©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

CONTINUITY AND DIFFERENTIABILITY

Examples

1. If $f(x)=\frac{|X|}{X}$. Discuss the continuity at $x \rightarrow 0$

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}2 x+3, & \text { when } x<0 \\ 0, & \text { when } x=0 \\ x^{2}+3, & \text { when } x>0\end{array}\right.$ Discuss the continuity.
3. If $f(x)=\frac{x^{2}-1}{x-1}$ Discuss the continuity at $x \rightarrow 1$

(Watch Video Solution

4. Show that the function $f(x)=\left\{\begin{array}{ll}2 x+3, & -3 \leq x<-2 \\ x+1, & -2 \leq x<0 \\ x+2, & 0 \leq x \leq 1\end{array}\right.$ is discontinuous at $\mathrm{x}=0$ and continuous at every point in interval $[-3,1]$

- Watch Video Solution

5. Examination the function $f(x)$ given by $f(x)=\left\{\begin{array}{ll}\frac{\cos x}{\frac{\pi}{2}-x} & x \neq \frac{\pi}{2} \\ 1 & x=\frac{\pi}{2}\end{array}\right.$; for continuity at $x=\frac{\pi}{2}$

- Watch Video Solution

6. Discuss the continuity of $f(x)=\tan ^{-1} x$
7. Let $y=f(x)$ be defined parametrically as $y=t^{2}+t|t|, x=2 t-|t|, t \in R$. Then, at $\mathrm{x}=0$, find $\mathrm{f}(\mathrm{x})$ and discuss continuity.

- Watch Video Solution

8. Let $f(x)=\frac{e^{\tan x}-e^{x}+\ln (\sec x+\tan x)-x}{\tan x-x}$ be a continous function at $x=0$. The value of $f(0)$ equals:
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. 2

Answer: C

9. If $f(x)=\sqrt{\frac{1}{\tan ^{-1}\left(x^{2}-4 x+3\right)}}$, then $\mathrm{f}(\mathrm{x})$ is continuous for
a. $(1,3)$
b. $(-\infty, 0)$
c. $(-\infty, 1) \cup(3, \infty)$
d. None of these
A. $(1,3)$
B. $(-\infty, 0)$
C. $(-\infty, 1) \cup(3, \infty)$
D. None of these

Answer: C

- Watch Video Solution

10. If $f(x)=[x]$, where [.] denotes greatest integral function. Then, check the continuity on $(1,2]$
11. Examine the function, $f(x)=\left\{\begin{array}{ll}x-1, & x<0 \\ 1 / 4, & x=0 \\ x^{2}-1, & x>0\end{array}\right.$ Discuss the continuity and if discontinuous remove the discontinuity.

- Watch Video Solution

12. The function $f(x)=\left\{\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, x \neq 0\right.$, atx $=0, f(x)=0$
a. is continuous at $x=0$
b. is not continuous at $x=0$
c. is not continuous at $x=0$, but can be made continuous at $x=0$
(d) none of these

- Watch Video Solution

13. Show $f(x)=\frac{1}{|x|}$ has discontinuity of second kind at $\mathrm{x}=0$.
14. $f(x)=\left\{\begin{array}{ll}\left(\tan \left(\frac{\pi}{4}+x\right)\right)^{1 / x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ for what value of $\mathrm{k}, \mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$?

Watch Video Solution

15. A function $\mathrm{f}(\mathrm{x})$ is defined by, $f(x)=\left\{\begin{array}{ll}\frac{\left[x^{2}\right]-1}{x^{2}-1}, & \text { for } x^{2} \neq 1 \\ 0, & \text { for } x^{2}=1\end{array}\right.$ Discuss the continuity of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=1$.

- Watch Video Solution

16. Discuss the continuity of the function
$f(x)=\lim _{x \rightarrow \infty} \frac{\log (2+x)-x^{2 n} \sin x}{1+x^{2 n}}$ at $\mathrm{x}=1$.

(Watch Video Solution

$f(x) \in[0,2]$, wheref $(x)=(\lim)_{n \rightarrow \infty}\left(\sin \left(\pi \frac{x}{2}\right)\right)^{2 n}$

- Watch Video Solution

18. Let $f(x)=\left\{\begin{array}{ll}\{1+|\sin x|\}^{a /|\sin x|}, & -\pi / 6<x<0 \\ b, & x=0 \\ e^{\tan 2 x / \tan 3 x}, & 0<x<\pi / 6\end{array}\right.$ Determine a and b such that $f(x)$ is continuous at $x=0$

- Watch Video Solution

19. Fill in the blanks so that the resulting statement is correct. Let $f(x)=[x+2] \sin \left(\frac{\pi}{[x+1]}\right)$, where $[\cdot]$ denotes greatest integral function. The domain of f isand the points of discontinuity of f in the domain are

- Watch Video Solution

20. Let $f(x+y)=f(x)+f(y)$ for all xandy. If the function $f(x)$ is continuous at $x=0$, show that $f(x)$ is continuous for all x.

- Watch Video Solution

21. Let $f(x)$ be a continuous function defined for $1 \leq x \leq 3$. If $f(x)$ takes rational values for all x and $f(2)=10$ then the value of $f(1.5)$ is:

- Watch Video Solution

22. Discuss the continuity for $f(x)=\frac{1-u^{2}}{2+u^{2}}$, where $\mathrm{u}=\tan \mathrm{x}$.

- Watch Video Solution

23. Find the points of discontinuity of $y=\frac{1}{u^{2}+u-2}$, where $u=\frac{1}{x-1}$

- Watch Video Solution

24. Show that the function $f(x)=(x-a)^{2}(x-b)^{2}+x$ takes the value $\frac{a+b}{2}$ for some value of $x \in[a, b]$.

Watch Video Solution

25. Suppose that $\mathrm{f}(\mathrm{x})$ is continuous in $[0,1]$ and $f(0)=0, f(1)=0$. Prove
$f(c)=1-2 c^{2}$ for some $c \in(0,1)$

- Watch Video Solution

26. The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k, k \in Z$, is
A. $(-1)^{k}(k-1) \pi$
B. $(-1)^{k-1}(k-1) \pi$
C. $(-1)^{k} k \pi$
D. $(-1)^{k-1} k \pi$
27. Which of the following functions is differentiable at $x=0$?
A. $\cos (|x|)+|x|$
B. $\cos (|x|)-|x|$
C. $\sin (|x|)+|x|$
D. $\sin (|x|)-|x|$

Answer: D

- Watch Video Solution

28. Show that $f(x)=\left\{\begin{array}{ll}\mathrm{x} \sin \frac{1}{x}, & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{array}\right.$ is continuous but not differentiable at $\mathrm{x}=0$
29. Let $f(x)=x e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)} ; x \neq 0, f(0)=0$, test the continuity \& differentiability at $x=0$

- Watch Video Solution

30. Let $f(x)=|x-1|+|x+1|$ Discuss the continuity and differentiability of the function.

- Watch Video Solution

31. Discuss the continuity and differentiability for $f(x)=[\sin x]$ when $x \in[0,2 \pi]$, where [$\cdot]$ denotes the greatest integer function x .

- Watch Video Solution

32. If $f(x)=\{|x|-|x-1|\}^{2}$, draw the graph of $\mathrm{f}(\mathrm{x})$ and discuss its continuity and differentiability of $f(x)$
33. If $f(x)=\left\{\begin{array}{ll}x-3, & x<0 \\ x^{2}-3 x+2, & x \geq 0\end{array}\right.$ and let $g(x)=f(|x|)+|f(x)|$. Discuss the differentiability of $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

34. Let $\mathrm{f}(\mathrm{x})=[\mathrm{n}+\mathrm{p} \sin \mathrm{x}], x \in(0, \pi), n \in Z$, p is a prime number and $[\mathrm{x}]$ $=$ the greatest integer less than or equal to x. The number of points at which $f(x)$ is not not differentiable is :

- Watch Video Solution

35. Differentiate $2 x^{2}+4 \sin x$ w.r.t x

- Watch Video Solution

36. Differentiate $4 x^{4}+4 \cos x$ w.r.t x

(D) Watch Video Solution

37. Let $f(x)= \begin{cases}\int_{0}^{x}\{5+|1-t|\} d t, & \text { if } x>2 \\ 5 x+1, & \text { if } x \leq 2\end{cases}$

Test $f(x)$ for continuity and differentiability for all real x .

- Watch Video Solution

38. Draw the graph of the function and discuss the continuity and differentiability at $\mathrm{x}=1$ for, $f(x)= \begin{cases}3^{x}, & \text { when }-1 \leq x \leq 1 \\ 4-x, & \text { when } 1<x<4\end{cases}$

- Watch Video Solution

39. Expand $\left|\begin{array}{ll}7 x & 6 \\ 2 x & 1\end{array}\right|$

- Watch Video Solution

40. The set of points where,$f(x)=x|x|$ is twice differentiable is

Watch Video Solution

41. The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|) \quad$ is differentiable not differentiable at (a)-1 (b)0 (c)1 (d)2
A. -1
B. 0
C. 1
D. 2

Answer: D

- Watch Video Solution

42. If $f(x)=\sum_{r=1}^{n} a_{r}|x|^{r}$, where $a_{i} s$ are real constants, then $\mathrm{f}(\mathrm{x})$ is
a. continuous at $\mathrm{x}=0$, for all a_{i}
b. differentiable at $\mathrm{x}=0$, for all $a_{i} \in R$
c. differentiable at x $=0$, for all $a_{2 k+1}=0$
d. None of the above
A. continuous at x $=0$, for all a_{i}
B. differentiable at $\mathrm{x}=0$, for all $a_{i} \in R$
C. differentiable at x $=0$, for all $a_{2 k+1}=0$
D. None of the above

Answer: A::C

- Watch Video Solution

43. Let f and g be differentiable functions satisfying $g(a)=b, g^{\prime}(a)=2$ and $f o g=l$ (identity function). then $f^{\prime}(b)$ is equal to
A. 2
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. None of these

Answer: C

- Watch Video Solution

44. If $f(x)=\frac{x}{1+(\log x)(\log x) \ldots \infty}, \forall x \in[1,3]$ is non-differentiable at $\mathrm{x}=\mathrm{k}$. Then, the value of $\left[k^{2}\right]$, is (where $[\cdot]$ denotes greatest integer function).
A. 5
B. 6
C. 7
D. 8

Answer: C

45. If $\mathrm{f}(\mathrm{x})=|1-\mathrm{X}|$, then the points where $\sin ^{-1}(f(|x|)$ is non-differentiable are
A. $\{0,1\}$
B. $\{0,-1\}$
C. $\{0,1,-1\}$
D. None of these

Answer: C

D Watch Video Solution

46. Discuss the differentiability of $f^{\prime}(x)=\frac{\sin ^{-1}(2 x)}{1+x^{2}}$

- Watch Video Solution

47. Let [] donots the greatest integer function and $f(x)=\left[\tan ^{2} x\right]$, then
A. $\lim _{x \rightarrow 0} f(x)$ doesn't exist
B. $f(x)$ is continuous at $x=0$
C. $\mathrm{f}(\mathrm{x})$ is not differentiable at $\mathrm{x}=0$
D. $f^{\prime}(0)=1$

Answer: B

- Watch Video Solution

48. Let $h(x)=\min \left\{x, x^{2}\right\}$ for every real number of x . Then, which one of the following is true?
A. h is not continuous for all x
B. h is differentiable for all x
C. $h^{\prime}(x)=1$ for all x
D. h is not differentiable at two values of x
49. let $f: R \rightarrow R$ be a function defined by $f(x)=\max \left\{x, x^{3}\right\}$. The set of values where $f(x)$ is differentiable is:
A. $\{-1,1\}$
B. $\{-1,0\}$
C. $\{0,1\}$
D. $\{-1,0,1\}$

Answer: D

- Watch Video Solution

50. Let $\mathrm{f}(\mathrm{x})$ be a continuous function such that $\mathrm{f}(\mathrm{O})=1$ and $\mathrm{f}(\mathrm{x})-\mathrm{f}\left(\frac{x}{7}\right)=\frac{x}{7}$ $\forall x \in R$, then $\mathrm{f}(42)$ is
51. The total number of points of non-differentiability of $f(x)=\max \left\{\sin ^{2} x, \cos ^{2} x, \frac{3}{4}\right\}$ in $[0,10 \pi]$, is
A. 40
B. 30
C. 20
D. 10

Answer: C

- Watch Video Solution

52. Differentiate $7 x^{3}+e^{4 x}$ w.r.t x

- Watch Video Solution

53. If the function $f(x)=\left[\frac{(x-2)^{3}}{a}\right] \sin (x-2)+a \cos (x-2)$, [.] denotes the greatest integer function, is continuous in $[4,6]$, then find the values of a.
A. $a \in[8,64]$
B. $a \in(0,8]$
C. $a \in[64, \infty)$
D. None of these

Answer: C

- Watch Video Solution

54. If $f(x)=x^{2}-2 x$ then find the derivative of this function.

- Watch Video Solution

55. Let $f(x)=\phi(x)+\Psi(x) w h e r e, \phi^{\prime}(x)$ and $\Psi^{\prime}(x)$ are finite and definite. Then,
a. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$
b. $f(x)$ is differentiable at $x=a$
c. $f^{\prime}(x)$ is continuous at $x=a$
d. $\mathrm{f}^{\prime}(\mathrm{x})$ is differentiable at $\mathrm{x}=\mathrm{a}$
A. $f(x)$ is continuous at $x=a$
B. $f(x)$ is differentiable at $x=a$
C. $f^{\prime}(x)$ is continuous at $x=a$
D. $f^{\prime}(x)$ is differentiable at $x=a$

Answer: A: B

- Watch Video Solution

56. If $f(x)=x+\tan x$ and $g(x)$ istheinverseoff (x), thendifferentiation of $\mathrm{g}(\mathrm{x}) i s(a) 1 /\left(1+[\mathrm{g}(\mathrm{x})-\mathrm{x}]^{\wedge} 2\right)(\mathrm{b}) 1 /\left(2-\left[\mathrm{g}(\mathrm{x})^{+\mathrm{x}}\right]^{\wedge} 2\right)(\mathrm{c}) 1 /\left(2+[\mathrm{g}(\mathrm{x})-\mathrm{x}]^{\wedge} 2\right)(\mathrm{d})$ none of

these

A. $\frac{1}{1+(g(x)-x)^{2}}$
B. $\frac{1}{2+(g(x)+x)^{2}}$
C. $\frac{1}{2+(g(x)-x)^{2}}$
D. None of these

Answer: C

- Watch Video Solution

57. If $f(x)=\int_{0}^{x}(f(t))^{2} d t, f: R \rightarrow R$ be differentiable function and $f(g(x))$ is differentiable at $x=a$, then
A. $(\mathrm{a}) \mathrm{g}(\mathrm{x})$ must be differentiable at $\mathrm{x}=\mathrm{a}$
B. $(b) g(x)$ is discontinuous, then $f(a)=0$
C. (c) $f(a) \neq 0$, then $\mathrm{g}(\mathrm{x})$ must be differentiable
D. (d) None of these

Answer: B::C

- Watch Video Solution

58. If $f(x)=\left[x^{-2}\left[x^{2}\right]\right]$, (where $[\cdot]$ denotes the greatest integer function) $x \neq 0$, then incorrect statement
a. $f(x)$ is continuous everywhere
b. $\mathrm{f}(\mathrm{x})$ is discontinuous at $x=\sqrt{2}$
c. $f(x)$ is non-differentiable at $x=1$
d. $\mathrm{f}(\mathrm{x})$ is discontinuous at infinitely many points
A. $f(x)$ is continuous everywhere
B. $\mathrm{f}(\mathrm{x})$ is discontinuous at $x=\sqrt{2}$
C. $f(x)$ is non-differentiable at $x=1$
D. $f(x)$ is discontinuous at infinitely many points

Answer: A

59.

$f(x)=\left\{{ }^{\prime} x^{2}(\operatorname{sgn}[x])+\{x\}, 0 \leq x \leq 2^{\prime} \prime \sin x+|x-3|, 2<x<4\right.$, (where[.] \& \{.\} greatest integer function \& fractional part functiopn respectively), then -
A. $f(x)$ is differentiable at $x=1$
B. $f(x)$ is continuous but non-differentiable at x
C. $f(x)$ is non-differentiable at $x=2$
D. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=2$

Answer: C::D

- Watch Video Solution

60. Expand $\left|\begin{array}{ll}2 & 0 \\ 5 & 7\end{array}\right|$
61. The values of a and b so that the function
$f(x)= \begin{cases}x+a \sqrt{2} \sin x, & 0 \leq x<\pi / 4 \\ 2 x \cot x+b, & \pi / 4 \leq x \leq \pi / 2 \quad \text { is continuous for } \\ a \cos 2 x-b \sin x, & \pi / 2<x \leq \pi\end{cases}$ $x \in[0, \pi]$, are
A. $a=\frac{\pi}{6}, b=-\frac{\pi}{6}$
B. $a=-\frac{\pi}{6}, b=\frac{\pi}{12}$
C. $a=\frac{\pi}{6}, b=-\frac{\pi}{12}$
D. None of these

Answer: C

- Watch Video Solution

62. Let f be an even function and $f^{\prime}(x)$ exists, then $f^{\prime}(0)$ is
A. 1
B. 0
C. -1
D. -2

Answer: B

- Watch Video Solution

63. Find the set of profit where $f(x)=x^{2}|x|$ is thrice differentiable .
A. R
B. $R-\{0,1\}$
C. $[0, \infty)$
D. R-\{0\}

Answer: D

64. The function $f(x)=\frac{|x+2|}{\tan ^{-1}(x+2)}$, is continuous for $x \in R x \in R-\{0\}$
$x \in R-\{-2\}$ None of these
A. $x \in R$
B. $x \in R-\{0\}$
C. $x \in R-\{-2\}$
D. None of these

Answer: C

- Watch Video Solution

65. If $f(x)=\left[\begin{array}{ll}\frac{\sin \left[x^{2}\right] \pi}{x^{2}-3 x+8}+a x^{3}+b & 0 \leq x \leq 1 \\ 2 \cos \pi x+\tan ^{-1} x & 1<x \leq 2\end{array}\right.$ is differentiable in
$[0,2]$ then: ([.] denotes greatest integer function)
А. (А) $a=\frac{1}{6}, b=\frac{\pi}{4}-\frac{13}{6}$
B. (В) $a=-\frac{1}{6}, b=\frac{\pi}{4}$
C. (C) $a=-\frac{1}{6}, b=\frac{\pi}{4}-\frac{13}{6}$
D. (D)None of these

Answer: A

- Watch Video Solution

66. Expand $\left|\begin{array}{ll}9 & 1 \\ 2 & 0\end{array}\right|$
A. 0
B. 1
C. -2
D. 3

Answer: B

67. Let $g(x)=\ln f(x)$ where $\mathrm{f}(\mathrm{x})$ is a twice differentiable positive function on $(0, \infty)$ such that $f(x+1)=x f(x)$. Then for $\mathrm{N}=1,2,3$
$g^{\prime \prime}\left(N+\frac{1}{2}\right)-g^{\prime \prime}\left(\frac{1}{2}\right)=$
A. $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N-1)^{2}}\right\}$
B. $4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N-1)^{2}}\right\}$
C. $-4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N+1)^{2}}\right\}$
D. $4\left\{1+\frac{1}{9}+\frac{1}{25}+\ldots .+\frac{1}{(2 N+1)^{2}}\right\}$

Answer: A

- Watch Video Solution

68. Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$ be a differentiable function $\forall x \in R$ and satisfies:
$f(x)=x+\int_{0}^{1} x^{2} z f(z) d z+\int_{0}^{1} x z^{2} f(z) d z$.
A. $f(x)=\frac{20 x}{119}(2+9 x)$
B. $f(x)=\frac{20 x}{119}(4+9 x)$
C. $f(x)=\frac{10 x}{119}(4+9 x)$
D. $f(x)=\frac{5 x}{119}(4+9 x)$

Answer: B

- Watch Video Solution

69. A function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x) . f(y)$ for all, $f(x) \neq 0$. Suppose that the function is differentiable at $\mathrm{x}=0$ and $f^{\prime}(0)=2$. Then,
A. $f^{\prime}(x)=2 f(x)$
B. $f^{\prime}(x)=f(x)$
C. $f^{\prime}(x)=f(x)+2$
D. $f^{\prime}(x)=2 f(x)+x$
70. Let f be a function such that $f(x+f(y))=f(x)+y, \forall x, y \in R$, then find $f(0)$. If it is given that there exists a positive real δ such that $f(h)$ $=\mathrm{h}$ for $0<h<\delta$, then find $\mathrm{f}^{\prime}(\mathrm{x})$
A. 0,1
B. $-1,0$
C. 2,1
D. $-2,0$

Answer: A

- Watch Video Solution

71.

$f(x)=\left[\frac{(x-5)^{3}}{A}\right] \sin (x-5)+a \cos (x-2)$, where $[\cdot]$ denotes the
greatest integer function, is continuous and differentiable in (7, 9), then find the value of A
A. $A \in[8,64]$
B. $A \in[0,8)$
C. $A \in[64, \infty)$
D. $A \in[8,16]$

Answer: C

- Watch Video Solution

72. If $f(x)=[2+5|n| \sin x]$, where $n \in I$ has exactly 9 points of nonderivability in $(0, \pi)$, then possible values of n are (where $[\mathrm{x}$] dentoes greatest integer function)
A. ± 3
B. ± 2
C. ± 1
D. None of these

Answer: C

- Watch Video Solution

73. The number of points of discontinuity of $f(x)=[2 x]^{2}-\{2 x\}^{2}$ (where [] denotes the greatest integer function and $\}$ is fractional part of $x)$ in the interval $(-2,2)$, is 1 b. 6 c. 2 d. 4
A. 6
B. 8
C. 4
D. 3

Answer: A

- Watch Video Solution

74. Find $\frac{d y}{d x}$ if $f(x)=\frac{2}{1-x}$

- Watch Video Solution

75. Let $f: R \rightarrow R$ be a differentiable function at $\mathrm{x}=0$ satisfying $\mathrm{f}(0)=0$
and $\mathrm{f}^{\prime}(0)=1$, then the value of $\lim _{x \rightarrow 0} \frac{1}{x} \cdot \sum_{n=1}^{\infty}(-1)^{n} \cdot f\left(\frac{x}{n}\right)$, is
a. 0
b. $-\log 2$
c. 1
d.e
A. (a) 0
B. (b) $-\log 2$
C. (c) 1
D. (d)e

Answer: B

76. Let $\mathrm{f}(\mathrm{x})$ is a function continuous for all $x \in R$ except at $\mathrm{x}=0$ such that
$f^{\prime}(x)<0, \forall x \in(-\infty, 0)$ and $f^{\prime}(x)>0, \forall x \in(0, \infty)$. $\lim _{x \rightarrow 0^{+}} f(x)=3, \lim _{x \rightarrow 0^{-}} f(x)=4$ and $f(0)=5$, then the image of the
point
(0,
1)

about the line,
y. $\lim _{x \rightarrow 0} f\left(\cos ^{3} x-\cos ^{2} x\right)=x$. $\lim _{x \rightarrow 0} f\left(\sin ^{2} x-\sin ^{3} x\right)$, is
a. $\left(\frac{12}{25}, \frac{-9}{25}\right)$
b. $\left(\frac{12}{25}, \frac{9}{25}\right)$
c. $\left(\frac{16}{25}, \frac{-8}{25}\right)$
d. $\left(\frac{24}{25}, \frac{-7}{25}\right)$
A. $\left(\frac{12}{25}, \frac{-9}{25}\right)$
B. $\left(\frac{12}{25}, \frac{9}{25}\right)$
C. $\left(\frac{16}{25}, \frac{-8}{25}\right)$
D. $\left(\frac{24}{25}, \frac{-7}{25}\right)$

Answer: D

77. If $\mathrm{f}(\mathrm{x})$ be such that $f(x)=\max \left(|3-x|, 3-x^{3}\right)$, then
(a) $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
(b) $\mathrm{f}(\mathrm{x})$ is differentiable $\forall x \in R$
(c) $f(x)$ is non-differentiable at three points only
(d) $f(x)$ is non-differentiable at four points only
A. (a) $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
B. (b) $\mathrm{f}(\mathrm{x})$ is differentiable $\forall x \in R$
C. (c) $f(x)$ is non-differentiable at three points only
D. (d) $f(x)$ is non-differentiable at four points only

Answer: A::D

- Watch Video Solution

78. Let $f(x)=|x-1|([x]-[-x])$, then which of the following statement(s) is/are correct. (where [.] denotes greatest integer function.)
a. $f(x)$ is continuous at $x=1$
b. $f(x)$ is derivable at $x=1$
c. $f(X)$ is non-derivable at $x=1$
d. $f(x)$ is discontinuous at $x=1$
A. $f(x)$ is continuous at $x=1$
B. $f(x)$ is derivable at $x=1$
C. $f(X)$ is non-derivable at $x=1$
D. $f(x)$ is discontinuous at $x=1$

Answer: A::C

D Watch Video Solution

79. If $y=f(x)$ defined parametrically by
$x=2 t-|t-1|$ and $y=2 t^{2}+t|t|$, then
(a) $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R$
(b) $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R-\{2\}$
(c) $\mathrm{f}(\mathrm{x})$ is differentiable for all $x \in R$
(d) $\mathrm{f}(\mathrm{x})$ is differentiable for all $x \in R-\{2\}$
A. (a) $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R$
B. (b)f(x) is continuous for all $x \in R-\{2\}$
C. (c)f(x) is differentiable for all $x \in R$
D. $(\mathrm{d}) \mathrm{f}(\mathrm{x})$ is differentiable for all $x \in R-\{2\}$

Answer: A: D

- Watch Video Solution

80. $f(x)=\sin ^{-1}\left[e^{x}\right]+\sin ^{-1}\left[e^{-x}\right]$ where [.] greatest integer function then
a. domain of $f(x)=(-\operatorname{In} 2, \operatorname{In} 2)$
b. range of $f(x)=\{\pi\}$
c. $f(x)$ has removable discontinuity at $x=0$
d. $f(x)=\cos ^{-1} x$ has only solution
A. domain of $f(x)=(-\operatorname{In} 2, \operatorname{In} 2)$
B. range of $f(x)=\{\pi\}$
C. $f(x)$ has removable discontinuity at $x=0$
D. $f(x)=\cos ^{-1} x$ has only solution

Answer: A::C

- Watch Video Solution

81. $f: R \rightarrow R$ is one-one, onto and differentiable and graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is symmetrical about the point $(4,0)$, then
a. $f^{-1}(2010)+f^{-1}(-2010)=8$
b. $\int_{-2010}^{2018} f(x) d x=0$
c. if $f^{\prime}(-100)>0$, then roots of $x^{2}-f^{\prime}(10) x-f^{\prime}(10)=0$ may be non-real
d. if $f^{\prime}(10)=20$, then $f^{\prime}(-2)=20$
A. $f^{-1}(2010)+f^{-1}(-2010)=8$
B. $\int_{-2010}^{2018} f(x) d x=0$
C. if $f^{\prime}(-100)>0$, then roots of $x^{2}-f^{\prime}(10) x-f^{\prime}(10)=0$ may be non-real
D. if $f^{\prime}(10)=20$, then $\mathrm{f}^{\prime}(-2)=20$

Answer: A::B::D

- Watch Video Solution

82. Let f be a real valued function defined on the interval $(0, \infty)$ by $f(x)=\operatorname{In} x+\int_{0}^{x} \sqrt{1+\sin t} d t$. Then which of the following statement (s) is (are) true?
A. $\mathrm{f}^{\prime \prime}(\mathrm{x})$ exists for all $x \in(0, \infty)$
B. $\mathrm{f}^{\prime}(\mathrm{x})$ exists for all $x \in(0, \infty)$ and f^{\prime} is continuous on $(0, \infty)$ but not differentiable on $(0, \infty)$
C. There exists $\alpha>1$ such that $\left|f^{\prime}(x)\right|<|f(x)|$ for all $x \in(0, \infty)$
D. There exists $\beta>0$ such that $|f(x)|+\left|f^{\prime}(x)\right| \leq \beta$ from all

$$
x \in(0, \infty)
$$

Answer: B::C

- Watch Video Solution

83. $f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right) \quad$ for \quad all $x, y \in R . \quad(x y \neq 1)$,and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=2$. Find $f\left(\frac{1}{\sqrt{3}}\right) \operatorname{andf}^{\prime}(1)$.
A. $f\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{3}$
B. $f\left(\frac{1}{\sqrt{3}}\right)=-\frac{\pi}{3}$
C. $f^{\prime}(1)=1$
D. $f^{\prime}(1)=-1$

Answer: A:C

84. Let $f: R \vec{R}$ be a function satisfying condition $f\left(x+y^{3}\right)=f(x)+[f(y)]^{3} f$ or allx, $y \in R$. If $f^{\prime}(0) \geq 0$, find $f(10)$.
A. $f(x)=0$ only
B. $f(x)=x$ only
C. $f(x)=0$ or x only
D. $f(10)=10$

Answer: C::D

- Watch Video Solution

85. Let $f(x)=x^{3}-x^{2}+x+1$ and
$g(x)=\left\{\begin{array}{cl}\max f(t), & 0 \leq t \leq x \\ 3-x, & 1<x \leq 2\end{array}\right.$ for $0 \leq x \leq 1$ Then, $\mathrm{g}(\mathrm{x})$ in $[0,2]$ is
a. continuous for $x \in[0,2]-\{1\}$
b. continuous for $x \in[0,2]$
c. differentiable for all $x \in[0,2]$
d. differentiable for all $x \in[0,2]-\{1\}$
A. continuous for $x \in[0,2]-\{1\}$
B. continuous for $x \in[0,2]$
C. differentiable for all $x \in[0,2]$
D. differentiable for all $x \in[0,2]-\{1\}$

Answer: B::D

- Watch Video Solution

86. If $p^{\prime \prime}(x)$ has real roots α, β, γ. Then , $[\alpha]+[\beta]+[\gamma]$ is

A. -2
B. -3
C. -1
D. 0

Answer: B

- Watch Video Solution

87. If $f(x)=\frac{1}{1-x}$, then the set of points discontinuity of the function $f(f(f(x)))$ is $\{1\}$ (b) $\{0,1\}$ (c) $\{-1,1\}$ (d) none of these
A. $x=0,-1$
B. $x=1$ only
C. $x=0$ only
D. $x=0,1$

Answer: D

88. If α, β (where $\alpha<\beta$) are the points of discontinuity of the function $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x})))$, where $f(x)=\frac{1}{1-x}$, and $P\left(a, a^{2}\right)$ is any point on XY plane. Then,

The domain of $f(g(x))$, is
A. $x \in R$
B. $x \in R-\{1\}$
C. $x \in R-\{0,1\}$
D. $x \in R-\{0,1,-1\}$

Answer: C

- Watch Video Solution

89. Find $\frac{d y}{d x}$ if $y=\frac{x}{\sin x}$
90. If $[x]$ dnote the greatest integer less than or equal to x then the equation $\sin x=[1+\sin x]+[1-\cos x][$ has no solution in

Watch Video Solution

91. Differentiate $x^{3}+\sin 4 x+e^{3 x}$ w.r.t x

- Watch Video Solution

92. Suppose a function $\mathrm{f}(\mathrm{x})$ satisfies the following conditions

$$
f(x+y)=\frac{f(x)+f(y)}{1+f(x) f(y)}, \forall x \in R, y \text { and } f^{\prime}(0)=1 . \text { Also },-1<f(x)<
$$

The value of the limit $\mid t_{x \rightarrow \infty}(f(x))^{x}$ is:

- Watch Video Solution

93. Given that $f(x)= \begin{cases}\frac{1-\cos 4 x}{x^{2}}, & \text { if } x<0 \\ a, & \text { if } x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & \text { if } x>0\end{cases}$

If $f(x)$ is continuous at $x=0$ find the value of a.

- Watch Video Solution

94. $f(x)=$ maximum $\left\{4,1+x^{2}, x^{2}-1\right) \forall x \in R$. Total number of points, where $f(x)$ is non-differentiable,is equal to

- Watch Video Solution

95. Let $f(x)=x^{n}, n$ being a non negative integer. The value of n for which the equality $f^{\prime}(a+b)=f^{\prime}(a)+f^{\prime}(b)$ is valid for all $a . b>0$ is

- Watch Video Solution

96. The number of points where $f(x)=[\sin x+\cos x]$ (where [.] denotes the greatest integer function) $x \in(0,2 \pi)$ is not continuous is
a. 3
b. 4
C. 5
d. 6
A. (A) 3
B. (B) 4
C. (C) 5
D. (D) 6

Answer: 5

Watch Video Solution
97. Find $\frac{d y}{d x}$ if $2 x-3 y=\log y$
98. If $f\left(\frac{x y}{2}\right)=\frac{f(x) \cdot f(y)}{2}, x, y \in R, f(1)=f^{\prime}(1)$. Then, $\frac{f(3)}{f^{\prime}(3)}$ is.

- Watch Video Solution

99. Let f be a differentiable function satisfying the relation $f(x y)=x f(y)+y f(x)$
$-2 x y .($ where $x, y>0)$ and $f^{\prime}(1)=3$, then
find $\mathrm{f}(\mathrm{x})$

- Watch Video Solution

100. Let $\mathrm{f}(\mathrm{x})$ is a polynomial function and $\left.f(\alpha))^{2}+f^{\prime}(\alpha)\right)^{2}=0$, then find $\lim _{x \rightarrow \alpha} \frac{f(x)}{f^{\prime}(x)}\left[\frac{f^{\prime}(x)}{f(x)}\right]$, where [.] denotes greatest integer function, is \qquad
101. Let $f: R \rightarrow R$ be a function satisfying
$f(2-x)=f(2+x)$ and $f(20-x)=f(x) \forall x \in R$. For this function
f, answer the following.
If $f(2) \neq f(6)$, then the

- Watch Video Solution

102. Find $\frac{d y}{d x}$ if $2 x-10 y=\log x$

- Watch Video Solution

103.

Discuss
the
differentiability
of
$f(x)=\max \{2 \sin x, 1-\cos x\} \forall x \in(0, \pi)$.

- Watch Video Solution

104. Discuss the continuity of the function $\mathrm{g}(\mathrm{x})=[\mathrm{x}]+[-\mathrm{x}]$ at integral values of x .

- Watch Video Solution

105. If $f(x)=\frac{\sin 2 x+A \sin x+B \cos x}{x^{3}}$ is continuous at $\mathrm{x}=0$. Find the values of A and B. Also, find $f(0)$

- Watch Video Solution

106. Let $\mathrm{f}: R \rightarrow R$ satisfies $|f(x)| \leq x^{2} \forall x \in R$. then show thata $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$

- Watch Video Solution

107. Show that the function defined by $f(x)=\left\{\begin{array}{ll}x^{2} \sin 1 / x, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is differentiable for every value of x , but the derivative is not continuous for

- Watch Video Solution

108. Find $\frac{d y}{d x}$ if $x-3 y=x^{2}$

- Watch Video Solution

109. Prove that $f(x)=[\tan x]+\sqrt{\tan x-[\tan x]}$. (where [.] denotes greatest integer function) is continuous in $\left[0, \frac{\pi}{2}\right)$.

- Watch Video Solution

110. Determine the values of x for which the following functions fails to be
continuous or differentiable $f(x)= \begin{cases}(1-x), & x<1 \\ (1-x)(2-x), & 1 \leq x \leq 2 \\ (3-x), & x>2\end{cases}$ justify your answer.
111. If $g(x)$ is continuous function in $[0, \infty)$ satisfying $g(1)=1 . I f \int_{0}^{x} 2 x . g^{2}(t) d t=\left(\int_{0}^{x} 2 g(x-t) d t\right)^{2}$, find $\mathrm{g}(\mathrm{x})$.

- Watch Video Solution

112. Differentiate $x^{5}+e^{x}$ w.r.t x

- Watch Video Solution

113. If a function $f:[-2 a, 2 a] \rightarrow R$ is an odd function such that, $f(x)=f(2 a-x)$ for $x \in[a, 2 a]$ and the left-hand derivative at $x=a$ is 0 , then find the left-hand derivative at $x=-a$.

- Watch Video Solution

114. Discuss the continuity of $f(x)$ in $[0,2]$, where $f(x)=\left\{\begin{array}{ll}{[\cos \pi x],} & x \leq 1 \\ |2 x-3|[x-2], & x>1\end{array}\right.$ where [.] denotes the greatest integral function.

- Watch Video Solution

115. Let $f: R \rightarrow R$ be a differentiable function such that $f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t . f(x)$ increases for

- Watch Video Solution

116. Let $f: R^{+} \rightarrow R$ satisfies the functional equation
$f(x y)=e^{x y-x-y}\left\{e^{y} f(x)+e^{x} f(y)\right\}, \forall x, y \in R^{+}$. If $\mathrm{f}^{\prime}(1)=\mathrm{e}$, determine $f(x)$.

- Watch Video Solution

117. Let f be a differentiable function such that $f^{\prime}(x)=f(x)+\int_{0}^{2} f(x) d x$ and $f(0)=\frac{4-e^{2}}{3}$. Find $f(x)$.

(D) Watch Video Solution

118. A function $f(x)$ satisfies the following property: $f(x+y)=f(x) f(y)$. Show that the function is continuous for all values of x if its is continuous at $x=1$.

- Watch Video Solution

119. Let $f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}$ for all real x and y. If $f^{\prime}(0)$ exits and equals -1 and $f(0)=1$, then find $f(2)$.

- Watch Video Solution

120.

$g(x)=\{\max \{f(t), x \leq t \leq(x+1) 0 \leq x<3$ $\min \{(x+3) 3 \leq x \leq 5\}$ Verify continuity of $\mathrm{g}(\mathrm{x})$, for all $x \in[0,5]$

- Watch Video Solution

121. Let $f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x-55$ and $g(x)=\left\{\begin{array}{ll}\min f(x), & x \leq t \leq x+1:-1 \leq x \leq 1 \\ x-10, & x \geq 1\end{array} \quad\right.$ Discuss \quad the continuity and differentiability of $\mathrm{g}(\mathrm{x})$ in $[-1, \infty)$

- Watch Video Solution

122. Solve the differential equation

$$
\left(1+y^{2}\right) d x-\left(\tan ^{-1} y-x\right) d y=0
$$

123. Let f be a one-one function such that
$f(x) \cdot f(y)+2=f(x)+f(y)+f(x y), \forall x, y \in R-\{0\}$ and $f(0)=1, f$. Prove that $3\left(\int f(x) d x\right)-x(f(x)+2)$ is constant.

- Watch Video Solution

124. Find $f^{\prime}(x)$. if $f(x)=e^{x}-\log x-\sin x$

- Watch Video Solution

125. Let f be a function such that
$f(x y)=f(x) \cdot f(y), \forall y \in R$ and $R(1+x)=1+x(1+g(x))$. where $\lim _{x \rightarrow 0} g(x)=0$. Find the value of $\int_{1}^{2} \frac{f(x)}{f^{\prime}(x)} \cdot \frac{1}{1+x^{2}} d x$

- Watch Video Solution

126. If $f(x)=a x^{2}+b x+c$ is such that
$|f(0)| \leq 1,|f(1)| \leq 1$ and $|f(-1)| \leq 1, \quad$ prove that
$|f(x)| \leq 5 / 4, \forall x \in[-1,1]$

- Watch Video Solution

127. Let $\alpha+\beta=1,2 \alpha^{2}+2 \beta^{2}=1$ and $f(x)$ be a continuous function such that $f(2+x)+f(x)=2$ for all $x \in[0,2]$ and $p=\int_{0}^{4} f(x) d x-4, q=\frac{\alpha}{\beta}$. Then, find the least positive integral value of 'a' for which the equation $a x^{2}-b x+c=0$ has both roots lying between p and q , where $a, b, c \in N$.

- Watch Video Solution

128.

Prove
that
the
function
$f(x)=a \sqrt{x-1}+b \sqrt{2 x-1}-\sqrt{2 x^{2}-3 x+1}$, where $\mathrm{a}+2 \mathrm{~b}=2$ and $a, b \in R$ always has a root in $(1,5) \forall b \in R$
129. Let $\alpha \in R$. Prove that a function $f: R \rightarrow R$ is differentiable at α if and only if there is a function $g: R \rightarrow R$ which is continuous at α and satisfies $f(x)-f(\alpha)=g(x)(x-\alpha), \forall x \in R$.

- Watch Video Solution

Exercise For Session 1

1. If function $f(x)=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}$ is continuous function at $\mathrm{x}=0$, then $f(0)$ is equal to
A. 2
B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. $\frac{1}{3}$

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}\frac{1}{e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ then
A. $\lim _{x \rightarrow 0^{-}} f(x)=0$
B. $\lim _{x \rightarrow 0^{+}} f(x)=1$
C. $f(x)$ is discontinuous at $x=0$
D. $f(x)$ is continuous at $x=0$

Answer: C

D Watch Video Solution

3. If $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-(a+2) x+2 a}{x-2}, & x \neq 2 \\ 2, & x=2\end{array}\right.$ is continuous at $\mathrm{x}=2$, then a is equal to
A. 0
B. 1
C. -1
D. 2

Answer: A

- Watch Video Solution

4. If $f(x)=\left\{\begin{array}{cl}\frac{\log (1+2 a x)-\log (1-b x)}{x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then k is equal to
A. $2 \mathrm{a}+\mathrm{b}$
B. $2 \mathrm{a}-\mathrm{b}$
C. $b-2 a$
D. $a+b$

Watch Video Solution

5. If $f(x)=\left\{\begin{array}{cc}{[x]+[-x],} & x \neq 2 \\ \lambda, & x=2\end{array}\right.$ and f is continuous at $\mathrm{x}=2$, where
[\cdot] denotes greatest integer function, then λ is
A. -1
B. 0
C. 1
D. 2

Answer: A

Watch Video Solution

Exercise For Session 2

1. Let $f(x)=\left\{\begin{array}{ll}-2 \sin x & \text { for }-\pi \leq x \leq-\frac{\pi}{2} \\ a \sin x+b & \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x & \text { for } \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$.

If f is continuous on $[-\pi, \pi$), then find the values of a and b.

- Watch Video Solution

2. Draw the graph of the function $f(x)=x-\left|x-x^{2}\right|,-1 \leq x \leq 1$ and discuss the continuity or discontinuity of f in the interval $-1 \leq x \leq 1$

- Watch Video Solution

3. Discuss the continuity of ' f ' in $[0,2]$, where $f(x)=\left\{\begin{array}{ll}|4 x-5|[x] & \text { for } x>1 \\ {[\cos \pi x]} & \text { for }\end{array}\right.$ x 1 , where [x$]$ is greastest integer not greater than x .

- Watch Video Solution

4. Let $f(x)= \begin{cases}A x-B, & x \leq-1 \\ 2 x^{2}+3 A x+B, & -1<x \leq 1 \\ 4, & x>1\end{cases}$

Statement I $\mathrm{f}(\mathrm{x})$ is continuous at all x , if $A=\frac{3}{4}$.
Statement II Polynomial function is always continuous.
A. Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I
B. Both Statement I and Statement are correct but Statement II is not the correct explanation of Statement I
C. Statement I is correct but Statement II is incorrect
D. Statement II is correct but Statement I is incorrect

Answer: D

D Watch Video Solution

Exercise For Session 3

1. which of the following function(s) not defined at $x=0$ has/have removable discontinuity at $x=0$.
A. $f(x)=\frac{1}{1+2^{\cot x}}$
B. $f(x)=\cos \left(\frac{(|\sin x|)}{x}\right)$
C. $f(x)=\mathrm{x} \sin \frac{\pi}{x}$
D. $f(x)=\frac{1}{\operatorname{In}|x|}$

Answer: B::C::D

- Watch Video Solution

2. Function whose jump (non-negative difference of $L H L$ and $R H L$) of discontinuity is greater than or equal to one. is/are
A. $f(x)= \begin{cases}\frac{\left(e^{1 / x}+1\right)}{e^{1 / x}-1}, & x<0 \\ \frac{(1-\cos x)}{x}, & x>0\end{cases}$
B. $g(x)= \begin{cases}\frac{\left(x^{1 / 3}-1\right)}{x^{1 / 2}-1}, & x>0 \\ \frac{\operatorname{In} \mathrm{x}}{(x-1)}, & \frac{1}{2}<x<1\end{cases}$
C. $u(x)= \begin{cases}\frac{\sin ^{-1} 2 x}{\tan ^{-1} 3 x}, & x \in\left(0, \frac{1}{2}\right] \\ \frac{|\sin x|}{x}, & x<0\end{cases}$
D. $v(x)= \begin{cases}\log _{3}(x+2), & x>2 \\ \log _{1 / 2}\left(x^{2}+5\right), & x<2\end{cases}$

Answer: A::C::D

- Watch Video Solution

3. Consider the piecewise defined function, $\begin{array}{lll}\sqrt{-x} & \text { if } & x<0 \\ 0 & \text { if } & 0 \leq x \leq 4 \text { describe the continuity of this function. } \\ x-4 & \text { if } & x>4\end{array}$.
A. the function is unbounded and therefore cannot be continuous
B. the function is right continuous at $\mathrm{x}=0$
C. the function has a removable discontinuity at 0 and 4, but is continuous on the rest of the real line.
D. the function is continuous on the entire real line
4. If $f(x)=\operatorname{sgn}(\cos 2 x-2 \sin x+3)$, where $\operatorname{sgn}()$ is the signum function, then $f(x)$
A. is continuous over its domain
B. has a missing point discontinuity
C. has isolated point discontinuity
D. has irremovable discontinuity

Answer: C

- Watch Video Solution

5. If $f(x)=\frac{2 \cos x-\sin 2 x}{(\pi-2 x)^{2}}, g(x)=\frac{e^{-\cos x}-1}{8 x-4 \pi}$
$h(x)=f(x)$ for $x<\frac{\pi}{2}$
$h(x)=g(x)$ for $x>\frac{\pi}{2}$ then which of the following holds?
A. h is not differentiable at $x=\pi / 2$
B. h has an irremovable discontinuity at $x=\pi / 2$
C. h has a removable discontinuity at $x=\pi / 2$
D. $f\left(\frac{\pi^{+}}{2}\right)=g\left(\frac{\pi^{-}}{2}\right)$

Answer: A::C::D

- Watch Video Solution

Exercise For Session 4

1. If $f(x)=\frac{1}{x^{2}-17 x+66}$, then $f\left(\frac{2}{x-2}\right)$ is discontinuous at $\mathrm{x}=$
A. 2
B. $\frac{7}{3}$
C. $\frac{24}{11}$
D. 6, 11

D Watch Video Solution

2. Let f be a continuous function on R such that $f\left(\frac{1}{4 n}\right)=\frac{\sin e^{n}}{e^{n^{2}}}+\frac{n^{2}}{n^{2}+1}$ Then the value of $f(0)$ is
A. not unique
B. 1
C. data sufficient to find $f(0)$
D. data insufficient to find $f(0)$

Answer: B::C

D Watch Video Solution

3. $f(x)$ is continuous at $x=0$ then which of the following are always true?
A. A. $\lim _{x \rightarrow 0} f(x)=0$
B. $B . f(x)$ is non coninuous at $x=1$
C. C. $g(x)=x^{2} f(x)$ is continuous $\mathrm{x}=0$
D. D. $\lim _{x \rightarrow 0^{+}}(f(x)-f(0))=0$

Answer: C::D

- Watch Video Solution

4. If $f(x)=\cos \left[\frac{\pi}{x}\right] \cos \left(\frac{\pi}{2}(x-1)\right)$; where $[\mathrm{x}]$ is the greatest integer function of x, then $f(x)$ is continuous at :
A. $x=0$
B. $x=1$
C. $x=2$
D. None of these

Answer: B::C

5. Let $f(x)=[x]$ and $g(x)=\left\{0, x \in Z x^{2}, x \in R-Z\right.$ then (where [.]denotest greatest integer funtion)
A. $\lim _{x \rightarrow 1} g(x)$ exists, but $\mathrm{g}(\mathrm{x})$ is not continuous at $\mathrm{x}=1$
B. $\lim _{x \rightarrow 1} f(x)$ does not exist and $\mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=1$
C. gof is continuous for all x .
D. fog is continuous for all x .

Answer: A::B::C

- Watch Video Solution

6. Let $f(x)=\left\{\begin{array}{ll}a \sin ^{2 n} x & \text { for } \quad x \geq 0 \text { and } n \rightarrow \infty \\ b \cos ^{2 m} x-1 & \text { for } x<0 \text { and } m \rightarrow \infty\end{array}\right.$ then
A. $f\left(0^{-}\right) \neq f\left(0^{+}\right)$
B. $f\left(0^{+}\right) \neq f(0)$
C. $f\left(0^{-}\right)=f(0)$
D. f is continuous at $x=0$

Answer: A

- Watch Video Solution

7. $\operatorname{Letf}(x)=\lim _{n \rightarrow \infty} \frac{x^{n}-\sin x^{n}}{x^{n}+\sin x^{n}}$ for $x>0, x \neq 1$, and $f(1)=0$ Discuss the continuity at $\mathrm{x}=1$.
A. f is continuous at $x=1$
B. f has a finite discontinuity at $x=1$
C. f has an infinite or oscillatory discontinuity at $x=1$
D. f has a removal type of discontinuity at $x=1$

Answer: B

1.

$$
\text { if } f(x)=\frac{x}{(1+x)}+\frac{x}{(1+x)(1+2 x)}+\frac{x}{(1+2 x)(1+3 x)}+\ldots
$$

infinite terms, Discuss continuity at $x=0$

(Watch Video Solution

2. If $g:[a, b]$ on to $[\mathrm{a}, \mathrm{b}]$ is continous, then show that there is some $c \in[a, b]$ such that $\mathrm{g}(\mathrm{c})=\mathrm{c}$

- Watch Video Solution

3. Find $\frac{d y}{d x}$ if $y=\frac{x}{\cos x}$

- Watch Video Solution

4.

$y_{n}(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots \ldots \cdot \frac{x^{2}}{\left(1+x^{2}\right)^{n-1}}$ and $y(x)=\lim _{n \rightarrow \infty}$
. Discuss the continuity of $y_{n}(x)(n=1,2,3 \ldots n)$ and $y(x)$ at $\mathrm{x}=0$

- Watch Video Solution

Exercise For Session 6

1. If a function $\mathrm{f}(\mathrm{x})$ is defined as $f(x)=\left\{\begin{array}{ll}-x, & x<0 \\ x^{2}, & 0 \leq x \leq 1 \\ x^{2}-x+1, & x>1\end{array}\right.$ then
a. $f(x)$ is differentiable at $x=0$ and $x=1$
b. $f(x)$ is differentiable at $x=0$ but not at $x=1$
c. $f(x)$ is not differentiable at $x=1$ but not at $x=0$
d. $f(x)$ is not differentiable at $x=0$ and $x=1$
A. $f(x)$ is differentiable at $x=0$ and $x=1$
B. $f(x)$ is differentiable at $x=0$ but not at $x=1$
C. $f(x)$ is not differentiable at $x=1$ but not at $x=0$
D. $f(x)$ is not differentiable at $x=0$ and $x=1$

Answer: D

- Watch Video Solution

2. If $f(x)=x^{3} \operatorname{sgn}(\mathrm{x})$, then
A. f is differentiable at $x=0$
B. f is continuous but not differentiable at $x=0$
C. $f^{\prime}\left(0^{-}\right)=1$
D. None of these
A. f is differentiable at $x=0$
B. f is continuous but not differentiable at $x=0$
C. $f^{\prime}\left(0^{-}\right)=1$
D. None of these

- Watch Video Solution

3. Which one of the following functions is continuous everywhere in its domain but has atleast one point where it is not differentiable ?
A. $f(x)=x^{1 / 3}$
B. $f(x)=\frac{|x|}{x}$
C. $f(x)=e^{-x}$
D. $f(x)=\tan x$

Answer: A

- Watch Video Solution

4. If $f(x)=\left\{\begin{array}{ll}x+\{x\}+x \sin \{x\}, & \text { for } x \neq 0 \\ 0, & \text { for } x=0\end{array}\right.$, where $\{x\}$ denotes the fractional part function, then
A. f is continuous and differentiable at $x=0$
B. f is continuous but not differentiable at $x=0$
C. f is continuous and differentiable at $x=2$
D. None of these

Answer: D

D Watch Video Solution

5. If $f(x)=\left\{\begin{array}{cl}x\left(\frac{e^{1 / x}-e^{-1 / x}}{e^{1 / x}+e^{-1 / x}}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$, then at $\mathrm{x}=0 \mathrm{f}(\mathrm{x})$ is
A. differentiable
B. not differentiable
C. $f^{\prime}\left(0^{+}\right)=-1$
D. $f^{\prime}\left(0^{-}\right)=1$

Answer: B

Exercise For Session 7

1. Number of points of non-differerentiable of $f(x)=\sin \pi(x-[x])$ in $(-\pi / 2,[\pi / 2)$. Where [.] denotes the greatest integer function is

- Watch Video Solution

2. Consider the function $f(x)=f(x)= \begin{cases}x-1, & -1 \leq x \leq 0 \\ x^{2}, & 0 \leq x \leq 1\end{cases}$ and

$$
g(x)=\sin x .
$$

If $h_{1}(x)=f(|g(x)|)$

$$
\text { and } \quad h_{2}(x)=|f(g(x))| .
$$

Which of the following is not true about $h_{1}(x)$?
A. $\mathrm{h}(\mathrm{x})$ is continuous for $x \in[-1,1]$
B. $\mathrm{h}(\mathrm{x})$ is differentiable for $x \in[-1,1]$
C. $\mathrm{h}(\mathrm{x})$ is differentiable for $x \in[-1,1]-\{0\}$
D. $\mathrm{h}(\mathrm{x})$ is differentiable for $x \in(-1$,$))\{0\}$

Answer: C

- Watch Video Solution

3. If $f(x)=\left\{\begin{array}{ll}\left|1-4 x^{2}\right|, & 0 \leq x<1 \\ {\left[x^{2}-2 x\right],} & 1 \leq x<2\end{array}\right.$, where [] denotes the greatest integer function, then
A. $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in[0,2)$
B. $\mathrm{f}(\mathrm{x})$ is differentiable for all $x \in[0,2)-\{1\}$
C. $\mathrm{f}(\mathrm{X})$ is differentiable for all $x \in[0,2)-\left\{\frac{1}{2}, 1\right\}$
D. None of these

Answer: C

4. Let $f(x)=\int_{0}^{1}|x-t| t d t$, then
A. $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable for all $x \in R$
B. $\mathrm{f}(\mathrm{x})$ is continuous and differentiable for all $x \in R$
C. $\mathrm{f}(\mathrm{x})$ is continuous for $x \in R-\left\{\frac{1}{2}\right\}$ and $f(x)$ is differentiable for $x \in R-\left\{\frac{1}{4}, \frac{1}{2}\right\}$
D. None of these
A. $\mathrm{f}(\mathrm{x})$ is continuous but not differentiable for all $x \in R$
B. $\mathrm{f}(\mathrm{x})$ is continuous and differentiable for all $x \in R$
C. $\mathrm{f}(\mathrm{x})$ is continuous for $x \in R-\left\{\frac{1}{2}\right\}$ and $f(x)$ is differentiable for $x \in R-\left\{\frac{1}{4}, \frac{1}{2}\right\}$
D. None of these

Answer: B

D Watch Video Solution

5. Let f be a function such that $f(x+y)=f(x)+f(y)$ for all xandyand $f(x)=\left(2 x^{2}+3 x\right) g(x)$ for all x, where $g(x)$ is continuous and $g(0)=3$. Then find $f^{\prime}(x)$.
A. 6
B. 9
C. 8
D. None of these

Answer: B

- Watch Video Solution

6. Find $\frac{d y}{d x}$ if $y=3 x^{3}+e^{7 x}+5$

- Watch Video Solution

7. Let $f: R \rightarrow R$ be a function satisfying $f\left(\frac{x y}{2}\right)=\frac{f(x) \cdot f(y)}{2}, \forall x, y \in R$ and $f(1)=f^{\prime}(1)=\neq 0 . \quad$ Then, $f(x)+f(1-x)$ is (for all non-zero real values of x) a.) constant b.) can't be discussed c.) $x d$.) $\frac{1}{x}$
A. constant
B. can't be discussed
C. x
D. $\frac{1}{x}$

Answer: A

- Watch Video Solution

8. Let $f: R \rightarrow R$ satisfying $f\left(\frac{x+y}{k}\right)=\frac{f(x)+f(y)}{k}(k \neq 0,2)$. Let $f(x)$ be differentiable on R and $f^{\prime}(0)=a$, then determine $f(x)$.
A. A. even function
B. B. neither even nor odd function
C. C. either zero or odd function
D. D. either zero or even function

Answer: C

- Watch Video Solution

9. $\quad f(x)+f(y)=f\left(\frac{x+y}{1-x y}\right) \quad$ for \quad all $x, y \in R . \quad(x y \neq 1)$, and $\lim _{x \rightarrow 0} \frac{f(x)}{x}=2$. Find $f\left(\frac{1}{\sqrt{3}}\right) \operatorname{andf}^{\prime}(1)$.
A. $2 \tan ^{-1} x$
B. $\frac{1}{2} \tan ^{-1} x$
C. $\frac{\pi}{2} \tan ^{-1} x$
D. $2 \pi \tan ^{-1} x$

Answer: A

10.

$f(x)=\sin x$ and $g(\mathrm{x})= \begin{cases}\max \{f(t), 0 \leq x \leq \pi\} & \text { for } 0 \leq x \leq \pi \\ \frac{1-\cos x}{2}, & \text { for } \quad x>\pi\end{cases}$ Then, $g(x)$ is

Watch Video Solution

Exercise Single Option Correct Type Questions

1. If $f(x)=\left\{\begin{array}{ll}\sin \frac{\pi x}{2}, & x<1 \\ {[x],} & x \geq 1\end{array}\right.$, where $[\mathrm{x}]$ denotes the greatest integer function, then
A. $f(x)$ is continuous at $x=1$
B. $f(x)$ is discontinuous at $x=1$
C. $f\left(1^{+}\right)=0$
D. $f\left(1^{-}\right)=-1$

- Watch Video Solution

2. Consider $f(x)=\left\{\begin{array}{ll}\frac{8^{x}-4^{x}-2^{x}+1}{x^{2}}, & x>0 \\ e^{x} \sin x+\pi x+k \log 4, & x<0\end{array}, \mathrm{f}(\mathrm{x})\right.$ is continuous at $x=0$, then k is
A. $\log 4$
B. $\log 2$
C. $(\log 4)(\log 2)$
D. None of these

Answer: C

- Watch Video Solution

3. Let $f(x)=\left\{\begin{array}{ll}\frac{a(1-x \sin x)+b \cos x+5}{x^{2}}, & x<0 \\ 3, & x=0 \\ {\left[1+\left(\frac{c x+d x^{3}}{x^{2}}\right)\right]^{1 / x},} & x>0\end{array}\right.$ If f is continuous at $\mathrm{x}=0$, then
$(a+b+c+d)$ is
A. (a) 5
B. (b) -5
C. (c) $\log 3-5$
D. (d) $5-\log 3$

Answer: C

- Watch Video Solution

4. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\cos ^{-1}(\cot x) & x<\frac{\pi}{2} \\ \pi[x]-1 & x>\frac{\pi}{2}\end{array}\right.$ where [.] represents the greatest function and $\{$.$\} represents the fractional part function. Find the jump of$ discontinuity.
A. 1
B. $\pi / 2$
C. $\frac{\pi}{2}-1$
D. 2

Answer: C

- Watch Video Solution

5. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Then prove that $f(x)=x$ for at least one $0 \leq x \leq 1$.

(Watch Video Solution

6. If $f(x)=\frac{x+1}{x-1}$ and $g(x)=\frac{1}{x-2}$, then $(f \circ g)(\mathrm{x})$ is discontinuous at
A. (a) $x=3$ only
B. (b) $x=2$ only
C. (c) $x=2$ and 3 only
D. (d) $x=1$ only

Answer: C

D Watch Video Solution

7.

Let
$y_{n}(x)=x^{2}+\frac{x^{2}}{1+x^{2}}+\frac{x^{2}}{\left(1+x^{2}\right)^{2}}+\ldots \ldots \frac{x^{2}}{\left(1+x^{2}\right)^{n-1}}$ and $y(x)=\lim _{n \rightarrow \infty}$
. Discuss the continuity of $y_{n}(x)(n=1,2,3 \ldots . n)$ and $y(x)$ at $\mathrm{x}=0$
A. continuous for $x \in R$
B. continuous for $x \in R-\{0\}$
C. continuous for $x \in R-\{1\}$
D. data unsufficient
8. If $g(x)=\frac{1-a^{x}+x a^{x} \log a}{x^{2} \cdot a^{x}}, x<0 \frac{(2 a)^{x}-x \log (2 a)-1}{x^{2}}, x>0$ (where a >0) then find a and $g(0)$ so that $g(x)$ is continuous at $x=0$.
A. (a) $\frac{-1}{\sqrt{2}}$
B. (b) $\frac{1}{\sqrt{2}}$
C. (c) 2
D. (d) -2

Answer: B

- Watch Video Solution

9. Find $\frac{d y}{d x}$ if $y=\frac{\pi}{2}-\sin x$

- Watch Video Solution

10. Find $\frac{d y}{d x}$ if $y=\sin 2 x-x^{3}$

(D) Watch Video Solution

11. Let $f(x)=\left\{\begin{array}{ll}\frac{1}{|x|} & f \text { or }|x| \geq 1 \ldots a x^{2}+b\end{array} \quad f\right.$ or $|x|<1$. If $f(x)$ is continuous and differentiable at any point, then $a=\frac{1}{2}, b=-\frac{3}{2}$ (b) $a=-\frac{1}{2}, b=\frac{3}{2}$ (c) $a=1, b=-1$ (d) none of these
A. $\frac{-1}{2}, \frac{3}{2}$
B. $\frac{1}{2}, \frac{-3}{2}$
C. $\frac{1}{2}, \frac{3}{2}$
D. None of these

Answer: A

- Watch Video Solution

12. If $f(x)=\left\{\begin{array}{ll}A+B x^{2}, & x<1 \\ 3 A x-B+2, & x \geq 1\end{array}\right.$, then A and B , so that $\mathrm{f}(\mathrm{x})$ is differentiabl at $\mathrm{x}=1$, are
A. $-2,3$
B. $2,-3$
C. 2,3
D. $-2,-3$

Answer: C

- Watch Video Solution

13. If $f(x)=\left\{\begin{array}{ll}|x-1|([x]-x), & x \neq 1 \\ 0, & x=1\end{array}\right.$, then
A. A. $f^{\prime}\left(1^{+}\right)=0$
B. B. $f^{\prime}\left(1^{-}\right)=0$
C. C. $f^{\prime}\left(1^{-}\right)=-1$
D. D. $f(x)$ is differentiable at $x=1$

Answer: A
14. If $f(x)=\left\{\begin{array}{ll}{[\cos \pi x],} & x \leq 1 \\ 2\{x\}-1, & x>1\end{array}\right.$, where [.] and \{.\} denotes greatest integer and fractional part of x, then
a. $f^{\prime}\left(1^{-}\right)=2$
b. $f^{\prime}\left(1^{+}\right)=2$
c. $f^{\prime}\left(1^{-}\right)=-2$
d. $f^{\prime}\left(1^{+}\right)=0$
A. $f^{\prime}\left(1^{-}\right)=2$
B. $f^{\prime}\left(1^{+}\right)=2$
C. $f^{\prime}\left(1^{-}\right)=-2$
D. $f^{\prime}\left(1^{+}\right)=0$

Answer: B

- Watch Video Solution

15. If $f(x)=\left\{\begin{array}{ll}x-3, & x<0 \\ x^{2}-3 x+2, & x \geq 0\end{array}\right.$, then $g(x)=f(|x|)$ is
a. $g^{\prime}\left(0^{+}\right)=-3$
b. $g^{\prime}\left(0^{-}\right)=-3$
c. $g^{\prime}\left(0^{+}\right)=g^{\prime}\left(0^{-}\right)$
d. $g(x)$ is not continuous at $x=0$
A. $g^{\prime}\left(0^{+}\right)=-3$
B. $g^{\prime}\left(0^{-}\right)=-3$
C. $g^{\prime}\left(0^{+}\right)=g^{\prime}\left(0^{-}\right)$
D. $g(x)$ is not continuous at $x=0$

Answer: A

- Watch Video Solution

16. Find $\frac{d y}{d x}$ if $y=x \sin x$
17. Let f be differentiable function satisfying $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all $x, y>0$. If $\mathrm{f}^{\prime}(1)=1$, then $\mathrm{f}(\mathrm{x})$ is
A. $2 \log _{e} x$
B. $3 \log _{e} x$
C. $\log _{e} x$
D. $\frac{1}{2} \log _{e} x$

Answer: C

- Watch Video Solution

18. Let $f(x+y)=f(x)+f(y)-2 x y-1$ for all x and y . If $\mathrm{f}^{\prime}(0)$ exists and $f^{\prime}(0)=-\sin \alpha$, then $f\left\{f^{\prime}(0)\right\}$ is
A. -1
B. 0
C. 1

D. 2

Answer: C

- Watch Video Solution

19. A derivable function $f: R^{+} \rightarrow R$ satisfies the condition $f(x)-f(y) \geq \log \left(\frac{x}{y}\right)+x-y, \forall x, y \in R^{+}$. If g denotes the derivative of f, then the value of the sum $\sum_{n=1}^{100} g\left(\frac{1}{n}\right)$ is
A. (a)5050
B. (b) 5510
C. (c) 5150
D. (d) 1550

Answer: C

20. If $\frac{d(f(x))}{d x}=e^{-x} f(x)+e^{x} f(-x)$, then $\mathrm{f}(\mathrm{x})$ is, (given $\mathrm{f}(0)=0$)
a. an even function
b. an odd function
c. neither even nor odd function

d. can't say

A. an even function
B. an odd function
C. neither even nor odd function
D. can't say

Answer: B

- Watch Video Solution

21. Let $f:(0, \infty) \rightarrow R$ be a continuous function such that $f(x)=\int_{0}^{x} t f(t) d t$. If $f\left(x^{2}\right)=x^{4}+x^{5}$, then $\sum_{r=1}^{12} f\left(r^{2}\right)$, is equal to
A. 216
B. 219
C. 222
D. 225

Answer: B

- Watch Video Solution

22. For let $h(x)=\left\{\frac{1}{q}\right.$ if $x=\frac{p}{q}$ and 0 if x is irrational where $p \& q>0$ are relatively prime integers 0 then which one does not hold good?
(a) $\mathrm{h}(\mathrm{x})$ is discontinuous for all x in $(0, \infty)$
(b) $\mathrm{h}(\mathrm{x})$ is continuous for each irrational in $(0, \infty)$
(c) $\mathrm{h}(\mathrm{x})$ is discontinuous for each rational in $(0, \infty)$
(d) $\mathrm{h}(\mathrm{x})$ is not derivable for all x in $(0, \infty)$
A. (a) $h(x)$ is discontinuous for all x in $(0, \infty)$
B. (b) $\mathrm{h}(\mathrm{x})$ is continuous for each irrational in $(0, \infty)$
C. (c) $h(x)$ is discontinuous for each rational in $(0, \infty)$
D. $(\mathrm{d}) \mathrm{h}(\mathrm{x})$ is not derivable for all x in $(0, \infty)$

Answer: B

- Watch Video Solution

23. Let $f(x)=\frac{g(x)}{h(x)}$, where g and h are continuous functions on the open interval (a, b). Which of the following statements is true for $a<x<b$?
A. (a)f is continuous at all x for which $x \neq 0$
B. (b)f is continuous at all x for which $\mathrm{g}(\mathrm{x})=0$
C. (c)f is continuous at all x for which $g(x) \neq 0$
D. (d)f is continuous at all x for which $h(x) \neq 0$

Answer: D

24. Find $\frac{d y}{d x}$ if $y=2 x^{7}$

- Watch Video Solution

25. if $f(x)=\frac{x-e^{x}+\cos 2 x}{x^{2}}, x \neq 0$, is continuous at $x=0$, then
A. $f(0)=\frac{5}{2}$
B. $[f(0)]=-2$
C. $\{f(0)\}=-0.5$
D. $[f(0)] .\{f(0)\}=-1.5$

Answer: D

- Watch Video Solution

26. Consider the function $f(x)=\left\{\begin{array}{lll}x\{x\}+1, & \text { if } 0 \leq x<1 \\ 2-\{x\}, & \text { if } & 1 \leq x \leq 2\end{array}\right.$, where $\{\mathrm{x}\}$ denotes the fractional part function. Which one of the following statements is not correct ?
A. $\lim _{x \rightarrow 1} f(x)$ exists
B. $f(0) \neq f(2)$
C. $\mathrm{f}(\mathrm{x})$ is continuous in $[0,2]$
D. Rolle's theorem is not applicable to $f(x)$ in $[0,2]$

Answer: C

- Watch Video Solution

27. Let $f(x)=\left\{\begin{array}{ll}\frac{2^{x}+2^{3-x}-6}{\sqrt{2^{-x}}-2^{1-x}}, & \text { if } x>2 \\ \frac{x^{2}-4}{x-\sqrt{3 x-2}}, & \text { if } x<2\end{array}\right.$,then
A. (a) $f(2)=8 \Rightarrow f$ is continuous at $\mathrm{x}=2$
B. (b) $f(2)=16 \Rightarrow f$ is continuous at $\mathrm{x}=2$
C. (c) $f\left(2^{-}\right) \neq f\left(2^{+}\right) \Rightarrow f$ is discontinuous
D. (d)f has a removable discontinuity at $\mathrm{x}=2$

Answer: C

- Watch Video Solution

28. Let $[\mathrm{x}]$ denote the integral part of $x \in R$ and $g(x)=x-[x]$. Let $f(x)$ be any continuous function with $f(0)=f(1)$ then the function $h(x)=f(g(x):$
A. has finitely many discontinuities
B. is discontinuous at some $x=c$
C. is continuous on R
D. is a constant function

Answer: C

29. Let f be a differentiable function on the open interval($a, b)$. Which of the following statements must be true?
(i) f is continuous on the closed interval $[a, b]$,
(ii) f is bounded on the open interval (a, b)
(iii) $\mid f a<a 1<b 1<b$, and $f(a 1)<0<f(b 1)$, then there is a number c such that
$\mathrm{a} 1<\mathrm{c}<\mathrm{b}$, and $\mathrm{f}(\mathrm{c})=0$
(a)Only I and II
(b)Only I and III
(c)Only II and III
(d)Only III
A. Only I and II
B. Only I and III
C. Only II and III
D. Only III

Answer: D

30. Number of points where the function
$f(x)=\left(x^{2}-1\right)\left|x^{2}-x-2\right|+\sin (|x|)$ is not differentiable, is:
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

31. Consider function $f: R-\{-1,1\} \rightarrow R . f(x)=\frac{x}{1-|x|}$ Then the incorrect statement is
A. A. it is continuous at the origin
B. B. it is not derivable at the origin
C. C. the range of the function is R
D. D. f is continuous and derivable in its domain

Answer: B

- Watch Video Solution

32. Find $\frac{d y}{d x}$ if $2 y-e^{x}=6$

- Watch Video Solution

33. The total number of points of non-differentiability of $f(x)=\min \left[|\sin x|,|\cos x|, \frac{1}{4}\right] \operatorname{in}(0,2 \pi)$ is
A. 8
B. 9
C. 10
D. 11

Answer: D

- Watch Video Solution

34. The function $f(x)=[x]^{2}-\left[x^{2}\right]$ is discontinuous at (where $[\gamma]$ is the greatest integer less than or equal to γ), is discontinuous at
a. all integers
b. all integers except 0 and 1
c. all integers except 0
d. all integers except 1
A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Answer: D

35. The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|) \quad$ is differentiable not differentiable at (a)-1 (b)0 (c)1 (d)2
A. -1
B. 0
C. 1
D. 2

Answer: D

- Watch Video Solution

36. If $f(x)=\left\{\begin{array}{ll}\frac{1}{e^{1 / x}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ then
A. 0
B. 1
C. -1
D. desn't exist

Answer: A

- Watch Video Solution

37. Given $f(x)=\frac{e^{x}-\cos 2 x-x}{x^{2}}$, for $\mathrm{x} \in R-\{0\}$
$g(x)=\left\{\begin{array}{lll}f(\{x\}), & \text { for } n<x<n+\frac{1}{2} \\ f(1-\{x\}), & \text { for } n+\frac{1}{2} \leq x<n+1, n \in I \\ & \left\{\begin{array}{l}\text { where }\{\mathrm{x}\} \text { denotes } \\ \text { fractional part function }\end{array} \text { then } \mathrm{g}(\mathrm{x}) \text { is }\right.\end{array}\right.$
$\frac{5}{2}$ otherwise,
A. discontinuous at all integral values of x only
B. continuous everywhere except for $x=0$
C. discontinuous at $x=n+\frac{1}{2}, n \in I$ and at some $x \in I$
D. continuous everywhere

Answer: D

38. The function $g(x)=\left\{\begin{array}{ll}x+b, & x<0 \\ \cos x, & x \geq 0\end{array}\right.$ can be made differentiable at x $=0$
A. (a) if b is equal to zero
B. (b) if b is not equal to zero
C. (c) if b takes any real value
D. (d) for no value of b

Answer: D

- Watch Video Solution

39. The graph of function f contains the point $P(1,2)$ and $Q(s, r)$. The equation of the secant line through P and Q is
$y=\left(\frac{s^{2}+2 s-3}{s-1}\right) x-1-s$. The value of $f^{\prime}(1)$, is
A. (a)2
B. (b) 3
C. (c) 4
D. (d)non-existent

Answer: C

- Watch Video Solution

40. Consider $f(x)=\left[\frac{2\left(\sin x-\sin ^{3} x\right)+\left|\sin x-\sin ^{3} x\right|}{2\left(\sin x-\sin ^{3} x\right)-\left|\sin x-\sin ^{3} x\right|}\right], x \neq \frac{\pi}{2}$ for $x \in(0, \pi), f\left(\frac{\pi}{2}\right)=3$ where [] denotes the greatest integer function then,
A. f is continuous and differentiable at $x=\pi / 2$
B. f is continuous but not differentiable at $x=\pi / 2$
C. f is neither continuous nor differentiable at $x=\pi / 2$
D. None of the above

Watch Video Solution

41. If $f(x+y)=f(x)+f(y)+|x| y+x y^{2}, \forall x, y \in R$ and $f^{\prime}(0)=0$, then
A. f need not be differentiable at every non-zero x
B. f is differentiable for all $x \in R$
C. f is twice differentiable at $\mathrm{x}=0$
D. None of the above

Answer: B

- Watch Video Solution

42.

Let
$f(x)=\max \left\{\left|x^{2}-2\right| x| |,|x|\right\}$
and
$g(x)=\min \left\{\left|x^{2}-2\right| x| |,|x|\right\}$ then
A. (a) both $f(x)$ and $g(x)$ are non-differentiable at 5 points
B. (b) $f(x)$ is not differentiable at 5 points whether $g(x)$ is nondifferentiable at 7 points
C. (c) number of points of non-differentiability for $f(x)$ and $g(x)$ are 7 and 5 points, respectively
D. (d) both $f(x)$ and $g(x)$ are non-differentiable at 3 and 5 points, respectively

Answer: B

- Watch Video Solution

43. If $x d y=y(d x+y d y), y>0$ and $y(1)=1$,
then $y(-3)$ is equal to \qquad .

- Watch Video Solution

44. Let $f(x)$ be continuous and differentiable function for all reals and $f(x$ $+y)=f(x)-3 x y+f f(y)$. If $\lim _{h \rightarrow 0} \frac{f(h)}{h}=7$, then the value of $f^{\prime}(x)$ is
A. $-3 x$
B. 7
C. $-3 x+7$
D. $2 f(x)+7$

Answer: C

- Watch Video Solution

45. Let $[\mathrm{x}]$ be the greatest integer function $f(x)=\left(\frac{\sin \left(\frac{1}{4}(\pi[x])\right)}{[x]}\right)$ is
(a)Not continuous at any point
(b)continuous at $x=\frac{3}{2}$
(c)discontinuous at $x=2$
(d)differentiable at $x=\frac{4}{3}$
A. Not continuous at any point
B. Continuous at 3/2
C. Discontinuous at 2
D. Differentiable at 4/3

Answer: C

D Watch Video Solution

46. If $f(x)=\left\{\begin{array}{ll}b\left([x]^{2}+[x]\right)+1, & \text { for } x>-1 \\ \sin (\pi(x+a)), & \text { for } x<-1\end{array}\right.$, where [x] denotes the integral part of x, then for what values of a, b, the function is continuous at $\mathrm{x}=-1$?
A. $a=2 n+(3 / 2), b \in R, n \in I$
B. $a=4 n+2, b \in R, n \in I$
C. $a=4 n+(3 / 2), b \in R^{+}, n \in I$
D. $a=4 n+1, b \in R^{+}, n \in I$

- Watch Video Solution

47. If $f(x)$ and $g(x)$ are non-periodic functions, then $h(x)=f(g(x))$ is
A. is always differentiable at $x=x_{0}$
B. is never differentiable at $x=x_{0}$
C. is differentiable at $x=x_{0}$ when $f\left(x_{0}\right) \neq g\left(x_{0}\right)$
D. cannot be differentiable at $x=x_{0}$, if $f\left(x_{0}\right)=g\left(x_{0}\right)$

Answer: C

- Watch Video Solution

48. Number of points of non-differentiability of the function $g(x)=\left[x^{2}\right]\left\{\cos ^{2} 4 x\right\}+\left\{x^{2}\right\}\left[\cos ^{2} 4 x\right]+x^{2} \sin ^{2} 4 x+\left[x^{2}\right]\left[\cos ^{2} 4 x\right]+$ $\left\{x^{2}\right\}\left\{\cos ^{2} 4 x\right\}$ in $(-50,50)$ where $[x]$ and $\{x\}$ denotes the greatest
integer function and fractional part function of x respectively, is equal to :
a. 98
b. 99
c. 100
d. 0
A. 98
B. 99
C. 100
D. 0

Answer: D

D Watch Video Solution

49. Find $\frac{d y}{d x}$ if $y=x \tan x$
50. If $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)} \forall x, y \in R, y \neq 0$ and $f^{\prime}(x)$ exists for all x , $f(2)=4$. Then, $f(5)$ is
A. 3
B. 5
C. 25
D. None of the above

Answer: C

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. Function whose jump (non-negative difference of LHL and RHL) of discontinuity is greater than or equal to one. Is/are
A. $f(x)= \begin{cases}\frac{e^{1 / x}+1}{e^{1 / x}-1}, & x<0 \\ \frac{1-\cos x}{x}, & x>0\end{cases}$
B. $g(x)= \begin{cases}\frac{x^{1 / 3}-1}{x^{1 / 2}-1}, & x>1 \\ \frac{\log x}{x-1}, & \frac{1}{2}<x<1\end{cases}$
C. $u(x)= \begin{cases}\frac{\sin ^{-1} 2 x}{\tan ^{-1} 3 x}, & x \in\left[0, \frac{1}{2}\right] \\ \frac{|\sin x|}{x}, & x<0\end{cases}$
D. $v(x)= \begin{cases}\log _{3}(x+2), & x>2 \\ \log _{1 / 2}\left(x^{2}+5\right), & x<2\end{cases}$

Answer: A::C

- Watch Video Solution

2. Indicate all correct alternatives: if $f(x)=\frac{x}{2}-1$, then on the interval $[0, \pi]$:
A. (a) $\tan (f(x))$ and $\frac{1}{f(x)}$ are both continuous
B. (b) $\tan (f(x))$ and $\frac{1}{f(x)}$ are both discontinuous
C. (c) $\tan (f(x))$ and $f^{-1}(x)$ are both continuous
D. (d) $\tan (f(x))$ is continuous but $\frac{1}{f(x)}$ is not continuous
3. On the interval $I=[-2,2]$, the function
$f(x)= \begin{cases}(x+1) e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)} & x \neq 0 \\ 0 & x=0\end{cases}$
A. $\mathrm{f}(\mathrm{x})$ is continuous for all values of $x \in I$
B. $\mathrm{f}(\mathrm{x})$ is continuous for $x \in I-\{0\}$
C. $f(x)$ assumes all intermediate values from $f(-2)$ to $f(2)$
D. $f(x)$ has a maximum value equal to $3 / e$

Answer: B::C::D

- Watch Video Solution

4. Given $f(x)=\left\{\begin{array}{ll}3-\left[\cot ^{-1}\left(\frac{2 x^{3}-3}{x^{2}}\right)\right] & x>0 \\ \left\{x^{2}\right\} \cos \left(e^{\frac{1}{x}}\right) & x<0\end{array}\right.$ (where $\{ \}$ and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good?
A. $f\left(0^{0-}\right)=0$
B. $f\left(0^{+}\right)=0$
C. $f(0)=0 \Rightarrow$ Continuous at $\mathrm{x}=0$
D. Irremovable discontinuity at $x=0$

Answer: A::B::C

D Watch Video Solution

5. If $f(x)=\left\{\begin{array}{ll}b\left([x]^{2}+[x]\right)+1, & \text { for } x>-1 \\ \sin (\pi(x+a)), & \text { for } x<-1\end{array}\right.$, where $[\mathrm{x}]$ denotes the integral part of x, then for what values of a, b, the function is continuous at $x=-1$?
A. $a=2 n+\frac{3}{2}, b \in R, n \in I$
B. $a=4 n+2, b \in R, n \in I$
C. $a=4 n+\frac{3}{2}, b \in R^{+}, n \in I$
D. $a=4 n+1, b \in R^{+}, n \in I$

- Watch Video Solution

6. Find $\frac{d y}{d x}$ if $y=\frac{x}{\tan x}$

- Watch Video Solution

7. If $f(x)=|x+1|(|x|+|x-1|)$, then at what point(s) is the function not differentiable over the interval $[-2,2]$?
a. -1
b. 0
c. 1
d. $1 / 2$
A. (a) -1
B. (b) 0
C. (c) 1
D. (d) $\frac{1}{2}$

Answer: A::B::C

- Watch Video Solution

8. Let $[\mathrm{x}]$ be the greatest integer function $f(x)=\left(\frac{\sin \left(\frac{1}{4}(\pi[x])\right)}{[x]}\right)$ is
(a)Not continuous at any point
(b)continuous at $x=\frac{3}{2}$
(c)discontinuous at $\mathrm{x}=2$
(d)differentiable at $x=\frac{4}{3}$
A. (a)Not continuous at any point
B. (b)continuous at $x=\frac{3}{2}$
C. (c)discontinuous at $\mathrm{x}=2$
D. (d)differentiable at $x=\frac{4}{3}$

Watch Video Solution

9. If $f(x)=\left\{\begin{array}{ll}\left(\sin ^{-1} x\right)^{2} \cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ then $\mathrm{f}(\mathrm{x})$ is
a. continuous nowhere in $-1 \leq x \leq 1$
b. continuous everywhere in $-1 \leq x \leq 1$
c. differentiable nowhere in $-1 \leq x \leq 1$
d. differentiable everywhere in $-1 \leq x \leq 1$
A. continuous nowhere in $-1 \leq x \leq 1$
B. continuous everywhere in $-1 \leq x \leq 1$
C. differentiable nowhere in $-1 \leq x \leq 1$
D. differentiable everywhere in $-1 \leq x \leq 1$

Answer: B::D

- Watch Video Solution

10. $f(x)=\cos x$ and $H(x)= \begin{cases}\min \{f(t), 0 \leq t<x\} & 0 \leq x \leq \frac{\pi}{2} \\ \frac{\pi}{2}-x & \frac{\pi}{2}<x \leq 3\end{cases}$ then
A. $H(x)$ is continuous and derivable in $[0,3]$
B. $\mathrm{H}(\mathrm{x})$ is continuous but not derivable at $x=\frac{\pi}{2}$
C. $\mathrm{H}(\mathrm{x})$ is neither continuous nor derivable at $x=\frac{\pi}{2}$
D. maximum value of $H(x)$ in $[0,3]$ is 1

Answer: A::D

- Watch Video Solution

11. If $f(x)=3(2 x+3)^{2 / 3}+2 x+3$, then:
(a) $f(x)$ is continuous but not differentiable at $x=-\frac{3}{2}$
(b) $f(x)$ is differentiable at $x=0$
(c) $f(x)$ is continuous at $x=0$
(d) $f(x)$ is differentiable but not continuous at $x=-\frac{3}{2}$
A. (a) $f(x)$ is continuous but not differentiable at $x=-\frac{3}{2}$
B. (b) $f(x)$ is differentiable at $x=0$
C. (c) $f(x)$ is continuous at $x=0$
D. (d) $f(x)$ is differentiable but not continuous at $x=-\frac{3}{2}$

Answer: A::B::C

- Watch Video Solution

12. If $f(x)=\left\{\left(-x=\frac{\pi}{2}, x \leq-\frac{\pi}{2}\right),\left(-\cos x,-\frac{\pi}{2}<x, \leq 0\right)\right.$, $x-1,0$ It x le 1),("in" x, x gt1): \}
A. $\mathrm{f}(\mathrm{x})$ is continuous at $x=-\frac{\pi}{2}$
B. $f(x)$ is not differentiable at $x=0$
C. $f(x)$ is differentiable at $x=1$
D. All of the above
13. if $f(x)= \begin{cases}\frac{x \log \cos x}{\log \left(1+x^{2}\right)} & x \neq 0 \\ 0 & x=0\end{cases}$
a. f is continuous at $x=0$
b. f is continuous at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=0$
c. f is differentiable at $x=0$
d. f is not continuous at $x=0$
A. f is continuous at $x=0$
B. f is continuous at $x=0$ but not differentiable at $x=0$
C. f is differentiable at $\mathrm{x}=0$
D. f is not continuous at $\mathrm{x}=0$

Answer: A:C

- Watch Video Solution

14. Let $[x]$ denote the greatest integer less that or equal to x. If $f(x)=[x \sin \pi x]$, then $\mathrm{f}(\mathrm{x})$ is
(a) Continuous at $\mathrm{x}=0$
(b) Continuous in ($-1,0$)
(c) Differentiable at $\mathrm{x}=1$
(d) Differentiable in $(-1,1)$
A. continuous at $\mathrm{x}=0$
B. continuous in ($-1,0$)
C. differentiable at $\mathrm{x}=1$
D. differentiable in ($-1,1$)

Answer: A::B::C

- Watch Video Solution

15. The function $f(x)=x-[x]$, where [•] denotes the greatest integer function is
(a) continuous everywhere
(b) continuous at integer points only
(c) continuous at non-integer points only
(d) differentiable everywhere
A. is continuous for all positive integers
B. is discontinuous for all non-positive integers
C. has finite number of elements in its range
D. is such that its graph does not lie above the X-axis

Answer: A::B::C::D

- Watch Video Solution

16. The function $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$
a. has its domain $-1 \leq x \leq 1$
b. has finite one sided derivates at the point $x=0$
c. is continuous and differentiable at $x=0$
d. is continuous but not differentiable at $x=0$
A. has its domain $-1 \leq x \leq 1$
B. has finite one sided derivates at the point $x=0$
C. is continuous and differentiable at $x=0$
D. is continuous but not differentiable at $x=0$

Answer: A::B::D

- Watch Video Solution

17. Consider the function $f(x)=\left|x^{3}+1\right|$. Then,
A. domain of $\mathrm{f} x \in R$
B. range of f is R^{+}
C. f has no inverse
D. f is continuous and differentiable for every $x \in R$

Answer: A::B::C

18. f is a continuous function in $[a, b] ; g$ is a continuous function in $[b, c]$. A function $h(x)$ is defined as $h(x)=f(x)$ for $x \in[a, b)=g(x)$ for $x \in(b, c]$. If $f(b)=g(b)$, then
A. $h(x)$ has a removable discontinuity at $x=b$
B. $\mathrm{h}(\mathrm{x})$ may or may not be continuous in $[\mathrm{a}, \mathrm{c}]$
C. $h\left(b^{-}\right)=g\left(b^{+}\right)=f\left(b^{-}\right)$
D. $h\left(b^{+}\right)=g\left(b^{+}\right)=f\left(b^{+}\right)$

Answer: A: B

- Watch Video Solution

19. Which of the following function(s) has/have the same range ?
A. A. $f(x)=\frac{1}{1+x}$
B. B. $f(x)=\frac{1}{1+x^{2}}$
C. C. $f(x)=\frac{1}{1+\sqrt{x}}$
D. D. $f(x)=\frac{1}{\sqrt{3-x}}$

Answer: B::C

- Watch Video Solution

20. If $f(x)=\sec 2 x+\operatorname{cosec} 2 x$, then $f(x)$ is discontinuous at all points in
A. A. $\{n \pi, n \in N\}$
B. B. $\left\{(2 n \pm 1) \frac{\pi}{4}, n \in I\right\}$
C. C. $\left\{\frac{n \pi}{4}, n \in I\right\}$
D. D. $\left\{(2 n \pm 1) \frac{\pi}{8}, n \in I\right\}$

Answer: A::B::C

21. Show that $f(x)=\left\{\begin{array}{ll}\mathrm{x} \sin \frac{1}{x}, & \text { when } x \neq 0 \\ 0, & \text { when } x=0\end{array}\right.$ is continuous but not differentiable at $\mathrm{x}=0$
A. $\lim _{x \rightarrow 0} f(x)$ exists for every $n>1$
B. f is continuous at $\mathrm{x}=0$ for $n>1$
C. f is differentiable at $\mathrm{x}=0$ for every $n>1$
D. None of the above

Answer: A::B::C

- Watch Video Solution

22. A function is defined as $f(x)=\left\{\begin{array}{ll}e^{x}, & x \leq 0 \\ |x-1|, & x>0\end{array}\right.$, then $\mathrm{f}(\mathrm{x})$ is
A. A. continuous at $x=0$
B. B. continuous at $x=1$
C. C. differentiable at $x=0$
D. D. differentiable at $x=1$

Answer: A::B

- Watch Video Solution

23. Let $f(x)=\int_{-2}^{x}|t+1| d t$, then
a. $f(x)$ is continuous in $[-1,1]$
b. $f(x)$ is differentiable in $[-1,1]$
c. $f^{\prime}(x)$ is continuous in $[-1,1]$
d. $f^{\prime}(x)$ is differentiable in $[-1,1]$
A. $f(x)$ is continuous in $[-1,1]$
B. $f(x)$ is differentiable in $[-1,1]$
C. $f^{\prime}(x)$ is continuous in $[-1,1]$
D. $f^{\prime}(x)$ is differentiable in $[-1,1]$

Answer: A::B::C::D

24. A function $f(x)$ satisfies the relation
$f(x+y)=f(x)+f(y)+x y(x+y), \forall x, y \in R$. If $\mathrm{f}^{\prime}(0)=-1$, then
A. $\mathrm{f}(\mathrm{x})$ is a polynomial function
B. $f(x)$ is an exponential function
C. $\mathrm{f}(\mathrm{x})$ is twice differentiable for all $x \in R$
D. $f^{\prime}(3)=8$

Answer: A::C::D

- Watch Video Solution

25. Show that the function
$f(x)=\left\{\begin{array}{cc}3 x^{2}+12 x-1 & -1 \leq x \leq 2 \\ 37-x & 2<x \leq 3\end{array}\right.$ is continuous at $\mathrm{x}=2$
A. $f(x)$ is increasing on $[-1,2]$
B. $f(x)$ is continuous on $[-1,3]$
C. $f^{\prime}(2)$ doesn't exist
D. $\mathrm{f}(\mathrm{x})$ has the maximum value at $\mathrm{x}=2$

Answer: A::B::D

- Watch Video Solution

26. If $\mathrm{f}(\mathrm{x})=0$ for $x<0$ and $f(x)$ is differentiable at $\mathrm{x}=0$, then for $x>0, f(x)$ may be
A. A. x^{2}
B. B. x
C. C. $-x$
D. D. $-x^{3 / 2}$

Answer: A::D

1. Statement I $f(x)=\sin x+[x]$ is discontinuous at $\mathrm{x}=0$.

Statement II If $g(x)$ is continuous and $f(x)$ is discontinuous, then $g(x)+f(x)$ will necessarily be discontinuous at $\mathrm{x}=\mathrm{a}$.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

2. Consider $f(x)= \begin{cases}2 \sin \left(a \cos ^{-1} x\right), & \text { if } x \in(0,1) \\ \sqrt{3}, & \text { if } x=0 \\ a x+b, & \text { if } x<0\end{cases}$

Statement I If $\mathrm{b}=\sqrt{3}$ and $a=\frac{2}{3}$, then $\mathrm{f}(\mathrm{x})$ is continuous in $(-\infty, 1)$.
Statement II If a function is defined on an interval I and limit exists at every point of interval I, then function is continuous in I.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: C

- Watch Video Solution

3. Let $f(x)=\left\{\begin{array}{ll}\frac{\cos x-e^{x^{2} / 2}}{x^{3}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$, then

Statement $\mathrm{If}(\mathrm{x})$ is continuous at $\mathrm{x}=0$.
Statement II $\lim _{x \rightarrow 0} \frac{\cos x-e^{x^{2} / 2}}{x^{3}}=-\frac{1}{12}$
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

4. Statement । The equation $\frac{x^{3}}{4}-\sin \pi x+\frac{2}{3}=0$ has atleast one solution in [-2, 2].

Statement II Let $f:[a, b] \rightarrow R$ be a function and c be a number such that $f(a)<c<f(b)$, then there is atleast one number $n \in(a, b)$ such that $f(n)=c$.
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

5. Statement I Range of $f(x)=x\left(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\right)+x^{2}+x^{4}$ is not R .

Statement II Range of a continuous evern function cannot be R.
A. (a)Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. (b)Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. (c)Statement I is correct, Statement II is incorrect
D. (d)Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

6. Let $f(x)= \begin{cases}A x-B & x \leq 1 \\ 2 x^{2}+3 A x+B & x \in(-1,1] \\ 4 & x>1\end{cases}$

Statement $\mathrm{I} \mathrm{f}(\mathrm{x})$ is continuous at all x if $A=\frac{3}{4}, B=-\frac{1}{4}$. Because
Statement II Polynomial function is always continuous.
A. Statement I is correct, Statement II is also correct, Statement II is
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: B

- Watch Video Solution

7. If $y=3 x^{4}+5$ then $\frac{d y}{d x}$

- Watch Video Solution

8. Statement $\mathrm{If}(\mathrm{x})=|\mathrm{x}| \sin \mathrm{x}$ is differentiable at $\mathrm{x}=0$.

Statement II If $\mathrm{g}(\mathrm{x})$ is not differentiable at $\mathrm{x}=\mathrm{a}$ and $\mathrm{h}(\mathrm{x})$ is differentiable at $\mathrm{x}=\mathrm{a}$, then $\mathrm{g}(\mathrm{x}) . \mathrm{h}(\mathrm{x})$ cannot be differentiable at $\mathrm{x}=\mathrm{a}$
A. A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. C. Statement I is correct, Statement II is incorrect
D. D. Statement I is incorrect, Statement II is correct.

Answer: C

- Watch Video Solution

9. If $y=2 x^{6}+\sin 3 x$ then $\frac{d y}{d x}$

- Watch Video Solution

10. Let $\mathrm{f}(\mathrm{x})=x-x^{2}$ and $g(x)=\{x\}, \forall x \in R$ where denotes fractional part function.

Statement I $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ will be continuous, $\forall x \in R$.
Statement II $f(0)=f(1)$ and $g(x)$ is periodic with period 1 .
A. Statement I is correct, Statement II is also correct, Statement II is the correct explanation of Statement I
B. Statement I is correct, Statement II is also correct, Statement II is not the correct explanation of Statement I
C. Statement I is correct, Statement II is incorrect
D. Statement I is incorrect, Statement II is correct.

Answer: A

- Watch Video Solution

11. Find $\frac{d y}{d x}$ if $y=a x^{2}$

- Watch Video Solution

1. A man leaves his home early in the morning to have a walk. He arrives at a junction of roads A and B as shown in figure. He takes the following steps in later journies:

(i) 1 km in North direction.
(ii) Changes direction and moves in North-East direction for $2 \sqrt{2} \mathrm{~km}$.
(iii) Changes direction and moves Southwards for distance of 2 km .
(iv) Finally he changes the direction and moves in South-East direction to reach road A again.

Now if roads A and B are taken as X-axis and y-axis, then visible point
representing the graph of $y=f(x)$
Then the value of x at which function $f(x)$ is discontinous
A. (a) 2
B. (b) 3
C. (c) 19
D. (d) None of these

Answer: A

- Watch Video Solution

2. A man leaves his home early in the morning to have a walk. He arrives at a junction of roads A and B as shown in figure. He takes the following steps in later journies :

(i) 1 km in North direction.
(ii) Changes direction and moves in North-East direction for $2 \sqrt{2} \mathrm{~km}$.
(iii) Changes direction and moves Southwards for distance of 2 km .
(iv) Finally he changes the direction and moves in South-East direction to reach road A again.

Now if roads A and B are taken as X-asix and Y-axis, then visible point representing the graph of $y=f(x)$.

Then the value of x at which function $f(x)$ is discontionous
A. 0
B. 2
C. 3
D. 19

Answer: B::C

- Watch Video Solution

3. A man leaves his home early in the morning to have a walk. He arrives at a junction of roads A and B as shown in figure. He takes the following steps in later journies :

(i) 1 km in North direction.
(ii) Changes direction and moves in North-East direction for $2 \sqrt{2} \mathrm{~km}$.
(iii) Changes direction and moves Southwards for distance of 2 km .
(iv) Finally he changes the direction and moves in South-East direction to reach road A again.

Now if roads A and B are taken as X-asix and Y-axis, then visible point representing the graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$.

Then the value of x at which function $\mathrm{f}(\mathrm{x})$ is discontionous
A. 1
B. 2
C. 19
D. None of these

Answer: A

- Watch Video Solution

1. Let f be a function that is differentiable everywhere and that has the follwong properties:
(i) $f(x)>0$
(ii) $f^{\prime}(0)=-1$
(iii) $f(-x)=\frac{1}{f(x)}$ and $f(x+h)=f(x) \cdot f(h)$

A standard result is $\frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$
The range fo the function $\Delta=f(|x|)$ is
A. R
B. $R-\{0\}$
C. R^{+}
D. $(0, \mathrm{e})$

Answer: C

2. Let f be a function that is differentiable everywhere and that has the follwong properties :
(i) $f(x)>0$
(ii) $f^{\prime}(0)=-1$
(iii) $f(-x)=\frac{1}{f(x)}$ and $f(x+h)=f(x) . f(h)$

A standard result is $\frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$
Range of $f(x)$ is

- Watch Video Solution

3. Let f be a function that is differentiable everywhere and that has the follwong properties:
(i) $f(x)>0$
(ii) $f^{\prime}(0)=-1$
(iii) $f(-x)=\frac{1}{f(x)}$ and $f(x+h)=f(x) \cdot f(h)$

A standard result is $\frac{f^{\prime}(x)}{f(x)} d x=\log |f(x)|+C$
The range fo the function $\Delta=f(|x|)$ is
A. odd
B. even
C. increasing
D. decreasing

Answer: D

- Watch Video Solution

4. Find $\frac{d y}{d x}$ if $y=\frac{\cos x}{x}$

(Watch Video Solution

5. Let $y=f(x)$ be defined in $[a, b]$, then
(i) Test of continuity at $x=c, a<c<b$
(ii) Test of continuity at $x=a$
(iii) Test of continuity at $\mathrm{x}=\mathrm{b}$

Case I Test of continuity at $x=c, a<c<b$

If $y=f(x)$ be defined at $x=c$ and its value $f(c)$ be equal to limit of $f(x)$ as
$x \rightarrow c$ i.e. $\mathrm{f}(\mathrm{c})=\lim _{x \rightarrow c} f(x)$
or $\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)$
or $\mathrm{LHL}=\mathrm{f}(\mathrm{c})=\mathrm{RHL}$
then, $y=f(x)$ is continuous at $x=c$.
Case II Test of continuity at $\mathrm{x}=\mathrm{a}$
If $\mathrm{RHL}=\mathrm{f}(\mathrm{a})$
Then, $f(x)$ is said to be continuous at the end point $x=a$
Case III Test of continuity at $x=b$, if $\operatorname{LHL}=f(b)$
Then, $f(x)$ is continuous at right end $x=b$.
$\operatorname{Max}([\mathrm{x}],|\mathrm{x}|)$ is discontinuous at
A. $\frac{\pi}{2}, \frac{3 \pi}{2}, 2 \pi, 3 \pi$
B. $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 3 \pi$
C. $\frac{\pi}{2}, 2 \pi$
D. None of these

Answer: A

6. Let $y=f(x)$ be defined in [a, $b]$, then
(i) Test of continuity at $x=c, a<c<b$
(ii) Test of continuity at $\mathrm{x}=\mathrm{a}$
(iii) Test of continuity at $\mathrm{x}=\mathrm{b}$

Case I Test of continuity at $x=c, a<c<b$
If $y=f(x)$ be defined at $x=c$ and its value $f(c)$ be equal to limit of $f(x)$ as
$x \rightarrow c$ i.e. $\mathrm{f}(\mathrm{c})=\lim _{x \rightarrow c} f(x)$
or $\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)$
or $L H L=f(c)=R H L$
then, $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{c}$.
Case II Test of continuity at $x=a$
If $\mathrm{RHL}=f(a)$
Then, $f(x)$ is said to be continuous at the end point $x=a$
Case III Test of continuity at $x=b$, if $\mathrm{LHL}=f(b)$
Then, $\mathrm{f}(\mathrm{x})$ is continuous at right end $\mathrm{x}=\mathrm{b}$.
Number of points of discontinuity of $\left[2 x^{3}-5\right]$ in $[1,2$) is (where [.] denotes the greatest integral function.)
A. 14
B. 13
C. 10
D. None of these

Answer: B

- Watch Video Solution

7. Let $y=f(x)$ be defined in $[a, b]$, then
(i) Test of continuity at $x=c, a<c<b$
(ii) Test of continuity at $\mathrm{x}=\mathrm{a}$
(iii) Test of continuity at $\mathrm{x}=\mathrm{b}$

Case I Test of continuity at $x=c, a<c<b$
If $y=f(x)$ be defined at $x=c$ and its value $f(c)$ be equal to limit of $f(x)$ as

$$
x \rightarrow c \text { i.e. } \mathrm{f}(\mathrm{c})=\lim _{x \rightarrow c} f(x)
$$

or $\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)$
or LHL $=f(\mathrm{c})=$ RHL
then, $y=f(x)$ is continuous at $x=c$.

Case II Test of continuity at $x=a$
If $\mathrm{RHL}=\mathrm{f}(\mathrm{a})$

Then, $\mathrm{f}(\mathrm{x})$ is said to be continuous at the end point $\mathrm{x}=\mathrm{a}$

Case III Test of continuity at $x=b$, if LHL $=f(b)$
Then, $f(x)$ is continuous at right end $x=b$.
$\operatorname{Max}([x],|x|)$ is discontinuous at
A. $x=0$
B. ϕ
C. $x=n, n \in I$
D. None of these

Answer: B

(Watch Video Solution

8. Find $\frac{d y}{d x}$ if $x=\cos y$
9.

$\left(f(x)=\cos x\right.$ and $\left.H_{1}(x)=\min \{f(t), 0 \leq t<x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$
$\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}-x, \frac{\pi}{2}<x \leq \pi\right),\left(g(x)=\sin x\right.$ and $H_{3}(x)=\min \{$.
$\left(g(x)=\sin x\right.$ and $\left.H_{4}(x)=\max \{g(t), 0 \leq t \leq x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$

Which of the following is true for $H_{1}(x)$?
A. Continuous and derivable in $[0, \pi]$
B. Continuous but not derivable at $x=\frac{\pi}{2}$
C. Neither continuous nor derivable at $x=\frac{\pi}{2}$
D. None of the above

Answer: B

- Watch Video Solution

10.

$\left(f(x)=\cos x\right.$ and $\left.H_{1}(x)=\min \{f(t), 0 \leq t<x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$
$\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}-x, \frac{\pi}{2}<x \leq \pi\right),\left(g(x)=\sin x\right.$ and $H_{3}(x)=\min \{$.
$\left(g(x)=\sin x\right.$ and $\left.H_{4}(x)=\max \{g(t), 0 \leq t \leq x\},\right),\left(0 \leq x \leq \frac{\pi}{2}=\frac{\pi}{2}\right.$

Which of the following is true for $H_{1}(x)$?
A. Continuous and derivable in $[0, \pi]$
B. Continuous but not derivable at $x=\frac{\pi}{2}$
C. Neither continuous nor derivable at $x=\frac{\pi}{2}$
D. None of the above

Answer: C

- Watch Video Solution

11. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions
I. $\quad f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The value of $f(1)$, is
A. (a) 0
B. (b) 1
C. (c) 2
D. (d)Not defined

Answer: B

- Watch Video Solution

12. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions

।. $\quad f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The value of $f(x)$, is
A. $2 x$
B. $x^{2}+x+1$
C. x
D. None of these

Answer: C

- Watch Video Solution

13. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions
I. $\quad f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The value of $f^{\prime}(10)$, is
A. 10
B. 0
C. $2 \mathrm{n}+1$
D. 1

Answer:

D Watch Video Solution

14. Let $f(x)$ be a real valued function not identically zero, which satisfied the following conditions
I. $\quad f\left(x+y^{2 n+1}\right)=f(x)+(f(y))^{2 n+1}, n \in N, x, y \quad$ are any real numbers.
II. $f^{\prime}(0) \geq 0$

The value of $f(x)$, is
A. odd
B. even
C. neither even nor odd
D. both even as well as odd

Watch Video Solution
15. Find $\frac{d y}{d x}$ if $x=y \sin x$

- Watch Video Solution

16. Find $\frac{d y}{d x}$ if $y=x^{4}-x^{7}$

- Watch Video Solution

Exercise 5

1. Find $\frac{d y}{d x}$ if $y=2 x-3$

D Watch Video Solution

2. Find $\frac{d y}{d x}$ if $x-a y=b x^{2}$

- Watch Video Solution

3. Find $\frac{d y}{d x}$ if $10 x-4 y=\sin y$

- Watch Video Solution

Exercise Single Integer Answer Type Questions

1. Number of points of discontinuity of $f(x)=\tan ^{2} x-\sec ^{2} x$ in $(0,2 \pi)$ is

- Watch Video Solution

2. Number of points of discontinuity of the function $f(x)=\left[x^{\frac{1}{x}}\right], x>0$, where [.] represents GIF is
3. Let $f(x)=x+\cos x+2$ and $g(x)$ be the inverse function of $\mathrm{f}(\mathrm{x})$, then $g^{\prime}(3)$ equals to \qquad

- Watch Video Solution

4. Let $f(x)=x \tan ^{-1}\left(x^{2}\right)$ then find the $f^{\prime}(x)$

- Watch Video Solution

5. Let $f_{1}(x)$ and $f_{2}(x)$ be twice differentiable functions where $F(x)=f_{1}(x)+f_{2}(x)$ and $G(x)=f_{1}(x)-f_{2}(x), \forall x \in R, f_{1}(0)=2$ an then the number of solutions of the equation $(F(x))^{2}=\frac{9 x^{4}}{G(x)}$ is...... .

- Watch Video Solution

6. Suppose, the function $f(x)-f(2 x)$ has the derivative 5 at $x=1$ and derivative 7 at $x=2$. The derivative of the function $f(x)-f(4 x)$ at $x=1$, has the value $10+\lambda$, then the value of λ is equal to........

- Watch Video Solution

7. If $y=\sin 7 x+\cos 5 x+e^{x}$ then $\frac{d y}{d x}$

- Watch Video Solution

8. Let $f(x)=x^{3}-x^{2}+x+1$ and
$g(x)=\left\{\begin{array}{cl}\max f(t), & 0 \leq t \leq x \\ 3-x, & 1<x \leq 2\end{array}\right.$ for $0 \leq x \leq 1$ Then, $\mathrm{g}(\mathrm{x})$ in $[0,2]$ is
a. continuous for $x \in[0,2]-\{1\}$
b. continuous for $x \in[0,2]$
c. differentiable for all $x \in[0,2]$
d. differentiable for all $x \in[0,2]-\{1\}$
9. If $f(x)=\left\{\begin{array}{ll}\frac{\frac{\pi}{2}-\sin ^{-1}\left(1-\{x\}^{2}\right) \sin ^{-1}(1-\{x\})}{\sqrt{2}\left(\{x\}-\{x\}^{3}\right)}, & x>0 \\ k, & x=0 \\ \frac{A \sin ^{-1}(1-\{x\}) \cos ^{-1}(1-\{x\})}{\sqrt{2\{x\}}(1-\{x\})}, & x<0\end{array}\right.$ is continuous at
$\mathrm{x}=0$, then the value of $\sin ^{2} k+\cos ^{2}\left(\frac{A \pi}{\sqrt{2}}\right)$, is..... (where $\{$.$\} denotes$ fractional part of x).

- Watch Video Solution

Exercise 6

1. In a $\Delta A B C$, angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are in AP . If $f(x)=\lim _{A \rightarrow c} \frac{\sqrt{3-4 \sin A \sin C}}{|A-C|}$, then $\mathrm{f}(\mathrm{x})$ is equal to

- Watch Video Solution

2. The number of points at which the function $f(x)=(x-|x|)^{2}(1-x+|x|)^{2}$ is not differentiable in the interval $(-3,4)$ is \qquad

- Watch Video Solution

Exercise Subjective Type Questions

1. Check continuity and differentiabilty of $f(x)=[x]+|1-x|$ where [] denotes the greatest integer function

- Watch Video Solution

2. If $f(x)=\left\{\begin{array}{ll}x[x] & 0 \leq x<2 \\ (x-1)[x] & 2 \leq x<3\end{array}\right.$ where [.] denotes the greatest integer function, then continutity and diffrentiability of $f(x)$

- Watch Video Solution

3. Let f be a twice differentiable function such that $f^{\prime \prime}(x)=-f(x), \operatorname{and} f^{\prime}(x)=g(x), h(x)=[f(x)]^{2}+[g(x)]^{2} . \quad$ Find $h(10)$ if $h(5)=11$

- Watch Video Solution

4. A function $f: R \rightarrow R$ satisfies the equation $f(x+y)=f(x) . f(y)$ for all $x y \in R, f(x) \neq 0$. Suppose that the function is differentiable at $x=0$ and $f^{\prime}(0)=2$, then prove that $f^{\prime}=2 f(x)$.

Watch Video Solution

5. A function $f: R \rightarrow R$ satisfies the relation $f\left(\frac{x+y}{3}\right)=\frac{1}{3}|f(x)+f(y)+f(0)|$ for all $x, y \in R$. If $f^{\prime}(0)$ exists, prove that $f^{\prime}(x)$ exists for all $x, \in R$.

- Watch Video Solution

6. Let $f(x+y)=f(x)+f(y)+2 x y-1$ for all real xandy and $f(x)$ be a differentiable function. If $f^{\prime}(0)=\cos \alpha$, the prove that $f(x)>0 \forall x \in R$.

- Watch Video Solution

Exercise 7

1. Examine the continuity or discontinuity of the following :
(i) $f(x)=[x]+[-x]$
(ii) $g(x)=\lim _{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}$

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. For every pair of continuous function $f, g:[0,1] \rightarrow R$ such that max $\{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$. The correct statement(s)
is (are)
A. $[f(c)]^{2}+3 f(c)=[g(c)]^{2}+3 g(c)$ for some $\mathrm{c} \in[0,1] 1$
B. $[f(c)]^{2}+f(c)=[g(c)]^{2}+3 g(c)$ for some $\mathrm{c} \in[0,1]$
C. $[f(c)]^{2}+3 f(c)=[g(c)]^{2}+g(c)$ for some $\mathrm{c} \in[0,1]$
D. $[f(c)]^{2}=[g(c)]^{2}$ for some $c \in[0,1]$

Answer: A::D

- Watch Video Solution

2. Let $\mathrm{f}: R \rightarrow R$ and $g: R \rightarrow R$ be respectively given by $f(x)=|x|+1$ and $\left.g(x)=x^{2}+1\right)$. Define $h: R \rightarrow R$ by
$h(x)= \begin{cases}\max \{f(x), g(x)\} & \text { if } x \leq 0 \\ \min \{f(x), g(x)\} & \text { if } x>0\end{cases}$
then number of point at which $\mathrm{h}(\mathrm{x})$ is not differentiable is

- Watch Video Solution

3. Let $f(x)=\left\{x^{2}\left|(\cos) \frac{\pi}{x}\right|, x \neq 0\right.$ and $0, x=0, x \in \mathbb{R}$, then f is
a. differentiable both at $\mathrm{x}=0$ and at $\mathrm{x}=2$
b. differentiable at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=2$
c. not differentiable at $\mathrm{x}=0$ but differentiable at $\mathrm{x}=2$
d. differentiable neither at $\mathrm{x}=0$ nor at $\mathrm{x}=2$
A. differentiable both at $\mathrm{x}=0$ and at $\mathrm{x}=2$
B. differentiable at $\mathrm{x}=0$ but not differentiable at $\mathrm{x}=2$
C. not differentiable at $\mathrm{x}=0$ but differentiable at $\mathrm{x}=2$
D. differentiable neither at $\mathrm{x}=0$ nor at $\mathrm{x}=2$

Answer: B

- Watch Video Solution

4. Q . For every integer n , let a_{n} and b_{n} be real numbers. Let function $f: R \rightarrow R$ be given by a $f(x)= \begin{cases}a_{n}+\sin \pi x & f \text { or } x \in[2 n, 2 n+1] \\ b_{n}+\cos \pi x & f \text { or } x \in(2 n+1,2 n)\end{cases}$ for all integers n .
A. $a_{n-1}-b_{n-1}=0$
B. $a_{n}-b_{n}=1$
C. $a_{n}-b_{n+1}=1$
D. $a_{n-1}-b_{n}=-1$

Answer: D

- Watch Video Solution

5. Let $f: R \rightarrow R$ be a function such that
$f(x+y)=f(x)+f(y), \forall x, y \in R$.
a. $f(x)$ is differentiable only in a finite interval containing zero
b. $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R$
c. $\mathrm{f}^{\prime}(\mathrm{x})$ is constant for all $x \in R$
d. $f(x)$ is differentiable except at finitely many points
A. $f(x)$ is differentiable only in a finite interval containing zero
B. $\mathrm{f}(\mathrm{x})$ is continuous for all $x \in R$
C. $\mathrm{f}^{\prime}(\mathrm{x})$ is constant for all $x \in R$
D. $f(x)$ is differentiable except at finitely many points

Answer: B::C

- Watch Video Solution

6. If $f(x)=\left\{\left(-x=\frac{\pi}{2}, x \leq-\frac{\pi}{2}\right),\left(-\cos x,-\frac{\pi}{2}<x, \leq 0\right)\right.$, $(x-$ 1, 0 It x le 1),("in"x, x gt1): \}'
A. $\mathrm{f}(\mathrm{x})$ is continuous at $x=-\frac{\pi}{2}$
B. $f(x)$ is not differentiable at $x=0$
C. $f(x)$ is differentiable $x=1$
D. $\mathrm{f}(\mathrm{x})$ is differentiable at $x=-\frac{3}{2}$

Answer: D

- Watch Video Solution

7. For the function $f(x)=x \cos \frac{1}{x}, x \geq 1$ which one of the following is incorrect ?
A. (a)for atleast one x in the interval $[1, \infty), f(x+2)-f(x)<2$
B. (b) $\lim _{x \rightarrow \infty} f^{\prime}(x)=1$
C. (c)for all x in the interval $[1, \infty), f(x+2)-f(x)>2$
D. (d) $f^{\prime}(x)$ is strictly decreasing in the interval $[1, \infty)$

Answer: C

- Watch Video Solution

8. If $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+x+1}{x+1}-a x-b\right)=4$, then
A. $n=1, m=1$
B. $n=1, m=-1$
C. $n=2, m=2$
D. $n>2, m=n$

D Watch Video Solution

9. Let f and g be real valued functions defined on interval $(-1,1)$ such that

$$
\begin{aligned}
& \text { that } g^{\prime \prime}(x) \quad \text { is } \\
& g^{\prime}(0)=0, g^{\prime \prime}(0)=0 \text { and } f(x)=g(x) \sin x .
\end{aligned}
$$

Statement I $\lim _{x \rightarrow 0}(g(x) \cot x-g(0) \cos e c x)=f^{\prime \prime}(0)$
Statement II $f^{\prime}(0)=g^{\prime}(0)$
A. Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I
B. Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I
C. Statement I is true, Statement II is false
D. Statement I is false, Statement II is true

(D) Watch Video Solution

10. If $f(x)=x-[x]$, where $[x]$ is the greatest integer less than or equal to x, then $f\left(+\frac{1}{2}\right)$ is:

- Watch Video Solution

11. Check the differentiability if $f(x)=\min \cdot\left\{1, x^{2}, x^{3}\right\}$.
A. $f(x)$ is continuous everywhere
B. $f(x)$ is continuous and differentiable everywhere
C. $f(x)$ is not differentiable at two points
D. $\mathrm{f}(\mathrm{x})$ is not differentiable at one point

Answer: A::D

- Watch Video Solution

12. Fill in the blank, in the statement given below.

Let $f(x)=x \mid x$ The set of points where $\mathrm{f}(\mathrm{x})$ is twice differentiable is
A. $0, \pm 1$
B. ± 1
C. 0
D. 1

Answer: A

- Watch Video Solution

13. If is a differentiable function satisfying $f\left(\frac{1}{n}\right)=0, \forall n \geq 1, n \in I$, then
A. (a) $f(x)=0, x \in(0,1]$
B. (b) $f^{\prime}(0)=0=f(0)$
C. $(c) f(0)=0$ but $f^{\prime}(0)$ not necessarily zero
D. (d) $|f(x)| \leq 1, x \in(0,1]$

Answer: B

- Watch Video Solution

14. The domain of the derivative of the function
$f(x)=\left\{\begin{array}{lll}\tan ^{-1} x & \text { if } & |x| \leq 1 \\ \frac{1}{2}(|x|-1) & \text { if }|x|>1\end{array}\right.$
A. (a) $R-\{0\}$
B. (b) $R-\{1\}$
C. (c) $R-\{-1\}$
D. (d) $R-\{-1,1\}$

Answer: D

15. The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $\mathrm{x}=k$ is an integer, is
A. $(-1)^{k}(k-1) \pi$
B. $(-1)^{k-1}(k-1) \pi$
C. $(-1)^{k} k \pi$
D. $(-1)^{k-1} k \pi$

Answer: A

- Watch Video Solution

16. Which of the following functions is differentiable at $\mathrm{x}=0$?
A. (a) $\cos (|x|)+|x|$
B. (b) $\cos (|x|)-|x|$
C. (c) $\sin (|x|)+|x|$
D. (d) $\sin (|x|)-|x|$

- Watch Video Solution

17. For $x \in R, f(x)=\left|\log _{e} 2-\sin x\right|$ and $g(x)=f(f(x))$, then
A. g is not differentiable at $x=0$
B. $g^{\prime}(0)=\cos (\log 2)$
C. $g^{\prime}(0)=-\cos (\log 2)$
D. g is differentiable at $x=0$ and $g^{\prime}(0)=-\sin (\log 2)$

Answer: B

Watch Video Solution

18. If the function $g(X)=\left\{\begin{array}{ll}k \sqrt{x+1} & 0 \leq x \leq 3 \\ m x+2 & 3<x \leq 5\end{array}\right.$ is differentiable, then the value of $K+m$ is
A. 2
B. $\frac{16}{5}$
C. $\frac{10}{3}$
D. 4

Answer: A

- Watch Video Solution

19. If f and g are differentiable functions in $[0,1]$ satisfying $f(0)=2=g(1), g(0)=0$ and $f(1)=6$, then for some $c \in[0,1]$
(1) $2 f^{\prime}(c)=g^{\prime}(c)$
(2) $2 f^{\prime}(c)=3 g^{\prime}(c)$
(3) $f^{\prime}(c)=g^{\prime}(c)$
(4) $f^{\prime}(c)=2 g^{\prime}(c)$
A. $2 f^{\prime}(c)=g^{\prime}(c)$
B. $2 f^{\prime}(c)=3 g^{\prime}(c)$
C. $f^{\prime}(c)=g^{\prime}(c)$
D. $f^{\prime}(c)=2 g^{\prime}(c)$

Answer: D

- Watch Video Solution

20. The function $f(x)=[x] \cos \left(\frac{2 x-1}{2}\right) \pi$ where [] denotes the greatest integer function, is discontinuous
A. continuous for every real x
B. discontinuous only at $x=0$
C. discontinuous only at non-zero integral values of x
D. continuous only at $x=0$

Answer: D

- Watch Video Solution

