$$

A.
$$A_{n+1} = aA_n + bA_{n-1}$$

$$\mathtt{B.}\,A_{n+1} = bA_n + aA_{n-1}$$

$$\mathsf{C.}\,A_{n+1} = aA_n - bA_{n-1}$$

D.
$$A_{n+1} = bA_n - aA_{n-1}$$

Answer: C

Watch Video Solution

113. If lpha, eta are the roots of the equation $ax^2+bx+c=0$ and

$$S_n=lpha^n+eta^n$$
 , then $aS_{n+1}+bS_n+cS_{n-1}=(n\geq 2)$

A. 0

B. a+b+c

C. abc

D. none

Answer: A

Watch Video Solution

114. Let aandb be the roots of the equation $x^2-10cx-11d=0$ and those of $x^2-10ax-11b=0arec,$. then find the value of $a+b+c+\ddot{w}hena
eq b
eq c
eq ...$

Problem Set - 1 (True And False)

1. If c,d are the roots of the equation (x-a)(x-b)-k=0 , prove that a, b are roots of the equation (x-c)(x-d)+k=0.

2. If lpha is a root of the equation $x^2+2x-1=0,$ then prove that $4lpha^2-3lpha$ is the other root.

3. If the ratio of roots of equation $lx^2+nx+n=0$ is p: q then find the value $\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{n}{l}}$ = ?

Problem Set - 1 (Fill In The Blanks)

1. If α, β be the roots $x^2 - px + q = 0$ and α', β' be those of

$$x^2-p'x+q'=0$$
, then the value of $(lpha-lpha')^2+(eta-lpha')^2+(lpha-eta')^2+(eta-eta')^2=$

2. The roots of the equation $4x^4-24x^3+57x^2+18x-45=0$ if one of them is $3+i\sqrt{6}$, are

3. If $lpha,\,eta$ are the roots of the quadratic equation $6x^2-6x+1=0$, then $rac{1}{2}ig(a+blpha+clpha^2+dlpha^3ig)+rac{1}{2}ig(a+beta+ceta^2+deta^3ig)=$

4. If $5\{x\}=x+[X]$ and $[X]-\{x\}=\frac{1}{2}$, where $\{x\}$ and [X] are fractional and integral part of x then x=

Problem Set - 2

1. The equation $(b-c)x^2+(c-a)x+(a-b)=0$ has

A. equal roots

B. irrational roots

C. rational roots

D. none of these

Answer: C

2. If the roots of the equation

$$(b-c)x^2+(c-a)x+(a-b)=0$$
 be equal, then a,b,c are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

3. If the roots of the equation $a(b-c)x^2+b(c-a)x+c(a-b)=0$ are equal, show that $2/b = 1/a + 1/\cdot$

$$\mathsf{A.}\,\frac{1}{a}+\frac{1}{c}$$

B.a+c

 $\mathsf{C.}\,1/a+c$

D.
$$a + 1/c$$

Answer: A

Watch Video Solution

4. If a, b, c are in H.P., then the equation $a(b-c)x^{2} + b(c-a)x + c(a-b) = 0$

A. real and distinct roots

B. equal roots

C. complex roots

D. none of these

Answer: B

5. Suppose A, B, C are defined

$$A=a^2b+ab^2-a^2c-ac^2, B=b^2c+bc^2-a^2b-ab^2$$
, and

as

$$C=a^2c+ac^2-b^2c-bc^2$$
, where $a>b>c>0$ and the equation

$$Ax^2+Bx+C=0$$
 has equal roots, then a, b, c are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: C

Watch Video Solution

6. If a,b,c,d are four consecutive terms of an increasing A.P., then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 are a. non-real complex b. real and equal c. integers d. real and distinct

- A. real and distinct
 B. complex
- C. equal roots

Answer: A

D. none

7.

Watch Video Solution

If a,b,c $\in Q$, then roots of

 $(b+c-2a)x^2+(c+a-2b)x+(a+b-2c)=0$ are

the equation

A. rational

B. irrational

C. non-real

D. equal

Answer: A

8. If
$$(a+b+c=0$$
, find the nature of the roots of the equation
$$(c^2-ab)x^2-2(a^2-bc)x+(b^2-ac)=0.$$

A. imaginary

B. real and equal

C. real and unequal

D. none of these

Answer: B

Watch Video Solution

9. If a + b + c = 0 and $a \neq c$ then the roots of the equation

 $(b+c-a)x^2+(c+a-b)x+(a+b-c)=0$, are

A. imaginary

B. real and equal

C. real and unequal

D. none of these

Answer: B::C

Watch Video Solution

B.
$$a+b\omega+c\omega^2=0$$

10. If the roots of the

(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal, then

equation

$$\mathsf{C.}\,a-b+c=0$$

D.
$$a+b\omega^2+c\omega=0$$

Answer: B::D

11. If the expression $x^2-2(\Sigma a)x+3\Sigma ab=0$ be a perfect square, then

A.
$$\Sigma a=0$$

$$\operatorname{B.}\Sigma ab=0$$

$$\mathsf{C}.\,a=b=c$$

D. none

Answer: C

Watch Video Solution

12. If a,b and c are real numbers then the roots of the equation

$$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$$
 are always

A. positive

B. negative

C. real

D. none of these

Answer: C

Watch Video Solution

- **13.** If three distinct positive numbers a,b,care in H.P.,then the equation $ax^2+2bx+c=0$ has:-
 - A. real
 - B. imaginary
 - C. rational
 - D. equal

Answer: B

14. Find the condition if the of roots $ax^2+2bx+c=0$ and $bx^2-2\sqrt{acx}+b=0$ are simultaneously real.

$$\mathsf{B}.\,ac=b^2$$

C.
$$4b^2=ac$$

D. none of these

Answer: B

Watch Video Solution

$(a-b)^2x^2 + 2(a+b-2c)x + 1 = 0$

15. if a < c < b, then check the nature of roots of the equation

A. complex

B. real

C. equal

D	un	וחב	اد،
υ.	un	equ	ıaı

Answer: A

Watch Video Solution

16. The value of m for which the equation $x^3-mx^2+3x-2=0$ has two roots equal in magnitude but opposite in sign, is

- A. 1/2
- $\mathsf{B.}\,2/3$
- $\mathsf{C.}\,3/4$
- $\mathsf{D.}\,4/5$

Answer: B

17. If $a \in Z$ and the equation (x-a)(x-10)+1=0 is integral roots, then the values of a are

- A. 8,10
- B. 10,12
- C. 12,8
- D. none

Answer: C

- **18.** The equation $(6-x)^4 + (8-x)^4 = 16$ has
 - A. sum of roots 28
 - B. product of roots 2688
 - C. two real roots
 - D. two imaginary roots

Answer: A::B::C::D

Watch Video Solution

19. If x^2+x+1 is a factor of ax^3+bx^2+cx+d , then the real root of $ax^3+bx^2+cx+d=0$ is

$$A.-d/a$$

B.d/a

 $\mathsf{C}.\,a/d$

D. none of these

Answer: A

Watch Video Solution

20. Let $f(x) = ax^3 + 5x^2 - bx + 1$. If f(x) when divide by 2x + 1 leaves

5 as remainder, and $f^{\,\prime}(x)$ is divisible by 3x-1, then

- A. 24,12
- B. 26,12
- C. 26,10
 - D. none

Answer: B

Watch Video Solution

21. If $x^3+3x^2-9x=c$ is of the form $(x-lpha)^2(x-eta)$, then c is equal

- to 27 b. 27 c. 5 d. 5
 - A. 27
 - B. 27
 - $\mathsf{C.}\,5$

D. 5

Answer: A::D

22. If the two roots of the euqation $(\lambda-1)ig(x^2+x+1ig)^2-(\lambda+1)ig(x^4+x^2+1ig)=0$ are real and

distinct, then
$$\lambda$$
 lies in the interval

A.
$$(\,-\infty,2)$$

B.
$$(2,\infty)$$

C.
$$(-\infty, -2)$$

D.
$$(-\infty, -2)\cap (2, \infty)$$

Answer: B::C

Watch Video Solution

23. The value of a for which the quadratic equation

$$3x^2 + 2a^2 + 1x + a^2 - 3a + 2 = 0$$

Possesses roots of opposite signs lies in

A.
$$(-\infty, 1)$$

B.
$$(-\infty,0)$$

$$\mathsf{C.}\ (1,\,2)$$

D.
$$\left(\frac{3}{2},2\right)$$

Answer: C

Watch Video Solution

24. If 1 lies between the roots of the equation
$$3x^2-3\sin\alpha x-2\cos^2\alpha=0$$
, the $lpha$ lies in the interval

A.
$$\left(0, \frac{\pi}{2}\right)$$

B.
$$\left(\frac{\pi}{12}, \frac{\pi}{2}\right)$$

$$\mathsf{C.}\left(\frac{\pi}{6},\frac{5\pi}{6}\right)$$

$$\operatorname{D.}\left(\frac{\pi}{6},\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},\frac{5\pi}{6}\right)$$

Answer: D

25. If
$$a.4^{\tan x} + a.4^{-\tan x} - 2 = 0$$
 has real solutions, where

$$0 \leq x \leq \pi, x
eq \pi/2$$
, then a lies in the interval

$$\mathsf{A.}\,[\,-1,1]$$

$$\mathsf{B.}\,[\,-1,0]$$

$$\mathsf{C}.\,(0,1]$$

D.
$$[0, \infty]$$

Answer: C

Watch Video Solution

26. If the equation $(\cos \theta - 1)x^2 + (\cos \theta)x + \sin \theta = 0$ has real roots,

then θ lies in

A.
$$[0,\pi]$$

B.
$$[-\pi, 0]$$

$$\mathsf{C.}\left[\,-\,\frac{\pi}{2},\,\frac{\pi}{2}\right]$$

D. $[0, 2\pi]$

Answer: A

Watch Video Solution

27. If the roots of the equation $(x-p)(x-q)=p^2-2q^2$ be real and distinct for all p>0 then q lies in the interval

A.
$$\left[-p, rac{7}{5}p
ight]$$

B.
$$\left[-p, \frac{5}{7}p\right]$$

C.
$$\left[-p, rac{1}{7}p
ight]$$

D.
$$\left[-2p, \, -rac{7}{5}p
ight]$$

Answer: B

28. The value of a for which the equation $2x^2-2(2a+1)x+a(a-1)=0$ has roots, α and β such that $\alpha< a< \beta$ is

A.
$$a \geq 0$$

$$C. -3 < a < 0$$

D. none of these

Answer: D

Watch Video Solution

29. Find the valuesof m for which exactly one root of the equation $x^2-2mx+m^2-1=0$ lies in the interval $(\,-2,4)$

A. m>3

B. -1 < m < 3

C.1 < m < 4

D. -2 < m < 4

Answer: D

Watch Video Solution

30. The value of λ for. Which $2x^2-2(2\lambda+1)x+\lambda(\lambda+1)=0$ may

have one root less than λ and other root greater than λ are given by

A. $1 > \lambda > 0$

B. $-1 < \lambda < 0$

 $\mathsf{C}.\,\lambda\geq 0$

D. $\lambda > 0$ or $\lambda < -1$

Answer: D

31. If the equation $ax^2+bx+c=0 (a>0)$ has two roots lpha and eta such that lpha<-2 and eta>2, then

A.
$$b^2-4ac>0$$

$$\mathsf{B.}\,4a+2|b|+c<0$$

C.
$$a + |b| + c < 0$$

$$\mathrm{D.}\,c < 0$$

Answer: A::B::C::D

Watch Video Solution

32. Find the values of a if $x^2 - 2(a-1)x + (2a+1) = 0$ has positive roots.

A.
$$a > 0$$

B.
$$0 < a < 4$$

 $\mathsf{C}.\,a\geq 4$

D. none of these

Answer: C

Watch Video Solution

33. If the equation $x^2+2(a+1)x+9a-5=0$ has only negative root,

then

A. $a \leq 6$

B. $a \geq 6$

c. a < 0

D. $a \geq 0$

Answer: B

34. The value of k for which both the roots of the equation

$$4x^2-20kx+\left(25k^2+15k-66
ight)=0$$
 are less than 2, lies in

- A. (4/5,2)
- B. (2,0)
- C. (-1,-4/5)
- D. $(-\infty, -1)$

Answer: D

Watch Video Solution

35. If the roots of the equation $x^2-2ax+a^2+a-3=0$ are real and less than 3, then :

- A. a < 2
- B. $2 \leq a \leq 3$
- $\mathsf{C.}\,3 < a \leq 4$

D.a > 4

Answer: A

Watch Video Solution

36. If both the roots of the equation $x^2-12kx+k^2+k-5=0$ are less than 5, then k lies in the inverval

A. $(-\infty,4)$

B. [4, 5]

 $\mathsf{C.}\left[5,6\right]$

 $D.(6,\infty)$

Answer: A

37. If both the roots of the equation $x^2-6ax+2-2a+9a^2=0$

exceed 3, then

$$\mathrm{A.}\,a>\frac{11}{9}$$

$$\mathrm{B.}\,a<\frac{11}{9}$$

$$\mathsf{C.}\,a>\frac{9}{11}$$

$\mathsf{D.}\,a < \frac{9}{11}$

Answer: A

Watch Video Solution

38. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is

A. less than -4ab

B. greater than 4ab

C. less than 4ab

D. greater than -4ab

Answer: D

Watch Video Solution

- **39.** If $\cos^4 x + \sin^2 x \lambda = 0, \, \lambda \in R$ has real solutions, then
 - A. $\lambda \leq 1$
 - B. $rac{3}{4} \leq \lambda \leq 1$
 - $\operatorname{C.}\lambda \geq \frac{3}{4}$
 - D. none

Answer: B

Watch Video Solution

40. If the roots of $x^2+x+a=0$ exceed 'a' ,then

A.
$$2 < a < 3$$

B.
$$a > 3$$

$$C. -3 < a < 3$$

D.
$$a<\ -rac{1}{2}$$

Answer: D

Watch Video Solution

The range of values of m for which the equation 41. $(m-5)x^2+2(m-10)x+m+10=0$ has real roots of the same sign, is given by

A.
$$m>10$$

$$\mathrm{B.}-5 < m < 5$$

C.
$$m < -10, 5 < m \le 6$$

D. none of these

Answer: C

Watch Video Solution

42. The equation $ax^2+bx+c=0$ where a,b,c are real numbers connected by the relation 4a+2b+c=0 and ab>0 has

A. real roots

B. complex roots

C. exactly one root

D. none of these

Answer: A

Watch Video Solution

43. If $a,b,c\in R$ and a+b+c=0, then the quadratic equation

 $4ax^2+3bx+2c=0$ has

A. one positive and one negative root

B. imaginary roots

C. real roots

D. none of these

Answer: C

Watch Video Solution

 $ax^2+bx+c=0$ are real for

44. If a,b,c are positive and are in A.P., the roots of the quadratic equation

A.
$$\left|rac{c}{a}-7
ight|\geq 4\sqrt{3}$$

B.
$$\left| rac{a}{c} - 7
ight| < 4\sqrt{3}$$

C. all a and c

D. no a and c

Answer: A

45. If
$$f(x)=ax^2+bx+c, g(x)=-ax^2+bx+c, whereac \neq 0,$$

then prove that f(x)g(x)=0 has at least two real roots.

A. at least three real roots

B. no real root

C. at least two real roots

D. two real and two imaginary roots

Answer: C

Watch Video Solution

46. If a, b, c are positive and a = 2b + 3c, then roots of the equation

 $ax^2+bx+c=0$ are real for

A.
$$\left| \frac{a}{c} - 11 \right| \geq 4\sqrt{7}$$

B.
$$\left| rac{c}{a} - 11
ight| \geq 4\sqrt{7}$$

C.
$$\left|rac{b}{c}-4
ight|\geq 2\sqrt{7}$$

D.
$$\left| rac{c}{b} - 4
ight| \geq 2\sqrt{7}$$

Answer: A

Watch Video Solution

- 47. If a,b,c are positive real numbers, then the number of real roots of the equation $ax^2 + b|x| + c = 0$ is
 - A. 2

B. 4

- C. 0
- D. none of these

Answer: C

48. Real roots of the equation $x^2+5|x|+4=0$ are

A.
$$-1, -4$$

B. 1,4

C. -4, 4

D. none of these

Answer: D

Watch Video Solution

49. The number of real roots of the equation

$$(\sin 2^x) \cos(2^x) = rac{1}{4} ig(2^x + 2^{-x}ig)$$
 is equal to

A. 1

B. 2

C. 3

Answer: D

Watch Video Solution

- **50.** The number of solutions of the equation $5^x + 5^{-x} = \log_{10} 25, x \in R$
 - A. 0

is

- B. 1
- C. 2
- D. inifinitely many

Answer: A

Answer: B

Watch Video Solution

53. The number of real solutions of the equation $\left(\frac{5}{7}\right)^2 = -x^2 + 2x - 3$ is equal to

A. 0

B. 1

C. 2

D. none of these

Answer: A

Watch Video Solution

54. If a and b $(\neq 0)$ are the roots of the quadratic $x^2+ax+b=0$ then the least value of $x^2+ax+b(x\in R)$ is

A. 2/3

B.9/4

C. - 9/4

D. 1

Answer: C

Watch Video Solution

55. If a + b + c = 0 then the quadratic equation $3ax^2+2bx+c=0$ has

A. at least one root in (0,1)

B. one root in (2,3) and the other in (-2,-1)

C. imaginary roots

D. none of these

Answer: A

56. If a, b, c $\in R$ and 2a + 3b + 6c = 0, then the equation $ax^2 + bx + c = 0$ has

A. at least one root in [0,1]

B. at least one root in [-1,1]

C. at least one root in [0,2]

D. none of these

Answer: A

Watch Video Solution

57. If $(ax^2+c)y+(dx^2+c')$ =0 and x is a rational function of y and ac is -ve and ac is perfact square then

A.
$$a^2 + c^2 = d^2 + c^2$$

$$\mathsf{B.}\,ad+c'=1$$

$$\mathsf{C.}\,\frac{a}{c} = \frac{d}{c'}$$

$$D. ac + dc = 0$$

Answer: C

Watch Video Solution

58. If the equation $x^2-4x+\log_{\frac{1}{2}}a$ = 0 does not have two distinct real roots, then maximum value of a is

$$\text{A.}\ \frac{1}{16}$$

B.
$$-\frac{1}{4}$$

C.
$$\frac{1}{4}$$

D. none of these

Answer: A

59. Consider the equation of the form $x^2+ax+b=0$. Then number of such equations that have real roots and have coefficients a and b in the set {1,2,3,4,5,6} {a may be equal to b} is

- A. 20
- B. 19
- C. 18
- D. 17

Answer: B

Watch Video Solution

60. If α , β are the roots of $x^2+px+q=0$ and α^n , β^n are the roots of $x^{2n}+p^nx^n+q^n=0$, and if $\left(\frac{\alpha}{\beta}\right),\left(\frac{\beta}{\alpha}\right)$ are the roots of $x^n+1+(x+1)^n=0$. Then n is

A. an odd integer

B. an even integer

C. any integer

D. none of these

Answer: B

Watch Video Solution

61. If α and β are the ral roots of $x^2 + px + q = 0$ and α^4 , β^4 are the roots of $x^2-rx+s=0$. Then the equation $x^2-4qx+2q^2-r=0$

has always $(\alpha \neq \beta, p \neq 0, p, q, r, s \in R)$:

A. two real roots

B. two negative roots

C. two positive roots

D. one positive and one negative roots

Answer: A

 $(1 + \alpha^2)(1 + \beta^2)(1 + \gamma^2)(1 + \delta^2)$ is

62. If
$$lpha,eta,\gamma,\delta$$
 are the roots of the equation $x^4+4x^3-6x^2+7x-9=0$,then the value of

Answer: A

Watch Video Solution

63. The number of roots of the quadratic equation $\sec^2 \theta - 6\sec \theta + 1 = 0$ is

A. infinitely many roots

B. exactly two roots

C. exactly four roots

D. no root

Answer: D

Watch Video Solution

64. If lpha and eta(lpha < eta) are the roots of the equation $x^2 + bx + c = 0$,

- where c < 0 < b, then
 - A. $0 < \alpha < \beta$
 - B. $\alpha < 0 < \beta < |\alpha|$
 - $\mathsf{C}.\, \alpha < eta < 0$
 - D. $\alpha < 0 < |\alpha| < \beta$

Answer: B

65. The real root of the equation
$$\dfrac{x^2}{\left(x+1\right)^2}+x^2=3$$
 are

A.
$$\frac{1\pm\sqrt{5}}{2}$$

B.
$$\frac{1\pm\sqrt{3}}{2}$$

c.
$$\frac{-1 \pm \sqrt{5}}{2}$$

D.
$$\frac{-1\pm\sqrt{3}}{2}$$

Answer: A

Watch Video Solution

66. Let a,b,c be the sides of a triangle. No two of them are equal and

$$\lambda \in R$$
 If the roots of the equation

 $x^2+2(a+b+c)x+3\lambda(ab+bc+ca)=0$ are real distinct, then

A.
$$\lambda < rac{4}{3}$$

1. If roots of equation
$$x^3-2cx+ab=0$$
 are real and unequal, then

prove that the roots of $x^2-2(a+b)x+a^2+b^2+2c^2=0$ will be imaginary.

 $\operatorname{B.}\frac{11}{3}<\lambda<\frac{17}{3}$

c. $\frac{11}{6} < \lambda < \frac{15}{4}$

Watch Video Solution

Problem Set - 2 (True And False)

D. $\lambda \geq 1$

Answer: A

2. Show that if
$$p,q,r$$
 and s are real numbers and $pr=2(q+s)$, then atleast one of the equations $x^2+px+q=0$ and $x^2=rx+s=0$ has

real roots.

Watch Video Solution

If a < b < c < d then 3. show that (x-a)(x-c)+3)x-b)(x-d)=0 has real and distinct roots.

Watch Video Solution

4. If the roots of the equation

$$\left(a^2+b^2\right)x^2-2(bc+ad)x+\left(c^2+d^2\right)=0$$
 be real, then they will be equal as well and then $\frac{a}{b}=\frac{d}{c}$

Watch Video Solution

Problem Set - 2 (Fill In The Blanks)

1. The values of m for which the equation

 $5x^2-4x+2+mig(4x^2-2x-1ig)=0$ will have (i) Equal roots (ii)

Product of roots as 2 (iii) Sum of the roots as 6 are And

Watch Video Solution

2. If the roots of the equation $x^2-8x+a^2-6a=0$ are real distinct, then find all possible value of a.

Watch Video Solution

3. Let A,B,C be three angles such that $A=\frac{\pi}{4}$ and $\tan B \cdot \tan C = p$ Find all possible values of p such that A, B, C are three angles of a triangle.

1. If the expression $x^2-11x+a$ and $x^2-14x+2a$ have a common factor, then the values of 'a' are

- A. (0,1)
- B. 3,2
- C. 0,24
- D. none

Answer: C

- **2.** If the equations $x^2+2x+3\lambda=0$ and $2x^2+3x+5\lambda=0$ have a non-zero common roots, then $\lambda=1$ (b) -1 (c) 3 (d) none of these
 - A. 1
 - B. -1
 - C. 3

D. none

Answer: B

Watch Video Solution

3. If $A=\{x\,:\,f(x)=0\}$ and $B=\{x\,:\,g(x)=0\},$ then $A\cap B$ will be the set of roots of the equation

A.
$$rac{f(x)}{g(x)}=0$$

$$\operatorname{B.}\frac{g(x)}{f(x)}=0$$

$$\mathsf{C.}\left[f(x)\right]^2+\left[g(x)\right]^2=0$$

D. none

Answer: C

4. The quadratic equation $x^2+\left(a^2-2\right)x-2a^2$ and $x^2-3x+2=0$

have

A. both roots common for some $a \in R$

B. only one common root $\, orall \, a \in R$

C. no common root $\, orall \, a \in R$

D. none

Answer: B

5. If the equation $ax^2 + bx + c = 0$ and $cx^2 + bx + a = 0a \neq c$, have negative common root then the value of a-b+c is

A. 0

B. 1

C. 2

D. none

Answer: A

Watch Video Solution

- **6.** The value of a so that the equations $(2a-5)x^2-4x-15=0$ and $(3a-8)x^2-5x-21=0$ have a common root, is
 - A. 4,8
 - B. 3,6
 - C. 1,2
 - D. none

Answer: A

7. If the equations $ax^2 + bx + c = 0$ and $x^2 + x + 1 = 0$ have a common root, then

D. none of these

Answer: B

- **8.** If the equations $ax^2+bx+c=0$,where $a,b,c\in R$, a
 eq 0 and $x^2+2x+3=0$ have a common root then $a\!:\!b\!:\!c$ equals
 - A. 1:2:3
 - B. 1:3:4
 - C. 2:4:5

_				
D.	n	o	n	e

Answer: B

Watch Video Solution

- **9.** If the equations $x^2 ax + b = 0$ and $x^2 + bx a = 0$ have a common root, then
 - A. a=b
 - B. a+b=0
 - C. a+b=1
 - D. a-b=1

Answer: D

10. If the quadratic equation $x^2+ax+b=0$ and $x^2+bx+a=0 (a
eq b)$ have a common root, the find the numeical value of a +b.

A. 1

B. 0

C. -1

D. none of these

Answer: C

Watch Video Solution

11. If p,q,r are three distinct real numbers, p
eq 0 such that $x^2+qx+pr=0 \ ext{and} \ x^2+rx+pq=0$ have a common root, then the value of p+q+r is

A. 0

B. 1

C. -1

D. 2

Answer: A

Watch Video Solution

the quadratic 12. If equations, $ax^2+2cx+b=0$ and $ax^2+2bx+c=0$ (b
eq c) have a common root,

then a+4b+4c is equal to: a. -2 b. -2 c. 0 d. 1

A.-2

B.-1

C. 0

D. 1

Answer: C

13. If every pair from among the equations $x^2+ax+bc=0, \, x^2+bx+ca=0 \, ext{ and } \, x^2+cx+ab=0 \, ext{ has a}$

common root, then the sum and product of the three common roots is

A.
$$2(a + b + c)$$

$$\mathsf{C.} - \frac{1}{2}(a+b+c)$$

D. abc

Answer: C

Watch Video Solution

14. If the equations $ax^2+bx+c=0$ and $x^3+3x^2+3x+2=0$ have two common roots, then a=b=c b. $a=b\neq c$ c. a=-b=c d. none of these

A.
$$a=b=\neq c$$

$$\mathsf{B.}\, a = \, -b = c$$

$$\mathsf{C.}\, a = b = c$$

D. none of these

Answer: C

Watch Video Solution

15. If the equation $x^3+ax^2+b=0 (b eq 0)$ has a double root then

A.
$$a^2+2b=0$$

$$\mathsf{B.}\,a^2-2b=0$$

C.
$$4a^3 + 27b + 1 = 0$$

$$\mathsf{D.}\,4a^3+27b=0$$

Answer: C

16. If both the roots of
$$kig(6x^2+3ig)+rx+2x^2-1=0$$
 and

 $6k(2x^2+1)+px+4x^2-2=0$ are common, then 2r-p is equal to

B.1/2

C. 1

D. none of these

Answer: A

Watch Video Solution

17. $lpha_1,\,eta_1$ are the roots of $ax^2+bx+c=0$ and $lpha_2,\,eta_2$ are the roots of $px^2+qx+r=0$ If $lpha_1lpha_2=eta_1eta_2=1$ then

A.
$$\frac{a}{p} = \frac{b}{q} = \frac{c}{r}$$

$$\operatorname{B.}\frac{a}{r}=\frac{b}{q}=\frac{c}{p}$$

$$\mathsf{C}.\,ap=bq=cr$$

D. none

Answer: B

Watch Video Solution

18. If a,b,c are in A.P. and if

$$(b-c)x^2 + (c-a)x + (a-b) = 0$$
 and $2(c+a)x^2 + (b+c)x = 0$

have a common root, then

A.
$$a^2, b^2, c^2$$
 are in A.P.

B. a, c, b are in A.P.

C.
$$a^2, c^2, b^2$$
 are in G.P.

D. none of these

Answer: B

19. If $ax^2+bx+c=0$ and $bx^2+cx+a=0$ have a common root and a, b, and c are nonzero real numbers, then find the value of $\left(a^3+b^3+c^3\right)/abc$

A. 1

B. 2

C. 3

D. none

Answer: C

Watch Video Solution

20. If the equation $x^2-px+q=0$ and $x^2-ax+b=0$ have a comon root and the other root of the second equation is the reciprocal of the other root of the first, then prove that $(q-b)^2=bq(p-a)^2$.

A. $aq(p-b)^2$

21. If the equation $x^3-3x+a=0$ has distinct roots between 0 and 1, then the value of a is A. (1, 2)B.(0,2)C.(2,3)D. none **Answer: B Watch Video Solution**

B. $bq(p-q)^2$

C. $bq(p-a)^2$

D. $aq(p-q)^2$

Watch Video Solution

Answer: C

Problem Set - 3 (True And False)

1. If the equations $x^2 + bx + ca = 0$ and $x^2 + cx + ab = 0$ have a common root, then their other roots are the roots of the equation, $x^2 + ax + bc = 0.$

Watch Video Solution

2. If the equations $x^2 + abx + c = 0$ and $x^2 + acx + b = 0$ have a root then their other roots satisfy the equation common $x^2 - a(b+c)x + a^2bc = 0$

Watch Video Solution

Problem Set - 3 (Fill In The Blanks)

1. If $x^2-hx-21=0, x^2-3hx+35=0 (h>0)$ has a common root, then the value of h is equal to

2. If one root of the equation $ax^2+bx+c=0$ be reciprocal of the one root of the equation $d\,'x^2+b\,'x+c\,'=0$ then the required condition is

Problem Set - 4

1. If
$$x^2 + 6x - 27 > 0$$
 and $x^2 - 3x - 4 < 0$, then:

A. x>3

 $\mathrm{B.}\,x<4$

D.
$$x=3\frac{-1}{2}$$

Answer: C

Watch Video Solution

2. The values of x which satisfy both the inequations

$$x^2-1 \leq 0 \, ext{ and } \, x^2-x-2 \geq 0 \, ext{lie}$$
 in

D.
$$\{-1\}$$

Answer: D

3. If x is an integer satisfying $x^2 - 6x + 5 \le 0$ and $x^2 - 2x > 0$, then the number of possible values of x, is

integer satisfying

- A. 2
- B. 3
- C. 4
- D. none

Answer: B

- The greatest negative $x^2 - 4x - 77 < 0$ and $x^2 > 4$ is equal to
 - A. 3

4.

- $\mathsf{B.}-5$
- $\mathsf{C.}-6$

D. none of these

Answer: A

Watch Video Solution

- **5.** If $4 \leq x \leq 9$ then the expression (x-4) (x-9) is
 - A. ≥ 0
 - B. ≤ 0
 - C. > 0
 - D. < 0

Answer: B

Watch Video Solution

6. The expression ax^2+bx+c has the same sign as of a if

A.
$$b^2-4ac>0$$

 $\mathtt{B.}\,b^2-4ac=0$

 $c. b^2 - 4ac < 0$

D. b and c have the same sign as of a

Answer: C

Watch Video Solution

7. The value of $x^2 + 2bx + c$ is positive if

A. $b^2 - 4c > 0$

B. $b^2 - 4c < 0$

 $\mathsf{C}.\,c^2 < b$

 $D. b^2 < c$

Answer: D

8. If
$$x^2+2ax+10-3a>0$$
 for all $x\in R$, then

A.
$$a<\,-5$$

$$\mathsf{B.}-5 < a < 2$$

D.
$$2 < a < 5$$

Answer: B

Watch Video Solution

9. The expression $y=ax^2+bx+c$ has always the same sign as of a if

A.
$$4ac < b^2$$

$$\mathrm{B.}\,4ac>b^2$$

$$\mathsf{C}.\,ac < b^2$$

D.
$$ac>b^2$$

Answer: B

Watch Video Solution

10. If the graph of the function $y=16x^2+8(a+5)x-7a-5$ is strictly above the x-axis, then 'a' must satisfy the inequality

A.
$$-15 < a < -2$$

B.
$$-2 < a < -1$$

D. none of these

Answer: A

11. Let f(x) be a quadratic expression possible for all real x.

If g(x) = f(x) - f'(x) + f''(x), then for any real x

A.
$$g(x)>0$$

B.
$$g(x) \geq 0$$

C.
$$g(x) \leq 0$$

D.
$$g(x) < 0$$

Answer: A

Watch Video Solution

12. If
$$x^2-2(4\lambda-1)x+\left(15\lambda^2-2\lambda-7\right)>0$$
 for all real x, then λ belongs to

A.(0,2)

C.(2,4)

D. none of these

Answer: C

Watch Video Solution

13. If the equation $x^3-3x+a=0$ has distinct roots between 0 and 1, then the value of a is

A. + ive

 $\mathbf{B.}-ive$

C. 2

D. Does not exist

Answer: B

14. If c>0 and 4a+c<2b then $ax^2-bc+c=0$ has a root in the interval

B. (0,1)

Answer: C

15. If
$$y = \tan x \cot 3x, x \in R$$
, then

A.
$$rac{1}{3} < y < 1$$

$$\mathtt{B.}\, y < \frac{1}{3} \ \text{or} \ y > 3$$

$$\mathsf{C.}\ \frac{1}{3} \leq y \leq 1$$

D.
$$\frac{1}{3} \leq y \leq 3$$

Answer: B

Watch Video Solution

16. If a < b < c < d, then the quadratic equation (x-a)(x-c) + 2(x-b)(x-d) = 0 has its roots

- A. real
- B. imaginary
- C. one root in (a,c)
- D. both roots in (a,c)

Answer: A::C

Watch Video Solution

17. Let $a,b,c\in R$ and $a\neq 0$. If lpha is a root $a^2x^2+bx+c=0,eta$ is a root of $a^2x^2-bx-c=0$ and 0<lpha<eta, then the equation

 $a^2x^2+2bx+2c=0$ has a root γ that always satisfies

A.
$$\gamma=lpha$$

B.
$$\gamma=eta$$

C.
$$\gamma=\left(lpha+eta
ight)/2$$

D.
$$lpha < \gamma < eta$$

Answer: D

Watch Video Solution

18. If the roots of the equation $x^2+2ax+b=0$ are real and distinct and they differ by at most 2m, then b lies in the interval

A.
$$\left(\left(a^2-m^2,a^2\right)\right)$$

B.
$$\left(a^2-m^2,a^2
ight)$$

C.
$$\left(a^2,a^2+m^2
ight)$$

D. none of these

Answer: B

Watch Video Solution

- **19.** The middle point of the interval in which $x^2+2ig(\sqrt{x}ig)^2-3\leq 0$ is
 - A. 1/2
 - B. 1
 - C. 0
 - D. -1/2

Answer: A

- **20.** If $x \in R$, the least value of the expression $\dfrac{x^2-6x+5}{x^2+2x+1}$ is
 - A. -1/2

$$B. - 1/3$$

$$C. -1$$

Answer: B

Watch Video Solution

21. The inequality $\dfrac{x^2-|x|-2}{2|x|-x^2-2}>2$ holds only if.

A.
$$-1 < x < -\frac{2}{3}$$
 only

B. only for
$$\frac{2}{3} < x < 1$$

$$C. -1 < x < 1$$

D.
$$-1 < x < -\frac{2}{3}$$
 or $\frac{2}{3} < x < 1$

Answer: D

22. If x is real, then
$$\frac{x^2-2x+4}{x^2+2x+4}$$
 takes values in the interval

A.
$$\left[\frac{1}{3}, 3\right]$$

B. (1/3,3)

C. (3,3)

D. (-1/3,3)

Answer: A

- **23.** If x is real, the maximum value of $\frac{3x^2+9x+17}{3x^2+9x+7}$ is :
 - A. 41
 - B. 1
 - C. 17/7
 - D. 1/4

Answer: A

Watch Video Solution

24. For real x, the function (x-a)(x-b)/(x-c) will assume all real values provided a>b>c b. `a c > bd. a

A.
$$a > b > c$$

$$\mathrm{B.}\, a < b < c$$

C.
$$a > c > b$$

$$\mathsf{D}.\, a < c < b$$

Answer: C::D

Watch Video Solution

25. If $\mathsf{x} \in \mathsf{R}$ then $\dfrac{x^2+2x+a}{x^2+4x+3a}$ can take all real values if

A.
$$a\in(0,2)$$

B.
$$a \in [0,1]$$

C.
$$a \in [-1,1]$$

D. none

Answer: B

Watch Video Solution

26. The values of p for which the expression $\frac{px^2+3x-4}{p+3x-4x^2}$ can assume real values for real x lie in the interval

A.
$$p \leq 1$$
 or $p \geq 7$

$$\mathtt{B.}\,p\geq 1 \ \ \mathrm{or} \ \ p\leq 7$$

$${\sf C.}\,1$$

D. none of these

Answer: B

27. If P (x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that

 $P(0) = 0, P(1) = 1, \text{ and } P'(x) > 0 \forall x \in [0.1], \text{ then}$

A.
$$S=\phi$$

B.
$$S=ax+(1-a)x^2\,orall\,a\in(0,\infty)$$

C.
$$S = ax + (1-a)x^2 \, orall a \in R$$

D.
$$S=ax+(1-a)x^2\,orall a\in(0,2)$$

Answer: D

Problem Set - 4 (True And False)

1. The roots of $(a-b)^2x^2 + 2(a+b-2c)x + 1 = 0$ are real or imaginary according as c does not or does lie between a and b, a < b.

True False.

2. For real values of x, the value of the expression $\frac{11x^2 + 12x + 6}{x^2 + 4x + 2}$ lies between -5 and 3.True or False.

3. Show that the expression $\frac{x^2-3x+4}{x^2+3x+4}$ lies between $\frac{1}{7}$ and 7 for real values of x.

4. If x is real, the expression $\frac{x^2-bc}{2x-b-c}$ has no real values between b and c.True or False

5. The value of $\frac{\tan x + 2\tan 2x}{\tan x}$ cannot lie between 1 and 5. Is it true or false ?

Problem Set - 4 (Fill In The Blanks)

1. If x is real, prove that the value of the expression $\frac{(x-1)(x+3)}{(x-2)(x+4)}$ cannot be between $\frac{4}{9}$ and 1.

2.
$$\frac{8x^2 + 16x - 51}{(2x - 3)(x + 4)} > 3$$
, if x satisfies

Watch Video Solution

3. If
$$\left| rac{12x}{4x^2+9}
ight| \leq 1$$
, then

Watch Video Solution

4. Let $y=\sqrt{\frac{(x+1)(x+3)}{(x-2)}}$. Find all the real values of x for which ytakes real values.

Watch Video Solution

Problem Set - 5

1. If
$$\sqrt{\left(rac{x}{1-x}
ight)}+\sqrt{\left(rac{1-x}{x}
ight)}=2rac{1}{6}$$
 , then x is equal to

A.
$$3, \, \frac{1}{2}$$
B. $4, \, -\frac{14}{5}$

2. Solve
$$\sqrt{5x^2-6x+8}+\sqrt{5x^2-6x-7}=1.$$

A. $\frac{3}{13}$, $\frac{5}{13}$

 $\mathsf{B.}\,\frac{7}{5},\,\frac{3}{5}$

 $C. \frac{9}{13}, \frac{4}{13}$

D. none

Answer: C

C. 1, 2

Answer: B

3.
$$\frac{x-ab}{a}$$

3.
$$\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c$$
, then x=

A.
$$\Sigma a$$

$$\mathsf{B.}\,\Sigma ab$$

D. none

Answer: B

4.
$$\sqrt{(x/y)} + \sqrt{(y/x)} = 5/2, x+y=6$$
, then x =

A.
$$(1, 5)$$

B.
$$(3, 3)$$

$$\mathsf{C.}\left(\frac{6}{5},\frac{24}{5}\right)$$

D. none

Answer: C

Watch Video Solution

- 5. $\left(x^2/y
 ight)+\left(y^2/x
 ight)=9/2, x+y=3$ then (x,y) =
 - A. (1,2)
 - B. (2,1)
 - C. (3,0)
 - D. (0,3)

Answer: A::B

Watch Video Solution

6. $x^2 - xy + y^2 = 7$, $x^4 + x^2y^2 + y^4 = 133$ then (x,y)=

B. (-2, -3)

C.(3,2)

A.(2,3)

D. (-3, -2)

Answer: A::B::C::D

Watch Video Solution

7.
$$(x+y)^{2/3}+2(x-y)^{2/3}=3ig(x^2-y^2ig)^{1/3},3x-2y=13$$

A. $\left(\frac{13}{3}, 0\right)$

B. (9,7)

C. $\left(0, -\frac{13}{2}\right)$

D. none

Answer: A::B

8. The values of x and y in the simultaneous equations

$$xy + 3y^2 - x + 4y - 7 = 0$$

$$2xy + y^2 - 2x - 2y + 1 = 0$$
 are

D. (2,3)

Answer: B

9.
$$x + y - 4xy = 0, y + z - 6yz = 0, z + x - 8zx = 0$$

A.
$$\left(\frac{1}{2}, 2, 3\right)$$

$$\mathsf{B.}\left(\frac{1}{4},3,2\right)$$

$$\mathsf{C.}\left(\frac{1}{3},1,\frac{1}{5}\right)$$

D. none

Answer: C

Watch Video Solution

- **10.** Solve for x,y,z. xy + x + y = 23xz + z + x = 41yz + y + z = 27.
 - A. (5, 3, 6)
 - B. (-7, -5, -8)
 - C.(1,2,3)
 - D. none

Answer: A

11.
$$(x+y)^2-z^2=-9, (y+z)^2-x^2=15, (z+x)^2-y^2=3$$

A. (2,3,4)

B. (1,-1,-3)

C. -1, 1, 3

D. none

Answer: B::C

Watch Video Solution

12. x + y = 2, $xy - z^2 = 1$, x, y, z being all real

A. 0,2,3

B. 2,0,5

C.(4,-2,5)

D. (1,1,0)

Answer: D

Watch Video Solution

13. The value of x which satisfies $yz=a^2,\, zx=b^2,\, xy=c^2$ are

- A. $\pm ca/b$
- $\mathsf{B.}\pm a/bc$
- $\mathsf{C}.\pm bc/a$
- D. $\pm b/ca$

Answer: C

Watch Video Solution

14. For real roots, the solution of the equation 2^{x^2} : $2^{2x} = 8$: 1 is

A. 1,2

B. 2,3

C. 3,-1

D. none

Answer: C

Watch Video Solution

15. For real roots, the solution of the equation $2^{2x+2}-6^x-2 imes 3^{2x+2}=0$ is

A. -1

B.-2

C. 3

D. none

Answer: B

16. For real roots, the solution of the equation

$$5(1/25)^{\sin^2 x} + 4 imes 5^{\cos 2x} = 25^{\left(\sin 2x
ight)^{/2}}$$
 is

A.
$$n\pi+rac{\pi}{3}$$

B.
$$n\pi+rac{\pi}{4}$$

C.
$$n\pi+rac{\pi}{6}$$

D.
$$n\pi + \frac{\pi}{2}$$

Answer: B::D

View Text Solution

Problem Set - 5 (True And False)

- **1.** Solve for x,y. $x^2+y(x+1)=17$ and $y^2+x(y+1)=13$
 - Watch Video Solution

2. The solution of the equations $x^2+xy+xz=18, y^2+yz+yx+12=0$ and $z^2+zx+zy=30$ are (3,-2,5) and (-3,2,-5)

3. If
$$\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}$$
 , then $(x+y+z)(a+b+c)=ax+by+cz$

- **4.** Show that the equation $e^{\sin x} e^{-\sin x} 4 = 0$ has no real solution.
 - Watch Video Solution

- **5.** x=0 is only solution for the equation $2\cos^2\left\{\frac{x^2+x}{2}\right\}=2^x+2^{-x}$
 - Watch Video Solution

Problem Set - 5 (Fill In The Blanks)

1. The equation
$$3^{\lfloor 3x-4 \rfloor} = 9^{2x-2}$$
 has the solution

3. If $3x^2-4\sqrt{\left(3x^2-4x+1\right)}=4x-4,\,\,$ then x=

2. Fill in the blanks If
$$x < 0, y < 0, x + y + (x/y) = (1/2) and $(x+y)(x/y) = -(1/2), then$$$

4. If
$$\dfrac{p+q-x}{r}+\dfrac{p+r-x}{q}+\dfrac{q+r-x}{p}+\dfrac{3x}{p+q+r}=0$$
, then x=....

blanks

If

5. Solve
$$\left(x^2+2\right)^2+8x^2=6x\left(x^2+2\right)$$

6. The value of $\sqrt{6+\sqrt{6+\sqrt{6+1}}}$is 4 (b) 3 (c) -2 (d) 3. 5

7. The solution of the equations x+y+xy=11, $x^2y+xy^2=30$ are

8. The solutions of the equations, where a+b+c
eq 0

(b+c)(y+z) - ax = b - c

$$(c+a)(z+x) - by = c - a$$

$$(a+b)(x+y)-cz=a-b$$
 are

Watch Video Solution

9. The solutions of the equations

$$z + ay + a^2x + a^3 = 0, z + by + b^2x + b^3 = 0,$$

$$z + cy + c^2x + c^3 = 0$$
 are

Watch Video Solution

10.

 $y^2+z^2=ayz, z^2+x^2=bxz, x^2+y^2=cxy, ext{ express } rac{y^2}{xz}+rac{xz}{y^2} ext{ in}$

Given

terms of a,b,c=....

Watch Video Solution

Miscellaneous Exercise (Matching Entries)

1. Match the entries of List -A and List -B

List-A

- (a) If one root of the equation $ax^2 + bx + c = 0$ be square of the other, then
- (b) If α , β be the roots of the equation $x^2+x+1=0$, then the equation whose roots are α^{19} , β^7 is
- (c) A quadratic equation whose roots are $\frac{a}{\sqrt{a} \pm \sqrt{a-b}}$ is
- (d) If α, β, γ are the roots of $x^3 + ax + b = 0$, then $\frac{\alpha^3 + \beta^3 + \gamma^3}{\alpha^2 + \beta^2 + \gamma^2} =$
- (e) If $x^2 + x + 1$ is a factor of $E = ax^3 + bx^2 + cx + d$, then the real root of the equation E = 0 is

List-B

1. $bx^2 - 2a\sqrt{a} x + a^2 = 0$

- 3b
- $3. \quad b^3 + ac(a+c) = 3abc$
- 4. $x^2 + x + 1 = 0$
- 5. d

View Text Solution

2. Match the entries of List -A and List -B

List-A

- (a) If the roots of the equation $(b-c) x^2 + (c-a) x + (a-b) = 0$ be equal, then a,b,c are in which series?
- (b) If roots of the equation a(b-c) $x^2+b(c-a)$ x+c (a-b)=0 be equal, then a,b,c are in which series ?
- (c) If the roots of $x^2 2cx + ab = 0$ be real and unequal, then the roots of $x^2 2(a+b)x + (a^2+b^2+2c^2) = 0$ are
- (d) The number of real roots of the equation $\{\sin 2^x\}(\cos 2^x) = \frac{1}{4}(2^x + 2^{-x}) \text{ is}$

List-B

- Imaginary
- 2. 0
- 3. H.P.
- 4. A.P.

View Text Solution

- (a) The expression $ax^2 + bx + c$ has the same sign as of a if $b^2 4ac$ is
- (b) If the graph of the function $y = 16x^2 + 8(a+5)x 7a 5$ is strictly
- (c) If x is real then $\frac{x^2 2x + 4}{x^2 + 2x + 4}$ takes values in the interval
- (d) If $y = \tan x \cot 3x$, $x \in \mathbb{R}$, then y does not lie in the interval

above the x-axis, then a lies in the interval

- 1. $y < \frac{1}{2} \text{ or } y > 3$
- $2. \quad b^2 4ac \le 0$
- 3. -15 < a < -2
- $4. \left[\frac{1}{2}, 3\right]$

Watch Video Solution

Let α, β, γ be three numbers such that

 $rac{1}{lpha}+rac{1}{eta}+rac{1}{\gamma}=rac{1}{2}, rac{1}{lpha^2}+rac{1}{eta^2}+rac{1}{\gamma^2}=rac{9}{4} \ ext{and} \ lpha+eta+\gamma=2$, then

$$rac{1}{2} \ ext{ and } lpha + eta + \gamma = 2$$
 , then

Column-II Column-II

- (a) $\alpha\beta\gamma$ (p) 6
- (b) $\Sigma \alpha \beta$ (q) 8
- (c) $\Sigma \alpha^2$ (r) -2
- $(d \Sigma \alpha^3 (s) -1)$

Watch Video Solution

5. Let lpha, eta be the roots of the equation $ax^2 + bx + c = 0$, then match the roots of the equation in left with roots given in right.

 $C. \frac{2}{3}, 1$ D. 0,2

Watch Video Solution

Answer: B

then the values of m are

1. If the equation $x^2-(2+m)x+\left(m^2-4m+4\right)=0$ has equal roots

Watch Video Solution

(a) $(x-b)^2 + b(x-b) + ac = 0$ (p) $2\alpha, 2\beta$

Column-I

(b) $ax^2 + 2bx + 4c = 0$

(c) $4a^2x^2 - b^2 + 4ac = 0$

(d) $a^3x^2 - abx + c = 0$

Self Assessment Test

A. (0,1)

B. $\frac{2}{3}$, 6

(s) $\alpha + \frac{b}{2a}, \beta + \frac{b}{2a}$

 $(\mathbf{q}) - \frac{\alpha}{a}, \frac{\beta}{b}$

Column-II

(r) $a\alpha + b, a\beta + b$

2. The number of real solutions of the equation $\left|x\right|^2-3|x|+2=0$ is :

A. 1

B. 2

C. 3

D. 4

Answer: D

Watch Video Solution

3. Find the number of solution of the equation $e^{\sin x} - e^{-\sin x} - 4 = 0$

A. 1

B. 2

 $\mathsf{C}.\,\infty$

D. none

Answer: D

Watch Video Solution

- **4.** The roots of the equation $(p-q)x^2+(q-r)x+(r-p)=0$ are
 - A. $\frac{p-q}{r-p}$, 1
 - B. $\frac{q-r}{p-r}$, 1
 - C. $\frac{r-p}{p-q}$, 1
 - D. none of these

Answer: C

Watch Video Solution

5. If one root of $x^2+px+12=0$ is 4, while the equation $x^2+px+q=0$ has equal roots, then the value of q is

A.
$$\frac{4}{49}$$

B. 4

c.
$$\frac{49}{4}$$

D. none of these

Answer: C

Watch Video Solution

6. Let lpha and eta are the roots of the equation $x^2+x+1=0$ Then. The equation whose roots are α^{19}, β^7 is :

A.
$$x^2 - x - 1 = 0$$

B.
$$x^2 - x + 1 = 0$$

$$\mathsf{C.}\,x^2+x-1=0$$

D.
$$x^2 + x + 1 = 0$$

Answer: D

the find the numeical value of a +b.

7. If the quadratic equation $x^2+ax+b=0$ and $x^2+bx+a=0 (a \neq b)$ have a common root,

- A. 1
- B. -1
- C. 0
- D. 2

Answer: B

Watch Video Solution

8. If the roots of the equation $x^2-8x+a^2-6a=0$ are real distinct, then find all possible value of $a\cdot$

A.
$$2 < a < 8$$

B.
$$-2 < a < 8$$

$$\mathsf{C.}-2 \leq a \leq 8$$

D. none of these

Answer: B

Watch Video Solution

value of The for which 9. k the equation $x^2-(3k-1)x+2k^2+2k=11$ have equal roots, is

B. 9

A. 5

- C. both (a) and (b)
- D. 0

Answer: C

10. if $2=I\sqrt{3}$ be a root of the equation $x^2+px+q=0$, where p and q are real, then find p and q

Answer: A

Watch Video Solution

11. The number of solutions of the pair of equations $2s \in ^2 heta - \cos 2 heta = 0$

$$2\cos^2 heta-3\sin heta=0$$
 in the interval $[0,2\pi]$ is 0 (b) 1 (c) 2 (d) 4

A. 0

B. 1

C. 2

D. 4

Answer: C

Watch Video Solution

12. If lpha, eta are roots of the equations $Ax^2+Bx+C=0$. Then value of $lpha^3+eta^3$ is

A. $\frac{3ABC-B^3}{A^3}$

B. $\frac{3ABC+B^3}{A^3}$

c. $\frac{B^3-3ABC}{A^3}$

D. none of these

Answer: A

13. If the equation $x^2+px+q=0$ and $x^2+qx+p=0$ have a common root then 1+p+q =

A. 0

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

14. If lpha and eta(lpha < eta) are the roots of the equation $x^2 + bx + c = 0$, where c < 0 < b, then

A. lpha < eta < 0

B. lpha < 0 < eta < |lpha|

C.
$$0 < \alpha < \beta$$

D. none of these

Answer: B

Watch Video Solution

15. If 2a+3b+6c=0, then prove that at least one root of the equation

 $ax^2+bx+c=0$ lies in the interval (0,1).

A. (0,1)

B. (1,2)

C. (3,4)

D. none of these

Answer: A

16. If the roots of the equation $\dfrac{x^2-bx}{ax-c}=\dfrac{m-1}{m+1}$ are equal to opposite sign, then the value of m will be $\dfrac{a-b}{a+b}$ b. $\dfrac{b-a}{a+b}$ c. $\dfrac{a+b}{a-b}$ d. $\dfrac{b+a}{b-a}$

A.
$$\frac{a-b}{a+b}$$

B.
$$\frac{a+b}{a-b}$$

C.
$$\frac{b-a}{a+b}$$

D. none of these

Answer: A

17. If $\sin lpha, \cos lpha$ are the roots of the equation $ax^2 + bx + c = 0$, then

A.
$$a^2 - b^2 + 2ac = 0$$

B.
$$(a-c)^2 = b^2 + c^2$$

C.
$$a^2 + b^2 - 2ac = 0$$

D. none of these

Watch Video Solution

18. If $lpha,\,eta$ are the roots of $x^2-ax+b=0$ and If $lpha^n+eta^n=V_n$ then

A.
$$V_{n+1}=aV_n+bV_{n-1}$$

$$\mathsf{B.}\, V_{n+1} = aV_n + aV_{n-1}$$

C.
$$V_{n+1}=aV_n-bV_{n-1}$$

D. none of these

Answer: C

View Text Solution

19. The value of a for which one root of the quadratic equation $\left(a^2-5a+3\right)x^2+(3a-1)x+2=0 \text{ is twice the other is (A)}-\frac{1}{3} \text{ (B)}$ $\frac{2}{3} \text{ (C)} \ \frac{2}{3} \text{ (D)} \ \frac{1}{3}$

A.
$$\frac{2}{3}$$

B.
$$\frac{-2}{3}$$

C.
$$\frac{1}{3}$$
D. $\frac{-1}{3}$

Watch Video Solution

20. If a,b, c are in G.P., then the equations
$$ax^2+2bx+c=0$$
 and $dx^2+2ex+f=0$ have common root if

 $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Watch Video Solution

21. If $3 \le 3t - 18 \le 18$ then which one of the following is true

A.
$$15 \leq 2t+1 \leq 20$$

$$\mathsf{B.}\,8 \leq t \leq 12$$

$$\mathsf{C.}\,8 \le t+1 \le 13$$

D.
$$21 \leq 3t \leq 24$$

Answer: C

Watch Video Solution

22. Let α (a) and β (a) be the roots of the equation

 $\left(\sqrt[3]{1+a}-1
ight)x^2+\left(\sqrt{1+a}-1
ight)x+\left(\sqrt[6]{1+a}-1
ight)=0,\,a>\,-1$

Then $\lim_{a \to 0^+} lpha$ (a) and $\lim_{a \to 0^+} eta$ (a) are

A.
$$\frac{-5}{2}$$
 and 1

B.
$$-\frac{1}{2}$$
 and -1
C. $-\frac{7}{2}$ and 2

D.
$$-\frac{9}{2}$$
 and 3

Answer: B

Watch Video Solution

two distinct roots on the line Re
$$z=1$$
 , then it is necessary that $:$ (1) $b\in (0,1)$ (2) $b\in (-1,0)$ (3) $|b|=1$ (4) $b\in (1,\infty)$

23. Let lpha, eta be real and z be a complex number. If $z^2 + lpha z + eta = 0$ has

A.
$$eta \in \left]0,1\right[$$

B.
$$eta \in \]-1,0[$$

C.
$$|eta|=1$$

D.
$$eta \in \left]1,\infty \right[$$

Answer: D

Watch Video Solution

24. Let p and q be real numbers such that $p \neq 0, p^3 \neq q$ and $p^3 \neq -q$. If α and β are non-zero complex number satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ as its root is

A.
$$(p^3+q)x^2-(p^3+2q)x+(p^3+q)=0$$

B.
$$(p^3+q)x^2-(p^3-2q)x+(p^3+q)=0$$

C.
$$(p^3-q)x^2-(5p^3-2q)x+(p^3-q)=0$$

D.
$$(p^3 - q)x^2 - (5p^3 + 2q)x + (p^3 - q) = 0$$

Answer: B

25. A value of b for which the equation $x^2+bx-1=0, x^2+x+b=0$ have one root in common is $-\sqrt{2}$ b. $-i\sqrt{3}$ c. $\sqrt{2}$ d. $\sqrt{3}$

A.
$$-\sqrt{2}$$

$$B.-i\sqrt{3}$$

C.
$$i\sqrt{5}$$

D.
$$\sqrt{2}$$

Answer: B

Watch Video Solution

- **26.** The number of distinct real roots of $x^4-4x^3+12x^2+x-1=0$
 - A. 2

B. 3

- C. 0
 - D. 4

Watch Video Solution

27. If the equation $x^2+2x+3=0$ and $ax^2+bx+c=0, a,b,c\in R$ have a common root, then $a\!:\!b\!:\!c$ is

- A. 1:2:3
- B. 3:2:1
- C. 1: 3: 2
- D. 3:1:2

Answer: A

