India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

COMPLEX NUMBERS

Examples

1. Is the following computation correct ? If not give the correct computation:

$$\sqrt{(-2)}\sqrt{(-3)} = \sqrt{(-2)(-3)} = 6$$

0

Watch Video Solution

2. A student writes the formula $\sqrt{ab}=\sqrt{a}\,\sqrt{b}$. Then he substitutes

a=-1 and b=-1 and finds 1=-1 . Explain where is he wrong?

3. Explain the fallacy

$$-1=i imes i=\sqrt{-1} imes \sqrt{-1}=\sqrt{(-1) imes (-1)}=\sqrt{\overline{1}}=1.$$

- 4. Evaluate.
- (i) i^{1998}
- (1) 0

(ii) $i^{\,-\,9999}$

- (iii) $\left(-\sqrt{-1}\right)^{4n-3}$, $n \neq N$
 - Watch Video Solution

5. Find the value of $1+i^2+i^4+i^6+...+i^{2n},$

where $i=\sqrt{-1}$ and n in N.

6. If $a=\frac{1+i}{\sqrt{2}}$, where $i=\sqrt{-1}$, then find the value of a^{1929} .

7. The value of sum $\sum_{n=1}^{13} \left(i^n + i^{n+1}
ight)$,where $i = \sqrt{-1}$ equals

8. The value of $\sum_{n=0}^{100} i^{n!}$ equals (where $i=\sqrt{-1}$)

9. Find he value of $\sum_{i=1}^{4n+7} i^r$ where, $i=\sqrt{-1}$.

10. Show that the polynomial $x^{4p}+x^{4q+1}+x^{4r+2}+x^{4s+3}$ is divisible by $x^3+x^2+x+1,$ where p, q, r, $s\in n$.

- 11. What is the digit in the unit's place of
 - **Watch Video Solution**

- **12.** What is the digit in the unit's place of
- $(143)^{86}$?

 $(1354)^{22222}$?

 $(5172)^{11327}$?

Watch Video Solution

13. What is the digit in unit's place of

 $(13057)^{941120579}$?

15. Evaluate $\int \frac{1}{\cos^2 x} dx$

16. What is the digit in the unit's place of $\left(2419\right)^{111213}$?

17. Evaluate $\int \frac{1}{\sin^2 x} dx$

- 19. Find the least positive integral value of
- n, for which $\left(\frac{1-i}{1+i}\right)^n$, where $i=\sqrt{-1}, \,\, ext{is purely}$

imaginary with positive imaginary part.

- **20.** If the multicative inverse of a comlex number is $\left(\sqrt{3}+4i\right)\backslash 19, \,$ where
- $i=\sqrt{-1},$ find the complex number.
 - Watch Video Solution

21. Evaluate $\int \left(\tan^2 x + 1\right) dx$

22. Find real value of
$$x$$
 and y for which the complex numbers $-3 + ix^2y$ and $x^2 + y + 4i$ are conjugate of each other.

23. If $x = -5 + 2\sqrt{-4}$, find the value of $x^4 + 9x^3 + 35x^2 - x + 4$.

24. Evaluate
$$\int \left(\cot^2 x + 1\right) dx$$

25. Find the argument s of
$$z_1=5+5i, z_2=-4+4i, z_3=-3-3i$$
 and $z_4=2-2i,$

where $i=\sqrt{-1}$.

26. Evaluate
$$\int \left(\sin^{-1}x + \cos^{-1}x\right) dx$$

27. Evaluate
$$\int \frac{1}{\sin^{-1}x + \cos^{-1}x} dx$$

Watch Video Solution

value of
$$|z|$$
.

28. If $|z-2+i| \leq 2, where i=\sqrt{-1}, \,$ then find the greatest and least

29. Evaluate $\int \left(\tan^{-1}x + \cot^{-1}x\right) dx$

30. If $|z_1|=1, |z_2|=2, |z_3|=3, ext{ and } |9z_1z_2+4z_1z_3+z_2z_3|=12,$

31. Evaluate $\int_0^1 \frac{1}{x+5} dx$

32. Evaluate $\int_0^1 \frac{1}{2x+8} dx$

33. Find the principal value of $\cos ec^{-1}(2)$

34. If z_1 and z_2 are conjugate to each other , find the principal argument of $(-z_1z_2)$.

35. Write the value of arg(z) + arg(zconjugate) .

36. Write the polar form of
$$-rac{1}{2}-rac{i\sqrt{3}}{2}$$

(Where, $i = \sqrt{-1}$).

on the argand planne , show that $\dfrac{z-2}{z}=i\tan(argz),$ where $i=\sqrt{-1}.$

37. Given that |z-1|=1, where z is a point

38. Let z be a non-real complex number

lying on
$$|z|=1,\,$$
 prove that $z=rac{1+i an\Bigl(rac{arg\,(\,z\,)}{2}\Bigr)}{1-i an\Bigl(rac{arg\,(\,z\,)}{2}\Bigr)}$ (where $i=\sqrt{-1}.$ $\Bigr)$

39. Prove that
$$tan\Big(i(\log)_e\Big(rac{a-ib}{a+ib}\Big)\Big)=rac{2ab}{a^2-b^2}ig(wherea,b\in R^+ig)$$

- **40.** If m and x are two real numbers where $m \in I$, then $e^{2mi\cot^{-1}x}\Big(rac{x\cdot i+1}{x\cdot i-1}\Big)^m$
- (A) $\cos x + i \sin x$ (B) $\frac{m}{2}$ (C) 1 (D) $\frac{m+1}{2}$
 - Watch Video Solution

Watch Video Solution

form A+iB.

41. Express $(1+i)^{-1}$, where, $i=\sqrt{-1}$ in the

42. If $\sin(\log_e i^i) = a + ib$, where $i = \sqrt{-1}$,

find a and b, hence and find $\cos(\log_e i^i)$.

43. Find the general value of
$$\log_2(5i)$$
, where $i=\sqrt{-1}$.

z1 +z2 is equal to

45. Let $z \ \mathrm{and} \ w$ are two non zero complex number such that

 $|z|=|w|, ext{ and } Arg(z)+Arg(w)=\pi ext{ then (a) } z=w ext{ (b) } z=\overline{w} ext{ (c)}$

$$ar{z}=\overline{w}$$
 (d) $ar{z}=\,-\,\overline{w}$

46. Find the square root of

$$X + \sqrt{(-X^4 - X^2 - 1)}$$
.

- **47.** Solve that equation $z^2 + |z| = 0$, where z is a complex number.
 - Watch Video Solution

49. Find the all complex numbers satisfying the equation
$$2{|z|}^2+z^2-5+i\sqrt{3}=0, where i=\sqrt{-1}.$$

50. If $z_r = \cos\left(\frac{\pi}{3\pi}\right) + i\sin\left(\frac{\pi}{3\pi}\right), r = 1, 2, 3,$ prove

that

$$z_1z_2z_3z_\infty=i$$

51. Evaluate $\int_0^1 \frac{1}{e^x} dx$

53. Find all roots of the equation

$$X^6 - X^5 + X^4 - X^3 + X^2 - X + 1 = 0.$$

54. if
$$\alpha,\beta,\gamma$$
 are the roots of $x^3-3x^2+3x+7=0$ then $\frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}$

56. If $\left(\frac{3}{2} + \frac{i\sqrt{3}}{2}\right)^{50} = 3^{25}(x+iy)$, where x and y are reals, then the ordered pair (x,y) is given by

57. If the polynomial $7x^3+ax+b$ is divisible by x^2-x+1 , find the value of 2a+b.

58. If $1,\omega,\omega^2,...\omega^{n-1}$ are n, nth roots of unity, find the value of $(9-\omega)\big(9-\omega^2\big)...\big(9-\omega^{n-1}\big)$.

59. If $a=\cos(2\pi/7)+i\sin(2\pi/7)$, then find the quadratic equation whose roots are

$$lpha=a+a^2+a^4$$
 and $eta=a^3+a^5+a^6$.

60. Find the value of $\sum_{i=1}^{10} \left[\sin \left(\frac{2\pi k}{11} \right) - i \cos \left(\frac{2\pi k}{11} \right) \right], where i = \sqrt{-1}.$

61. Complex numbers z_1,z_2 and z_3 are the vertices A,B,C respectivelt of an isosceles right angled triangle with right angle at C. show that $(z_1-z_2)^2=2(z_1-z_3)(z_3-z_2).$

62. Complex numbers z_1,z_2,z_3 are the vertices of A,B,C respectively of an equilteral triangle. Show that $z_1^2+z_2^2+z_3^2=z_1z_2+z_2z_3+z_3z_1.$

63. If $z_1,\,z_2$ and z_3 are the vertices of an equilasteral triangle with z_0 as its circumcentre , then changing origin to z^0 ,show that $z_1^2+z_2^2+z_3^2=0$, where $z_1,\,z_2,\,z_3$, are new complex numbers of the

64. Show that inverse of a point a with

vertices.

respect to the circle $|z-c|=R(a\ {
m and}\ c$ are complex numbers and center respectively and R is the radius) is the point $c+rac{R^2}{ar a-ar c}$,

- **65.** Find the perpendicular bisector of 3+4i and $-5+6i, where <math>i=\sqrt{-1}$.
 - + 4i and 5 + 0i, where $i = \sqrt{-}$

66. If z_1, z_2 and z_3 are the vertices of an equilasteral triangle with z_0 as its circumcentre , then changing origin to z^0 ,show that $z_1^2+z_2^2+z_3^2=0$, where z_1, z_2, z_3 , are new complex numbers of the vertices.

67. Let z_1z_2 and z_3 be three complex

numbers and $a,b,c\in R,$ such that a+b+c=0 and $az_1+bz_2+cz_3=0$ then show that z_1z_2 and z_3 are collinear.

68. Show that the area of the triangle on the Argand diagram formed by the complex numbers z, zi and z+zi is $=rac{1}{2}|z|^2$

70. Find the center and radius of the circle $2zar{z}+(3-i)z+(3+i)z-7=0,$ where $i=\sqrt{-1}.$

71. Find all circles which are orthogonal to |z|=1 and |z-1|=4.

73. 1. If $|z-2+i| \leq$ 2 then find the greatest and least value of |z|

74. In the argand plane, the vector $z=4-3i, where i=\sqrt{-1},$ is turned in the clockwise sense by $180^{\circ}.$ Find the complex number represented by the new vector .

75. In a parallelogram ABCD, diagonals AC and BD intersect at O and AC =

6.8 cm and BD = 5.6 cm. Find the measure of OC and OD.

76. Find the maximum and minimum values of
$$|z|$$
 satisfying $\left|z+rac{1}{z}\right|=2$

77. If $\left|z+rac{4}{z} ight|=2,$ find the maximum and minimum values of |z|.

78. If
$$|z| \geq 3$$
, then determine the least value of $\left|z + \frac{1}{z}\right|$.

79. If
$$|z|=1$$
 and $w=rac{z-1}{z+1}$ (where $z
eq -1$), then $Re(w)$ is

B.
$$\frac{-1}{|z+1|^2}$$

$$\mathsf{C.} \left| \frac{z}{z=1} \right| \cdot \frac{1}{\left| z+1 \right|^2}$$

D.
$$\frac{\sqrt{2}}{\left|z+1\right|^2}$$

Answer: a

Watch Video Solution

80. if a, b, c, a_1, b_1 and c_1 are non-zero complexnumbers satisfying

$$rac{a}{a_1} + rac{b}{b_1} + rac{c}{c_1} = 1 + i ext{ and } rac{a_1}{a} + rac{b_1}{b} + rac{c_1}{c} = 0, ext{ where } i = \sqrt{-1},$$

the value of $\frac{a^2}{a_1^2} + \frac{b^2}{b_1^2} + \frac{c^2}{c_1^2}$ is

- (a)2i(b)2 + 2i(c)2 (d)None of these
 - A. 2i
 - B. 2+2i
 - C. 2
 - D. None of these

Answer: a

Let $z \text{ and } \omega$ be

complex

numbers. If

 $Re(z)=|z-2|, Re(\omega)=|\omega-z| ext{ and } arg(z-\omega)=rac{\pi}{3}, ext{ then}$

the

value of Im(z+w), is

A.
$$\frac{1}{\sqrt{3}}$$

$$\mathsf{B.}\;\frac{2}{\sqrt{3}}$$

D.
$$\frac{4}{\sqrt{3}}$$

C. $\sqrt{3}$

Answer: d

Watch Video Solution

82. The mirror image of the curve $arg\left(\frac{z-3}{z-i}\right)=\frac{\pi}{6}, i=\sqrt{-1}$ in the real axis

A.
$$argigg(rac{z+3}{z+i}igg)=rac{\pi}{6}$$

B.
$$argigg(rac{z-3}{z+i}igg)=rac{\pi}{6}$$
C. $argigg(rac{z+i}{z+3}igg)=rac{\pi}{6}$

D.
$$arg\Big(z+3\Big)=rac{6}{6}$$

Answer: d

Watch Video Solution

83. Expand $\begin{bmatrix} 3 & x \\ x & 1 \end{bmatrix}$

Watch Video Solution

84. If
$$z+rac{1}{z}=1$$
 and $a=z^{2017}+rac{1}{z^{2017}}$ and b is the lastdigit of the

number $2^{2^n}-1$, when the integer n>1 , the value of a^2+b^2 is

B. 24

Answer: c

Watch Video Solution

- **85.** if $\omega and\omega^2$ are the nonreal cube roots of unity and $[1/(a+\omega)]+[1/(b+\omega)]+[1/(c+\omega)]=2\omega^2$ and $\Big[1/(a+\omega)^2\Big]+\Big[1/(b+\omega)^2\Big]+\Big[1/(c+\omega)^2\Big]=2\omega$, then find the value of [1/(a+1)]+[1/(b+1)]+[1/(c+1)].
 - A. -2
 - B. -1
 - C. 1
 - D. 2

Answer: d

86. If a,b,c are distinct integers and $\omega(\,
eq 1)$ is a cube root of unity, then the minimum value of $\left|a+b\omega+c\omega^{2}
ight|+\left|a+b\omega^{2}+c\omega
ight|$ is

87. If $|z-2i| \leq \sqrt{2},$ where $i=\sqrt{-1},$ then the maximum value of

A. (a)
$$\sqrt{3}$$

B. (b)3

C. (c) $6\sqrt{2}$

D. (d)2

Answer: a

$$|3-i(z-1)|, \; \mathsf{is}$$

A.
$$\sqrt{2}$$

B.
$$2\sqrt{2}$$

$$\mathsf{C.}\,2+\sqrt{2}$$

D.
$$3+2\sqrt{2}$$

Answer: C

- **88.** If $z_1=a+ib$ and $z_2=c+id$ are complex numbers such that
- $|z_1|=|z_2|=1$ and $Re(z_1ar{z}_2)=0$, then the pair of complex numbers

$$\omega_1 = a + ic$$
 and $\omega_2 = b + id$ satisfies

- a. $|\omega_1|=1$
- $\mathsf{b.}\,|\omega_2|=1$
- c. $Re(\omega_1\overline{\omega}_2)=0$
- d. None of these
 - A. $|\omega_1|=1$
 - B. $|\omega_2|=1$
 - C. $Re(\omega_1\overline{\omega}_2)=0$
 - D. None of these

Answer: a,b,c

Watch Video Solution

89. The complex numbers z_1,z_2,z_3 stisfying $(z_2-z_3)=(1+i)(z_1-z_3).\ where i=\sqrt{-1},\ ext{are vertices of a triangle}$ which is

- A. equilateral
- B. isosceles
- C. right angled
- D. scalene

Answer: b,c

91. The equation $z^2-i|z-1|^2=0, ext{ where } i=\sqrt{-1}, ext{ has.}$

A. no real root

B. no purely imaginary root

C. all roots inside |z|=1

D. atleast two roots

Answer: a,b,c

92. If two complex numbers z_1,z_2 are such that $|z_1|=|z_2|$, is it then necessary that $z_1=z_2$?

A.
$$\max |2z_1 + z_2| = 4$$

B.
$$\min |z_1 + z_2| = 1$$

$$\left| c. \left| z_2 + rac{1}{z_1}
ight| \leq 3$$

$$\mathsf{D.}\left|z_1+\frac{2}{z_2}\right|\leq 2$$

Answer: a,b,c,d

Watch Video Solution

93. Consider a quadratic equation $az^2 + bz + c = 0$, where a,b and c are complex numbers.

The condition that the equation has one purely real root, is

Watch Video Solution

94. Consider a quadratic equation $az^2 + bz + c = 0$, where a,b and c are complex numbers.

The condition that the equation has one purely real root, is

A.
$$\left(aar{b}+ar{a}b
ight)\left(bar{c}-ar{b}c
ight)=\left(car{a}+ar{c}a
ight)^2$$

B. $(a\bar{b}-\bar{a}b)(b\bar{c}+\bar{b}c)=(c\bar{a}+\bar{c}a)^2$

C. $(a\bar{b}-\bar{a}b)(\bar{b}c-\bar{b}c)=(c\bar{a}-\bar{c}a)^2$

D. $(aar{b}-ar{a}b)(bar{c}-ar{b}c)=(car{a}+ar{c}a)^2$

Answer: c

Watch Video Solution

95. Consider the quadratic equation $az^2 + bz + c = 0$ where a, b, c are non-zero complex numbers. Now answer the following.

The condition that the equation has both roots purely imaginary is

A.
$$\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$$

B.
$$rac{a}{a}=rac{b}{b}=rac{c}{c}$$

$$\mathsf{C.}\,\frac{a}{a} = \frac{b}{b} = \,-\,\frac{c}{c}$$

D.
$$\frac{a}{a}=-\frac{b}{b}=\frac{c}{c}$$

Answer: d

96. Let Papoint denoting a comples number z on the complex plane.

i. e.
$$z = Re(z) + iIm(z)$$
, where $i = \sqrt{-1}$

if
$$Re(z) = x$$
 and $Im(z) = y$, $thenz = x + iy$

Number of integral solutions satisfying the eniquality

$$|Re(z)| + |Im(z)| < 21,.is$$

A. a parallelogram which is not arhombus

B. a rhombus which is not a square

C. a rectangle which is not a square

D. a square

Answer: d

97. Let Papoint denoting a comples number z on the complex plane.

i. e.
$$z = Re(z) + iIm(z)$$
, where $i = \sqrt{-1}$

if
$$Re(z) = x$$
 and $Im(z) = y$, $thenz = x + iy$

Number of integral solutions satisfying the eniquality

$$|Re(z)| + |Im(z)| < 21,..is$$

- A. 50π sq units
- B. 100π sq units
- C. 55 sq units
- D. 110 sq units

Answer: a

Watch Video Solution

98. If z is a comlex number in the argand plane, the equation

|z-2|+|z+2|=8 represents

B. 839

C. 840

D. 842

Answer: c

99.

Watch Video Solution

 $z_2ig(3z_1^2-z_2^2ig)=11, ext{ the value of } z_1^2+z_2^2 ext{ is}$

Watch Video Solution

100. Consider four complex numbers
$$z_1=2+2i,$$
 , $z_2=2-2i,$ $z_3=-2-2i$ and $z_4=-2+2i),$ $where i=\sqrt{-1},$

 $\mathsf{lf} z_1, z_2 \in C, z_1^2 + z_2^2 \in R, z_1(z_1^2 - 3z_2^2) = 2$

and

Statement -1 z_1 , z_2 , z_3 and z_4

constitute the vertices of a

square on the complex plane because

Statement -2 The non-zero complex numbers $z,\,ar{z},\,\,-z,\,\,-ar{z}$

always constitute the vertices of a square.

Watch Video Solution

101. Consider z_1 and z_2 are two complex numbers

such that $|z_1 + z_2| = |z_1| + |z_2|$

 $\mathsf{Statement} - 1 \, amp(z_1) - amp(z_2) = 0$

Statement -2 The complex numbers z_1 and z_2 are collinear.

Check for the above statements.

Watch Video Solution

102. If |z - iRe(z)| = |z - Im(z)|, then prove that z

lies on the bisectors of the quadrants, where $i = \sqrt{-1}$.

103. Find the gratest and the least values of $|z_1+z_2|,$

if
$$z_1 = 24 + 7i \ \ {
m and} \ \ |z_2| = 6, \ \ \ {
m where} \ \ i = \sqrt{-1}$$

104. Given that $|z-1|=1,\,$ where z is a point on the argand planne , show that $\frac{z-2}{z}=i\tan(argz),$ where $i=\sqrt{-1}.$

105. If
$$\omega=rac{z}{z-rac{1}{3}i}$$
 and $|\omega|=1$, where $i=\sqrt{-1}$,then lies on

106. If z is any complex number satisfying $|z-3-2i| \leq 2$, where $i=\sqrt{-1}$, then the maximum value of |2z-6+5i|, is

107. Prove that the complex numbers z_1 and z_2 and the origin form an isosceles triangle with vertical angle $\frac{2\pi}{3}$, if $z_1^2+z_2^2+z_1z_2=0$.

Watch Video Solution

108. If $lpha=e^{i2\pi/7}andf(x)=a_0+\sum_{k=0}^{20}a_kx^k,$ then prove that the value of $f(x)+f(\alpha x)+....+f(\alpha^6x)$ is independent of lpha.

Watch Video Solution

109. Show that all the roots of the equation

$$a_1 z^3 + a_2 z^2 + a_3 z + a_4 = 3,$$

$$(where |a_i| \leq 1, i=1,2,3,4,)$$
 lie

outside the circle with centre at origin and radius 2/3.

110. Complex numbers z_1, z_2 and z_3 are the vertices A,B,C respectivelt of an isosceles right angled triangle with right angle at C. show that $(z_1-z_2)^2=2(z_1-z_3)(z_3-z_2).$

Watch Video Solution

111. If z_1 and z_2 are two complex number such that $\left|\frac{z_1-z_2}{z_1+z_2}\right|=1$, Prove that $i\frac{z_1}{z_2}=k$ where k is a real number Find the angle between the lines from the origin to the points z_1+z_2 and z_1-z_2 in terms of k

112. If z=x+iy is a complex number with $x,y\in Qand|z|=1, \,$ then show that $\left|z^{2n}-1\right|$ is a rational number for every $n\in N$.

113. If a is a complex number such that |a|=1, then find the value of a, so that equation $az^2+z+1=0$ has one purely imaginary root.

114. If $n \in N > 1$, then the sum of real part of roots of $z^n = (z+1)^n$ is equal to

115. Convert the complex numbers given below in the polar form: \boldsymbol{i}

116. Two different non-parallel lines cut the circle |z|=r at points a,b,c and d, respectively. Prove that these lines meet at the point z

given by
$$rac{a^{-1} + b^{-1} - c^{-1} - d^{-1}}{a^{-1}b^{-1} - c^{-1}d^{-1}}$$

117. Find
$$\frac{dy}{dx}$$
 if $x-y=\cos x$

118. Show that the triangle whose vertices are $z_1z_2z_3$ and $z_1{'}z_2{'}z_3{'}$ are directly similar , if $\begin{vmatrix} z_1 & z{'}_1 & 1 \\ z_2 & z{'}_2 & 1 \\ z_3 & z{'}_3 & 1 \end{vmatrix} = 0$

119. if ω is the nth root of unity and $Z_1,\,Z_2$ are any two complex numbers , then prove that .

$$\left| \Sigma_{k=0}^{n-1} ig| z_1 + \omega^k z_2
ight|^2 = n \Big\{ |z_1|^2 + |z_2|^2 \Big\}$$
 where $n \in N$

values being zero and
$$b_1z_1+b_2z_2+b_3z_3+b_4z_4=0$$
 where z_1,z_2,z_3,z_4

120. If $z_1+z_2+z_3+z_4=0$ where $b_i\in R$ such that the sum of no two

are arbitrary complex numbers such that no three of them are collinear, prove that the four complex numbers would be concyclic if

Example

1. Evaluate
$$\int \frac{1}{\sin^2 x + \cos^2 x} dx$$

- **2.** $\theta_i\in[0,\pi/6],\,i=1,2,3,4,5,\ \ {\rm and}\ \sin\theta_1z^4+\sin\theta_2z^3+\sin\theta_3z^2+\sin\theta_4z$
- show that $rac{3}{4} < |Z| < 1.$

- 3. Let z and w be two non-zero complex numbers such that |z|=|w| and $arg(z)+arg(w)=\pi$, then z equals
 - Watch Video Solution

4. Show that the following four conditions are equivalent : (i) $A\subset B$ (ii)

$$A-B=\phi$$
 (iii) $A\cup B=B$ (iv) $A\cap B=A$

- **5.** Evaluate $\int_0^1 \frac{1}{e^{2x}} dx$
 - Watch Video Solution

6. If $\alpha_0, \alpha_1, \alpha_2, ..., \alpha_{n-1}$ are the n, nth roots of the unity , then find the value of $\sum_{i=0}^{n-1} \frac{1}{2-a_i}$.

7. The roots z_1, z_2 and z_3 of the equation $x^3 + 3ax^2 + 3bx + c = 0$ in which a,b and c are complex numbers, correspond to the points A,B,C on the Gaussian plane. Find the centroid of the $\triangle ABC$ and show that it will be equilateral, ifa^(2)=b'.

8. Find the multiplicative inverse of z=4-3i

9. If
$$z_1=2+5i,$$
 $z_2=3-i,$ $where \quad i=\sqrt{-1},$ find

(ii)
$$Z_1 imes Z_2$$

(i) $Z_1 \cdot Z_2$

(ii)
$$D_1 \wedge Z_2$$

(iii)
$$Z_2 \cdot Z_1$$

(iv)
$$Z_2 imes Z_1$$
 (v) acute angle between $Z_1 \ \ {
m and} \ \ Z_2.$

(vi) projection of $Z_1 on Z_2$.

Watch Video Solution

Example Single Integer Answer Type Questions

10. Express in a complex number if z=(2-i)(5+i)

1. Number of solutions of the equation
$$\sqrt{x^2}-\sqrt{\left(x-1
ight)^2}+\sqrt{\left(x-2
ight)^2}=\sqrt{5}$$
 is

Example Matching Type Questions

- **1.** Express in the complex form if $z=i^{19}$
 - Watch Video Solution

- **2.** Evaluate $\int_0^{rac{\pi}{2}} rac{1}{\sin^2 x + \cos^2 x} dx$
 - Watch Video Solution

Subjective Type Examples

- **1.** Express in the form of complex number z=(5-3i)(2+i)
 - Watch Video Solution

2. Express in the complex number if 3(7+7i)+i(7+7i)

Watch Video Solution

3. Find the multiplicative inverse of z=6-3i

Watch Video Solution

4. Find $\frac{dy}{dx}$ if $ax - by = \sin x$

Watch Video Solution

5. if lpha and eta the roots of $z+rac{1}{z}=2(\cos heta + I\sin heta)$ where $0< heta<\pi$ and $i=\sqrt{-1}$ show that |lpha-i|=|eta-i|

1. If
$$(1+i)^{2n}+(1-i)^{2n}=-2^{n+1}ig(where,i=\sqrt{-1}\ ext{for all those n,}$$

A. even

which are

B. odd

C. multiple of 3

D. None of these

Answer:

- **2.** If $i=\sqrt{-1}, ext{ the number of values of } i^{-n} ext{ for a different } n \in I ext{ is}$
 - A. 1
 - B. 2

C. 3

D. 4

Answer:

Watch Video Solution

3. If $a>0 \ \ { m and} \ \ b<0, then \sqrt{a}\sqrt{b}$ is equal to (where, $i=\sqrt{-1}$)

A.
$$-\sqrt{a\cdot |b|}$$

B.
$$\sqrt{a\cdot |b|i}$$

C.
$$\sqrt{a\cdot |b|}$$

D. none of these

Answer:

4. The value of
$$\displaystyle\sum_{r=-3}^{1003} i^r ig(where i = \sqrt{-1}ig)$$
 is

$$\mathsf{D.}-i$$

Answer:

Watch Video Solution

5. Evaluate $\int_0^{rac{\pi}{4}} \left(\cot^2 x - \cos ec^2 x
ight) dx$

- **6.** Evaluate $\int_0^1 8x^3 dx$
 - Watch Video Solution

Exercise For Session 4

1. Find $\frac{dy}{dx}$ if $x^2 + xy = \tan x$

Watch Video Solution

Exercise For Session 5

1. Express in the complex number $(-5i)\left(\frac{i}{8}\right)$

Watch Video Solution

Exercise For Session 2

1. If $\dfrac{1-ix}{1+ix}=a-ib$ and $a^2+b^2=1, where \ a,b\in R$ and $i=\sqrt{-1},$ then x is equal to

A.
$$\dfrac{2a}{\left(1+a\right)^2+b^2}$$
B. $\dfrac{2b}{\left(1+a\right)^2+b^2}$

B.
$$\frac{1}{{{{{\left({1 + a} \right)}^2} + b^2}}}$$
C. $\frac{{2a}}{{{{{{\left({1 + b} \right)}^2} + a^2}}}$

D.
$$\dfrac{2b}{\left(1+b\right)^2+a^2}$$

Watch Video Solution

$$\left(rac{1+i}{1-i}
ight)^n = rac{2}{\pi}igg(\sec^{-1}rac{1}{x}+\sin^{-1}xigg)$$

 $X \neq 0, -1 \leq X \leq 1$ and $i = \sqrt{-1}$, is

for

which

(where,

Watch Video Solution

- **3.** If $z=(3+4i)^6+(3-4i)^6, ext{where} i=\sqrt{-1}, ext{ then Find the value of } ext{Im(z)}$.
 - A. -6
 - В. О
 - C. 6
 - D. none of these

Answer:

Watch Video Solution

4. If $(x+iy)^{1/3}=a+ib$, where $i=\sqrt{-1}, then\left(\frac{x}{a}+\frac{y}{b}\right)$ is equal to

C.
$$4a^2-b^2$$

D. a^2+b^2

A. $4a^2b^2$

B. $4ig(a^2-b^2ig)$

Watch Video Solution

 $\frac{3}{2+\cos \theta + i\sin \theta} = a + ib$ where $i = \sqrt{-1}$ and $a^2 + b^2 = \lambda a - 3$, then

If

5.

A. 3

B. 4

C. 5

D. 6

Answer:

- **6.** Evaluate $\int_0^{\frac{\pi}{2}} \left(\sin^2 x + \cos^2 x\right) dx$
 - Watch Video Solution

7. The complex numbers $\sin x + i \cos 2x$ and $\cos x - i \sin 2x$ are conjugate to each other, for

A.
$$x=n\pi, n\in I$$

$$\mathsf{B.}\,x=0$$

C.
$$x=\left(n+rac{1}{2}
ight), n\in I$$

D. 2

Answer:

8. ਜੇਕਰ
$$lpha$$
 ਅਤੇ eta ਅਲੱਗ-ਅਲੱਗ ਮਿਸ਼ਰਿਤ ਸੰਖਿਆਵਾਂ ਹਨ ਅਤੇ $|eta|=1$ ਹੈ, ਤਾਂ $\left|rac{eta-lpha}{1-\overlinelpha\,eta}
ight|$ ਪਤਾ ਕਰੋ।

B. $\frac{1}{2}$

C. 1

D. 2

Answer:

9. If x=3+4i find the value of $x^4-12x^3-70x^2-204x+225$

A. -45

В. О

C. 35

D. 15

Watch Video Solution

10. If $|z_1-1|\leq, |z_2-2|\leq 2, |z_3-3|\leq 3,$ then find the greatest value of $|z_1 + z_2 + z_3|$

A. 6

B. 12

C. 17

D. 23

Answer:

Watch Video Solution

11. The principal value of arg(z), where $z=1+\cos\left(\frac{8\pi}{5}\right)+i\sin\left(\frac{8\pi}{5}\right)$ (where, $i=\sqrt{-1}$) is given by

A. $-\frac{\pi}{5}$

 $\mathsf{B.}-\frac{4\pi}{5}$

C. $\frac{\pi}{5}$

D. $\frac{4\pi}{5}$

Watch Video Solution

If

- 12.
- $|z_1|=2, |z_2|=3, |z_3|=4 \,\, {
 m and} \,\, |z_1+z_2+z_3|=5. \,\, {
 m then} |4z_2z_3+9z_3z_1+1|$
- is

- - C. 120 D. 240

A. 24

B. 60

Watch Video Solution

13. If $|z-i| \leq 5$ and $z_1 = 5 + 3i$ (where, $i = \sqrt{-1}$, the greatest and least values of $|iz+z_1|$ are

- A. 7 and 3
- B. 9 and 1
- C. 10 and 0
- D. none of these

Answer:

Watch Video Solution

14. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, the find the value of $argigg(rac{z_1}{z_4}igg) + arg(z_2/z_3).$

B. $\frac{\pi}{2}$

 $C. \pi$

D. $\frac{3\pi}{2}$

Answer:

Watch Video Solution

Exercise For Session 3

1. Find the real part of
$$(1-i)^{-i}$$
.

A.
$$e^{-\pi/4}\cos\left(rac{1}{2}\mathrm{log}_e\,2
ight)$$

$$\mathtt{B.} - e^{\,-\,\pi\,/\,4} \sin\!\left(\frac{1}{2}\!\log_{e}2\right)$$

C.
$$e^{-\pi/4}\cos\!\left(rac{1}{2}\!\log_e 2
ight)$$

D.
$$e^{-\pi/4}\sin\!\left(rac{1}{2}\!\log_e 2
ight)$$

Watch Video Solution

2. The amplitude of $e^{e^{-\,(i heta)}}$, where $heta\in R \ ext{and} \ i=\sqrt{-\,1}$, is

A. $\sin \theta$

 $\mathtt{B.}-\sin\theta$

C. $e^{\cos heta}$

D. $e^{\sin heta}$

Answer:

Watch Video Solution

3. If $z=i\log_eig(2-\sqrt{3}ig),$ where $i=\sqrt{-1}$ then the cos z is equal to

A. i

B. 2i

C. 1

D. 2

Answer:

Watch Video Solution

4. If $z=\left(i ight)^{\left(i ight)^{i}}$ where $i=\sqrt{-1}$, then z is equal to

A. 1

B. - 1

 $\mathsf{C}.\ i$

 $\mathsf{D}.-i$

Answer:

5.
$$\sqrt{(-8-6i)}$$
 is equal to (where, $i=\sqrt{-1}$

A. (a)
$$1\pm 3i$$

B. (b)
$$\pm (1-3i)$$

C. (c)
$$\pm$$
 $(1+3i)$

D. (d)
$$\pm$$
 $(3-i)$

6. Simplify:
$$\frac{\sqrt{5+12i}+\sqrt{5-12i}}{\sqrt{5+12i}-\sqrt{5-12i}}$$

A.
$$-\frac{3}{2}i$$

$$\operatorname{B.} \frac{3}{4}i$$

$$\mathsf{C.} - rac{3}{4}i$$

$${\rm D.}-\frac{3}{2}$$

Watch Video Solution

- **7.** If $0 < amp(z) < \pi$, ${'then'amp(z) amp(-z)}$ ` is equal to
 - A. 0
 - $\operatorname{B.}2amp(z)$
 - $\mathsf{C}.\,\pi$
 - $D.-\pi$

Answer:

- **8.** If $|z_1| = |z_2|$ and $amp(z_1) + amp(z_2) = 0$, then
 - A. $z_1=z_2$

B.
$$ar{z}_1=z_2$$

C.
$$z_1 + z_2 = -0$$

D.
$$ar{z}_1=ar{z}_2$$

Answer: B

Watch Video Solution

9. Solve the equation |z|=z+1+2i

A.
$$2-\frac{3}{2}i$$

$$\mathsf{B.}\,\frac{3}{2}+2i$$

C.
$$rac{3}{2}-2i$$

$$\mathsf{D.}-2+\frac{3}{2}i$$

Answer: C

10. The number of solutions of the equation $z^2+ar{z}=0$ is .

A. 1

B. 2

C. 3

D. 4

Answer: D

Watch Video Solution

If
$$z_r = rac{\cos(rlpha)}{n^2} + irac{\sin(rlpha)}{n^2}$$
 , where r=1,2,3,....n,

then

 $\lim_{n o\infty}\;(z_1.\;z_2....\,z_n)$ is equal to

A.
$$e^{i lpha}$$

B.
$$e^{\,-\,ilpha\,/\,2}$$

C.
$$e^{ilpha\,/\,2}$$

D.
$$\sqrt[3]{e^{ilpha}}$$

Watch Video Solution

12. Evaluate $\int_0^{rac{\pi}{4}} ig(an^2 x + 1ig) dx$

Α. `

В.

C.

D.

Answer:

Watch Video Solution

13. If $iz^4+1=0,$ then prove that z can take the value $\cos\pi/8+is\in\pi/8.$

A. $\frac{1+i}{\sqrt{2}}$

 $\mathsf{C.}\;\frac{1}{4i}$

D. i

Watch Video Solution

 $\mathsf{B.}\cos\left(rac{\pi}{8}
ight)+i\sin\left(rac{\pi}{8}
ight)$

14. If
$$\omega(
eq 1)$$
 is a cube root of unity,

then

f
$$\omega(\neq 1)$$

$$\omega (
eq 1) + \omega^2 + \omega^2 + \omega^2$$

$$\left(1-\omega+\omega^2
ight)\left(1-\omega^2+\omega^4
ight)\left(1-\omega^4+\omega^8
ight)$$
 ...upto $2n$ is factors, is

$$(\omega + \omega^2) \left(1 - \omega^2 + \omega^2\right)$$

A.
$$2^n$$

B.
$$2^{2n}$$

15. If α , β , γ are the cube roots of p, then for any x,y,z $\frac{x\alpha+y\beta+z\gamma}{x\beta+y\gamma+z\alpha}$ =

A.
$$\frac{1}{2}ig(-1-i\sqrt{3}ig), i=\sqrt{-1}$$

B.
$$\frac{1}{2}ig(1+i\sqrt{3}ig), i=\sqrt{-1}$$

C.
$$\frac{1}{2}ig(1-i\sqrt{3}ig), i=\sqrt{-1}$$

D. none of these

Answer:

Exercise For Session 4

1. If $z_1, z_2, z_3 \, ext{ and } \, z_4$ are the roots of the equation $z^4=1$, the value of

$$\sum_{i=1}^4 z_i^3$$
i

A. 0

B. 1

C. $i, i = \sqrt{-1}$

D. 1 + i, $i = \sqrt{-1}$

Answer: A

Watch Video Solution

2. If $z_1, z_2, z_3, \ldots, z_n$ are n nth roots of unity, then for

$$k=1,2,,\ldots,n$$

A. (a)
$$|z_k|=k\mid z_{k+1}|$$

B. (b)
$$|z_{k+1}|=k\mid z_{k1}|$$

C. (c)
$$|z_{k+1}|=|zk|+|z_{k-1}|$$

D. (d)
$$|z_k|=|z_{k+1}|$$

Answer: D

3. If $1, \alpha_1, \alpha_2, \alpha_3, ..., \alpha_{n-1}$ are n, nth roots of unity, then $(1-lpha_1)(1-lpha_2)(1-lpha_3)...(1-lpha_{n-1})$ equals to

B. 1

C. n

D. n^2

Answer: C

Watch Video Solution

4. Evaluate $\int_{rac{\pi}{2}}^{rac{\pi}{4}} \left(\cot^2 x + 1
ight) dx$

5. If lpha is the nth root of unity then prove that $1+2lpha+3lpha^2+\ldots$ upto

n terms

A.
$$\frac{2n}{1-lpha}$$

$$\mathrm{B.}-\frac{2n}{1-\alpha}$$

C.
$$\frac{n}{1-\alpha}$$

$$\mathsf{D.} - \frac{n}{1-\alpha}$$

Answer:

Watch Video Solution

6. a and b are real numbers between 0 and 1 such that the points

 $Z_1=a+i$, $Z_2=1+bi$, $Z_3=0$ form an equilateral triangle, then a and

 \boldsymbol{b} are equal to

A.
$$a=b=2+\sqrt{3}$$

B.
$$a=b=2-\sqrt{3}$$

C.
$$a = b = -2 - \sqrt{3}$$

D. none of these

Answer: B

lie on

Watch Video Solution

- **7.** If $|z|=2,\,$ the points representing the complex numbers -1+5z will
 - A. a circle
 - B. a straight line
 - C. a parabola
 - D. an ellipse

Answer:

8. If $|\left(z-2
ight)/\left(z-3
ight)|=2$ represents a circle, then find its radius.

- B. $\frac{1}{3}$
- c. $\frac{3}{4}$
- D. $\frac{2}{3}$

Answer:

Watch Video Solution

- **9.** Evaluate $\int_0^1 \frac{1}{x^2+4} dx$
 - Watch Video Solution

10. If z is a comlex number in the argand plane, the equation |z-2|+|z+2|=8 represents

- A. a parabola
- B. an ellipse
- C. a hyperbola
- D. a circle

Answer: D

Watch Video Solution

- **11.** Evaluate $\int_0^1 \frac{1}{x^2 + 16} dx$
 - Watch Video Solution

12. locus of the point z satisfying the equation |iz-1|+|z-i|=2 is

- A. a straight line
- B. a circle

C. an ellipse
D. a pair of straight lines
Answer:
Watch Video Solution
13. If z,iz and $z+iz$ are the vertices of a triangle whose area is 2units,
the value of $ z $ is
A. 1
B. 2
C. 4
D. 8
Answer:
Watch Video Solution

14. If
$$\left|z-rac{4}{z}
ight|=2$$
 then the greatest value of $|z|$ is:

A. (A)
$$\sqrt{5}-1$$

B. (B)
$$\sqrt{5}+1$$

C. (C)
$$\sqrt{5}$$

Answer:

Watch Video Solution

Exercise Single Option Correct Type Questions

1. if cos (1-i) = a+ib, where a ,
$$\mathsf{b} \ \in \ \mathsf{R}$$
 and $i = \sqrt{-1}$, then

a.
$$a=rac{1}{2}igg(e-rac{1}{e}igg)\cos 1, b=rac{1}{2}igg(e+rac{1}{e}igg)\sin 1$$

b.
$$a = \frac{1}{2} \left(e + \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e - \frac{1}{e} \right) \sin 1$$

c. $a = \frac{1}{2} \left(e + \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e + \frac{1}{e} \right) \sin 1$
d. $a = \frac{1}{2} \left(e - \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e - \frac{1}{e} \right) \sin 1$

Answer: C

real part is

A. 3

Answer: B

Watch Video Solution

A. $a = \frac{1}{2} \left(e - \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e + \frac{1}{e} \right) \sin 1$

B. $a = \frac{1}{2} \left(e + \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e - \frac{1}{e} \right) \sin 1$

C. $a = \frac{1}{2} \left(e + \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e + \frac{1}{e} \right) \sin 1$

D. $a = \frac{1}{2} \left(e - \frac{1}{e} \right) \cos 1, b = \frac{1}{2} \left(e - \frac{1}{e} \right) \sin 1$

3. If z and \bar{z} represent adjacent vertices of a regular polygon of n sides where centre is origin and if $\frac{Im(z)}{Re(z)} = \sqrt{2} - 1$, then n is equal to:

Answer: D

Watch Video Solution

4. If
$$\prod_{p=1}^r e^{ip\theta}=1$$
, where \prod denotes the continued product and

 $i=\sqrt{-1}$, the most general value of heta is (where, n is an integer)

A. (a)
$$\dfrac{2n\pi}{r(r-1)}, n \in I$$

Answer: A

B. (b) $\dfrac{2n\pi}{r(r+1)}, \, n \in I$

C. (c) $rac{4n\pi}{r(r-1)}, n \in I$

D. (d) $rac{4n\pi}{r(r+1)}, n \in I$

Watch Video Solution

5. If $(3+i)(z+ar{z})-(2+i)(z-ar{z})+14i=0$, where $i=\sqrt{-1}$, then z

 \bar{z} is equal to

Answer: D

A. (a)10

D. (d)-10

6. The centre of a square ABCD is at z=0, A is z_1 . Then, the centroid of

$$riangle ABC$$
 is (where, $i=\sqrt{-1}$)

A. (a) $z_1(\cos\pi\pm i\sin\pi)$

B. (b) $\frac{z_1}{3}(\cos\pi\pm i\sin\pi)$

C. (c) $z_1 \left(\cos\left(\frac{\pi}{2}\right) \pm i\sin\left(\frac{\pi}{2}\right)\right)$

D. (d) $\frac{z_1}{3} \left(\cos \left(\frac{\pi}{2} \right) \pm i \sin \left(\frac{\pi}{2} \right) \right)$

Answer: D

Watch Video Solution

7. Evaluate $\int_{0}^{\frac{\pi}{4}} \left(\tan^2 x - \sec^2 x \right) dx$

8. Let α and β be two fixed non-zero complex numbers and 'z' a variable complex number. If the lines $lphaar{z}+ar{a}z+1=0$ and $etaar{z}+ar{eta}z-1=0$ are mutually perpendicular, then

A.
$$ab+ar{a}ar{b}=0$$

B.
$$ab-ar{a}ar{b}=0$$

C.
$$ar{a}b-aar{b}=0$$

D.
$$aar{b}+ar{a}b=0$$

Answer: D

- **9.** Evaluate $\int_0^1 \frac{1}{x^2+1} dx$
 - Watch Video Solution

Watch Video Solution

11. If $f(x)=gig(x^3ig)+xhig(x^3ig)$ is divisiblel by x^2+x+1 , then

A. g(x) is divisible by (x-1) but not h(x) but not h(x)

B. h(x) is divisible by (x-1) but not g(x)

C. both g(x) and h(x) are divisible by (x-1)

D. None of above

Answer: C

Watch Video Solution

12. If the points represented by complex numbers

 $z_1=a+ib, z_2=c+id$ and z_1-z_2 are collinear, where $i=\sqrt{-1}$, then

A. ad+bc=0

B. ad-bc=0

C. ab+cd=0

D. ab-cd=0

Answer: B

Watch Video Solution

13. Let C and R denote the set of all complex numbers and all real numbers respectively. Then show that $f\!:\!C o R$ given by f(z)=|z| for all $z \in C$ is neither one-one nor onto.

Watch Video Solution

14. Let α and β be two distinct complex numbers, such that $|\alpha|=|\beta|$. If real part of α is positive and imaginary part of β is negative, then the complex number $(\alpha + \beta)/(\alpha - \beta)$ may be

B. real and negative

C. real and positive

D. purely imaginary

Answer: D

Watch Video Solution

- **15.** The complex number z satisfies the condition $\left|z-\frac{25}{z}\right|=24$. The maximum distance from the origin of co-ordinates to the points z is
 - A. 25
 - B. 30
 - C. 32
 - D. None of these

Answer: A

16. The points A,B and C represent the complex numbers

 $z_1,z_2,(1-i)z_1+iz_2$ respectively, on the complex plane (where,

$$i=\sqrt{-1}$$
). The $riangle ABC$, is

- a. isosceles but not right angled
- b. right angled but not isosceles
- c. isosceles and right angled
- d. None of the above
 - A. isosceles but not right angled
 - B. right angled but not isosceles
 - C. isosceles and right angled
 - D. None of the above

Answer: C

- **17.** Find the 6th term of A.P if a=1 , d=2

Watch Video Solution

- **18.** Find the 3rd term of A.P if a=1 , d=2

Watch Video Solution

- **19.** The centre of circle represented by ert z+1ert =2ert z-1ert in the complex plane is
 - A. 0
 - B. $\frac{5}{3}$
 - c. $\frac{1}{3}$
 - D. None of these

Answer: B

20. If
$$x = 9^{\frac{1}{3}} 9^{\frac{1}{9}} 9^{\frac{1}{27}}$$
..... and if $y = 4^{\frac{1}{3}} 4^{-\frac{1}{9}} 4^{\frac{1}{27}}$ and if

$$z = \sum_{r=1}^{\infty} \left(1+i
ight)^{-r}$$
 then , the argument of the complex number

w = x + yz is

$$\mathsf{B.}-\tan^{-1}\!\left(\frac{\sqrt{2}}{3}\right)$$

$$\mathsf{C.}-\tan^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

D.
$$\pi - an^{-1} \left(rac{\sqrt{2}}{3}
ight)$$

Answer: B

Watch Video Solution

21. Find the 5th term of A.P if a=1 , d=2

22. Let
$$|Z_r-r| \leq r,$$
 $Aar=1,2,3....,n.$ Then $\left|\sum_{r=1}^n z_r
ight|$ is less than

A. n

B. 2n

C. n(n+1)

D. $\frac{n(n+1)}{2}$

Answer: C

23. If arg
$$\left(rac{z_1-rac{z}{|z|}}{rac{z}{|z|}}
ight)=rac{\pi}{2}$$
 and $\left|rac{z}{|z|}-z_1
ight|=3$, then $|z_1|$ equals to a.

$$\sqrt{3}$$
 b. $2\sqrt{2}$ c. $\sqrt{10}$ d. $\sqrt{26}$

A.
$$\sqrt{3}$$

B.
$$2\sqrt{2}$$

$$\mathrm{C.}\,\sqrt{10}$$

D.
$$\sqrt{26}$$

Answer: C

Watch Video Solution

- **24.** Find the 7th term of A.P if a=1 , d=2
 - Watch Video Solution

25. Find the 10th term of A.P if a=1 , d=2

26. If $z=(3+7i)(\lambda+i\mu)$, when $\lambda,\mu\in I-\{0\}$ and $i=\sqrt{-1}$, is purely imaginary then minimum value of $|z|^2$ is a. 0

b. 58

d. 3364

A. 0

B. 58

c. $\frac{3364}{3}$

D. 3364

Answer: D

Watch Video Solution

27. Given z=f(x)+ig(x) where $f,g\!:\!(0,1) o(0,1)$ are real valued functions. Then which of the following does not hold good?

A.
$$z=rac{1}{1-ix}+iigg(rac{1}{1+ix}igg)$$

$$\texttt{B.}\,z = \frac{1}{1+ix} + i \bigg(\frac{1}{1-ix}\bigg)$$

$$\mathsf{C.}\,z = \frac{1}{1+ix} + i \bigg(\frac{1}{1+ix}\bigg)$$

D.
$$z=rac{1}{1-ix}+iigg(rac{1}{1-ix}igg)$$

Answer: B

Watch Video Solution

- **28.** If $z^3+(3+2i)z+(-1+ia)=0$ has one real roots, then the value of a lies in the interval $(a \in R)$ `
 - A. (-2,-1)
 - B. (-1,0)
 - C.(0,1)
 - D. (1,2)

Answer: B

29. If m and n are the smallest positive integers satisfying the relation

$$\left(2CiSrac{\pi}{6}
ight)^m=\left(4CiSrac{\pi}{4}
ight)^n$$
 , where $i=\sqrt{-1},$ $(m+n)$ equals to

- A. (a) 60
- B. (b)72
- C. (c) 96
 - D. (d)36

Answer: B

Watch Video Solution

30. Number of imaginergy complex numbers satisfying the equation,

 $z^2=ar{z}\cdot 2^{1-|z|}$ is

- s. 0
- b. 1
- c. 2
- d. 3

- A. 0
- B. 1
- C. 2
- D. 3

Answer: C

Watch Video Solution

Exercise More Than One Correct Option Type Questions

- **1.** If $\dfrac{z+1}{z+i}$ is a purely imaginary number (where $(i=\sqrt{-1})$, then z lies on а
 - A. straight line
 - B. circle
 - C. circle with radius = $\frac{1}{\sqrt{2}}$
 - D. circle passing through the origin

Answer: B::C::D

Watch Video Solution

2. Find the multiplicative inverse of z=2-3i

Watch Video Solution

3. If the complex numbers is $(1+ri)^3=\lambda(1+i)$, when $i=\sqrt{-1}$, for some real λ , the value of r can be

A.
$$\cos \frac{\pi}{5}$$

$$\mathrm{B.}\cos ec\frac{3\pi}{2}$$

$$\mathsf{C.}\cot\frac{\pi}{12}$$

D.
$$\tan \frac{\pi}{12}$$

Answer: B::C::D

4. If $z \in C$, which of the following relation(s) represents a circle on an

Argand diagram? (where, $i = \sqrt{-1}$)

A.
$$|z-1| + |z+1| = 3$$

B.
$$|z - 3| = 2$$

C.
$$|z-2+i|=rac{7}{3}$$

D.
$$(z-3+i)(ar{z}-3-i)=5$$

Answer: B::C::D

5. Find the modules of $4+3\iota$

6. If z is a complex number which simultaneously satisfies the equations

 $3|z-12|=5|z-8i| \ \ ext{and} \ \ |z-4|=|z-8|, \ \ ext{where} \ \ i=\sqrt{-1}, \ \ ext{then}$ Im(z) can be

- A. 8
- B. 17
- C. 7
- D. 15

Answer: A::B

7. If $P(z_1), Q(z_2), R(z_3)$ and $S(z_4)$ are four complex numbers representing the vertices of a rhombus taken in order on the complex plane, which one of the following is held good?

A.
$$\frac{z_1-z_4}{z_2-z_3}$$
 is purely real

B. $\frac{z_1-z_3}{z_2-z_4}$ is purely imaginary

C. $|z_1 - z_3| \neq |z_2 - z_4|$

D.
$$ampigg(rac{z_1-z_4}{z_2-z_4}igg)
eq ampigg(rac{z_2-z_4}{z_3-z_4}igg)$$

Answer: A::B::C

Watch Video Solution

- **8.** If $a|z-3|=\min{\{|z1,|z-5|\}},$ then Re(z) equals to 2 b. $\frac{5}{2}$ c. $\frac{7}{2}$ d. 4
 - A. 2
 - B. 2.5
 - C. 3.5
 - D. 4

Answer: A::D

9. Find the 8th term of A.P if a=1 , d=2

Watch Video Solution

10. If z=x+iy, where $i=\sqrt{-1}$, then the equation $\left|\left(\frac{2z-i}{z+1}\right)\right|=m$ represents a circle, then m can be

- A. $\frac{1}{2}$
- B. 1
- C. 2
- D. $\in \left(3,2\sqrt{3}
 ight)$

Answer: A::B::D

B.
$$Imigg(rac{z}{z_0}igg)=1$$

C.
$$Im\Big(rac{z_0}{z}\Big)=1$$

A. $Re\left(rac{z}{z_0}
ight)=1$

D.
$$z\overline{z_0}+z_0ar{z}=2r^2$$

Answer: A::D

Watch Video Solution

12. z_1 and z_2 are the roots of the equation $z^2-az+b=0$ where

$$|z_1|=|z_2|=1$$
 and a,b are nonzero complex numbers, then

A. (a)
$$|a| < 1$$

B. (b) $|a| \le 2$

C. (c)
$$arg(a)=arg(b^2)$$

D. (d)
$$argig(a^2ig)=arg(b)$$

Answer: B::D

13. If lpha is a complex constant such that $lpha z^2 + z + \overline{lpha} = 0$ has a real root, then

A.
$$\alpha + \overline{\alpha} = 1$$

$${\rm B.}\,\alpha+\overline{\alpha}\,=0$$

$$\mathsf{C}.\,\alpha+\overline{\alpha}\,=\,-\,1$$

D. the absolute value of real root is 1

Answer: A::C::D

Watch Video Solution

14. If the equation $z^3+(3+i)z^2-3z-(m+i)=0,$ where $i=\sqrt{-1}$ and $m\in R$,

has atleast one real root, value of m is

- A. 1
- B. 2
- C. 3
 - D. 5

Answer: A::D

Watch Video Solution

15. If $z^3+(3+2i)z+(\,-1+ia)=0$ has one real roots, then the value

of a lies in the interval $(a \in R)$ `

- A. (-2,1)
- B. (-1,0)
- C. (0,1)

D. (-2,3)

Answer: A::B::D

Exercise Passage Based Questions

1.

$$arg(ar{z}) + arg(\,-z) = \left\{ egin{aligned} \pi, & ext{if arg}\left(ext{z}
ight) &< 0 \ -\pi, & ext{if arg}\left(ext{z}
ight) &> 0 \end{aligned}
ight., ext{where} - \pi < arg(z) \leq \pi$$

If arg(z) < 0, then arg (-z)-arg(z) is equal to

A.
$$-\pi$$

$$\mathsf{B.}-\frac{\pi}{2}$$

$$\mathsf{C.}\,\frac{\pi}{2}$$

D. π

Answer: A

2. Find
$$\frac{dy}{dx}$$
 if $x + y^2 = \tan x + y$

Watch Video Solution

3.

$$arg(ar{z}) + arg(\,-z) = \left\{ egin{aligned} \pi, & ext{if arg}\left(ext{z}
ight) &< 0 \ -\pi, & ext{if arg}\left(ext{z}
ight) &> 0 \end{aligned}
ight., ext{where} - \pi < arg(z) \leq \pi$$

If arg(z) < 0, then arg (-z)-arg(z) is equal to

A. 1

B. 1.25

C. 1.5

D. 2.5

Answer: B

4. Sum of four consecutive powers of i(iota) is zero.

i.e.,
$$i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0, \ \forall n \in I.$$

If
$$\sum_{n=1}^{25} i^{n!} = a + ib$$
, where $i = \sqrt{-1}$, then a-b, is

- A. prime number
- B. even number
- C. composite number
- D. perfect number

Answer: A

Watch Video Solution

5. Sum of four consecutive powers of i(iota) is zero.

i.e.,
$$i^n + i^{n+1} + i^{n+2} + i^{n+3} = 0, \ \forall n \in I.$$

If $\sum_{r=-2}^{95}i^r+\sum_{r=0}^{50}i^{r!}=a+ib,$ where $i=\sqrt{-1}$, the unit digit of $a^{2011}+b^{2012}$, is

B. (b)3

C. (c)5

D. (d)6

Answer: C

Watch Video Solution

- 6. Sum of four consecutive powers of i(iota) is zero.
- i.e., $i^n+i^{n+1}+i^{n+2}+i^{n+3}=0,\ \forall n\in I.$

If $\sum_{r=4}^{100} i^{r!} + \prod_{r=1}^{101} i^r = a+ib$, where $i=\sqrt{-1}$, then a+75b, is

- A. 11
- B. 22
- C. 33
- D. 44

Answer: B

Watch Video Solution

7. For any two complex numbers $z_1 \text{and} z_2$,

$$|z_1-z_2| \geq \left\{ egin{array}{l} |z_1|-|z_2| \ |z_2|-|z_1| \end{array}
ight.$$

and equality holds iff origin $z_1 \quad {
m and} \quad z_2$ are collinear and $z_1, \, z_2$ lie on the same side of the origin .

If $\left|z-rac{1}{z}\right|=2$ and sum of greatest and least values of |z| is λ , then λ^2 , is

- A. 2
- B. 4
- C. 6
- D. 8

Answer: D

8. For any two complex numbers $z_1 \mathrm{and} z_2$, $|z_1-z_2| \geq \left\{ \begin{array}{l} |z_1|-|z_2| \\ |z_2|-|z_1| \end{array} \right\}$ and equality holds iff origin z_1 and z_2 are collinear and z_1,z_2 lie on the same side of the origin . If $\left|z-\frac{2}{z}\right|=4$ and sum of greatest and least values of |z| is λ , then λ^2 , is

- A. 12
- B. 18
- C. 24
- D. 30

Answer: C

Watch Video Solution

9. For any two complex numbers z_1 and z_2 ,

$$|z_1 - z_2| \ge \begin{cases} |z_1| - |z_2| \\ |z_2| - |z_1| \end{cases}$$

and equality holds iff origin $z_1 \mod z_2$ are collinear and z_1, z_2 lie on the same side of the origin .

Watch Video Solution

is

A. 12

B. 18

C. 24

D. 30

Answer: A

Watch Video Solution

11. Express in the complax form if z=(4-3i)(2+i)

10. Express in the complex form z=(7-i)(2+i)

If $\left|z-rac{3}{z}\right|=6$ and sum of greatest and least values of |z| is 2λ , then λ^2 ,

Exercise Single Integer Answer Type Questions

- The number of values of z (real or complex) e simultaneously satisfying
 the system of equations
- $1+z+z^2+z^3+...z^{17}=0$ and $1+z+z^2+z^3+...+z^{13}=0$ is

- **2.** Number of complex numbers satisfying $z^3=ar{z}$ is
 - Watch Video Solution

3. Let z=9+ai, where $i=\sqrt{-1}$ and a be non-zero real.

If $Imig(z^2ig)=Imig(z^3ig)$, sum of the digits of a^2 is

4. Numbers of complex numbers z, such that |z|=1 and $\left|\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\right|=1$ is

- 5. If x=a+bi is a complex number such that $x^2=3+4i$ and $x^3=2+1i, where$ i= $\sqrt{-1}$, then(a+b) equal to _____.
 - Watch Video Solution

6. If
$$z=rac{\pi}{4}(1+i)^4igg(rac{1-(\pi)i}{(\pi)+i}+rac{(\pi)-i}{1+(\pi)i}igg), thenigg(rac{|z|}{amp(z)}igg)$$
 equal

Watch Video Solution

- **7.** Suppose A is a complex number and $n \in N,$ such that $A^n = \left(A+1\right)^n = 1,$ then the least value of n is
 - b. 6

a. 3

d. 12

c. 9

Watch Video Solution

Water Video Solution

8. Let
$$z_r, r=1,2,3,...,50$$
 be the roots of the equation $\sum_{r=0}^{50}{(z)^r}=0$. If $\sum_{r=1}^{50}{1\over z_r-1}=-5\lambda$, then λ equals to

9. Evaluate
$$p=\sum_{p=1}^{32}{(3p+2)}\Bigg(\sum_{q=1}^{10}{\left(\sin{rac{2q\pi}{11}}-i\cos{rac{2q\pi}{11}}
ight)}\Bigg)^p$$
, where $i=\sqrt{-1}$

- **10.** Find the least positive integer n for which $\left(\frac{1+i}{1-i}\right)^n = 1$
 - Watch Video Solution

Complex Number Exercise 5

1. Find the Sum of 5th term of A.P if a=1 , d=2

- **2.** Find the 4th term of A.P if a=1 , d=2
 - Watch Video Solution

- **3.** Find the value of 2^3
 - Watch Video Solution

- **4.** Find the Sum of 4th term of A.P if a=1 , d=2
 - Watch Video Solution

Exercise Statement I And Ii Type Questions

1. Statement-1 3 + 7i > 2 + 4i, where $i = \sqrt{-1}$.

Statement-2 3 > 2 and 7 > 4

Watch Video Solution

2. Which statement is correct.? $\mathbf{statement-1}(\cos\theta+i\sin\theta)^3=\cos3\theta+i\sin3\theta, i=\sqrt{-1}$

statement- $2\left(\cos{\frac{\pi}{4}}+i\sin{\frac{\pi}{4}}\right)^2=i$

Watch Video Solution

3. ${f statement-1}$ Locus of z satisfying the equation |z-1|+|z-8|=5 is an ellipse.

statement-2 Sum of focal distances of any point on ellipse is constant for an ellipse.

4. Let z_1, z_2 and z_3 be three complex numbers in AP.

Statement-1 Points representing z_1, z_2 and z_3 are collinear **Statement-2** Three numbers a,b and c are in AP, if b-a=c-b

5. Statement-1 If the principal argument of a complex number z is θ , the principal argument of z^2 is 2θ .

 ${f Statement-2} argig(z^2ig) = 2arg(z)$

1. Complex numbers $z_1,\,z_2,\,z_3$ are the vertices of A,B,C respectively of an equilteral triangle. Show that $z_1^2+z_2^2+z_3^2=z_1z_2+z_2z_3+z_3z_1.$

2. Statement-1 If the principal argument of a complex number z is θ , the principal argument of z^2 is 2θ .

 ${f Statement-2} arg(z^2)=2arg(z)$

Exercise Subjective Type Questions

1. If $z_1,\,z_2,\,z_3$ are any three complex numbers on Argand plane, then $z_1(Im(\bar z_2z_3))+z_2(Im\bar z_3z_1))+z_3(Im\bar z_1z_2))$ is equal to

2. The roots z_1, z_2, z_3 of the equation $x^3 + 3ax^2 + 3bx + c = 0$ in which a, b, c are complex numbers correspond to points A, B, C. Show triangle will be an equilateral triangle if $a^2 = b$.

- **3.** If $1, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ be the roots $x^5 1 = 0$, then value of $\frac{\omega-\alpha_1}{\omega^2-\alpha_1}$. $\frac{\omega-\alpha_2}{\omega^2-\alpha_2}$. $\frac{\omega-\alpha_3}{\omega^2-\alpha_3}$. $\frac{\omega-\alpha_4}{\omega^2-\alpha_4}$ is (where ω is imaginary cube root of unity)
 - Watch Video Solution

- **4.** If $z_1 and z_2$ both satisfy z+ar z r=2|z-1| and $arg(z_1-z_2)=rac{\pi}{4}$, then find I m(z 1+z 2).
 - Watch Video Solution

$$2|z|^2 + z^2 - 5 + i\sqrt{3} = 0, where i = \sqrt{-1}.$$

5.

6. Express in the complex form if $(5i)\left(\frac{-3i}{5}\right)$

- **7.** Find the point of intersection of the curves $arg(z-3i)=rac{3\pi}{4}andarg(2z+1-2i)=\pi/4.$
 - Watch Video Solution

8. Show that if a and b are real, the principal value of arg a is 0 or π according as a is positive or negative and that of bi is $\frac{\pi}{2}$ or $-\frac{\pi}{2}$ according as b is positive or negative.

9. Let z and ω be complex numbers. If $Re(z)=|z-2|, Re(\omega)=|\omega-z|$ and $arg(z-\omega)=\frac{\pi}{3}$, then the

value of
$$Im(z+w)$$
, is

- **10.** If z_1 and z_2 are two complex numbers and c>0 , then prove that $|z_1+z_2|^2\leq (1+c)|z_1|^2+\left(1+c^{-1}\right)|z_2|^2.$
 - Watch Video Solution

- **11.** Find the circumstance of the triangle whose vertices are given by the complex numbers $z_1,\,z_2$ and $z_3.$
 - Watch Video Solution

12. Find the circumstance of the triangle whose vertices are given by the complex numbers $z_1,\,z_2$ and $z_3.$

Complex Number Exercise 7

1. Find
$$\frac{dy}{dx}$$
 if $y = \cos(\sin x)$

2. Express in the form of complax number
$$z=(2-i)(3+i)$$

3. Two different non-parallel lines meet the circle |z|=r. One of them at points a and b and the other which is tangent to the circle at c. Show that the point of intersection of two lines is $\frac{2c^{-1}-a^{-1}-b^{-1}}{c^{-2}-a^{-1}b^{-1}}$.

4. A,B and C are the points respectively the complex numbers z_1, z_2 and z_3 respectivley, on the complex plane and the circumcentre of \triangle ABC lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number $\left(-\frac{z_2z_3}{z_1}\right)$.

Watch Video Solution

5. Let z,z_0 be two complex numbers. It is given that |z|=1 and the numbers $z,z_0,\overline{z_0},1$ and 0 are represented in an Argand diagram by the points P,P_0,Q,A and the origin, respectively. Show that $\triangle POP_0$ and $\triangle AOQ$ are congruent. Hence, or otherwise, prove that

$$|z-z_0|=|z\overline{z_0}-1|.$$

6. Express in a complex form if $z=i^7$

Watch Video Solution

7. Let a, b and c be any three nonzero complex number. If |z|=1 and z' satisfies the equation $az^2+bz+c=0$, prove that $a.\ \bar{a}$ = $c.\ \bar{c}$ and $|\mathbf{a}||\mathbf{b}|=\sqrt{ac(\bar{b})^2}$

Watch Video Solution

8. Let z_1, z_2 and z_3 be three non-zero complex numbers and $z_1 \neq z_2$. If

$$egin{array}{c|ccc} |z_1| & |z_2| & |z_3| \ |z_2| & |z_3| & |z_1| \ \end{array} = 0$$
, prove that

(i) z_1, z_2, z_3 lie on a circle with the centre at origin.

(ii)
$$argigg(rac{z_3}{z_2}igg)=argigg(rac{z_3-z_1}{z_2-z_1}igg)^2.$$

9. The roots of the equation

$$8x^3 - 4x^2 - 4x + 1 = 0$$
 are $\cos \frac{\pi}{7}, \cos \frac{3\pi}{7}$ and $\cos \frac{5\pi}{7}$.

Evaluate $\sec \frac{\pi}{7} + \sec \frac{3\pi}{7} + \sec \frac{5\pi}{7}$

Watch Video Solution

10. What is 8% Equals to

- A. 0.08
- B. 0.8
- C. 0.008
- D. 0.0008

Answer:

11. Find $\frac{dy}{dx}$ if $x - 5y = \tan y$

Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. If ω is a cube root of unity but not equal to 1, then minimum value of

$$\left|a+b\omega+c\omega^{2}
ight|$$
 , (where a,b and c are integers but not all equal), is

A. 0

 $\text{B.}\ \frac{\sqrt{3}}{2}$

C. 1

D. 2

Answer: C

2. If one of the vertices of the square circumscribing the circle

$$|z-1|=\sqrt{2}$$
 is $2+\sqrt{3}\iota$. Find the other vertices of square

3. If $z_1 and z_2$ are two nonzero complex numbers such that

$$|z_1+z_2|=|z_1|+|z_2|, ext{ then } argz_1-argz_2$$
 is equal to

A.
$$-\pi$$

$$B.-\pi/2$$

C.
$$\pi/2$$

D. 0

Answer: D

4. If the cube roots of unity are $1, \omega, \omega^2$, then the roots of the equation

$$(x-1)^3 + 8 = 0$$
 are

A.
$$-1,$$
 $1+2\omega,$ $1+2\omega^2$

B.
$$-1, 1-2\omega, 1-2\omega^2$$

$$C. -1 - 1 - 1$$

D. None of these

Answer: B

Watch Video Solution

5. If $\omega=z/[z-(1/3)i]$ and $|\omega|=1$, then find the locus of z.

A. a straight line

B. a parabola

C. an ellipse

D. a circle

Answer: A

Watch Video Solution

6. If w=lpha+ieta, where eta
eq0 and z
eq1 , satisfies the condition that

$$\left(rac{w-\overline{w}z}{1-z}
ight)$$
 is a purely real, then the set of values of z is $|z|=1, z
eq 2$

(b) |z|=1andz
eq 1 (c) $z=ar{z}$ (d) None of these

A.
$$\{z\!:\!|z|=1\}$$

$$\mathsf{B.}\left\{z\!:\!z=\bar{z}\right\}$$

$$\mathsf{C}.\left\{z\!:\!z\neq1\right\}$$

D.
$$\{z \colon |z| = 1, z \neq 1\}$$

Answer: D

Watch Video Solution

7. Find the value of $\sum_{i=1}^{10} \left[\sin \left(\frac{2\pi k}{11} \right) - i \cos \left(\frac{2\pi k}{11} \right) \right]$, $where i = \sqrt{-1}$.

$$D.-i$$

Answer: D

Watch Video Solution

8. If
$$z^2+z+1=0$$
 where z is a complex number, then the value of
$$\left(z+\frac{1}{z}\right)^2+\left(z^2+\frac{1}{z^2}\right)^2+.... + \left(z^6+\frac{1}{z^6}\right)^2$$
 is

- A. 18
- B. 54
- C. 6
- D. 12

Answer: D

9. A man walks a distance of 3 units from the origin towards the North-East $\left(N45^0E\right)$ direction.From there, he walks a distance of 4 units towards the North-West $\left(N45^0W\right)$ direction to reach a point P. Then, the position of P in the Argand plane is

A.
$$3e^{i\pi/4}+4i$$

B.
$$(3-4i)e^{i\pi/4}$$

C.
$$(4+3i)e^{i\pi/4}$$

D.
$$(3+4i)e^{i\pi/4}$$

Answer: D

A. a line not passing through the origin

B.
$$|z|=\sqrt{2}$$

C. the X-axis

D. the Y-axis

Answer: D

Watch Video Solution

11. If $|z+4| \leq 3$, the maximum value of |z+1| is

A. 4

B. 10

C. 6

D. 0

Answer: C

12. Let A, B, C be three sets of complex number as defined below:

$$A = \{z \colon Im \geq 1\}, B = \{z \colon |z-2-i| = 3\}, C \colon \{z \colon Re((1-i)z) = \sqrt{2}\}$$

The number of elements in the set $A \cap B \cap C$ is

- A. 0
- B. 1
- C. 2
- $D. \infty$

Answer: B

- 13. What is 5% Equals to
 - A. 0.05
 - B. 0.5

C. 0.005

D. 0.0005

Answer: C

Watch Video Solution

14. Express in the form of complex number i^9+i^{19}

Watch Video Solution

15. A particle P starts from the point $z_0=1+2i$, where $i=\sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i}+\hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by

A. 6+7i

B. -7 + 6i

C. 7+6i

D. -6 + 7i

Answer: D

Watch Video Solution

16. If the conjugate of a complex numbers is $\frac{1}{i-1}$, where $i=\sqrt{-1}$.

Then, the complex number is

A.
$$\frac{-1}{i-1}$$

$$\mathsf{B.}\ \frac{1}{i+1}$$

$$\mathsf{C.}\,\frac{-1}{i+1}$$

D.
$$\frac{1}{i-1}$$

Answer: C

17. Let z=x+iy be a complex number where x and y are integers. Then ther area of the rectangle whose vertices are the roots of the equaiton $\bar{z}z^3+z\bar{z}^3=350.$

- A. 48
- B. 32
- C. 40
- D. 80

Answer: A

Watch Video Solution

18. Let $z=\cos heta + i\sin heta$. Then the value of $\displaystyle \sum_{m o 1-15} Img(z^{2m-1})$ at

$$heta=2^\circ$$
 is:

A.
$$\frac{1}{\sin 2^{\circ}}$$

$$\mathsf{B.}\;\frac{1}{3\!\sin 2^\circ}$$

C.
$$\frac{1}{2\sin 2^{\circ}}$$

D.
$$\frac{1}{4 {\sin 2^{\circ}}}$$

Answer: D

Watch Video Solution

19. If
$$\left|z-rac{4}{z}
ight|=2$$
 then the greatest value of $|z|$ is:

A.
$$2+\sqrt{2}$$

B.
$$\sqrt{3}+1$$

C.
$$\sqrt{5} + 1$$

D. 2

Answer: C

20. Let z_1 and z_2 be two distinct complex numbers and $z=(1-t)z_1+tz_2$, for some real number t with 0< t<1 and $i=\sqrt{-1}$. If $\arg(w)$ denotes the principal argument of a non-zero complex number w, then

a.
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

$$\mathsf{b.}\,arg(z-z_1)=arg(z-z_2)$$

$$\left.\mathsf{c.}\left|egin{matrix} z-z_1 & ar{z}-ar{z}_1\ z_2-z_1 & ar{z}_2-ar{z}_1 \end{matrix}
ight|=0$$

$$\mathsf{d.}\,arg(z-z_1)=arg(z_2-z_1)$$

A.
$$|z-z_1|+|z-z_2|=|z_1-z_2|$$

$$\mathsf{B.}\,arg(z-z_1)=arg(z-z_2)$$

$$\left. \mathsf{C.} \left| egin{matrix} z - z_1 & ar{z} - ar{z}_1 \ z_2 - z_1 & ar{z}_2 - ar{z}_1 \end{matrix}
ight| = 0$$

$$\mathsf{D}.\,arg(z-z_1)=arg(z_2-z_1)$$

Answer: A:B:C::D

21. Find the value of 2^4

Watch Video Solution

22. If lpha and eta are the roots of the equation x^2 -x+1=0 , then $\alpha^{2009} + \beta^{2009} =$

B. 1

C. 2

D. -2

Answer: B

Watch Video Solution

23. The number of complex numbers z such that |z-1| = |z+1| = |z-i| is

B. 2

$$\mathsf{C}.\,\infty$$

D. 0

Answer: A

Watch Video Solution

24. If z is any complex number satisfying $|z-3-2i| \leq 2$, where $i=\sqrt{-1}$, then the maximum value of |2z-6+5i|, is

25. The set $\left\{Re\left(\frac{2iz}{1-z^2}\right)\colon z \text{ is a complex number,} |z|=1,z=\pm1\right\}$

Watch Video Solution

A.
$$(-\infty, -1] \cap [1, \infty)$$

is____.

B.
$$(-\infty,0)\cup(0,\infty)$$

$$\mathsf{C.}\,(\,-\infty,\,-1]\cup[1,\infty)$$

D.
$$[2, \infty)$$

Answer: A

Watch Video Solution

26. The maximum value of $\left|arg\left(\frac{1}{1-z}\right)\right|f \,\, { m or} \,\, |z|=1, z eq 1$ is given by

A.
$$\frac{\pi}{6}$$

$$\mathsf{B.}\;\frac{\pi}{3}$$

$$\mathsf{C.}\,\frac{\pi}{2}$$

D.
$$\frac{2\pi}{3}$$

Answer: C

Watch Video Solution

28. Let α and β be real numbers and z be a complex number. If $z^2+\alpha z+\beta=0$ has two distinct non-real roots with Re(z)=1, then it is necessary that

A.
$$eta\in(\,-1,0)$$

$$\mathsf{B}.\,|\beta|=1$$

$$\mathsf{C}.\,eta\in(1,\infty)$$

D.
$$eta \in (0,1)$$

Answer: C

29. If ω is a cube root of unity and $\left(1+\omega\right)^7=A+B\omega$ then find the values of A and B'

Answer: A

Watch Video Solution

30. Let z be a complex number such that the imaginary part of z is nonzero and $a=z^2+z+z+1$ is real. Then a cannot take the value.

B.
$$\frac{1}{3}$$

D.
$$\frac{3}{4}$$

Answer: D

Watch Video Solution

- **31.** If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies
 - A. on a circle with centre at the origin
 - B. either on the real axis or on a circle not passing through the origin
 - C. on the imaginary axis
 - D. either on the real axis or on a circle passing through the origin

Answer: D

Let complex numbers α and $\frac{1}{\alpha}$ lies on circle

$$(x-x_0)^2+(y-y_0)^2=r^2 \,\, {
m and} \,\, (x-x_0)^2+(y-y_0)^2=4r^2$$

respectively. If $z_0=x_0+iy_0$ satisfies the equation $\left.2|z_0|^2=r^2+2\right.$ then

$$|lpha|$$
 is equal to

A.
$$\frac{1}{\sqrt{2}}$$

$$\mathsf{B.}\;\frac{1}{2}$$

C.
$$\frac{1}{\sqrt{7}}$$
D. $\frac{1}{3}$

Answer: C

Watch Video Solution

33. What is 3% Equals to

A. 0.03

B. 0.3

C. 0.003

D. 0.0003

Answer: C

Watch Video Solution

34. Express in the form of complex number if $z=i^{-39}$

Watch Video Solution

35. Express in the form of complex number $(1-i)^4$

Watch Video Solution

36. If z is a complex number such that $|z| \geq 2$, then the minimum value of $\left|z+\frac{1}{2}\right|$

A. is strictly greater than
$$\frac{5}{2}$$

B. is equal to
$$\frac{5}{2}$$

C. is strictly greater than
$$\frac{3}{2}$$
 but less than $\frac{5}{2}$

D. lies in the interval (1,2)

Answer: D

Watch Video Solution

37. A complex number z is said to be unimodular if |z|=1. Suppose z_1 and z_2 are complex numbers such that $\frac{z_1-2z_2}{2-z_1z_2^-}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a

A. circle of radius z

B. circle of radius $\sqrt{2}$

C. straight line parallel to X-axis

D. straight line parallel to y-axis

Answer: A

Watch Video Solution

38. Let $\omega \neq 1$ be a complex cube root of unity. If

$$\left(3-3\omega+2\omega^{2}
ight)^{4n+3}+\left(2+3\omega-3\omega^{2}
ight)^{4n+3}+\left(-3+2\omega+3\omega^{2}
ight)^{4n+3}=0$$

- , then the set of possible value(s) of n is are
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: A::B::D

39. For any integer $k, \ \$ let $\ \, lpha_k = rac{\cos(k\pi)}{7} + i rac{\sin(k\pi)}{7}, where i = \sqrt{-1} \cdot$ Value of the expression $rac{\sum k=112|lpha_{k+1}-lpha_k|}{\sum k=13|lpha_{4k-1}-lpha_{4k-2}|}$ is

Watch Video Solution

- 40. What is 4% Equals to
 - A. 0.04
 - B. 0.4
 - C. 0.004
 - D. 0.0004

Answer: C

lf

the

equation

$$z^3 + (3+i)z^2 - 3z - (m+i) = 0, \;\; ext{where} \;\; i = \sqrt{-1} \;\; ext{and} \;\; m \in R,$$

has atleast one real root, value of m is

A. the circle with radius
$$\dfrac{1}{2a}$$
 and centre $\left(\dfrac{1}{2a},0\right)$ for $a>0,b
eq 0$

B. the circle with radius
$$-rac{1}{2a}$$
 and $\operatorname{centre}igg(-rac{1}{2a},0igg)$ for

C. the X-axis for
$$a
eq 0, b = 0$$

 $a < 0, b \neq 0$

D. the Y-axis for
$$a=0, b
eq 0$$

Answer: A::C::D

Watch Video Solution

42. Let ω be a complex number such that $2\omega+1=z$ where $z=\sqrt{-3}$. If

$$egin{bmatrix} 1 & 1 & 1 \ 1 & -\omega^2 - 1 & \omega^2 \ 1 & \omega^2 & \omega^7 \end{bmatrix} = 3k$$
, then k is equal to

3. Find the value of 5^3

