©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

ELLIPSE

Examples

1. If $P S Q$ is a focal chord of the ellipse
$16 x^{2}+25 y^{2}=400$ such that $S P=8$, then find
the length of $S Q$ is (a) 2 (b) 1 (c) $\frac{8}{9}$ (d) $\frac{16}{9}$
2. Write the first five terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=n+1$

- Watch Video Solution

3. If the distance between the directrices is thrice
the distance between the foci, then find eccentricity of the ellipse.
4. If $P(x, y)$ is any point on the ellipse $16 x^{2}+25 y^{2}=400$
$f_{1}=(3,0) F_{2}=(-3,0)$, then find the value of $P F_{1}+P F_{2}$.

- Watch Video Solution

5. Find the eccentric angle of a point on the
ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the center of the ellipse is $\sqrt{5}$

Watch Video Solution

6. An ellipse having foci at $(3,3)$ and $(-4,4)$ and passing through the origin has eccentricity equal
to (a) $\frac{3}{7}$ (b) $\frac{2}{7}$ (c) $\frac{5}{7}$ (d) $\frac{3}{5}$

(Watch Video Solution

7. Find the lengths of major and minor axes,the coordinate of foci, vertices and the eccentricity of
the ellipse $3 x^{2}+2 y^{2}=6$. Also the equation of the directries.

D Watch Video Solution

8. Find the equation of the ellipse whose focus is
$(1,-1)$, the corresponding directrix is
$x-y-3=0$, and eccentricity is $\frac{1}{2}$.

- Watch Video Solution

9. If the line $l x+m y+n=0$ cuts the ellipse
$\left(\frac{x^{2}}{a^{2}}\right)+\left(\frac{y^{2}}{b^{2}}\right)=1$ at points whose eccentric
angles differ by $\frac{\pi}{2}$, then find the value of $\frac{a^{2} l^{2}+b^{2} m^{2}}{n^{2}}$.
10. If the chord, joining two points whose eccentric angles are α and β, cuts the major axis ofthe ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at a distance c from the centre, then $\tan \alpha / 2 \cdot \tan \beta / 2$ is equal to

D Watch Video Solution

11. If the angle between the straight lines joining
foci and the ends of minor axis of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{\pi}{2}$ then the eccentricity is

- Watch Video Solution

12. Find the equation of the ellipse refer to its centre whose minor axis is equal to
distance between the foci and latus rectum is 10 .

- Watch Video Solution

13. The ratio of any triangle $P Q R$ inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and that of triangle formed by the corresponding points on the auxilliary circle is $\frac{b}{a}$.

D Watch Video Solution

14. If the extremities of a line segment of length I moves in two fixed perpendicular straight lines, then the locus of the point which divides this line segment in the ratio $1: 2$ is-

- Watch Video Solution

15. Find the lengths of and the equations to the focal radii drawn to the point $(4 \sqrt{3}, 5)$ of the ellipse $25 x^{2}+16 y^{2}=1600$
16. Find the position of the point $(4,-3)$ relative to the ellipse $5 x^{2}+7 y^{2}=140$.

- Watch Video Solution

17. Number of integral values of ' α ' for which the
point $\left(7-\frac{5}{4} \alpha, \alpha\right)$ lies inside the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is

D Watch Video Solution

18. If straight line $l x+m y+n=0$ is a tangent of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} l^{2}+b^{2} m^{2}=n^{2}$.

D Watch Video Solution

19. If the straight line $x \cos \alpha+y \sin \alpha=p$
touches the curve $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$.
(D) Watch Video Solution
20. The values of λ for which the line $y=x+\lambda$ touches the ellipse $9 x^{2}+16 y^{2}=144$, are

(D) Watch Video Solution

21. If the line $3 x+4 y=\sqrt{7}$ touches the ellipse $3 x^{2}+4 y^{2}=1$, then the point of contact is

(D) Watch Video Solution

22. Find the equations of the tangents to the
ellipse $3 x^{2}+4 y^{2}=12$ which are perpendicular
to the line $y+2 x=4$.

(D) Watch Video Solution

23. Find the locus of the foot of the perpendicular
drawn from the center upon any tangent to the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

(D) Watch Video Solution

24. Find the point on the ellipse
$16 x^{2}+11 y^{2}=256$ where the common tangent
to it and the circle $x^{2}+y^{2}-2 x=15$ touch.

- Watch Video Solution

25. Find the maximum area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ which touches the line $y=3 x+2$.

D Watch Video Solution

26. Find the slope of a common tangent to the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and a concentric circle of radius r.
27. Prove that the product of the perpendicular from the foci on any tangent to an ellipse is equal to the square of the semi-minor axis.

(D) Watch Video Solution

28. The locus of the middle point of the portion
of a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ included between axes is
29. Show that the tangents at the extremities of
the latus rectum of an ellipse intersect on the corresponding directrix.

D Watch Video Solution

30. The normal at an end of a latus rectum of the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through an end of the minor axis if (A) $e^{4}+e^{2}=1$ (B) $e^{3}+e^{2}=1$
(C) $e^{2}+e=1$ (D) $e^{3}+e=1$
31. The line $l x+m y+n=0$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. then prove that
$\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$

(D) Watch Video Solution

32. A normal inclined at 45° to the axis of the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is drawn.
It meets the x-axis \& the y-axis in $P \& Q$ respectively. If C is the centre of the ellipse,
show that the area of triangle CPQ is $\frac{\left(a^{2}-b^{2}\right)^{2}}{2\left(a^{2}+b^{2}\right)}$ sq units

- Watch Video Solution

33. Any ordinate MP of an ellipse meets the auxillary circle in Q . Ptove that the locus of the point of intersection of the normals at P and Q is the circle $x^{2}+y^{2}=(a+b)^{2}$.

- Watch Video Solution

34. Prove that the chord of contact of tangents drawn from the point (h, k) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ will subtend a right angle at the
centre, if
$\frac{h^{2}}{a^{4}}+\frac{k^{2}}{b^{4}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

D Watch Video Solution

35. Show that the locus of the middle points of chord of an ellipse which paas through a fixed point, is another ellipse
36. Show that the tangents at the ends of conjugate diameters of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersect on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.

(D) Watch Video Solution

37. Tangents at right angle are drawn to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Show that the focus of the middle points of the chord of contact is the curve
$\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=\frac{x^{2}+y^{2}}{a^{2}+b^{2}}$.

D Watch Video Solution

38. A ray emanating from the point $(-3,0)$ is incindent on the ellipse $16 x^{2}+25 y^{2}=400$ at the point p with ordinate 4 . Find the equation of the reflected ray after first reflection.

(D) Watch Video Solution

39. For
$4(x-2 y+1)^{2}+9(2 x+y+2)^{2}=180$, lengths
of major and minor axes are respectively
40. Point ' O ' is the centre of the ellipse with major axis $A B \&$ minor axis $C D$. Point F is one focus of
the ellipse. If $\mathrm{OF}=6 \&$ the diameter of the inscribed circle of triangle OCF is 2 , then find the product $(A B) .(C D)$
A. 52
B. 65
C. 78
D. None of these

Answer: A::B::C
41. Let P_{i} and P_{i}^{\prime} be the feet of the perpendiculars drawn from the foci $S a n d S^{\prime}$ on a tangent T_{i} to an ellipse whose length of semimajor axis is 20. If $\sum_{i=0}^{10}\left(S P_{i}\right)\left(S^{\prime} \Pi^{\prime}\right)=2560$, then the value of eccentricity is (a) $\frac{1}{5}$ (b) $\frac{2}{5}$ (c) $\frac{3}{5}$
(d) $\frac{4}{5}$
A. $\frac{1}{5}$
B. $\frac{2}{5}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

Answer: B::C

D Watch Video Solution

42. The coordinates of the vertices BandC of a triangle $A B C$ are $(2,0)$ and $(8,0)$, respectively.

Vertex A is moving in such a way that $4 \frac{\tan B}{2} \frac{\tan C}{2}=1$. Then find the locus of A
A. $\frac{x-5^{2}}{25}+\frac{y^{2}}{16}=1$
B. $\frac{(x-5)^{2}}{16}+\frac{y^{2}}{9}=1$

$$
\begin{aligned}
& \text { C. } \frac{(x-5)^{2}}{25}+\frac{y^{2}}{9}=1 \\
& \text { D. } \frac{(x-5)^{2}}{16}+\frac{y^{2}}{25}=1
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

43. A ray emanating from the point $(0,6)$ is incident on the ellipse $25 x^{2}+16 y^{2}=1600$ at the point P with ordinate S. After reflection, ray cuts the Y-axis at B. The length of $P B$ is
A. 5
B. 7
C. 12
D. 13

Answer: A::B::C::D

D Watch Video Solution

44. If the ellipse $\frac{x^{2}}{4}+y^{2}=1$ meets the ellipse $x^{2}+\frac{y^{2}}{a^{2}}=1$ at four distinct points and $a=b^{2}-5 b+7$, then b does not lie in

(a) $[4,5]$
 (b) $(-\infty, 2) \cup(3, \infty)$
 $(-\infty, 0) \quad$ (d) $[2,3]$

A. $(1,4)$
B. $(-\infty, 2) \cup(3, \infty)$
C. $(2,3)$
D. None of these

Answer: B

D Watch Video Solution

45. The normal at a variable point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ of eccentricity e meets the axes of the ellipse at $Q a n d R$. Then the locus of the midpoint of $Q R$ is a conic with eccentricity e^{\prime}
such that (a) e^{\prime} is independent of $e(b) e^{\prime}=1$ (c)
$e^{\prime}=e(\mathrm{~d}) e^{\prime}=\frac{1}{e}$
A. e^{\prime} is indipendant of e
B. $e^{\prime}=1$
C. e'=e
D. $\mathrm{e}^{\prime}=1 / \mathrm{e}$

Answer:

D Watch Video Solution

46. If the curves $\frac{x^{2}}{4}+y^{2}=1$ and $\frac{x^{2}}{a^{2}}+y^{2}=1$ for a suitable value of a cut on four concyclic points, the equation of the circle passing through these four points is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=8 \\
& \text { B. } x^{2}+y^{2}=4 \\
& \text { C. } x^{2}=y^{2}=2
\end{aligned}
$$

D. $x^{2}+y^{2}=1$

Answer: A: B

- Watch Video Solution

47. If P is the length of perpendicluar drawn from
the origin to any normal to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, then the maximum value of p is
A. 5
B. 4
C. 2

D. 1

Answer: D

D Watch Video Solution

positive decr4easing function, then the set of values of k for which the major axis is the x -axis is
$(-3,2)$. the set of values of k for which the major axis is the y-axis is $(-\infty, 2)$. the set of values of k for which the major axis is the y-axis is
$(-\infty,-3) \cup(2, \infty)$ the set of values of k for which the major axis is the y-axis is

$$
(-3,-\infty,)
$$

A. $k \in(-2,3)$
B. $k \in(-3,2)$
C. $k \in(-\infty,-3) \cup(2, \infty)$
D. $k \in(-\infty,-2) \cup(3, \infty)$

Answer: B::C
49. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is normal to the circle $x^{2}+y^{2}+4 x+1=0$, then the maximum value of $a b$ is 4 (b) 2 (c) 1 (d) none of these
A. 1
B. 2
C. 4
D. 8

Answer: D
50. Extremities of the latus rectum of the ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ having a major axis 2 a lies on
a. $x^{2}=a(a-y)$
b. $x=a(a+y)$
c. $y^{2}=a(a+x)$
d. $y^{2}=a(a-x)$
A. $x^{2}=a(a-y)$
B. ${ }^{`}=a(a+y)$
C. $y^{2}=a(a+x)$
D. $y^{\wedge}(2)=a(a-x)^{\prime}$

Answer: A::B

(Watch Video Solution

51. The locus of the image of the focus of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}-1,(a>b)$, with respect to any of the tangents to the ellipse is

$$
\begin{aligned}
& (x+4)^{2}+y^{2}=100 \quad \text { (b) } \quad(x+2)^{2}+y^{2}=50 \\
& (x-4)^{2}+y^{2}=100 \text { (d) }(x+2)^{2}+y^{2}=50
\end{aligned}
$$

$$
\text { A. }(x+4)^{2}+y^{2}=100
$$

B. $(x+2)^{\wedge}(2)+y^{\wedge}(2)=50^{`}$
C. $(x-4)^{2}+y^{2}=100$
D. $\left(x-20^{2}+y^{2}=50\right.$

Answer: A::B::D

D Watch Video Solution

52. A tangent to the ellipse $4 x^{2}+9 y^{2}=36$ is cut by the tangent at the extremities of the major axis at T and T^{1}, the circle on $T T^{1}$ as diameter passes through the point
A. $(-\sqrt{5}, 0)$
B. $(\sqrt{5}, 0)$
C. $(\sqrt{3}, 0)$
D. $(-\sqrt{3}, 0)$

Answer: A::B::D

D Watch Video Solution

53. Consider the ellipse $\frac{x^{2}}{\tan ^{2} \alpha}+\frac{y^{2}}{\sec ^{2} \alpha}=1$ where $\alpha \in\left(0, \frac{\pi}{2}\right)$. Which of the following quantities would vary as α varies?
A. (a)degree of flatness
B. (b)ordinate of the vertex
C. (c)coordinate of the foci
D. (d)length of latusrectum

Answer: A::C::D

(Watch Video Solution

54. Let $A(\alpha)$ and $B(\beta)$ be the extrenities of a chord of an emplise. If the slope of $A B$ is equal to
the slope of the tangent at a point $C(\theta)$ on the ellipse, then alpha is equal to

$$
\begin{aligned}
& \text { A. } \frac{\alpha+\beta}{2} \\
& \text { B. } \frac{\alpha-\beta}{2} \\
& \text { C. } \frac{\alpha+\beta}{2}+\pi \\
& \text { D. } \frac{\alpha-\beta}{2}-\pi
\end{aligned}
$$

Answer: A: C
(D) Watch Video Solution
55. A series of concentric ellipses
$E_{1}, E_{2}, E_{3} \ldots, E_{n}$ are drawn such that E touches
the extremities of the major axis of E_{n-1}, and
the foci of E_{n} coincide with the extremities of minor axis of E_{n-1} If the eccentricity of the ellipses is independent of n, then the value of the eccentricity, is
A. (a) $\frac{3-\sqrt{5}}{2}$
B. (b) $\frac{\sqrt{5}-1}{2}$
C. (c) $\frac{2-\sqrt{3}}{2}$
D. (d) $\frac{\sqrt{3}-1}{2}$

Answer: A::B

D Watch Video Solution

56. If eccentricity of curve is 1 then the curve is
A. a parabola
B. an ellipse
C. a hyperbola
D. a rectangular hyperbola

Answer: A::B::C
57. A series of concentric ellipse $E_{1}, E_{2}, E_{3}, \ldots, E_{n}$ is constructed as follows: Ellipse E_{n} touches the extremities of the major axis of E_{n-1} and have its focii at the extremities of the minor axis of E_{n-1} If equation of ellipse E_{1} is $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$, then equation pf ellipse E_{3} is
A. $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
B. $x^{2}+y^{49}=1$
C. $\frac{x^{2}}{25}+\frac{y^{2}}{41}=1$
D. $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$

Answer: A::B::D

D Watch Video Solution

58. Consider an ellipse $E, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, centered at point O
and having $A B$ and $C D$ as its major and minor axes, respectively.

If S_{1} is one of the focus of the ellipse, the radius of the incircle of
triangle $O C S_{1}$ is 1 unit, and $O S_{1}=6$ units, then the value of $\frac{a-b}{2}$ is

(D) Watch Video Solution

59. An ellipse $E, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, centred at point O has $A B$ and $C D$ as its major and minor axes, respectively. Let S_{1} be one of the foci of the ellipse, the radius of the incircle of traingle $O C S_{1}$ be 1 unit, adn $O S_{1}=6$ units

The perimeter of $\triangle O C S_{1}$ is
A. (a) 10
B. (b) 15
C. (c) 20
D. (d) 25

Answer: A::B::C
(D) Watch Video Solution
60. Find the derivative of cosecx cotx .

- Watch Video Solution

61. If the normals at the four points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$
on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are concurrent, then
the value of $\left(\sum_{i=1}^{4} x_{i}\right)\left(\sum_{i=1}^{4} \frac{1}{x_{i}}\right)$

(D) Watch Video Solution

62. If $x, y \in R$, satisfies the equation $\frac{(x-4)^{2}}{4}+\frac{y^{2}}{9}=1 \quad$, then the difference between the largest and the smallest valus of the expression $\frac{x^{2}}{4}+\frac{y^{2}}{9}$ is
63. Statement 1 Feet of prependiculars drawn
from foci of an ellipse $4 x^{2}+y^{2}=16$ on the line
$2 \sqrt{3} x+y=8$ lie on the circle $x^{2}+y^{2}=16$

Statement 2 If prependiculars are from foci of an ellipse to its any tangent, the feet of these perpendicular lie on director circle of the ellipse.

- Watch Video Solution

64. The line $\mid x+m y=n$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

- Watch Video Solution

65. Write the first five terms of the following sequence and obtain the corresponding series :

$$
a_{1}=2, a_{n}=2 a_{n-1}+4, n \geq 2
$$

(D) Watch Video Solution

66. The line $I_{x+m y=n}$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
67. An ellipse slides between two perpendicular straight lines.

Then identify the locus of its center.

D Watch Video Solution

68. Triangles are formed by pairs of tangent drawn
from any point on the ellipse
$a^{2} x^{2}+b^{2} y^{2}=\left(a^{2}+b^{2}\right)$ to the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the chord of contact. Show that the
orthocentre of each such triangles lies triangle lies on the ellipse.

(D) Watch Video Solution

69. Find the derivative of $\frac{\sin x+\cos x}{\sin x-\cos x}$

- Watch Video Solution

70. If $\quad x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4 \quad$ then

$$
\begin{align*}
& \left(\frac{d y}{d x}\right)_{a t x=e} \text { is equal to (A) } \frac{2 e+1}{\sqrt{4+e^{2}}} \tag{B}\\
& \frac{e}{2 \sqrt{4+e^{2}}} \text { (C) } \frac{2 e+1}{2\left(4+e^{2}\right)} \text { (D) } \frac{2 e-1}{2 \sqrt{4+e^{2}}}
\end{align*}
$$

71. Find the derivative of $(\sin x)^{n}$

D Watch Video Solution

72. Find the derivative of $\frac{a+b \sin x}{c+d \cos x}$

- Watch Video Solution

73. Find the derivative of $\frac{\sin (x+a)}{\cos x}$
74. Two concentric ellipses are such that the foci of one are on the other and their major axes are equal. Let eande' be their eccentricities. Then. the quadrilateral formed by joining the foci of the two ellipses is a parallelogram the angle θ between their axes is given by
$\theta=\cos ^{-1} \sqrt{\frac{1}{e^{2}}+\frac{1}{e^{\prime 2}}=\frac{1}{e^{2} e^{\prime 2}}}$
$e^{2}+e^{\prime 2}=1$, then the angle between the axes
of the two ellipses is 90° none of these

D Watch Video Solution

75. Find the derivative of $\left(x^{2}+1\right) \cos x$

(D) Watch Video Solution

Example

1. Find the locus of the points of the intersection
of tangents to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which make an angle theta.
2. Find the derivative of $x^{4}(5 \sin x-3 \cos x)$

- Watch Video Solution

3. Find the derivative of $\frac{x}{1+\tan x}$

(D) Watch Video Solution

4. Find the derivative of $\frac{\cos x}{1+\sin x}$

- Watch Video Solution

5. Find the derivative of $\frac{\sec x-1}{\sec x+1}$

(D) Watch Video Solution

Exercise For Session 1

1. If the length of the major axis of an ellipse in 3 times the length of minor axis, then its eccentricity is

> A. $\frac{1}{\sqrt{2}}$
> B. $\frac{1}{\sqrt{3}}$
> C. $\frac{2 \sqrt{2}}{3}$
D. $\frac{2 \sqrt{2}}{5}$

Answer: C

- Watch Video Solution

2. The equation $\frac{x^{2}}{10-a}+\frac{y^{2}}{4-a}=1$ represents an ellipse, if
A. $a<4$
B. $a>4$
C. $4<a<10$
D. $a>10$

Answer: A

D Watch Video Solution

3. Find the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose latus rectum is half of its major axis.
A. $1 /$ sqrt3
B. $1 / \mathrm{sqrt2}$
C. sqrt3/2
D. $\sqrt{\left(\frac{2}{3}\right)}$

Answer: B

D Watch Video Solution

4. If the eccentricity of an ellipse is $\frac{1}{\sqrt{2}}$, then its latusrectum is equal to its
A. minor axis
B. semi minor axis
C. major axis
D. semi major axis

Answer: D

D Watch Video Solution

5. If the distance between the foci of an ellipse is
equal to length of minor axis, then its eccentricity
is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{3}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

D Watch Video Solution

6. The eccentric angle of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ whose distance from the centre of the ellipse is 2 , is
A. $-\frac{\pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{3 \pi}{2}$
D. $\frac{5 \pi}{3}$

Answer: A::B

D Watch Video Solution

7. If $\tan \theta_{1} \cdot \tan \theta_{2}=-\frac{a^{2}}{b^{2}}$ then the chord Joining two points θ_{1} and θ_{2} on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ will subtend a right angle at (A) focus (B) centre (C) end of the major axis (D) end of the major axis
A. focus
B. center
C. end of major axis
D. end of minor axis

Answer: B

D Watch Video Solution

8. If the eccentricities of the two ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and equal ,
then the value $\frac{a}{b}$, is
A. $\frac{5}{13}$
B. $\frac{6}{13}$
C. $\frac{13}{5}$
D. $\frac{13}{6}$

Answer: C

D Watch Video Solution

9. The ratio of the area of triangle inscribed in
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to that of triangle formed
by the corresponding points on the auxiliary
circle is 0.5 . Then, find the eccentricity of the ellipse.
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: B

(D) Watch Video Solution

10. If PSQ is a focal chord of the ellipse $16 x^{2}+25 y^{2}=400$ such that $\mathrm{SP}=16$, then the length SQ is
A. $\frac{2}{9}$
B. $\frac{4}{9}$
C. $\frac{8}{9}$
D. $\frac{16}{9}$

Answer: D

(Watch Video Solution

11. Let P be a variable point on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ with foci at S and S^{\prime}. If A be the
area of triangle PSS' then the maximum value of
A, is
A. 12 sq units
B. 24 sq units
C. 36 sq units
D. 48 sq units

Answer: A

- Watch Video Solution

12. $S_{1} a n d S_{2}$ are the foci of an ellipse of major axis of length 10 units, and P is any point on the ellipse such that the perimeter of triangle $P S_{1}$ is
13. Then the eccentricity of the ellipse is 0.5 (b) 0.25 (c) 0.28 (d) 0.75
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{7}{25}$
D. $\frac{3}{4}$
14. Find the latus rectum, eccentricity, coordinates
of the foci and the length of axes of the ellipse
$4 x^{2}+9 y^{2}-8 x-36 y+4=0$.

(D) Watch Video Solution

14. The distance between the foci of an ellipse is

10 and its latus rectum is 15 , find its equation referred to its axes as axes of coordinates.
15. Find the equation of the ellipse whose axes are parallel to the coordinate axes having its
centre at the point $(2,-3)$ one focus at $(3,-3)$ and vertex at $(4,-3)$.

- Watch Video Solution

16. Find the equation of the ellipse whose foci are
$(2,3),(-2,3)$ and whose semi-minor axes is $\sqrt{5}$
17. Show that the equation
$(10 x-5)^{2}+(10 y-5)^{2}=(3 x+4 y-1)^{2}$
represents an ellipse, find the eccentricity of the
ellipse.

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{1}{3} \\
& \text { D. } \frac{\sqrt{2}}{3}
\end{aligned}
$$

Answer: B

18. The locus of the latusrectum of the family of ellipse $b^{2}+y^{2}=a^{2} b^{2}$ is

(D) Watch Video Solution

Exercise For Session 2

1. The number of values of c such that the
straight line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ is (a) 0 (b) 1 (c) 2 (d) infinite
A. 0
B. 1
C. 2
D. infinite

Answer: C

- Watch Video Solution

2. If any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cuts off intercepts of length h and k on the axes, then $\frac{a^{2}}{h^{2}}+\frac{b^{2}}{k^{2}}=$ (A) 0 (B) 1 (C) -1 (D) Non of these A. -1
B. 0
C. 1
D. None of these

Answer: C

D Watch Video Solution

3. The equations of the tangents to the ellipse $3 x^{2}+y^{2}=3$ making equal intercepts on the axes are
A. $y= \pm x \pm 2$
B. $y= \pm x \pm 4$
C. $y= \pm x \pm \sqrt{30}$
D. $y= \pm x \pm \sqrt{35}$

Answer: A

D Watch Video Solution

4. If $\frac{x}{a}+\frac{y}{b}=\sqrt{2}$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find the eccentric angle θ of point of contact.
A. 0
B. 45°
C. 60°
D. 90°

Answer: B

D Watch Video Solution

5. The number of values of $\phi \in[0,2 \pi]$ for which the line $2 x \cos \phi+3 y \sin \phi=6$ touches the ellipse $4 x^{2}+9 y^{2}=36$ is a) four b) two c)one d) infinite
A. 1
B. 2
C. 4
D. infinite

Answer: D

- Watch Video Solution

> 6. The common tangent of
> $x^{2}+y^{2}=4$ and $2 x^{2}+y^{2}=2$ is
A. $x+y+4=0$
B. $x-y+7=0$
C. $2 x+3 y+8=0$
D. None of these

Answer: D

(Watch Video Solution

7. If the normal at any point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the axes at G and g respectively, then find the ratio $P G: P g$.
A. $a: b$
B. $a^{2}: b^{2}$
C. $b: a$
D. $b^{2}: a^{2}$

Answer: D

- Watch Video Solution

8. The number of distinct normal lines that can be drawn to the ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ from the point $P(0,6)$ is
A. one

B. two

C. three
D. four

Answer: C

D Watch Video Solution

9. If a tangent of slope 2 of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad$ is normal to the circle $x^{2}+y^{2}+4 x+1=0$, then the maximum value of $a b$ is
A. 4
B. 2
C. 1
D. none of these

Answer: A

- Watch Video Solution

10. Find the derivative of
$\left(a x^{2}+\sin x\right)(p+q \cos x)$, where a, p and q are
constants .
11. The line $5 x-3 y=8 \sqrt{2}$ is a normal to the
ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$, If 'theta' be eccentric angle of the foot of this normal then 'theta' is equal to
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: B
12. Find the derivative of $(x+\cos x)(x-\tan x)$

(D) Watch Video Solution

13. If the normal at any point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cuts the major and minor axes in L and M respectively and if C is the centre of the ellipse , then $a^{2} C L^{2}+b^{2} C M^{2}$ is equal to
(A) $(a-b)$
(B) $\left(a^{2}-b^{2}\right)^{2}$
(C) $(a+b)$
$\left(a^{2}+b^{2}\right)$
(D)
14. Find the derivative of $\frac{x+\sin x}{x+\cos x}$

(D) Watch Video Solution

15. The tangent and normal at any point P of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ cut its major axis in point Q and R respectively. If $Q R=a$ prove that the eccentric angle of the point P is given by
$e^{2} \cos ^{2} \theta+\cos \theta-1=0$

Exercise For Session 3

1. Find the angle between the pair of tangents
from the point $(1,2)$ to the ellipse $3 x^{2}+2 y^{2}=5$.
A. $\tan ^{-1}\left(\frac{12}{5}\right)$
B. $\tan ^{-1}\left(\frac{6}{\sqrt{5}}\right)$
C. $\tan ^{-1}\left(\frac{12}{\sqrt{5}}\right)$
D. $\tan ^{-1}(\sqrt{5})$

Answer: C
2. If the chords of contact of tangents from two poinst $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are at right angles, then find the value of $\frac{x_{1} x_{2}}{y_{1} y_{2}}$.
A. $\frac{a^{2}}{b^{2}}$
B. $-\frac{b^{2}}{a^{2}}$
C. $-\frac{a^{4}}{b^{4}}$
D. $\frac{b^{4}}{a^{4}}$

Answer: C

3. If the tangents from the point $(\lambda, 3)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ are at right angles then λ is
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: B
4. The eccentric angle of one end of a diameter of
$x^{2}+3 y^{2}=3$ is $\frac{\pi}{6}$, then the eccentric angle of the other end will be
A. $\frac{5 \pi}{6}$
B. $-5 \frac{\pi}{6}$
C. $-2 \frac{\pi}{3}$
D. $2 \frac{\pi}{3}$

Answer: B
5. Find the derivative of $\frac{x^{2} \cos \left(\frac{\pi}{4}\right)}{\sin x}$

(D) Watch Video Solution

> 6. the centre of the ellipse $\frac{(x+y-2)^{2}}{9}+\frac{(x-y)^{2}}{16}=1$, is
A. $(0,0)$
B. $(1,0)$
C. $(0,1)$
D. $(1,1)$

Answer: D

D Watch Video Solution

7. The locus of the point of intersection of two prependicular tangents of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \text { is }
$$

A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=13$
D. $x^{2}+y^{2}=5$

Answer: C

- Watch Video Solution

8. Find the derivative of function $(5 \sec x+4 \cos x)$

- Watch Video Solution

9. Find the locus of the vertices of equilateral triangle circumscribing the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

0 Watch Video Solution

10. Find the derivative of $(x+\sec x)$

(D) Watch Video Solution

11. The locus of the mid-points of the chords of
the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which pass through the positive end of major axis, is.

(D) Watch Video Solution

12. Ifchord ofcontact ofthe tangents drawn from
the point (α, β) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
,touches the circle $x^{2}+y^{2}=c^{2}$, then the locus of the point (α, β) is

(D) Watch Video Solution

13. Find the derivative of $(x-\tan x)$

D Watch Video Solution

14. A ray emanating from the point $(0, \sqrt{5})$ is incident on the ellipse $9 x^{2}+4 y^{2}=36$ at the point P with abscissa 2 . find the equation of the reflected ray after first reflection.

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. Given f is increasing, the equation $\frac{x^{2}}{f(2 a)}+\frac{y^{2}}{f\left(a^{2}-3\right)}=1$ represents an ellipse with X -axis as major axis if
A. $[-1,3]$
B. $[1,3]$
C. $(-1,3)$
D. $(0,5)$

Answer: C

D Watch Video Solution

2. If $\frac{x^{2}}{f(4 a)}+\frac{y^{2}}{f\left(a^{2}-5\right)}=1$ represents an ellipse
with major axis as Y -axis and f is a decreasing
function,then
A. $\alpha \in(1 \infty, 1)$
B. $\alpha \in(5, \infty)$
C. $\alpha \in(1,4)$
D. $\alpha \in(-1,5)$

Answer: D

D Watch Video Solution

3. The curve represents by the equation $\frac{x^{2}}{\sin \sqrt{2}-\cos \sqrt{3}}+\frac{y^{2}}{\sin \sqrt{3}-\cos \sqrt{2}}=1$ is
A. (a) an ellipse with foci on X-axis
B. (b) an ellipse on focii Y-axis
C. (c) a hyperbola with foci on X-axis
D. (d) an hyperbola with foci on Y-axis

Answer: A

(Watch Video Solution

4. The maximum distance of the centre of the
ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ from the chord of contact of mutually perpendicular tangents of the ellipse is
A. (a) $144 / 5$
B. (b) $16 / 5$
C. (c) $\frac{9}{5}$
D. (d) None of these

Answer: B

(D) Watch Video Solution
5. Find the derivative of $(2 \tan x-7 \sec x)$

- Watch Video Solution

6. Find the derivative of $(5 \sin x-6 \cos x+7)$
(D) Watch Video Solution
7. C is the centre of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and
A and B are two points on the ellipse such that
$\angle A C B=90^{\circ}$, then $\frac{1}{(C A)^{2}}+\frac{1}{(C B)^{2}}=$

> A. (a) $\frac{7}{12}$
> B. (b) $\frac{12}{7}$
> C. (c) $\frac{25}{144}$
> D. (d) $\frac{144}{25}$

Answer: C

8. Let (α, β) be a point from which two perpendicular tangents can be drawn to the ellipse $4 x^{2}+5 y^{2}=20$. If $F=4 \alpha+3 \beta$, then

$$
\text { A. (a) }-15 \leq F \leq 15
$$

B. (b) $F \geq 0$
C. (c) $-5 \leq F \leq 20$
D. (d) $F \leq-5 \sqrt{5}$ or $F \geq 5 \sqrt{5}$

Answer: A
9. If $a=\left[t^{2}-3 t+4\right]$ and $b=[3+5 t]$, where
[.] donates the greatest integer function, then
the latusrectum of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $t=\frac{3}{2}$ is
A. 20
B. 10
C. $\frac{1}{5}$
D. $\frac{1}{10}$

Answer: C
10. If the line $x+2 y+4=0$ cutting the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in points whose eccentric angies are 30° and 60° subtends right angle at the origin then its equation is

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{8}+\frac{y^{2}}{4}=1 \\
& \text { B. } \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 \\
& \text { C. } \frac{x^{2}}{4}+\frac{y^{2}}{16}=1
\end{aligned}
$$

D. None of the above

Answer: B

11. Find the perimeter of the parallelogram whose adjacent sides are 3 and 7 .
(D) Watch Video Solution
12. Write the equation of tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ at any point P.

- Watch Video Solution

13. Write the parametric form of equation of tangents drawn from any point on the circle $x^{2}+y^{2}=25$

D Watch Video Solution

14. the equation of the chord of contact of the pair of tangents drawn to the ellipse $4 x^{2}+9 y^{2}=36$ from the point (m, n) where $m \dot{n}=m+n, m, n$ being nonzero positive integers, is
A. $2 x+9 y=18$
B. $2 x+2 y=1$
C. $4 x+9 y=18$
D. none of these

Answer: C

(Watch Video Solution

15. $x-2 y+4=0$ is a common tangent to $y^{2}=4 x$ and $\frac{x^{4}}{4}+\frac{y^{2}}{b^{2}}=1$. Then the value of b and the other common tangent are given by
A. $b=\sqrt{3}, x+2 y+4=0$
B. $b=3, x+2 y+4=0$
C. $b=\sqrt{3}, x+2 y-4=0$
D. $b=\sqrt{3}, x-2 y-4=0$

Answer: A

- Watch Video Solution

16. Find the derivative of $\frac{x^{2}}{2}+x+1$

D Watch Video Solution
17. Find the derivative of $\sec x+\operatorname{cosec} x$

- Watch Video Solution

18. Find the derivative of $\cos \left(x-\frac{\pi}{8}\right)$

(D) Watch Video Solution

19. A parabola is drawn whose focus is one of the
foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (where $\mathrm{a}>\mathrm{b}$) and whose directrix passes through the other focus and perpendicular to the major axes of the
ellipse. Then the eccentricity of the ellipse for which the length of latus-rectum of the ellipse and the parabola are same is
A. $\sqrt{2}-1$
B. $\sqrt{3}-1$
C. $2 \sqrt{2}-2$
D. $3 \sqrt{3}-5$

Answer: A
20. If the maximum distance of any point on the
ellipse $x^{2}+2 y^{2}+2 x y=1$ from its center is r,
then r is equal to $3+\sqrt{3}$ (b) $2+\sqrt{2} \frac{\sqrt{2}}{\sqrt{3-\sqrt{5}}}$
(d) $\sqrt{2-\sqrt{2}}$
A. а) $\frac{\sqrt{6}+1}{2}$
B. b) $\frac{\sqrt{5}+1}{2}$
C. c) $\frac{\sqrt{3}+1}{2}$
D. d) $\frac{\sqrt{2}+2}{2}$

Answer: B

21. The length of the common chord of the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$ and the circle

$$
(x-1)^{2}+(y-2)^{2}=1 \text { is (A) } 2 \text { (B) } \sqrt{3} \text { (C) } 4 \text { (D) }
$$

none of these
A. zero
B. one
C. three
D. eight
22. The eccentricity of ellipse
$a x^{2}+b y^{2}+2 g x+2 f y+c=0$ if its axis is parallel to x-axis is
A. (a) $\sqrt{\left(\frac{b-a}{b}\right)}$
B. (b) $\sqrt{\left(\frac{a+b}{b}\right)}$
C. (c) $\sqrt{\left(\frac{a+b}{a}\right)}$
D. (d)None of these

Answer: A
23. A circle has the same center as an ellipse and passes through the foci $F_{1} a n d F_{2}$ of the ellipse, such that the two curves intersect at four points.

Let P be any one of their point of intersection. If the major axis of the ellipse is 17 and the area of triangle $P F_{1} F_{2}$ is 30 , then the distance between the foci is
A. (a) 13
B. (b) 11
C. (c) 9
D. (d) 7

Answer: A

D Watch Video Solution

24. The area of the rectangle formed by the perpendiculars from the centre of the standard ellipse to the tangent and normal at its point whose eccentric angles $\frac{\pi}{4}$ is
A. $\frac{\left(a^{2}-b^{2}\right) a b}{a^{2}+b^{2}}$
B. $\left(\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\right)$
C. $\frac{\left(a^{2}+b^{2}\right) a b}{\left(a^{2}-b^{2}\right)}$
D. $\frac{\left(a^{2}+b^{2}\right)}{\left(a^{2}-b^{2}\right)}$

Answer: A

D Watch Video Solution

25. An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $\frac{2}{3}$ then the eccentricity of the ellipse is: (A)
$\frac{2 \sqrt{2}}{3}$ (B) $\frac{\sqrt{5}}{3}$ (C) $\frac{8}{9}$ (D) $\frac{2}{3}$
A. $2 \frac{\sqrt{2}}{3}$
B. $\frac{\sqrt{5}}{3}$
C. $\frac{8}{9}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

26. An ellipse slides between two perpendicular straight lines. Then identify the locus of its center.
A. parabola
B. ellipse
C. hyperbola
D. circle

Answer: D

(Watch Video Solution

27. If one of the circles
$x^{2}+y^{2}+2 a x+c=0$ and $x^{2}+y^{2}+2 b x+c=0$
lies within the other then
A. $\frac{1}{10}$
B. $\frac{\sqrt{8161}}{10}$
C. $\frac{\sqrt{8061}}{10}$
D. None of the above

Answer: D

(D) Watch Video Solution

28. The equation of the locus of the middle point of the portion of the tangent to the ellipse
$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ included between the co-ordinate
axes is the curve
A. $9 x^{2}+16 y^{2}=4 x^{2} y^{2}$
B. $16 x^{2}+9 y^{2}=4 x^{2} y^{2}$
C. $3 x^{2}+4 y^{2}=4 x^{2} y^{2}$
D. $9 x^{2}+16 y^{2}=x^{2} y^{2}$

Answer: A

Watch Video Solution

29. The tangent at a point $P(a \cos \varphi, b \sin \varphi)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets its auxiliary circle at two points, the chord joining which subtends a right angle at the center. Find the eccentricity of the ellipse.

$$
\begin{aligned}
& \text { A. } e^{2}\left(1+\cos ^{2} \theta\right)=1 \\
& \text { B. } e^{2}\left(\operatorname{cosec} c^{2} \theta+1\right)=1 \\
& \text { C. } e^{2}\left(1+\sin ^{2} \theta\right)=1 \\
& \text { D. } e^{2}\left(1+\tan ^{2} \theta\right)=1
\end{aligned}
$$

Exercise More Than One Correct Option Type Questions

1. The locus of extremities of the latus rectum of the family of ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ is

$$
\text { A. } x^{2}-a y=a^{2}
$$

B. $x^{2}-a y=b^{2}$
C. $x^{2}+a y=a^{2}$
D. $x^{2}+a y=b^{2}$

Answer: A::C

D Watch Video Solution

2. The distance of a point on the ellipse $\frac{x^{2}}{6}+\frac{y^{2}}{2}=1$ from the center is 2 . Then the eccentric angle of the point is
A. $\frac{\pi}{4}$
B. $\frac{3 \pi}{4}$
C. $\frac{5 \pi}{4}$
D. $\frac{7 \pi}{4}$

Answer: A::B::C::D

(D) Watch Video Solution

3. If the equation of family of ellipse is $x^{2} \sec ^{2} \theta+y^{2} \operatorname{cosec} 2=1$, where $\frac{\pi}{4}<\theta<\frac{\pi}{2}$,
then the locus of extremities of the latusrectum is
A. $2 y^{2}\left(1+x^{2}\right)=\left(1-x^{2}\right)^{2}$
B. $2 x^{2}\left(1+y^{2}=\left(1-y^{2}\right)^{2}\right.$
C. $2 y\left(1-x^{2}\right)=1+x^{2}$
D. $2 y^{2}\left(1+x^{2}\right)=1+x^{4}-2 x^{2}$

Answer: B::D

(D) Watch Video Solution

4. Let $F 1, F_{2}$ be two focii of the ellipse and $P T$ and $P N$ be the tangent and the normal respectively to the ellipse at ponit P.then
A. (a) $P N$ bisects $\angle F_{1} P F_{2}$
B. (b) $P T$ bisects $\angle F_{1} P F_{2}$
C. (c) $P T$ bisects $\angle\left(180^{\circ}-\angle F_{1} P F_{2}\right)$
D. (d)None of above

Answer: A::C

(D) Watch Video Solution

5. $\frac{x^{2}}{r^{2}-r-6}+\frac{y^{2}}{r^{2}-6 r+5}=1$ will represent
ellipse if r lies in the interval
A. $(-\infty,-2)$
B. $(1, \infty)$
C. $(3, \infty)$
D. $(5, \infty)$

Answer: A::D

D Watch Video Solution

6. A laturectum of an ellipse is a line
A. passing through a focus
B. passing through the major axis
C. perpendicular to the major axis
D. parallel to the major axis
7. An ellipse passes through the point $(4,-1)$ and touches the line $x+4 y-10=0$. Find its equation if its axes coincide with the coordinate axes.
A. $x^{2}+64 y^{2}=80$
B. $x^{2}+4 y^{2}=20$
C. $x^{2}+20 y^{2}=100$
D. $x^{2}+8 y^{2}=40$
8. If P is any point lying on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, whose foci are S and S^{\prime}. Let $\angle P S S^{\prime}=\alpha$ and $\angle P S^{\prime} S=\beta$, then
A. $S P+S^{\prime} P=2 a$, if $a>b$
B. $S P+S^{\prime} P=2 b, \quad$ if $\quad b>a$
C. $\tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\phi}{2}\right)=\frac{1-e}{e+1}$
D.

Answer: A::B::C
9. If $(5,12)$ and $(24,7)$ are the foci of an ellipse passing through the origin, then find the eccentricity of the ellipse.
A. $\frac{\sqrt{386}}{38}$
B. $\frac{\sqrt{386}}{12}$
C. $\frac{\sqrt{386}}{13}$
D. $\frac{\sqrt{386}}{25}$
10. Find the $4^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=n^{2}+3$

- Watch Video Solution

11. In
the
ellipse
$25 x^{2}+9 y^{2}-150 x-90 y+225=0$
A. foci are at $(3,1),(3,9)$
B. $e=\frac{4}{5}$
C. center is $(5,3)$
D. major axis axis is 6

Answer: A: B

D Watch Video Solution

12. If the tangent to the ellipse $x^{2}+4 y^{2}=16$ at
the point θ normal to the circle
$x^{2}+y^{2}-8 x-4 y=0$ then θ is equal to
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. 0
D. $-\frac{\pi}{4}$

Answer: A::C

- Watch Video Solution

13. The product of eccentricities of two conics is
unity, one of them can be a/an
A. parabola
B. ellipse
C. hyperbola
D. circle

Answer: A::B::C

(D) Watch Video Solution

14. The parametric $\angle \alpha$ where $-\pi<\alpha \leq \pi$ of the point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at which the tangent drawn cuts the intercept of minimum length on the coordinates axes, is/are
A. $\tan -\sqrt{\frac{b}{a}}$
B. $-\tan (-1) \sqrt{\frac{b}{a}}$
C. $\pi-\tan ^{-1} \sqrt{\frac{b}{a}}$
D. $\pi+\tan ^{-1} \sqrt{\frac{b}{a}}$

Answer: A::B::C

(D) Watch Video Solution

15. If latus recturn of the ellipse $x^{2} \tan ^{2} \alpha+y^{2} \sec ^{2} \alpha=1 \quad$ is $\quad \frac{1}{2} \quad$ then $\alpha(0<\alpha<\pi)$ is equal to
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $\frac{5 \pi}{12}$
D. $\frac{\pi}{2}$

Answer: A::C

(D) Watch Video Solution

Exercise Passage Based Questions

$$
\begin{aligned}
& \text { 1. A conic is represented } \\
& C \equiv 9 x^{2}+4 x y+6 y^{2}-22 x-16 y+9=0
\end{aligned} \begin{aligned}
& \text { by } \\
& \text { Q. }
\end{aligned}
$$

The centre of conic C is
A. $(0,0)$
B. $(1,0)$
C. $(0,1)$
D. $(1,1)$

Answer: D

(D) Watch Video Solution

$\begin{aligned} & \text { 2. A conic is represented } \\ & C \equiv 9 x^{2}+4 x y+6 y^{2}-22 x-16 y+9=0\end{aligned} \quad \mathrm{Q}$.
Write center of conic C .
$\begin{array}{ccc}\text { 3. A conic is represented } & \text { by } \\ C \equiv 9 x^{2}+4 x y+6 y^{2}-22 x-16 y+9=0 & \mathrm{Q} .\end{array}$
The centre of conic C is
A. (a) $(0,0)$
B. (b) $(1,0)$
C. (c) $(0,1)$
D. (d) $(1,1)$

Answer: A

- Watch Video Solution

4. An ellipse E has its center $C(3,1)$, focus at $(3,6)$
and passing through the point $\mathrm{P}(7,4) \mathrm{Q}$. If the normal at a variable point on the ellipse (E) meets its exes in Q and R, then the locus of the mispoint of QR is a conic with eccentricity $\left(e_{1}\right)$, then
A. 20
B. 45
C. 40
D. 90
5. An ellipse E has its center $C(3,1)$, focus at $(3,6)$ and passing through the point $\mathrm{P}(7,4) \mathrm{Q}$. If the normal at a variable point on the ellipse (E) meets its exes in Q and R, then the locus of the mispoint of QR is a conic with eccentricity $\left(e_{1}\right)$, then
A. $\left(5, \frac{5}{3}\right)$
B. $3,\left(\frac{4}{3}\right)$
C. $\left(5,\left(\frac{10}{3}\right)\right.$
D. $3,\left(\frac{8}{3}\right)$

Answer: C

D Watch Video Solution

6. An ellipse E has its center $C(3,1)$, focus at $(3,6)$
and passing through the point $P(7,4) Q$. The product of the lengths of the prependicular segeent from the focii on tangent at point P is
A. $e_{1}=\frac{3}{\sqrt{5}}$
B. $e_{1}=\frac{\sqrt{5}}{3}$
C. $e_{1}=\frac{3}{\sqrt{10}}$
D. $e_{1}=\frac{\sqrt{10}}{3}$

Answer: B

D Watch Video Solution

7. $\quad C_{1}: x^{2}+y^{2}=r^{2}$ and $C_{2}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ interset at four distinct points A, B, C, and D. Their common tangents form a peaallelogram $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
if $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a square, then r is equal to

D Watch Video Solution

8.

Curves
$C_{1}: x^{2}+y^{2}=r^{2}$ and $C_{2}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
intersect at four distinct points A, B, C and D. Their
common tangents from a parallelogram PQRS. Q.
If $A B C D$ is square, then the value of $25 r^{2}$ is
A. 12
B. 15
C. 20
D. 25

Answer: D

9.

Curves
$C_{1}: x^{2}+y^{2}=r^{2}$ and $C_{2}: \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ intersect at four distinct points A, B, C and D. Their common tangents from a parallelogram PQRS. Q . If $A B C D$ is square, then the value of $25 r^{2}$ is
A. 1: 4
B. 1:2
C. 3: 4
D. 9: 16

Answer: B

D Watch Video Solution

10. An ellipse whose distance between foci S and S^{\prime} is 4 units is inscribed in the $\triangle A B C$ touching thesides
$A B, A C$ and $B C a t P, Q$ and R. If centre of ellipse is at origin and major axis along x-axis $S P+S^{\prime} P=6$, then
A. $9 x^{2}+5 y^{2}=45$
B. $4 x^{2}+9 y^{2}=46$
C. $5 x^{2}+9 y^{2}=45$
D. $9 x^{2}+4 y^{2}=36$

Answer: C

D Watch Video Solution

11. An ellipse whose distance between foci S and S^{\prime} is 4 units is inscribed in the $\triangle A B C$ touching the sides $A B, A C$ and $B C$ at P, Q and R, respectively.

If centre of ellipse is at origin and major axis along X -axis, $\mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}=6^{\prime} \mathrm{Q}$. Equation of the ellipse is
A. $\left(x^{2}+y^{2}-14\right)^{2}=4\left(5 x^{2}+9 y^{2}-45\right)$
B. $\left(x^{2}+y^{2}-14\right)^{2}=4\left(5 x^{2}+9 y^{2}-54\right)$
C. $\left(x^{2}+y^{2}-14\right)^{2}=4\left(9 x^{2}+5 y^{2}-45\right)$
D. $\left(x^{2}+y^{2}-14\right)^{2}=4\left(9 x^{2}+5 y^{2}-54\right)$

Answer: A

(D) Watch Video Solution

12. An ellipse whose distance between foci S and S^{\prime} is 4 units is inscribed in the $\triangle A B C$ touching the sides $A B, A C$ and $B C$ at P, Q and R, respectively.

If centre of ellipse is at origin and major axis along X -axis, $\mathrm{SP}+\mathrm{S}^{\prime} \mathrm{P}=6^{\prime} \mathrm{Q}$. Equation of the ellipse is
A. $5 x^{2}+9 y^{2}=15$
B. $5 x^{2}+9 y^{2}=60$
C. $9 x^{2}+5 y^{2}=14$
D. $9 x^{2}+5 y^{2}=144$

Answer: B
(D) Watch Video Solution
13. The line $2 p x+y \sqrt{1-p^{2}}=1(|p|<1)$ for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q. The eccentricity of the ellipse is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{5}} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } \frac{\sqrt{3}}{2} \\
& \text { D. } \frac{2}{\sqrt{5}}
\end{aligned}
$$

Answer: C

14. For all real p , the line $2 p x+y \sqrt{1-p^{2}}=1$ touches a fixed ellipse whose axex are the coordinate axes

The foci of the ellipse are
A. $\left(\pm \frac{\sqrt{3}}{2}, 0\right)$
B. $\left(0, \pm \frac{\sqrt{3}}{2}\right)$
C. $(\pm \sqrt{3}, 0)$
D. $(0, \pm \sqrt{3})$

Answer: B
15. The line $2 p x+y \sqrt{1-p^{2}}=1(|p|<1)$ for different values of p, touches a fixed ellipse whose exes are the coordinate axes. Q . The locus of the point of intersection of prependicular tangents of the ellipse is
A. $x^{2}+y^{2}=2$
B. $x^{2}+y^{2}=\frac{3}{2}$
C. $x^{2}+y^{2}=\frac{5}{4}$
D. $x^{2}+y^{2}=\frac{1}{2}$

Answer: C

(D) Watch Video Solution

Exercise Single Integer Answer Type Questions

1. Two concentric ellipse be such that the foci of
one be on the other and if $3 / 5$ and $4 / 5$ be their
eccentricities. If θ is the angle between their axes,
then the values of $2\left(1+\sin ^{2} \theta+\sin ^{4} \theta\right)$ must be
(D) Watch Video Solution
2. Write the first five terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n}{n+2}$

(D) Watch Video Solution

3. The number of points on the ellipse $\frac{x^{2}}{50}+\frac{y^{2}}{20}=1$ from which a pair of perpendicular tangents is drawn to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is 0 (b) 2 (c) 1 (d) 4
(D) Watch Video Solution
4. The length of the sides of the square which can
be made by four perpendicular tangents to the
ellipse $\frac{x^{2}}{7}+\frac{2 y^{2}}{11}=1$, is

D Watch Video Solution

5. The number of distinct normal lines that can be drawn to the ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ from the point $P(0,6)$ is
6. Write the first five terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=3^{n}$

(D) Watch Video Solution

7. An ellipse passing through the origin has its foci $(3,4)$ and $(6,8)$. The length of its semi-minor axis is b. Then the value of $\frac{b}{\sqrt{2}}$ is
8. The maximum value of 5λ for which four normals can be drawn to ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ through a point $(\lambda, 0)$ is

- Watch Video Solution

9. Find the first five terms of the sequence whose
$n^{\text {th }}$ term is $a_{n}=\frac{n}{4}$

- Watch Video Solution

1. Find the first five terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=2^{n+3}$

- Watch Video Solution

2. Find the value of x, if $x=\frac{7}{4}-\frac{17}{8}$
(D) Watch Video Solution

3.

Column I

(1) The mimimum and maximum
distances of a point $(2,6)$ from
the cllipse
$4 y^{2}+8 y^{2}-36 x-16 y-28=0$
are L and G, then
(B) The minimum and maximum
distances of a point $(1,2)$ from
the ellipse
$4 x^{2}+9 y^{2}+8 x-36 y+4=0$ are
L and G, then
(C) The minimum and maximum distances of a point $\left(\frac{9}{5}, \frac{12}{5}\right)$
from the ellipse
$4(3 x+4 y)^{2}+9(4 x-3 y)^{2}=900$ are L and G, then
(D) The minimum and maximum distances of a point $(0,4)$ from the ellipse $25 x^{2}+9 y^{2}=225$ are L and G , then

Column II
(p) 1.+1; 10
(q) $\mathrm{L}+\mathrm{G}=6$
(r) $\mathrm{G}-L=8$
(s) $\mathrm{G}-\mathrm{L}=6$

1. Find the first five terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=2 n+1$

(D) Watch Video Solution

2. Statement 1 : The area of the ellipse
$2 x^{2}+3 y^{2}=6$ is more than the area of the circle
$x^{2}+y^{2}-2 x+4 y+4=0$. Statement $2:$ The
length f the semi-major axis of an ellipse is more
that the radius of the circle.
A. Statement I is true, statement II is true:
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true
3. Statement 1 The equation of the director circle
to the ellipse $4 x^{2}+9 y^{2}=36 i s x^{2}+y^{2}=13$
Statement 2 The locus of the point of intersection of perpendicular tangents to an ellipse is called the director circle.
A. Statement I is true, statement II is true:
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: A

D Watch Video Solution

4. Statement 1 : In an ellipse, the sum of the distances between foci is always less than the sum of focal distances of any point on it.

Statement 2 : The eccentricity of any ellipse is less than 1.
A. Statement I is true, statement II is true:
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: A

5. Statement 1 The sum of the focal distances of a point on the ellipse
$4 x^{2}+5 y^{2}-16 x-30 y+41=0 i s 2 \sqrt{5}$.
Statement 2

The
equation
$4 x^{2}+5 y^{2}-16 x-30 y+41=0 \quad$ can be expressed as $4(x-2)^{2}+5(y-3)^{2}=20$.
A. Statement I is true, statement II is true:
statement II is a correct explanation for statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for

statement I

C. statement I is true, statement II is false

D. statement I is false, statement II is true

Answer: B

D Watch Video Solution

6. Statement 1 : The locus of the center of a
variable circle touching two circle

$$
\begin{aligned}
& (x-1)^{2}+(y-2)^{2}=25 \\
& (x-2)^{2}+(y-1)^{2}=16 \quad \text { is } \quad \text { and } \quad \text { ellipse. }
\end{aligned}
$$

Statement 2 : If a circle $S_{2}=0$ lies completely
inside the circle $S_{1}=0$, then the locus of the center of a variable circle $S=0$ that touches both the circles is an ellipse.
A. Statement I is true, statement II is true:
statement II is a correct explanation for
statement I
B. Statement I is true, statement II is true,
statement II is not a correct explanation for
statement I
C. statement I is true, statement II is false
D. statement I is false, statement II is true

Answer: C

- Watch Video Solution

7. Find the equation of a curve passing through
the point $(1,1)$, if the tangent drawn at any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the curve meets the coordinate axes at A and B such that P is the mid point of $A B$.

- Watch Video Solution

8. Find the first five terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=n^{2}-1$

- Watch Video Solution

Ellipse Exercise 7 Subjective Type Questions

1. Find the first five terms of the sequence whose
$n^{\text {th }}$ term is $a_{n}=\frac{n-1}{n+1}$
(D) Watch Video Solution
2. Find the first five terms of the sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n+1} 2 n$

- Watch Video Solution

3. Find the 12 th term of AP if first term is 5 and common difference is 7 .

(D) Watch Video Solution

4. Find the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ when $\mathrm{a}=5$ and $\mathrm{b}=3$.
5. Find the $5^{\text {th }}$ term of the sequence whose $n^{t h}$ term is $a_{n}=\frac{n}{2^{n}}$

- Watch Video Solution

6. Find the $7^{\text {th }}$ term of the sequence whose $n^{\text {th }}$
term is $a_{n}=(-1)^{n} n^{2}$

D Watch Video Solution
7. Find the $10^{t h}$ term of the sequence whose $n^{t h}$
term is $a_{n}=\frac{n-5}{n+7}$

- Watch Video Solution

8. Find the $5^{\text {th }}$ term of the sequence whose $n^{\text {th }}$
term is $a_{n}=\frac{n^{2}+5}{4}$

- Watch Video Solution

9. Find the length of latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$.

- Watch Video Solution

Exercise Subjective Type Questions

1. Find the solution of the equation $\tan x=1$.
(D) Watch Video Solution
2. Find the $2^{n d}$ term of the sequence whose $n^{t h}$
term is $a_{n}=\frac{2 n+3}{4 n+2}$
(D) Watch Video Solution
3. Find the $24^{t h}$ term of the sequence whose $n^{t h}$ term is $a_{n}=4 n-3$

D Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. The minimum area of the triangle formed by
the tangent to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the coordinate axes is
A. ad sq units
B. $\frac{a^{2}+b^{2}}{2}$ sq units
C. $\frac{(a+b)^{2}}{2}$ sq units
D. $\frac{a^{2}+a b+b^{2}}{3}$ sq units

Answer: A

- Watch Video Solution

2. Find the $17^{\text {th }}$ term in the following sequence
whose $n^{\text {th }}$ term is $a_{n}=2 n-4$
(D) Watch Video Solution
3. An ellipse has $O B$ as the semi-minor axis, Fand F^{\prime} as its foci, and $\angle F B F^{\prime}$ a right angle. Then, find the eccentricity of the ellipse.

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{1}{4} \\
& \text { D. } \frac{1}{\sqrt{3}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. In an ellipse, the distances between its foci is 6 and minor axis is 8 . Then its eccentricity is
A. $\frac{3}{5}$
B. $\frac{1}{2}$
C. $\frac{4}{5}$
D. $\frac{1}{\sqrt{5}}$

Answer: A
5. Find the $9^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=(-1)^{n}(3 n+2)$

- Watch Video Solution

6. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $\frac{1}{2}$ Then the length of the semi-major axis is
A. $\frac{8}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{5}{3}$

Answer: A

D Watch Video Solution

7. The 5th, 8th, and 11th terms of a GP are p, q and s respectively. Find relation between p, q and s.

D Watch Video Solution

8. Is 309 a term of the AP $11,17,23 \ldots$?
9. A triangle $A B C$ with fixed base $B C$, the vertex
A moves such that $\cos B+\cos C=4 \sin ^{2}\left(\frac{A}{2}\right)$.
If a, b and c, denote the length of the sides of the triangle opposite to the angles $A, B, a n d C$, respectively, then
(a) $b+c=4 a$
(b) $b+c=2 a$
(c)the locus of point A is an ellipse
(d)the locus of point A is a pair of straight lines
A. $b+c=4 a$
B. $b+c=2 a$
C. locus of point A is an ellipse
D. locus of point A is a pair od straight lines

Answer: B::C

D Watch Video Solution

10. The conic having parametric representation
$x=\sqrt{3}\left(1-\frac{t^{2}}{1+t^{2}}\right), y=\frac{2 t}{1+t^{2}}$ is
A. an circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: C

D Watch Video Solution

11. The ellipse $x^{2}+4 y^{2}=4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point $(4,0)$. Then the equation of the ellipse is (1) $x^{2}+16 y^{2}=16$ (2) $x^{2}+12 y^{2}=16$
(3) $4 x^{2}+48 y^{2}=48(4) 4 x^{2}+64 y^{2}=48$
A. $x^{2}+12 y^{2}=16$
B. $4 x^{2}+48 y^{2}=48$
C. $4 x^{2}+64 y^{2}=48$
D. $x^{2}+16 y^{2}=16$

Answer: A

- Watch Video Solution

12. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at point A and $B . Q$. The coordinates of A and B are
A. $(3,0)$ amd $(0,2)$

$$
\begin{aligned}
& \text { B. }\left(-\frac{8}{5},\left(2 \frac{\sqrt{161}}{15}\right) \text { and }\left(-\frac{9}{8}, \frac{8}{5}\right)\right. \\
& \text { C. }\left(-\frac{8}{5},\left(2 \frac{\sqrt{161}}{15}\right) \text { and }(0,2)\right. \\
& \text { D. }(3,0) \text { and }\left(-\frac{9}{5}, \frac{8}{5}\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

13. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at
point A and $B . Q$. The orthocenter of the trianlge PAB is
A. $\left(5, \frac{8}{7}\right)$
B. $\left(\frac{7}{5}, \frac{25}{8}\right)$
C. $\left(\frac{11}{5}, \frac{8}{5}\right)$
D. $\left(\frac{8}{25}, \frac{7}{5}\right)$

Answer: C
(D) Watch Video Solution
14. Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at point A and B. Q. The equation of the locus of the points whose distance from the point P and the line $A B$ are equal, is

$$
\begin{aligned}
& \text { A. } 9 x^{2}+y^{2}-6 x y-54 x-62 y+241=0 \\
& \text { B. } x^{2}+9 y^{2}+6 x y-54 x+62 y-241=0 \\
& \text { C. } 9 x^{2}+9 y^{2}-6 x y-54 x-62 y-241=0 \\
& \text { D. } x^{2}+y^{2}-2 x y+27 x+31 y-120=0
\end{aligned}
$$

15. Find the equation of an ellipse whose axes lie along the coordinate axes, which passes through the point $(-3,1)$ and has eccentricity equal to $\sqrt{2 / 5}$
A. $5 x^{2}+3 y^{2}-48=0$
B. $3 x^{2}+5 y^{2}-15=0$
C. $5 x^{2}+3 y^{2}-32=0$
D. $3 x^{2}+5 y^{2}-32=0$

- Watch Video Solution

16. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellipse E_{2} is
(a) $\frac{\sqrt{2}}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
A. $\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: C

D Watch Video Solution

17. Statement 1: An equation of a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4$ is $y=2 x+2 \sqrt{3}$.

Statement
2:
If
the
line
$y=m x+\frac{4 \sqrt{3}}{m},(m \neq 0)$ is a common tangent to the parabola $y^{2}=16 \sqrt{3} x$ and the ellipse $2 x^{2}+y^{2}=4$, then m satisfies $m^{4}+2 m^{2}=24$.

A. Statement I is true, statement II is true:

statement II is a correct explanation for
statement I
B. Statement 1 is true,

Statement 2 is true,

Statement 2 is a correct explanation for
statemennt 1
C. Statement 1 is true,statement 2 is true,

Statement 2 is not a correct explanation for
statement 1.
D. Statement 1 is true,

Statement 2 is false.

Answer: B

D Watch Video Solution

18. An ellipse is drawn by taking a diameter of the
circle $(x-1)^{2}+y^{2}=1$ as its semi-minor axis
and a diameter of the circle $x^{2}+(y-2)^{2}=4$ as its semi-major axis. If the centre of the ellipse is the origin and its axes are the coordinate axes, then the equation of the ellipse is
$4 x^{2}+y^{2}=4(2) x^{2}+4 y^{2}=8$ (3) $4 x^{2}+y^{2}=8$
(4) $x^{2}+4 y^{2}=16$
A. $4 x^{2}+y^{2}=4$
B. $x^{2}+4 y^{2}=8$
C. $4 x^{2}+y^{2}=8$
D. $x^{2}+4 y^{2}=16$

Answer: D
(D) Watch Video Solution
19. the equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having centre at $(0,3)$ is

$$
\text { A. } x^{2}+y^{2}-6 y-7=0
$$

$$
\text { B. } x^{2}+y^{2}-6 y+7=0
$$

C. $x^{2}+y^{2}-6 y-5=0$
D. $x^{2}+y^{2}-6 y+5=0$

Answer: A
(D) Watch Video Solution
20. A vertical line passing through the point
$(h, 0)$ intersects the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ at the points P and Q.Let the tangents to the ellipse at P and Q meet at R. If $\Delta(h)$ Area of triangle
$\triangle P Q R, \quad$ and $\quad \Delta_{1}=\max \quad \Delta(h) \quad$ and

$$
\frac{1}{2} \leq h \leq 1
$$

$\Delta_{2}=\min _{\frac{1}{2} \leq h \leq 1} \Delta(h)$ Then $\frac{8}{\sqrt{5}} \Delta_{1}-8 \Delta_{2}$

(D) Watch Video Solution

21. The locus of the foot of prependicular drawn
from the center of the ellipse $x^{2}+3 y^{2}=6$ on any tangent to it is
A. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
B. $\left(x^{2}+y^{2}\right)^{2}=6 x^{2}-2 y^{2}$
C. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}+2 y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=6 x^{2}-2 y^{2}$

Answer: A

- Watch Video Solution

22. Tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at the end of latus rectum. Find the area of quadrilateral so formed
A. $\frac{27}{2}$
B. 27
C. $\frac{27}{4}$
D. 18

Answer: B

D Watch Video Solution

23. Let E1 and E2, be two ellipses whose centers are at the origin. The major axes of E1 and E2, lie along the x-axis and the y-axis, respectively. Let S
be the circle $x^{2}+(y-1)^{2}=2$. The straight line
$x+y=3$ touches the curves S, E1 and E2 at P,Q and R , respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$.If e1 and e2 are the eccentricities of E1 and E2, respectively, then the correct expression(s) is(are):

$$
\begin{aligned}
& \text { A. (a) } e_{1}^{2}+e_{2}^{2}=\frac{43}{40} \\
& \text { B. (b) } e_{1} e_{2}=\frac{\sqrt{7}}{2 \sqrt{10}} \\
& \text { C. (c) }|e|_{1}^{2}-e_{2}^{2} \left\lvert\,=\frac{5}{8}\right. \\
& \text { D. (d) } e_{1} e^{2}=\frac{\sqrt{3}}{4}
\end{aligned}
$$

24. Suppose that the foci of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1 \quad$ are $\quad\left(f_{1}, 0\right) \operatorname{and}\left(f_{2}, 0\right) \quad$ where $f_{1}>0$ and $f_{2}<0$. Let $P_{1} a n d P_{2}$ be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_{1} .0\right)$ and (2f_2, 0), respectively. Let
T_{1} be a tangent to P_{1} which passes through
$\left(2 f_{2}, 0\right)$ and T_{2} be a tangents to P_{2} which passes
through $\left(f_{1}, 0\right)$. If m_{1} is the slope of T_{1} and m_{2} is the slope of T_{2}, then the value of $\left(\frac{1}{m_{1}^{2}}+m_{2}^{2}\right)$ is
25. If the tangents to the ellipse at M and N meet at R and the normal to the parabola at M meets the x-axis at Q, then the ratio of area of the triangle MQR to area of the quadrilateral MF1NF2 is
A. $\left(-\frac{9}{10}, 0\right)$
B. $\left(\frac{2}{3}, 0\right)$
C. $\left(\frac{9}{10}, 0\right)$
D. $\left(\frac{2}{3}, \sqrt{6}\right)$

Answer: A

D Watch Video Solution

26. The eccentricity of an ellipse whose centre is
at the origin is $\frac{1}{2}$. If one of its directrices is $x=-4$, then the equation of the normal to it at $(1,3 / 2)$ is
A. $x+2 y=4$
B. $2 y-x=2$
C. $4 x-2 y=1$

D. $4 x+2 y=7$

Answer: C

- Watch Video Solution

