

MATHS

BOOKS - ARIHANT MATHS

FUNCTIONS

Example

1. In the given figure, find the domain, codomain and range.

2. The number of functions $f\!:\!\{1,2,3,...n\}
ightarrow \{2016,2017\}$, where ne N,

which satisfy the condition f1)+f(2)+ ...+ f(n) is an odd number are

a. 2^n

b. $n \cdot 2^{n-1}$

c. 2^{n-1}

d. n!

A. 2^n

B. $n\cdot 2^{n-1}$

 $\mathsf{C.}\,2^{n-1}$

D. n!

Answer: C

Watch Video Solution

3. Find whether $f(x)=x^3$ forms a mapping or not.

4. Find whether $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ forms a mapping or not.

5. Find the domain of the following functions.

$$(i)y = \sqrt{5x - 3}$$
 $(ii)y = \sqrt[3]{5x - 3}$

$$(iii)y = rac{1}{(x-1)(x-2)} \quad (iv)y = rac{1}{\sqrt[3]{x-1}}$$

- **6.** Find the domain of $f(x) = \sqrt{\left(\frac{1-5^x}{7^{-1}-7}\right)}$
 - Watch Video Solution

7. Draw the graph of polynominal funtions

$$(i)y = x + 1$$
 $(ii)y = x^2$
 $(iii)y = x^3 + 1$ $(iv)y = x(x - 1)(x - 2)$

- $(iii)y = x^3 + 1 \ \ (iv)y = x(x-1)(x-2)$
 - Watch Video Solution

- **8.** Find domain of the function $10^x + 10^y = 10$
 - Watch Video Solution

- **9.** Find the domain of the function $: f(x) = \dfrac{1}{\sqrt{(\log)_{rac{1}{2}}(x^2-7x+13)}}$
 - Watch Video Solution

- **10.** Find domain of the function $f(x) = \dfrac{1}{\log_{10}(1-x)} + \sqrt{x+2}$
 - Watch Video Solution

12. Find domain of $f(x) = \log_{10} \left(1 + x^3 \right)$.

13. Find domain of the function $\log_{10}\log_{10}\log_{10}\log_{10}\log_{10}\log_{10}x$

11. Find domain of $f(x) = \log_{10}(1+x^3)$.

Watch Video Solution

15. Find the domain $f(x) = \log_{100x} \left(\frac{2 \log_{10} x + 1}{-x}
ight)$

14. Find the domain of $f(x) = \sqrt{(\log)_{0.4} \left(\frac{x-1}{x+5} \right)}$

16. The domain of definition of
$$f(x)=rac{(\log)_2(x+3)}{x^2+3x+2}$$
 is

$$R-\{-1,\ -2\}$$
 (b) $-2,\infty)$ $R-\{-1,\ -2,\ -3\}$ (d)

 $(-3,\infty)-\{-1,-2\}$

17. Find the domain for
$$f(x) = \sin^{-1} \left(\frac{x^2}{2} \right)$$
.

18. The domain of definition of the function

$$f(x) = \sin^{-1} igg\{ \log_2 igg(rac{x^2}{2}igg) igg\}$$
 , is

19. Find domain for $f(x) = \sqrt{\cos(\sin x)}$

Watch Video Solution

20. Find the domain for $f(x) = \sin^{-1}\!\left(rac{1+x^2}{2x}
ight)$

Watch Video Solution

21. Find range and domain of $f(x) = \sqrt{sin^{-1}(\log_2 x)}$

Watch Video Solution

22. The domain of the function

$$f(x) = \log_e igg\{ \log_{|\sin x|} ig(x^2 - 8x + 23 ig) - rac{3}{\log_2 \lvert \sin x
vert} igg\}$$

contains which of the following interval (s)?

23. Solve for x.

$$|x-3| + |4-x| = 1$$

- **24.** solve $\left|x^2-1+\sin x\right|=\left|x^2-1\right|+\left|\sin x\right|$, where $x\in[-2\pi,2\pi]$.
 - Watch Video Solution

- **25.** Solve the equation $\left| \dfrac{X}{X-1} \right| + |X| = \dfrac{X^2}{|X-1|}$
 - Watch Video Solution

- **26.** Find domain for $y=\dfrac{1}{\sqrt{|x|-x}}.$
 - **Watch Video Solution**

27. Find domain for

$$y = \cos^{-1} \left(\frac{1 - 2|x|}{4} \right) + \log(3 - x)^{-1}.$$

Watch Video Solution

28. The domain of the function $f(x)=\dfrac{1}{\sqrt{4x=\mid x^2-10x+9}}$ is

$$\left(7-\sqrt{40},7+\sqrt{40}
ight)\left(0,7+\sqrt{40}
ight)\left(7-\sqrt{40},\infty
ight)$$
 (d) none of these

A.
$$\left(7-\sqrt{40},7+\sqrt{40}\right)$$

B.
$$(0, 7 + \sqrt{40})$$

C.
$$(7-\sqrt{40},\infty)$$

D. None of these

Answer: D

29. The domain of the function

$$f(x) = \sqrt{\left|\sin^{-1}(\sin x)
ight| - \cos^{-1}(\cos x)}$$
 in $[0,2\pi]$ is

A.
$$\left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$$

$$\mathrm{B.}\left[\pi,\,2\pi\right]$$

C.
$$[0,\pi]-\left\{rac{\pi}{2}
ight\}$$

D.
$$\left[0,2\pi
ight]-\left\{rac{\pi}{2},rac{3\pi}{2}
ight\}$$

Answer: a

Watch Video Solution

30. Sketch the graph of

$$f(i)f(x) = sgnig(x^2+1ig) \quad (ii)f(x) = sgn(\log_e xig)$$

$$(iii) f(x) = sgn(\sin x)$$
 $(iv) f(x) = sgn(\cos x)$

31. Find domain for, $f(x) = \cos^{-1} x$.

Watch Video Solution

32. Find the value of

$$\left[\frac{3}{4}\right] + \left[\frac{3}{4} + \frac{1}{100}\right] + \left[\frac{3}{4} + \frac{2}{100}\right] + \dots + \left[\frac{3}{4} + \frac{99}{100}\right].$$

33. Given that y=2[x]+3 and y=3[x-2]+5 then find the value of

$$[x+y]$$

34. Find domain for $f(x) = [\sin x] \cos \left(\frac{\pi}{\lceil x - 1 \rceil} \right)$.

35. The domain of the function

$$f(x) = rac{\log_4\Bigl(5-\left[x-1
ight]-\left[x
ight]^2\Bigr)}{x^2+x-2}$$
 is

(where [x] denotes greatest integer function)

Watch Video Solution

36. Let [x] represent the greatest integer less than or equal to x If [$\sqrt{n^2+\lambda}igr|=igl[n^2+1igr]+2$, where $\lambda,n\in N,$ then λ can assume (a)

(2n+4) different values (b) (2n+5) different values (c) (2n+3)

different values (d) (2n+6) different values

Watch Video Solution

37. $f(x) = \frac{1}{\sqrt{|x|-x}}$, where $[\cdot]$ denotes the greatest integeral function

less than or equals to x. Then, find the domain of f(x).

38. The function f(x) is defined in [0,1] . Find the domain of f(tanx).

Watch Video Solution

39. If the domain of y = f(x) is [-3, 2], then find the domain of g(x) = f([x]), where [] denotes the greatest integer function.

Watch Video Solution

40. Find the domain of function $f(x) = \dfrac{1}{\lceil |x-1| \rceil + \lceil |7-x| \rceil - 6}$ where

[·] denotes the greatest integral function .

Watch Video Solution

41. If the function $f(x)=[3.5+b\sin x]$ (where [.] denotes the greatest integer function) is an even function, the complete set of values of b is

A. (-0.5,0.5)

B. [-0.5,0.5]

C. (0,1)

D. [-1,1]

Answer: A

Watch Video Solution

42. The domain of the function

 $f(x) = \log_3 \log_{1/3} ig(x^2 + 10x + 25 ig) + rac{1}{[x] + 5}$

(where [.] denotes the greatest integer function) is

A. (-4,-3)

B. (-6,-5)

C.(-6,-4)

D. None of these

Answer: B

43. If [x] dnote the greatest integer less than or equal to x then the equation $\sin x = [1 + \sin x] + [1 - \cos x][$ has no solution in

A. one solution in
$$\Big[-\frac{\pi}{2},\frac{\pi}{2}\Big]$$

B. one solution in $\left[\frac{\pi}{2},\pi\right]$

C. One solution in R

D. no solution in R

Answer: d

Watch Video Solution

44. If $\{x\}$ and [x] represent fractional and integral part of x respectively,

find the value of $[x]+\sum_{x=1}^{2000}rac{\{x+r\}}{2000}$

45. Solve the equation $4[x] = x + \{x\}$

Watch Video Solution

46. Prove that $[x]+[y]\leq [x+y]$, where x=[x]+{x} and y=[y]+{y} $[\cdot]$ represents greatest integer function and $\{\cdot\}$ represents fractional part of x.

47. Find the solution set of $(x)^2 + (x+1)^2 = 25$ where (x) is the least integer greater than or equal to x.

48. If [x] is the greatest integer less than or equal to x and (x) be the least integer greater than or equal to x and $[x]^2+(x)^2>25$ then x

belongs to

49. The number of solutions of |[x]-2x|=4, where [x] denotes the greatest integer $\leq x$ is

50. Find the range for $y=rac{2+x-\lfloor x
floor}{1-\lfloor x
floor+x}.$

51. range of $f(x)=rac{e^x}{[x]+1}, x\geq 0$

52. Find the domain and range of the function $y = \log_e \left(3x^2 - 4x + 5\right)$.

53. Find the range of $f(x) = \sqrt{x-1} + \sqrt{5-x}$.

54. Find the range of $\log_3\Bigl\{\log_{\frac{1}{2}}\bigl(x^2+4x+4\bigr)\Bigr\}$

55. Range of the function $f(m) = (\cos^{-1}|1 - m^2|)$

$$f(x) = \left(\cos^{-1}\left|1-x^2\right|\right)$$
 is

a.
$$\left[0, \frac{\pi}{2}\right]$$
 b. $\left[0, \frac{\pi}{3}\right]$ c. (o, π) d. $\left(\frac{\pi}{2}, \pi\right)$

A.
$$\left[0, \frac{\pi}{2}\right]$$

B.
$$\left[0, \frac{\pi}{3}\right]$$

$$\mathsf{C}.\left(o,\pi
ight)$$

D.
$$\left(\frac{\pi}{2},\pi\right)$$

Answer: A

Watch Video Solution

56. If x,y and z are three real numbers such that x+y+z=4 and $x^2+y^2+z^2=6$,then show that each of x,y and z lie in the closed interval $\left\lceil \frac{2}{3}, 2 \right\rceil$

- A. (-1,1)
- B. [0,2]
- C. [2,3]
- D. $\left[\frac{2}{3}, 2\right]$

Answer: D

57. The range of the function

$$f(x) = rac{1}{|\sin x|} + rac{1}{|\cos x|}$$
 is

a.
$$\left[2\sqrt{2},\infty\right)$$

b.
$$(\sqrt{2}, 2\sqrt{2})$$

c.
$$(0, 2\sqrt{2})$$

d.
$$(2\sqrt{2}, 4)$$

A.
$$\left[2\sqrt{2},\infty\right)$$

B.
$$\left(\sqrt{2}, 2\sqrt{2}\right)$$

C.
$$(0, 2\sqrt{2})$$

D.
$$(2\sqrt{2}, 4)$$

Answer: A

58. If
$$z=x+iyandx^2+y^2=16$$
, then the range of $||x|-|y||$ is

D. None of these

Answer: A

Watch Video Solution

59. Find the range of f(x)= $\frac{1}{\pi}\sin^{-1}x+\tan^{-1}x+\frac{x+1}{x^2+2x+5}$

A.
$$\left[-rac{3}{4},rac{1}{5}
ight]$$

$$\mathsf{B.}\left[\,-\,\frac{5}{4},\frac{3}{4}\,\right]$$

$$\mathsf{C.}\left[-\frac{3}{4},\frac{5}{4}\right]$$

D.
$$\left[-\frac{3}{4},1\right]$$

Answer: D

Watch Video Solution

60. The range of the function $\sin^2 x - 5\sin x - 6$ is

- A. [-10,0]
- B. [-1,1]
- $C. [0, \pi]$
- D. $\left[-\frac{49}{4},0\right]$

Answer: A

Watch Video Solution

61. If $f(x)=\left[x^2\right]-\left[x\right]^2$, where $[\;]$ denote the greatestinteger function and $xarepsilon[0,n],\;
eq N$ then thenumber of elements In the range of f(x) are

B. 4n-3

C. 3n-3

D. 2n-1

Answer: D

Watch Video Solution

62. Range of the function

$$f(x) = \sqrt{\left|\sin^{-1}|\sin x|
ight| - \left|\cos^{-1}|\cos x|
ight|}$$
 is

B. $\left[0, \sqrt{\frac{\pi}{2}}\right]$

C. $\left[0,\sqrt{\pi}\right]$

D. None of these

Answer: A

63. The number of values of
$$y \in [\,-2\pi,2\pi]$$
 satisfying the equation

$$|\sin 2x| + |\cos 2x| = |\sin y|$$
 is

Answer: B

64.
$$f(x) = \cot^{-1} \left(x^2 - 4x + 5 \right)$$
 then range of $f(x)$ is equal to :

A.
$$\left(0, \frac{\pi}{2}\right)$$

B.
$$\left(0, \frac{\pi}{4}\right]$$

$$\mathsf{C.}\left[0,\frac{\pi}{4}\right)$$

D. None of these

Answer: B

Watch Video Solution

65. Find the range of $f(x)=rac{x^2+14x+9}{x^2+2x+3}$, where $\mathsf{x} \in \mathsf{R}.$

Watch Video Solution

- **66.** If the range of function $f(x)=rac{x+1}{k+x^2}$ contains the interval
- [-0,1], then values of k can be equal to
- a. 0
- b. 0.5
- c. 1.25

d. 1.5

67. Find the range of the function

$$f(x) = \frac{\sin^2 x + \sin x - 1}{\sin^2 x - \sin x + 2}.$$

68. If f is an even function, then find the realvalues of x satisfying the equation $f(x)=f\Big(\frac{x+1}{x+2}\Big)$

69. Find out whether the given function is even, odd or neither even nor odd

$$ext{where} \ \ f(x) = \left\{ egin{aligned} x|x| & , & x \leq -1 \ [1+x] + [1-x] & , & -1 < x < 1 \ -x|x| & , & x \geq 1 \end{aligned}
ight.$$

where || and [] represent then modulus and greater integer functions.

70. Find whether the given function is even or odd: $f(x)=\left(x\frac{\sin x+\tan x}{\left[x+\frac{\pi}{\pi}\right]-\frac{1}{2}}; \text{ whether } [] \text{ denotes the greatest integer}\right.$

function.

71. Prove sin x is periodic and find its period.

72. Prove that f(x)=x-[x] is periodic function. Also, find its period.

73. Let f(x) be periodic and k be a positive real number such that f(x+k)+f(x)=0f or $allx\in R$. Prove that f(x) is periodic with period 2k.

74. Find periods for

$$(i)\cos^4 x$$
. $(ii)\sin^3 x$. $(iii)\cos\sqrt{x}$. $(iv)\cos x$.

75. Find the period $f(x) = \sin x + \{x\}$, where {x} is the fractional part of x.

76. Find period of $f(x) = \tan 3x + \sin \left(\frac{x}{3}\right)$.

77. Find the period of
$$f(x)=\sin x+\tan\Bigl(\frac{x}{2}\Bigr)+\sin\Bigl(\frac{x}{2^2}\Bigr)+\tan\Bigl(\frac{x}{2^3}\Bigr)+\dots \\ +\sin\Bigl(\frac{x}{2^{n-1}}\Bigr)+$$
 Watch Video Solution

the

79. Period of $f(x) = \sin^4 x + \cos^4 x$

Watch Video Solution

Find

77.

80. Find the period of $\cos(\cos x) + \cos(\sin x)$.

81. Find the period of $f(x) = \cos^{-1}(\cos x)$

Watch Video Solution

- **82.** The period of $f(x) = \cos(|\sin x| |\cos x|)$ is
 - A. π
 - $B.2\pi$
 - C. $\frac{\pi}{2}$

D. None of these

Answer: C

Watch Video Solution

83. Period of the function $f(x) = \sin(\sin(\pi x)) + e^{\{3x\}}$, where {} denotes the fractional part of x is

b. 2 a. 1 d. none of these c. 3 A. 1 B. 2 C. 3 D. None of these **Answer: B** Watch Video Solution **84.** $\sin \alpha x + \cos \alpha x$ and $|\cos x| + |\sin x|$ are periodic functions of same fundamental period, if 'a' equals A. 0 B. 1 C. 2

Answer: D

Watch Video Solution

85. Let $f(x) = \sin x + \cos \left(\sqrt{4-a^2} \right) x$. Then, the integral values of 'a'

for which f(x) is a periodic function, are given by

a. {2,-2}

b. (-2,2]

c. [-2,2]

d. none of these

A. {2,-2}

B. (-2,2]

C. [-2,2]

D. None of these

Answer: D

86. Let $f(x) = \left\{ egin{aligned} -1 + \sin K_1 \pi x, & ext{x is rational.} \ 1 + \cos K_2 \pi x, & x \end{aligned}
ight.$

If f(x) is a periodic function, then

A. either $K_1, K_2 \in \mathsf{rational}$ or $K_1, K_2 \in \mathsf{irrational}$

 $B. K_1, K_2 \in \text{rational only}$

 $\mathsf{C}.\,K_1,\,K_2\in\;\;\mathrm{irrational\;only}$

Answer: B

Watch Video Solution

87. If
$$f(x)= an^2igg(rac{\pi x}{n^2-5n+8}igg)+\cot(n+m)\pi x; (n\in N,m\in Q)$$

is a periodic function with 2 as its fundamental period, then m can't

belong to

a.
$$(\,-\infty,\,-2)\cup(\,-1,\infty)$$

$$\mathsf{b.}\,(\,-\infty,\,-3)\cup(\,-2,\infty)$$

$$\mathsf{d.}\left(-3,\,-\frac{5}{2}\right)\cup\left(-\frac{5}{2},\,-2\right)$$

c. $(-2, -1) \cup (-3, -2)$

A. $(-\infty, -2) \cup (-1, \infty)$

B.
$$(\,-\infty,\,-3)\cup(\,-2,\infty)$$

C.
$$(-2, -1) \cup (-3, -2)$$

D. $\left(-3,\,-rac{5}{2}
ight)\cup\left(-rac{5}{2},\,-2
ight)$

88. Let f(x) be a periodic function with period 3 and $f\Big(-rac{2}{3}\Big)=7$ and

$$g(x)=\int_0^x f(t+n)dt$$
 .where $n=3k,$ $k\in N$. Then $g'\Big(rac{7}{3}\Big)=$

A.
$$-\frac{2}{3}$$

D.
$$\frac{7}{3}$$

Answer: B

Watch Video Solution

89. Let $f{:}[{\,-\,}\pi{\,}/{\,}2,{\,}\pi{\,}/{\,}2]
ightarrow [{\,-\,}1,{\,}1]$ where <code>f(x)=sinx</code>. Find whether <code>f(x)</code> is one-one or not.

Watch Video Solution

90. If $f(x)=x^3+3x^2+4x+b\sin x+c\cos x\, orall x\in R$ is a one-one function then the value of $b^2 + c^2$ is

A. ≥ 1

B. ≥ 2

 $\mathsf{C.} \leq 1$

D. None of these

Answer: C

Watch Video Solution

91. Show $f\!:\!R o R$ defined by $f(x)=x^2+x$ for all $x\in R$ is manyone.

Watch Video Solution

92. Show that $f\!:\!R o R$ defined by f(x)=(x-1)(x-2)(x-3) is surjective but not injective.

Watch Video Solution

93. If $f\!:\!R o\Big[rac{\pi}{6},rac{\pi}{2}\Big],$ $f(x)=\sin^{-1}\!\Big(rac{x^2-a}{x^2+1}\Big)$ is an onto function, the set of values a is

A.
$$\left\{ -\frac{1}{2} \right\}$$

$$\mathsf{B.}\left[\,-\,\frac{1}{2},\,-\,1\right)$$

C. $(-1,\infty)$

D. None of these

Answer: C

95. Let $A=\{x\colon -1\leq x\leq 1\}=B$ be a function $f\colon A\to B$. Then find the nature of each of the following functions.

94. Show $f\!:\!R o R$ defined by $f(x)=x^2+4x+5$ is into

the nature of each of the following functions

(iii)
$$f(x)=x^3$$
 (iv) $f(x)=\sin\!rac{\pi x}{2}$

(i) f(x) = |x| (ii) f(x) = x|x|

$$f(x)=rac{1}{2}Inigg(\sqrt{\sqrt{x^2+1}+x}+\sqrt{\sqrt{x^2+1}-x}igg)$$
 is

A. one-one and onto both

B. one-one but not onto

C. onto but not one-one

D. Neither one-one nor onto

Answer: D

Watch Video Solution

97. If X={1,2,3,4,5} and Y={a,b,c,d,e,f} and $f: X \to Y$, find the total number of

functions.

Watch Video Solution

98. Find the number of surjections from A to B, where A={1,2,3,4}, B={a,b}.

99. $f(x) = \log_{x^2} 25$ and $g(x) = \log_x 5$. Then f(x)=g(x) holds for x belonging to

100. Let $A=\{1,2\},\ B=\{3,6\}$ and $f\colon A\to B$ given by $f(x)=x^2+2\ nd\ g\colon A\to B$ given by $g(x)=3x\cdot$ Then we observe that $f\ and\ g$ have the same domain and co-domain. Also we hve, $f(1)=3=g(1)and\ f(2)=6=g(2)\cdot$ Hence $f=g\cdot$

101. Which pair of functions is identical?

a. $\sin^{-1}(\sin x)$ and $\sin(\sin^{-1} x)$

c. $\log_e x^2, 2\log_e x$

 $\mathsf{b.log}_e\,e^x,\,e^{\log_e x}$

d. None of the above

A. $\sin^{-1}(\sin x)$ and $\sin(\sin^{-1} x)$

 $\mathsf{C.}\log_e x^2, 2\log_e x$

B. $\log_e e^x$, $e^{\log_e x}$

D. None of the above

Answer: D

Watch Video Solution

define statement(s) is true?

a. If gof is one-one, then f anf g both are one-one

102. Let $f\colon\! A o B$ and $g\colon\! B o C$ be two functions and $gof\colon\! A o C$ is

b. if gof is one-one, then f is one-one

c. If gof is a bijection, then f is one-one and g is onto

d. If f and g are both one-one, then gof is one-one.

A. If gof is one-one, then f anf g both are one-one

B. if gof is one-one, then f is one-one

C. If gof is a bijection, then f is one-one and g is onto

D. If f and g are both one-one, then gof is one-one.

Answer: B::C::D

Watch Video Solution

103. Let R be the set of real numbes. If $f\!:\!R\overset{
ightarrow}{R};f(x)=x^2$ and $g\!:\!\stackrel{
ightarrow}{RR};g(x)=2x+1$. Then, find fogandgof . Also, show that $fog \neq gof$

Watch Video Solution

104. Let
$$g(x)=1+x-[x]$$

and

$$f(x) = egin{cases} -1, & x < 0 \ 0, & x = 0 \ 1, & x > 0 \end{cases}$$

Then, for all x, find f(g(x)).

Watch Video Solution

105. Let $f(x) \begin{cases} 1+x, & 0 \le x \le 2 \\ 3-x, & 2 < x \le 3 \end{cases}$:

Find fof.

Watch Video Solution

106. Let $f(x) = \left\{ egin{array}{ll} x+1, & x < 1 \ 2x+1, & 1 < x < 2 \end{array}
ight. ext{ and } g(x) = \left\{ egin{array}{ll} x^3, & -1 \leq x < 2 \ x+2, & 2 < x < 3 \end{array}
ight.$ find fog(x).

Watch Video Solution

107. If f(x)=2x+|x|, $g(x)=rac{1}{3}(2x-|x|)$ and h(x)=f(g(x)), domain of $\sin^{-1}(h(h(h(h...h(x)...))))$ is n times

B.
$$\left[-1,\ -\frac{1}{2}\right]\cup\left[\frac{1}{2},1\right]$$
C. $\left[-1,\ -\frac{1}{2}\right]$
D. $\left[\frac{1}{2},1\right]$

Answer: A

108.

Watch Video Solution

If
$$f'(0)=rac{1}{2}, then$$

Α

A.
$$f(x)$$
'' $(x)=f(x)=0$

function

 $x\cos y(f(2x+2y)-f(2x-2y)=\cos x\sin y(f(2x+2y)+f(2x-2y))$

 $f : R\overset{
ightarrow}{R}$

satisfies

$$\mathsf{B.}\,4f^{\prime\prime}(x)+f(x)=0$$

$$\mathsf{C.}\,f'\,{}'(x)+f(x)=0$$

$$\mathsf{D.}\,4f^{\prime\,\prime}(x)-f(x)=0$$

Answer: B

Watch Video Solution

109. If f(x) = 3x - 5, then $f^{-1}(x)$ is

Watch Video Solution

110. If $f\colon [1,\infty) o [2,\infty)$ is given by $f(x) = x + rac{1}{x}, \;\; ext{find} \;\; f^{-1}(x)$ (assume bijection).

Watch Video Solution

111. Let $f(x) = x^3 + 3$ be bijective, then find its inverse.

Watch Video Solution

inverse of the function of $f\!:\!R o R$ given by $f(x) = \log_a\Bigl(x + \sqrt{x^2 + 1}(a > 0, a
eq 1)$ is

112.

The

113. Let $f\!:\!R o R$ be defined by $f(x)=\left(e^x-e^{-x}
ight)/2$ then find its inverse.

114. Let
$$f:\left[\frac{1}{2},\infty\right) o \left[\frac{3}{4},\infty\right)$$
, where $f(x)=x^2-x+1$. Find the inverse of f(x).

115. Let g(x) be the inverse of f(x) and $f'(x) = \frac{1}{1+r^3}$. Find g'(x) in terms of g(x).

116. If
$$f\!:\!R o R$$
 be defined by $f(x)\!:\!x^2+1,\; then\; find\; f^{-1}(17) and\; f^{-1}(-3).$

117. If the function f and g are defined as $f(x)=e^x$ and g(x)=3x-2, where

118. If f(x)=ax+b and the equation $f(x)=f^{-1}(x)$ be satisfied by every

 $f\!:\!R o R$ and $g\!:\!R o R$, find the function fog and gof.

real value of x, then

B.
$$a=-1,b\in R$$

C.
$$a=1,b\in R$$

D. a=1, b=-1

Answer: B

Watch Video Solution

119. If g is the inverse function of and $f'(x) = \sin x$ then prove that $g'(x) = \csc(g(x))$

A. sin(g(x))

B. cosec(g(x))

C. tan(g(x))

D. None of these

Answer: B

Watch Video Solution

then

A. (a) A and B necessarity lie on the line y=x

120. If A and B are the points of intersection of y=f(x) and $y = f^{-1}(x)$,

121. For $x \in R$, the functions f(x) satisfies $2f(x) + f(1-x) = x^2$. The

B. (b) A and B must be coincident

C. (c) slope of line AB may be -1

D. (d) None of these above

Answer: C

Watch Video Solution

value of f(4) is equal to

A.
$$\frac{13}{3}$$

B.
$$\frac{43}{3}$$

D. None of these

Answer: C

4f(2).

Watch Video Solution

122. if $f(x) = ax^7 + bx^3 + cx - 5$, f(-7) = 7 then f(7) is

124. Draw the graph of the function $f(x) = \max \{x, x^2\}$ and write its equivalent definition.

123. $f(x)+f\Big(1-rac{1}{x}\Big)=1+x$ for $x\in R-\{0,1\}.$ Find the value of

125. Let

Then

Watch Video Solution

126. Let $f(x)=rac{a_{2k}x^{2k}+a_{2k-1}x^{2k-1}+...+a_{1}x+a_{0}}{b_{2k}x^{2k}+b_{2k-1}x^{2k-1}+...+b_{1}x+b_{0}}$, where k is a positive integer, $a_{i},b_{i}\in R$ and $a_{2k}\neq 0,b_{2k}\neq 0$ such that $b_{2k}x^{2k}+b_{2k-1}x^{2k-1}+...+b_{1}x+b_{0}=0$ has no real roots, then

A. f(x) must be one to one

B.
$$a_{2k}x^{2k} + a_{2k-1} + \dots + a_1x + a_0 = 0$$

must have real roots

C. f(x) must be many to one

D. Nothing can be said about the above options

Answer: C

Watch Video Solution

127. If $\log_{10}\Bigl(\sin\Bigl(x+rac{\pi}{4}\Bigr)\Bigr)=rac{\log_{10}6-1}{2}$, the value of $\log_{10}(\sin x)+\log_{10}(\cos x)$ is

- A. -1
- B. -2
- C. 2
- D. 1

Answer: A

Watch Video Solution

128. The diagram shows the dimensions of the floor of an L-shaped room.

(All the angles are right angles). The area of the largest circle that can be

drawn on the floor of this room is

A.
$$16\pi$$

B.
$$25\pi$$

$$\mathsf{C.}\ \frac{81\pi}{4}$$

D.
$$\frac{145\pi}{4}$$

Answer: B

Watch Video Solution

129. Suppose that the temperature T at every point (x,y) in the plane cartesian is given by the formula $T=1-x^2+2y^2.$ The correct statement about the maximum and minimum temperature along the line

x+y=1 is

A. Minimum is -1. There is no maximum

B. Maximum is -1. There is no minimum

C. Maximum is 0. Minimum is -1

D. There is neither a maximum nor a minimum along the line

Answer: A

Watch Video Solution

130. The domain of the function $f(x)=\sin x$, is $(-\infty,\infty)$. The range of f(x)

is

A.
$$\left[-\frac{1}{\sqrt{2}},1\right]$$
B. $\left[-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right]$

C. [0,1]

Answer: A

Watch Video Solution

131. Consider the function $f\colon A\to A$ where $A\colon\{1,2,3,4,5\}$ which satisfy the condition f(f(x))=x, If the number of such functions are $\lambda,$ then

A. 10

B. 40

C. 41

D. 31

Answer: C

Watch Video Solution

132. Area bounded by the relation [2x]+[y]=5, x,y>0 is___

- A. (a) 2
- B. (b) 3
- C. (c) 4
 - D. (d) 5

Answer: B

133. If the integers a,b,c,d are in arithmetic progression and a < b < c < d and $d = a^2 + b^2 + c^2$, the value of (a+10b+100c+1000d) is

- A. 2008
- B. 2010
- C. 2099

Answer: C

Watch Video Solution

134. Let f(n) denotes the square of the sum of the digits of natural number n, where $f^2(n)$ denotes f(f(n)). $f^3(n)$ denote f(f(f(n))) and so on.the value of $\frac{f^{2011}(2011)-f^{2010}(2011)}{f^{2013}(2011)-f^{2012}(2011)}$ is....

- **A.** 1
- B. 3
- C. 5
- D. 7

Answer: A

Watch Video Solution

135. Find $\frac{dy}{dx}$ if $y = \cos^4 x$

Watch Video Solution

136. If f(x-y), f(x)f(y), and f(x+y) are in A.P. for all x, y, and $f(0) \neq 0$, then

A.
$$f(3) + f(-3) = 0$$

B.
$$f'(1) + f'(-1) = 0$$

C.
$$f'(2) - f'(-2) = 0$$

D.
$$f'(3) + f'(-3) = 0$$

Answer: B::D

Watch Video Solution

137. $x^2+4+3\cos(ax+b)=2x$ has atleast on solution then the value of a+b is:

A.
$$5\pi$$

B. 3π

 $C.2\pi$

D. π

Answer: B::D

Watch Video Solution

138. Which of following functions have the same graph?

A.
$$f(x) = \log_e e^x$$

$$\mathtt{B.}\,g(x)=|x|sgnx$$

$$\mathsf{C.}\,h(x)=\cot^{-1}(\cot x)$$

D.
$$k(x) = \lim_{n o \infty} \ rac{2|x|}{\pi} an^{-1}(nx)$$

Answer: A::B::D

Watch Video Solution

139. Find $\frac{dy}{dx}$ if $y = \sin x \cdot \cos x$

Watch Video Solution

140. Consider two functions

$$f(x) = 1 + e^{\cot^2 x} \;\; ext{ and } \;\; g(x) = \sqrt{2|\sin x| - 1} + rac{1 - \cos 2x}{1 + \sin^4 x}.$$

Statement I The solutions of the equation f(x)=g(x) is given by

$$x=(2n+1)rac{\pi}{2},\ orall \mathrm{n}\in I.$$

Statement II If $f(x) \ge k$ and $g(x) \le k$ (where $k \in \mathbb{R}$), then solutions of the equation f(x)=g(x) is the solution corresponding to the equation f(x)=k.

Watch Video Solution

141. Let $a_m(m=1,2,,p)$ be the possible integral values of a for which the graphs of $f(x)=ax^2+2bx+b$ and $g(x)=5x^2-3bx-a$ meets

at some point for all real values of b Let $t_r = \prod_{m=1}^p \left(r - a_m
ight)$ and

$$S_n = \sum_{1}^n t_r.\ n \in N$$
 The minimum possible value of a is

A.
$$\frac{1}{5}$$

B.
$$\frac{5}{26}$$

D.
$$\frac{2}{43}$$

Answer: A

Watch Video Solution

142. Let $a_m(m=1,2,\,,p)$ be the possible integral values of a for which the graphs of $f(x)=ax^2+2bx+b$ and $g(x)=5x^2-3bx-a$ meets

at some point for all real values of b Let $t_r=\prod_{m=1}^{P}{(r-a_m)}$ and $S_n=\sum_{m=1}^{n}{t_r}.~n\in N$ The minimum possible value of a is

B. 9

C. 10

D. 15

Answer: C

Watch Video Solution

143. Find $\frac{dy}{dx}$ if $y = 5x^2 - 3bx - a$

Watch Video Solution

145. If f(x) is a polynomial function $f:R \to R$ such that f(2x)=f'(x) f''(x)

Then f(x) is

A. a. one- one and onto

B. b. one-one and into

C. c. many-one and onto

D. d. many-one and into

Answer: A

Watch Video Solution

146. Let $A = \{1, 1, 2, 3\}$ and $B = \{-2, -1, 0, 1, 2, 3\}$.

The probability of non decreasing functions from A to B, is

A. 120

B. 72

C. 60

D. 56

Answer: D

147. Let $A = \{1, , 2, 3\}$ and $B = \{-2, -1, 0, 1, 2, 3\}$.

The probability of non decreasing functions from A to B, is

- A. 216
- B. 540
- C. 792
- D. 840

Answer: C

Watch Video Solution

148. Let A={1,2,3,4,5} and B={-2,-1,0,1,2,3,4,5}.

Onto functions from A to A such that f(i)
eq i for all i, is

A. (a)44

B. (b)120

C. (c)56

D. (d)76

Answer: A

Watch Video Solution

149. Let $f(x)=\sin^{23}x-\cos^{22}x$ and $g(x)=1+rac{1}{2} an^{-1}|x|$. Then the number of values of x in the interval $[-10\pi, 8\pi]$ satisfying the equation f(x) = sgn(g(x)) is _____

150.

Watch Video Solution

 $g(x) \cdot \left(x^{\left(2^{2008}-1
ight)}-1=(x+1)ig(x^2+1ig)ig(x^4+1ig)...ig(x^{2^{2007}}+1ig)-1
ight.$ the value of g(2) equals

g(x)

defined

as

Watch Video Solution

Consider the function

151. if $f(x)=\left(\frac{9}{\log_2(3-2x)}-1\right)^{\frac{1}{3}}$ then the value of a which satisfies $f^{-1}(2a-4)=\frac{1}{2}$ is

Watch Video Solution

152. Let f be defined on the natural numbers as follow: f(1)=1 and for n>1, f(n)=f[f(n-1)]+f[n-f(n-1)], the value of $\frac{1}{30}\sum_{r=1}^{20}f(r)$ is

Watch Video Solution

153. If a,b,c are real roots of the cubic equation f(x)=0 such that $(x-1)^2$ is a factor of f(x)+2 and $(x+1)^2$ is a factor of f(x)-2, then |ab+bc+ca| is equal to

Watch Video Solution

154. Find the least positive intergral value of c for which equation $e^x=cx^2$ has three distinct real roots.

155.
$$x = \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{1 + ...}}}}$$

156. Let a sequence x_1,x_2,x_3,\ldots of complex numbers be defined by $x_1=0,x_{n+1}=x_n^2-i$ for all n>1, where $i^2=-1$. Find the distance of x_{2000} from x_{1997} in the complex plane.

157. If a,b,c,d,e are +ve real numbers such that a+b+c+d+e=8 and $a^2+b^2+c^2+d^2+e^2=16$, then the

Watch Video Solution

range of 'e' is

158.

 $2^{|y|} - |2^{y-1} - 1| = 2^{y-1} + 1$

Find the set of all solutions of the equation

160. Sum of all the solution of the equation
$$\frac{[x]}{[x-2]} - \frac{[x-2]}{[x]} = \frac{8\{x\}+12}{[x-2][x]} \text{ is (where{*} denotes greatest integer function and {*} represent fractional part function)}$$

161. If f(x) is a polynomial function satisfying

$$f(x)figg(rac{1}{x}igg)=f(x)+figg(rac{1}{x}igg)$$
 and $f(4)=65, then f\in df(6)$.

162. If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y \in R and f(1)=5, then find $\sum_{n=0}^{\infty} f(n)$. Also, prove that f(x) is odd.

163. Let $f(x)=rac{9^x}{9^x+3}$. Show f(x)+f(1-x)=1 and, hence, evaluate. $f\Bigl(rac{1}{1996}\Bigr)+f\Bigl(rac{2}{1996}\Bigr)+f\Bigl(rac{3}{1996}\Bigr)+f\Bigl(rac{1}{1996}\Bigr)$

164. ABCD is a square of side a. A line parallel to the diagonal BD at a distance x from the vertex A cuts the two adjacent sides. Express the area of the segment of the square with A at a vertex, as a function of x.

Watch Video Solution

165. If
$$f\!:\!R o R,$$
 $f(x)=rac{lpha x^2+6x-8}{lpha+6x-8x^2}$ is onto then $lpha\in$

166. What is the general solution of the differential equation

(2x - y + 1) dx + (2y - x + 1) dy = 0?

168. Let
$$f\colon N \to N$$
 be a function such $x-f(x)=19\Big[\frac{x}{19}\Big]-90\Big[\frac{f(x)}{90}\Big],\ \forall x\in N$, where [.] denotes the greatest integer function and [.] denotes the greatest integers function and $1900 < f(1990) < 2000$, then possible value of $f(1990)$ is

Watch Video Solution

169. Solve the system of equations, $|x^2-2x|+y=1, x^2+|y|=1.$

$$|x-2x|+y-1, x-|y|=1$$

170. Let f and g be real - valued functions $f(x+y)+f(x-y)=2f(x)\cdot g(y), \ orall \ {
m x} \ , {
m y} \ \in R.$

Prove that , if f(x) is not identically zero and $|f(x)| \leq 1, \ orall x \in R, \ ext{then}$ $|g(y)| \leq 1, \ orall y \in R.$

such

that

171. The solution of the differential equation

$$\frac{dy}{dx}$$
 = 1 + x + y + xy is _____.

Watch Video Solution

Exercise For Session 1

1. Which of the following graphs are graphs of a function?

Watch Video Solution

- **2.** For which of the following, y can be a function of x, $(x \in R, y \in R)$?
- $(i)(x-h)^2 + (y-k)^2 = r^2$ $(ii)y^2 = 4ax$
- $(iii)x^4 = y^2 \qquad \qquad (iv)x^6 = y^3$
- $(v)3y = (\log x)^2$

Watch Video Solution

3. Let g(x) be a function defined on [-1,1]. If the area of the equilateral triangle with two of its vertices at (0,0)and(x,g(x)) is $\frac{\sqrt{3}}{4}$, then the function g(x) is $g(x)=\pm\sqrt{1-x^2}$ $g(x)=\sqrt{1-x^2}$ $g(x)=\sqrt{1-x^2}$

A.
$$g(x) = \pm \sqrt{1-x^2}$$

B. $g(x) = \sqrt{1-x^2}$

$$\mathsf{C.}\,g(x)=\,-\,\sqrt{1-x^2}$$

D.
$$g(x) = \sqrt{1+x^2}$$

Answer: A

Watch Video Solution

4. Represent all possible functions defined from $\{\alpha, \beta\}$ to $\{1, 2\}$.

5. The number of functions from $f\!:\!\{a_1,a_2,...,a_{10}\} o \{b_1,b_2,...,b_5\}$ is

- Watch Video Solution
- A. 10^5
 - B. 5¹⁰
- C. $\frac{10!}{5!}$

D. 5!

Answer: B

Watch Video Solution

Exercise For Session 2

1. The domain of the function

$$f(x)=\sqrt{x^2-5x+6}+\sqrt{2x+8-x^2}$$
 , is

3. Find the domain of $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$

4. The exhaustive domain of $f(x) = \sqrt{x^{12} - x^9 + x^4 - x + 1}$ is

5. The domain of the function $f(x)={}^{16-x}C_{2x-1+{}^{20-3x}P_{4x-5}}$, where the symbols have their usual meanings, is the set

6. Find the domain? $f(x) = \sqrt{\left(x^2 + 4x\right)C_{2x^2+3}}$

Exercise For Session 3

1. The domain of the function

$$f(x) = \log_{10}(\sqrt{x-4} + \sqrt{6-x})$$
 is

3.
$$f(x) = \sqrt{\log\!\left(rac{3x-x^2}{x-1}
ight)}$$

4. Find the domain of definitions of the following function:

5.
$$f(x) = \sin \lvert x \rvert + \sin^{-1}(\tan x) + \sin \left(\sin^{-1} x\right)$$

6. The domain of definition of $f(x) = \sqrt{e^{\cos-1} \left(\log_4 \overline{x^2}\right)}$ is

7.
$$f(x) = \sin^{-1}\!\left(rac{3-2x}{5}
ight) + \sqrt{3-x}$$
 . Find the domain of f(x).

8. Find the domain
$$f(x)=rac{\log_{2x}3}{\cos^{-1}(2x-1)}$$

9. Find the domain of $f(x)=(\log)_{10}(\log)_2(\log)_{rac{2}{\pi}}ig(tan^{-1}xig)^{-1}$

10. $f(x) = \sqrt{\dfrac{\log(x-1)}{x^2-2x-8}}$. Find the domain of f(x).

Exercise For Session 4

1. $f(x) = \sqrt{x^2 - |x| - 2}$. Find the domain of f(x).

- **2.** $f(x) = \sqrt{2-|x|} + \sqrt{1+|x|}$. Find the domain of f(x).
 - Watch Video Solution

- **3.** $f(x) = \log_e |\log_e x|$. Find the domain of f(x).
 - Watch Video Solution
- **4.** $f(x) = \sin^{-1} \left(\frac{2 3[x]}{4} \right)$, which $[\,\cdot\,]$ denotes the greatest integer function.

5. $f(x) = \log(x - [x])$, where $[\cdot]$ denotes the greatest integer function.

- find the domain of f(x).
 - Watch Video Solution
- **6.** $f(x) = \frac{1}{\sqrt{\left[x
 ight]^2 \left[x
 ight] 6}}$, where $[\,\cdot\,]$ denotes the greatest integer function.

7. $f(x)=\cos ec^{-1}ig[1+\sin^2xig]$, where $[\ \cdot\]$ denotes the greatest integer function. then range of f(x) is

9.
$$f(x) = \sqrt{rac{x-1}{x-2\{x\}}}$$
 , where $\{\,\cdot\,\}$ denotes the fractional part.

10. Domain of $f(x) = \sin^{-1} \left(\frac{[x]}{\{x\}} \right)$, where $[\cdot]$ and $\{\cdot\}$ denote greatest integer and fractional parts.

11. $f(x) = \sin^{-1} \left[2x^2 - 3 \right]$, where $[\cdot]$ denotes the greatest integer function. Find the domain of f(x).

12. Find the domain and range of the following function:

$$f(x) = \sin^-\left[\log_2\!\left(rac{x^2}{2}
ight)
ight]$$
 , where [.] denotes greatest integer function.

13. The domain of $f(x)=\sqrt{2\{x\}^2-3\{x\}+1}$, where {.} denotes the fractional part in [-1,1] is (a) $[-1,1]-\left(\frac{1}{2},1\right)$ (b)

$$\left[-1,\ -rac{1}{2}
ight] \cup \left[rac{0,1}{2}
ight] \cup \left\{1
ight\}$$
 (c) $\left[-1,rac{1}{2}
ight]$ (d) $\left[-rac{1}{2},1
ight]$

14.
$$f(x) = \frac{1}{(x-2) + (x-10) - 8}$$
 Find integration of f(x)

- **15.** If a function is defined as $f(x)=\sqrt{\log_{h(x)}g(x)}$, where $g(x)=|\sin x|+\sin x, \, h(x)=\sin x+\cos x, \, 0\leq x\leq \pi.$ Then find the domain of f(x).
 - Watch Video Solution

16. The number of solutions of the equation $[y+[y]]=2\cos x$, where $y=rac{1}{3}[\sin x+[\sin x+[\sin x]]].$

where [.] denotes the greatest integer function, is

Prove

for n = 1, 2, 3...

$$\left\lceil rac{n+1}{2}
ight
ceil + \left\lceil rac{n+2}{4}
ight
ceil + \left\lceil rac{n+4}{8}
ight
ceil + \left\lceil rac{n+8}{16}
ight
ceil + ... = n \quad ext{where} \quad [x]$$

represents Greatest Integer Function

Watch Video Solution

18. Find the integral solutions to the equation [x][y] = x + y. Show that all the non-integral solutions lie on exactly two lines. Determine these lines. Here [.] denotes greatest integer function.

Watch Video Solution

Exercise For Session 5

- **1.** $f(x) = \sqrt{9 x^2}$. find range of f(x).
 - Watch Video Solution

2.
$$f(x) = \frac{x}{1+x^2}$$
. Find domain and range of f(x).

3. $f(x) = \sin x + \cos x + 3$. find the range of f(x).

4. $f(x) = |x-1| + |x-2|, -1 \le x \le 3$. Find the range of f(x).

6.
$$f(x) = \frac{x^2-2}{x^2-3}$$
. find the range of f(x).

5. $f(x) = \log_3(5 + 4x - x^2)$. find the range of f(x).

7.
$$f(x) = rac{x^2 + 2x + 3}{x}$$
 . Find the range of f(x).

8. f(x) = |x-1| + |x-2| + |x-3| . Find the range of f(x).

9. Find the range of the following function:

10.
$$f(x) = \cos^{-1} \sqrt{\log_{\lfloor x \rfloor} \frac{|x|}{x}}$$
, where $\lfloor \cdot \rfloor$ denotes the greatest integer function.

 $f(x) = \log_{\lfloor x-1
floor} \sin x, \,$ where [] denotes greatest integer function.

11. Let
$$f(x)=\sqrt{[\sin 2x]-[\cos 2x]}$$
 (where I I denotes the greatest integer function) then the range of f(x) will be

12. The range of
$$\sin^{-1}\left[x^2+\frac{1}{2}\right]+\cos^{-1}\left[x^2-\frac{1}{2}\right]$$
 , where [.] denotes the greatest integer function, is (a) $\left\{\frac{\pi}{2},\pi\right\}$ (b) $\left\{\pi\right\}$ (c) $\left\{\frac{\pi}{2}\right\}$ (d) none of these

13. Range of
$$f(x) = \sin^{-1}\Bigl(\sqrt{x^2+x+1}\Bigr)$$
 is

14.
$$f(x)=\cos^{-1}\Biggl(rac{x^2}{\sqrt{1+x^2}}\Biggr)$$

15. Find the range of $f(x) = \sqrt{\log(\cos(\sin x))}$

16. $f(x)=rac{x-1}{x^2-2x+3}$ Find the range of f(x).

17. if: $f(x) = \frac{\sin x}{\sqrt{1+\tan^2 x}} - \frac{\cos x}{\sqrt{1+\cot^2 x}}$, then find the range of f(x)

18. Range of
$$f(x) = rac{ anig(\piig[x^2-xig]ig)}{1+\sin(\cos x)}$$

Watch Video Solution

- **19.** range of $f(x)=rac{e^x}{\lceil x
 ceil + 1}, x \geq 0$
 - Watch Video Solution

- **20.** Find the range of $f(x) = [|\sin x| + |\cos x|]$, where $[\cdot]$ denotes the greatest integer function.
 - Watch Video Solution

- domain of f(x)21. Find if $f(x)=\sqrt{-x^2+4x-3}+\sqrt{\sinrac{\pi}{2}\Bigl(\sinrac{\pi}{2}(x-1)\Bigr)}$

22. Find the image of the following sets under the mapping
$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 10$$

$$(\,-\infty,1)$$

23. Find the domain and range of $f(x) = \log \left[\cos |x| + \frac{1}{2} \right]$,where [.] denotes the greatest integer function.

where [.] denotes the greatest integer function.

25. Find the domain and range of $f(x) = \left[\log\Bigl(\sin^{-1}\sqrt{x^2+3x+2}\Bigr)
ight]$.

24. Find the domain and range of $f(x) = \sin^{-1}(\log[x]) + \log(\sin^{-1}[x])$,

Exercise For Session 6

1. Determine whether the following functions are even or odd.

$$igg((i)f(x)=\log\Bigl(x+\sqrt{1+x^2}\Bigr), (ii)f(x)=x\Bigl(rac{a^x+1}{a^x-1}\Bigr)\Bigr), ig((iii)f(x)=\sin\Bigl((v)f(x)=\log\Bigl(rac{1-x}{1+x}\Bigr), (vi)f(x)=ig\{(sgnx)^{sgnx}ig\}^n, \;\; ext{n is an odd integer}$$

 $f(vii)f(x)=sgn(x)+x^2, f(viii)f(x+y)+f(x-y)=2f(x)\cdot f(y),$

3. A function defined for all real numbers is defined for $x \geq 0$ as follows

$$f(x) = \left\{egin{array}{ll} x|x| & 0 \leq x \leq 1 \ 2x & x \geq 1 \end{array}
ight.$$

How if f defined for $x \leq 0$.

If (i) f is even? (ii) f is odd?

4. Show the function, $f(x)=rac{2x(\sin x+\tan x)}{2\left[rac{x+21\pi}{\pi}
ight]-41}$ is symmetric about origin.

5. If $f\colon [-20,20] o R$ defined by $f(x)=\left[\frac{x^2}{a}\right] \sin x + \cos x$ is an even function, then set of values of a is

Exercise For Session 7

- **1.** Find $\frac{dy}{dx}$ if $y = \sin 4x$
 - Watch Video Solution

- **2.** Find the period of the real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6).
 - Watch Video Solution

- **3.** Check whether the function defined by $f(x+\lambda)=1+\sqrt{2f(x)-f^2(x)}\,\,orall x\in R$ is periodic or not. If yes, then find its period $(\lambda>0).$
 - Watch Video Solution

4. Let f(x) be a real valued periodic function with domain R such that

$$f(x+p)=1+\left[2-3f(x)+3(f(x))^2-(f(x))^3
ight]^{1/3}$$
 hold good for all $x\in R$ and some positive constant p, then the periodic of f(x) is

5. Let f(x) be a function such that $: f(x-1) + f(x+1) = \sqrt{3}f(x),$ for all x arepsilon R. If $f(5) = 100, \,\,$ then prove that the value of $\sum_{r=0}^{99} f(5+12r)$ will be equal to 10000.

Exercise For Session 8

1. There are exactly two distinct linear functions, which map [-1,1] onto

[0,3]. Find the point of intersection of the two functions.

2. Let f be an injective map with domain $\{x,\ y,\ z\}$ and range $\{1,2,3\}$ such that exactly one of the following statements is correct and the remaining are false. $f(x)=1,\ f(y)\neq 1,\ f(z)\neq 2$. The value of $f^{-1}(1)$ is (a) x (b) y (c) z (d) none of these

- **3.** Let $A=R-\{3\}, B=R-\{1\}$ and $f\colon A\to B$ defined by $f(x)=rac{x-2}{x-3}.$ Is 'f' bijective? Give reasons.
 - Watch Video Solution

- **4.** Let $f\colon R \to R$ defined by $f(x) = \frac{x^2}{1+x^2}$. Proved that f is neither injective nor surjective.
 - Watch Video Solution

Watch Video Solution

always one-one function.

8. Let
$$f: X \to Y$$
 be a function of the first bath and one and onto

Watch Video Solution

A = R (b) [0, 1] (c) (0, 1] (d) [0, 1)

- Watch Video Solution

5. If the function $f{:}\,R o A$ given by $f(x)=rac{x^2}{x^2+1}$ is a surjection, then

7. Let $f(x) = ax^3 + bx^2 + cx + d\sin x$. Find the condition that f(x) is

Exercise For Session 9

1. $f(x) = In \quad e^x, g(x) = e^{Inx}$. Identical function or not?

- **2.** $f(x) = \sec x, g(x) = \frac{1}{\cos x}$ Identical or not?
 - Watch Video Solution

- **3.** f(x) and and g(x) are identical or not $f(x) = \sec^{-1} x + \cos ec^{-1} x, g(x) = \frac{\pi}{2}$
 - Watch Video Solution

4. $f(x)=\cot^2 x\cdot\cos^2 x$, and $g(x)=\cot^2 x-\cos^2 x$ prove that f(x)=g(x)

5. $f(x) = sgn(\cot^{-1}x), g(x) = sgn(x^2 - 4x + 5)$

6. $f(x) = \log_e x, g(x) = rac{1}{\log_x e}$. Identical function or not?

7. $f(x) = \sqrt{1-x^2}, g(x) = \sqrt{1-x} \cdot \sqrt{1+x}$. Identical functions or not?

9. Check for identical $f(x)=[\{x\}],g(x)=\{[x]\}$ [Note that f(x) and g(x) are constant functions]

8. $f(x) = rac{1}{|x|}, g(x) = \sqrt{x^{-2}}$. Identical functions or not?

Watch Video Solution

10.
$$f(x)=e^{\ln\cot},$$
 $g(x)=\cot^{-1}x$

Exercise For Session 10

- **1.** Consider the real -valued function satisfying $2f(\sin x) + f(\cos x) = x.$ Then the domain of f(x) is

- **2.** If f(x) is defined in [-3,2], find the domain of definition of f([(|x|]) and f([2x+3]).
 - Watch Video Solution

- 3. $f(x)=egin{cases} x-1,&-1\leq x\leq 0\ x^2,&0< x\leq 1 \end{cases}$ and g(x)=sinx. Find h(x)=f(|g(x)|)+|f(g(x))|.
 - Watch Video Solution

- **4.** If f(x) is defined on [-2,2] and is given by $f(x)=\begin{cases} -1,&-2\leq x<0\\x-1,&0< x\leq 2\end{cases} \text{ and } g(x)=f|x|+|f(x)|, \text{ then } g(x) \text{ is defined as}$
 - Watch Video Solution

5. Let $f(x)=egin{cases} x+1,&x\leq 1\ 2x+1,&1< x\leq 2 \end{cases}$ and $g(x)=egin{cases} x^2,&-1\leq x< 2\ x+2,&2\leq x\leq 3 \end{cases}$

Exercise For Session 11

Find (fog).

- 1. Find the inverse of the following function. (i) $f(x)=\sin^{-1}\left(rac{x}{3}
 ight), x\in[-3,3]$ (ii) $f(x)=5^{\log_e x}, x>0$ (iii) $f(x)=\log_e\left(x+\sqrt{x^2+1}
 ight)$
 - Watch Video Solution

- **2.** If the function $f\colon [1,\infty) o [1,\infty)$ is defined by $f(x) = 2^{x\,(\,x\,-\,1\,)}$ then $f^{-1}(x)$ is
 - Watch Video Solution

1. For $x\in R-\{1\}$, the function f(x) satisfies $f(x)+2figg(rac{1}{1-x}igg)=x.$ Find f(2).

2. Let f(x) and g(x) be functions which take integers as arguments. Let f(x+y)=f(x)+g(y)+8 for all intege x and y. Let f(x)=x for all negative integers x and let g(8)=17. Find f(0).

3. The function $f\colon R o R$ satisfies the condition mf(x-1)+nf(-x)=2|x|+1. If f(-2)=5 and f(1)=1 find m and n

4. Find the equivalent definition of

$$f(x) = \max \left\{ x^2, (1-x)^2, 2x(1-x) \right\} \text{ where } 0 \le x \le 1$$

Watch Video Solution

Exercise (Single Option Correct Type Questions)

- **1.** Show that the function $f: X \rightarrow Y$, such that f(x) = 5x + 7 is one-one.
 - Watch Video Solution

2. Which of the following functions is an odd function?

$$X' \xrightarrow{-10} 0 \xrightarrow{10} X$$
B.

Answer: D

3. Given
$$f(x)=\sqrt{rac{8}{1-x}+rac{8}{1+x}}$$
 and $g(x)=rac{4}{f(\sin x)}+rac{4}{f(\cos x)}$ then $g(x)$ is

A.
$$\frac{\pi}{2}$$

B.
$$\pi$$

C. $\frac{3\pi}{2}$

D. 2π

Answer: A

Watch Video Solution

- **4.** Let f be a function satisfying of x. Then $f(xy)=\dfrac{f(x)}{y}$ for all positive real numbers $x \; ext{and} \; y$ If f(30) = 20, then find the value of f(40)
 - A. 15
 - B. 20
 - C. 40
 - D. 60

Answer: A

5. Let $f(x)=e^{\left\{e^{|x|sgnx}\right\}}andg(x)=e^{\left[e^{|x|sgnx}\right]}, x\in R$, where { } and [] denote the fractional and integral part functions, respectively. Also, $h(x)=\log(f(x))+\log(g(x))$. Then for real x,h(x) is

A. an odd function

B. an even function

C. neither odd nor even function

D. both odd as well as even function

Answer: A

Watch Video Solution

6. Which of the following function is surjective but not injective.

(a)
$$f{:}R
ightarrow R, f(x)=x^4+2x^3-x^2+1$$

(b)
$$f$$
: $R o R$, $f(x) = x^2 + x + 1$

Watch Video Solution

(c) $f\!:\!R o R^+, f(x)=\sqrt{x^2+1}$

(d) $f: R \to R$, $f(x) = x^3 + 2x^2 - x + 1$

B. $f: R \to R$, $f(x) = x^3 + x + 1$

C. $f: R \to R^+, f(x) = \sqrt{1+x^2}$

7. If $f(x) = 2x^3 + 7x - 5$ then $f^{-1}(4)$ is :

A. $f: R \to R$, $f(x) = x^4 + 2x^3 - x^2 + 1$

D. $f: R \to R$, $f(x) = x^3 + 2x^2 - x + 1$

A. 1

Answer: D

B. 2

C.1/3

D. non-existent

Answer: A

Watch Video Solution

8. The range of the function

$$f(x) = rac{e^x \cdot \log x \cdot 5^{x^2+2} \cdot \left(x^2 - 7x + 10
ight)}{2x^2 - 11x + 12}$$
 is

A.
$$(-\infty,\infty)$$

B.
$$[0, \infty)$$

$$\mathsf{C.}\left(rac{3}{2},\infty
ight)$$

D.
$$\left(\frac{3}{2},4\right)$$

Answer: A

Watch Video Solution

9. If $x = \cos^{-1}(\cos 4)$ and $y = \sin^{-1}(\sin 3)$, then which of the following holds?

B.
$$x+y+1=0$$

C.
$$x+2y=2$$

D.
$$x + y = 3\pi - 7$$

Answer: D

Watch Video Solution

10. Let
$$f(x)=\left(rac{2\sin x+\sin 2x}{2\cos x+\sin 2x}\cdotrac{1-\cos x}{1-\sin x}
ight)$$
: $x\in R$.

Consider the following statements.

- I. Domain of f is R.
- II. Range of f is R.
- III. Domain of f is $R-(4n-1)rac{\pi}{2}, n\in I.$
- IV. Domain of f is $R-(4n+1)rac{\pi}{2}, n\in I.$

Which of the following is correct?

A. (a)I and II

B. (b)II and III

C. (c)III and IV

D. (d)II, III and IV

Answer: D

Watch Video Solution

11. If $f(x) = e^{\sin{(x-[x])}\cos{\pi x}}$, where [x] denotes the greatest integer function, then f(x) is

A. non-periodic

B. periodic with no fundamental period

C. periodic with period 2

D. periodic with period π

Answer: C

12. Find the range of the function
$$f(x) = \cot^{-1}(\log_{0.5}(x^4 - 2x^2 + 3))$$

A.
$$(0, \pi)$$

B.
$$\left(0, \frac{3\pi}{4}\right]$$

$$\mathsf{C.}\left[\frac{3\pi}{4},\pi\right)$$

D.
$$\left[\frac{\pi}{2}, \frac{3\pi}{4}\right]$$

Answer: C

13. Range of
$$f(x)=\left[\frac{1}{\log(x^2+e)}\right]+\frac{1}{\sqrt{1+x^2}},$$
 where $[\,\cdot\,]$ denotes greatest integer function, is

A.
$$\left(0,rac{e+1}{e}
ight)\cup\{2\}$$

C.
$$(0,1] \cup \{2\}$$

D.
$$(0,1)\cup\{2\}$$

Answer: D

Watch Video Solution

14. The period of the function $f(x) = \sin(x+3-[x+3])$ where [] denotes the greatest integer function

A.
$$2\pi+3$$

$$\mathrm{B.}\ 2\pi$$

D. 4

Answer: C

15. Which one of the following function best represents the graphs as shown below?

A. (a)
$$f(x)=rac{1}{1+x^2}$$

B. (b)
$$f(x)=rac{1}{\sqrt{1+|x|}}$$

C. (c)
$$f(x) = e^{- \left| x \right|}$$

D. (d)
$$f(x)=a^{\leftert x
ightert },a>1$$

Answer: C

16. The solution set for $[x]\{x\}=1$ (where $\{x\}$ and [x] are respectively,

fractional part function and greatest integer function) is (a) $R^\pm(0,1)$ (b)

fractional part function and greatest integer function) is (a)
$$R^\pm(0,1)$$
 (b) $r^\pm\{1\}$ (c) $\left\{m+rac{1}{m}m\in I-\{0\}
ight\}$ (d) $\left\{m+rac{1}{m}m\in N-\{1\}
ight\}$

A.
$$R^+ - (0, 1)$$

B.
$$R^+-\{1\}$$

C.
$$\left\{m+rac{1}{m}\!:\!m\in I-\{0\}
ight\}$$

D.
$$\left\{m+rac{1}{m}\!:\!m\in N-\{1\}
ight\}$$

Answer: D

Watch Video Solution

17. The domain of definition of function

$$f(x) = \log\Bigl(\sqrt{x^2-5x-24}-x-2\Bigr)$$
 , is

A.
$$(-\infty, -3]$$

B.
$$(\,-\infty,\,-3]\cup[8,\infty)$$

$$\mathsf{C.}\left(\,-\infty,\,\frac{-28}{9}\right)$$

D. None of these

Answer: A

Watch Video Solution

- **18.** If f(x) is a function $f\!:\!R o R$, we say f(x) has property I. If f(f(x))=x for all real numbers x. II. $f(\,-f(x))=\,-x$ for all real numbers x. How many linear functions, have both property I and Il?
 - A. 0
 - B. 2
 - C. 3
 - D. Infinite

Answer: B

19. Let $f(x)=\frac{x}{1+x}$ and let $g(x)=\frac{rx}{1-x}$, Let S be the set off all real numbers r such that f(g(x))=g(f(x)) for infinitely many real number x. The number of elements in set S is

A. 1

B. 2

C. 3

D. 5

Answer: B

Watch Video Solution

20. Let f be a linear function with properties

 $f(1) \leq f(2), f(3) \geq f(4)$ and f(5) = 5, then which of the following is true

A. f(0) < 0

$$\mathsf{C.}\, f(1) < f(0) < f(\,-\,1)$$

D. f(0)=5

Answer: D

Watch Video Solution

21. Suppose R is relation whose graph is symmetric to both X-axis and Yaxis and that the point (1,2) is on the graph of R. Which one of the following is not necessarily on the graph of R?

A. (-1,2)

B. (1,-2)

C. (-1,-2)

D. (2,1)

Answer: D

22. The area between the curve
$$2\{y\}=[x]+1, 0\leq y<1$$
, where $\{.\}$ and $[.]$ are the fractional part and greatest integer functions,

respectively and the X-axis is

A.
$$\frac{1}{2}$$

B. 1

C. 0

D. $\frac{3}{2}$

Answer: A

Watch Video Solution

23. If $f(x)=\sin^{-1} x$ and $g(x)=[\sin(\cos x)]+[\cos(\sin x)]$, then range of f(g(x)) is (where $[\cdot]$ denotes greatest integer function)

24. Find
$$e^{2x} + e^x$$

 $\mathsf{a.}\left\{\frac{-\pi}{2},\,\frac{\pi}{2}\right\}$

A. $\left\{\frac{-\pi}{2}, \frac{\pi}{2}\right\}$

 $\mathsf{B.}\left\{\frac{-\pi}{2},0\right\}$

c. $\left\{0, \frac{\pi}{2}\right\}$

D. $\left\{ -\frac{\pi}{2}, 0, \frac{\pi}{2} \right\}$

the

number

of

solutions

the

of

equation

c. $\left\{0, \frac{\pi}{2}\right\}$

b. $\left\{ \frac{-\pi}{2}, 0 \right\}$

d. $\left\{ -\frac{\pi}{2}, 0, \frac{\pi}{2} \right\}$

A. 0

D. 3

Answer: B

Watch Video Solution

25. Total number of values of x, of the form $\frac{1}{n}, n \in N$ in the interval $x \in \left[\frac{1}{2^n}, \frac{1}{10}\right]$ which satisfy the equation

$$x\in\left[rac{1}{25},rac{1}{10}
ight]$$
 which satisfy the equation $\{x\}+\{2x)+.....+\{12x\}=78x$ is $K.$ then K is less than,(where $\{\,\}$

represents fractional part function) (a)12 (b)13 (c)14 (d)15

- A. 12
- B. 13
- C. 14

D. 15

Answer: B

26. The sum of the maximum and minimum values of the function

$$f(x)=rac{1}{1+\left(2\cos x-4\sin x
ight)^{2}}is$$

A. (a)
$$\frac{22}{21}$$

B. (b)
$$\frac{21}{20}$$

C. (c)
$$\frac{22}{20}$$

D. (d)
$$\frac{21}{11}$$

Answer: A

Watch Video Solution

27. Let $f \colon X o Y$ be an invertible function. Show that the inverse of $f^- 1$

is f, i.e. $\left(f^{-}1\right)^{-}1=f$

28. The range of values of a so that all the roots of the equations

$$2x^3-3x^2-12x+a=0$$
 are real and distinct, belongs to

Answer: B

29.

Watch Video Solution

If

29. If f(x) is continuous such that
$$|f(x)| \leq 1, \ orall x \in R \ ext{ and } \ g(x) = rac{e^{f(x)}-e^{-|f(x)|}}{e^{f(x)}+e^{-|f(x)|}},$$
 then range of g(x) is

continuous such

that

$$\mathsf{B.}\left[0,\frac{e^2-1}{e^2+1}\right]$$

C.
$$\left[0, \frac{e^2+1}{e^2-1}\right]$$
D. $\left[\frac{1-e^2}{1+e^2}, 0\right]$

Answer: B

Watch Video Solution

30. Let $f(x) = \sqrt{|x| - \{x\}(where\{\}\}}$ denotes the fractional part of (x) and X, Y are its domain and range, respectively). Then

A. $f: X \to Y: y = f(x)$ is one-one function

$$\mathtt{B.}\,X\in\bigg(-\infty,\;-\frac{1}{2}\bigg]\cup[0,\infty)\;\;\mathrm{and}\;\;Y\in\bigg[\frac{1}{2},\infty\bigg)$$

$$\mathsf{C.}\,X\in \bigg(-\infty,\ -\frac{1}{2}\bigg]\cup [0,\infty)\ \ \text{and}\ \ Y\in [0,\infty)$$

D. None of the above

Answer: C

31. If the graphs of the functions $y = \log_e x$ and y = ax intersect at exactly two points, then find the value of a.

A. (0,e)

$$\mathsf{B.}\left(\frac{1}{e},0\right)$$

$$\mathsf{C.}\left(0,\frac{1}{e}\right)$$

D. None of these

Answer: C

Watch Video Solution

32. A quadratic polynomial maps from [-2,3] onto [0,3] and touches X-axis at x=3, then the polynomial is

A. (a)
$$\dfrac{3}{16}ig(x^2-6x+16ig)$$

B. (b)
$$\frac{3}{25}(x^2-6x+9)$$

C. (c)
$$\frac{3}{25} (x^2 - 6x + 16)$$

D. (d)
$$rac{3}{16}ig(x^2-6x+9ig)$$

Answer: B

Watch Video Solution

33. The range of the function $y=\sqrt{2\{x\}-\left\{x\right\}^2-rac{3}{4}}$ (where, denotes the fractional part) is

$$\mathsf{A}.\left[\,-\,\frac{1}{4},\frac{1}{4}\,\right]$$

$$B.\left[0,\frac{1}{2}\right)$$

$$\mathsf{C.}\left[0,\frac{1}{4}\right]$$

D.
$$\left[\frac{1}{4}, \frac{1}{2}\right]$$

Answer: C

34. Let f(x) be a fourth differentiable function such $fig(2x^2-1ig)=2xf(x)\,orall x\in R,$ then $f^{iv}(0)$ is equal

A. 0

B. 1

C. -1

D. Data insufficient]

Answer: A

Watch Video Solution

35. The number of solutions of the equation $[y+[y]]=2\cos x$, where $y=rac{1}{3}[\sin x+[\sin x+[\sin x]]].$

where [.] denotes the greatest integer function, is

A. 1

B. 2

C. 3

D. None of these

Answer: D

Watch Video Solution

36. If a function satisfies $f(x+1)+f(x-1)=\sqrt{2}f(x)$, then period of

f(x) can be

A. 2

B. 4

C. 6

D. 8

Answer: D

37. If x and α are real, then the inequation

$$\log_2 x + \log_x 2 + 2\coslpha \leq 0$$

A. has no solution

B. has exactly two solutions

C. is satisfied for any real α and any real x in (0,1)

D. None of these

Answer: D

Watch Video Solution

38. The range of values of 'a' such that $\left(\frac{1}{2}\right)^{|x|}=x^2-a$ is satisfied for maximum number of values of 'x'

A.
$$(-\infty, -1)$$

B.
$$(-\infty,\infty)$$

$$C.(-1,1)$$

D.
$$(-1, \infty)$$

Answer: D

Watch Video Solution

39. Let $f\colon R\to R$ be a function defined by $f(x)=\{|\cos x|\}$, where $\{x\}$ represents fractional part of x. Let S be the set containing all real values x lying in the interval $[0,2\pi]$ for which $f(x)\neq |\cos x|$. The number of elements in the set S is

A. (a) 0

B. (b) 1

C. (c) 3

D. (d) infinite

Answer: C

40. The domain of the function

$$f(x) = \sqrt{\log_{\sin x + \cos x}(|\cos x| + \cos x)}, 0 \leq x \leq \pi$$
 is

A.
$$(0, \pi)$$

$$\mathrm{B.}\left(0,\frac{\pi}{2}\right)$$

$$\mathsf{C.}\left(0,\frac{\pi}{3}\right)$$

D. None of these

Answer: D

Watch Video Solution

41. If $f(x)=\left(x^2+2\alpha x+\alpha^2-1\right)^{1/4}$ has its domain and range such that their union is set of real numbers, then lpha satisfies

$$\mathsf{A.}-1<\alpha<1$$

B.
$$\alpha \leq -1$$

$$\mathsf{C.}\,\alpha\geq 1$$

D. $\alpha \leq 1$

Answer: B

Watch Video Solution

- **42.** If $f\!:\!(e,\infty) o R\&f(x)=\log[\log(\log x)],$ then f is -
 - A. f is one-one and onto
 - B. f is one-one but onto
 - C. f is onto but not one-one
 - D. the range of f is equal to its domain

Answer: A

43. The expression $x^2 - 4px + q^2 > 0$ for all real x and also $r^2 + p^2 < qr$

the range of
$$f(x)=rac{x+r}{x^2+qx+p^2}$$
 is

A. (a)
$$\left[\frac{p}{2m}, \frac{q}{2m}\right]$$

B. (b)
$$(0,\infty)$$

C. (c)
$$(-\infty,0)$$

D. (d)
$$(-\infty,\infty)$$

Answer: D

44. Let
$$f(x)=\frac{x^4-\lambda x^3-3x^2+3\lambda x}{x-\lambda}$$
. If range of f(x) is the set of entire real numbers, the true set in which λ lies is

D. (d)None of these

Answer: A

Watch Video Solution

45. Let $a=3^{1/224}+1$ and for all $n\geq 3$,

let

$$f(n) = {^nC_0}a^{n-1} - {^nC_1}a^{n-2} + {^nC_2}a^{n-3} + ... + (\ _1)^{n-1} \cdot {^nC_{n-1}} \cdot a^0.$$

If the value of f(2016)+f(2017)= 3^k , the value of K is

A. 6

B. 8

C. 9

D. 10

Answer: C

46. The area bounded by
$$f(x) = \sin^{-1}(\sin x)$$
 and

$$g(x)=rac{\pi}{2}-\sqrt{rac{\pi^2}{2}-\left(x-rac{\pi}{2}
ight)^2}$$
 is

A.
$$\frac{\pi^3}{8}$$
 sq units

B.
$$\frac{\pi^2}{8}$$
 sq units

C.
$$\frac{\pi^3}{2}$$
 sq units

D.
$$\frac{\pi^2}{2}$$
 sq units

Answer: A

Watch Video Solution

47. If
$$f.\ R o R, f(x)=rac{x^2+bx+1}{x^2+2x+b}, (b>1)$$
 and $f(x),rac{1}{f(x)}$ have

the same bounded set as their range, the value of b is

A.
$$2\sqrt{3}-2$$

$$\mathrm{B.}\,2\sqrt{3}+2$$

$$\mathsf{C.}\,2\sqrt{2}-2$$

D.
$$2\sqrt{2} + 2$$

Answer: A

Watch Video Solution

48. The period of $\sin\frac{\pi[x]}{12}+\cos\frac{\pi[x]}{4}+\tan\frac{\pi[x]}{3}$, where [x] represents the greatest integer less than or equal to x is

Answer: D

49. If $f(2x+3y,2x-7y)=20x, then f(x,y) equals \ 7x-3y\ 7x+3y$ 3x-7y (d) x-ky

A. x-y

B. 7x+3y

C. 3x-7y

D. None of these

Answer: B

50. The range of the function $f(x) = \sqrt{x-1} + 2\sqrt{3-x}$ is

A.
$$\left[\sqrt{2}, 2\sqrt{2}\right]$$

B. $\left[\sqrt{2},\sqrt{10}\right]$

C. $\left[2\sqrt{2},\sqrt{10}\right]$

Answer: B

Watch Video Solution

The

domain

 $f(x) = \cos^{-1} \left(\sec \left(\cos^{-1} x
ight)
ight) + \sin^{-1} \left(\cos e c \left(\sin^{-1} x
ight)
ight)$ is

of

the

function

51.

A.
$$x \in R$$

D.
$$x \in \phi$$

C. -1 < x < 1

Answer: B

Watch Video Solution

52. Let f(x) be a polynominal one-one function such that

A. (a) g(x)=0 has exactly one root for
$$x\in(0,1)$$

Let $g(x)=rac{x}{4}(f(x)+3)-\int_0^x f(x)dx,$ then

B. (b) g(x)=0 has exactly two roots for
$$x \in (0,1)$$

53. Let f(x) be a polynominal with real coefficients such that

 $xf(x)=f'(x)\times f''(x)$. If f(x)=0 is satisfied x=1,2,3 only, then the value

D. (d)
$$g(x)=0, x\in R-\{0\}$$

C. (c) $g(x) \neq 0, x \in R - \{0\}$

Answer: D

- of f'(1)f'(2)f'(3) is
 - A. (a)positive
 - B. (b)negative
 - C. (c)0

D. (d)Inadequate data

Answer: C

Watch Video Solution

54. Let $A=\{1,2,3,4,5\}$ and $f\!:\!A o A$ be an into function such that $f(x)
eq x\, orall x \in A.$ Then number of such functions f is:

A. (a) 1024

B. (b) 904

C. (c) 980

D. (d) None of these

Answer: C

55. If functions $f: \{1, 2, ..., n\} \rightarrow \{1995, 1996\}$ satisfying f(1)+f(2)+... +f(1996)=odd integer are formed, the number of such functions can be

A. 2^n

B. $2^{n/2}$

 $C. n^2$

D. 2^{n-1}

Answer: D

Watch Video Solution

56. Find the range of $y = \sin^3 x - 6 \sin^2 x + 11 \sin x - 6$.

A. [-24,2]

B. [-24,0]

C. [0,24]

D. None of these

Answer: B

Watch Video Solution

57. Let $f(x) = x^2 - 2x, x \in R, and g(x) = f(f(x) - 1) + f(5 - (x))$.

Show that $g(x) \geq 0 \, \forall x \in R$.

Watch Video Solution

58. If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

A. non-periodic

B. periodic

C. may be periodic

D. always periodic, if domain of h(x) is a proper subset of real numbers

Answer: C

59. If f(x) is a real-valued function discontinuous at all integral points lying in [0,n] and if $(f(x))^2=1,\ \forall x\in[0,n],$ then number of functions f(x) are

A.
$$2^{n+1}$$

B.
$$6 imes 3^n$$

$$\mathsf{C.}\,2\times3^{n-1}$$

D.
$$3^{n+1}$$

Answer: C

Watch Video Solution

60. A function f from integers to integers is defined as

$$f(x)=\left\{egin{array}{ll} n+3 & n\in odd \ rac{n}{2} & n\in even \end{array}
ight.$$
 Suppose $k\in \ ext{odd}$ and $f(f(f(k)))=27$.

Then the sum of digits of k is _____

A. 3

B. 6

C. 9

D. 12

Answer: B

Watch Video Solution

61. If $f\colon R o R$ and $f(x)=rac{\sin(\pi\{x\})}{x^4+3x^2+7}$, where $\{\}$ is a fractional part of x, then

A. f is injective

B. f is not one-one and non-constant

C. f is a surjective

D. f is a zero function

Answer: B

62. Show that f: $R \rightarrow R$ defined as f(a) = 3a - 4 is one to one function.

A. one -one and onto

B. only one-one and not onto

C. only onto but not one-one

D. None of the above

Answer: D

63. Find $\frac{dy}{dx}$ if $y = 3^x$

x_(1)x_(2)x_(3)=y`, is

A. 100

B. 150

C. 320

D. 250

Answer: C

Watch Video Solution

65. If A > 0, c,d,u.v are non-zero constants and the graph of f(x)=|Ax+c|+d and g(x)=-|Ax+u|+v intersect exactly at two points (1,4) and (3,1), then the value of $\frac{u+c}{A}$ equals

A. 4

B. -4

C. 2

D. -2

Answer: B

Watch Video Solution

66. $f(x)=x^3+3x^2+4x+b\sin x+c\cos x,\ orall x\in R$ is a one-one function, the value of $b^2 + c^2$ is

A. (a)1

B. (b)2

C. (c) $\sqrt{2}$

D. (d)None of these

Answer: A

67. If two roots of the equation
$$(p-1)ig(x^2+x+1ig)^2-(p+1)ig(x^4+x^2+1ig)=0$$
 are real and distinct and $f(x)=rac{1-x}{1+x}$ then $f(f(x))+fig(f\Big(rac{1}{x}\Big)ig)$ is equal to

A. (a)
$$\it p$$

B. (b)
$$-p$$

C. (c)
$$2p$$

D. (d)
$$-2p$$

Answer: A

68. If
$$f(x)=x^{11}+x^9-x^7+x^3+1$$
 and $f(\sin^{-1}(\sin 8))=lpha$, $lpha$ is constant, then $f(\tan^{-1}(\tan 8))$ is equal to

A. (a)
$$lpha$$

B. (b) 2-
$$lpha$$

C. (c) 2
$$lpha$$

D. (d)
$$lpha$$
-2

Answer: B

Watch Video Solution

69. Let $f(x) = \sin^{-1} 2x + \cos^{-1} 2x + \sec^{-1} 2x$. Then the sum of the

maximum and minimum values of f(x) is

(a)
$$\pi$$

(b)
$$\frac{\pi}{2}$$

$$(c)2\pi$$

$$(\mathsf{d})\frac{3\pi}{2}$$

B.
$$\frac{\pi}{2}$$

$$\mathsf{C.}\,2\pi$$

$$\frac{3\pi}{2}$$

Answer: C

Watch Video Solution

- **70.** The complete set of values of a for which the function $f(x)= an^{-1}ig(x^2-18x+aig)>0\, orall x\in R$ is
- a. $(81,\infty)$
- c. $(-\infty, 81)$ d. $(-\infty, 81]$

 $b.[81,\infty)$

- - A. $(81, \infty)$
 - B. [81, ∞)
 - C. $(-\infty, 81)$
 - D. (-infty,81]`

Answer: A

71. The domain of the function

$$f(x) = \sin^{-1}rac{1}{|x^2-1|} + rac{1}{\sqrt{\sin^2 x + \sin x + 1}}$$
 is

A. a)
$$(-\infty,\infty)$$

B. b)
$$ig(-\infty,\ -\sqrt{2}ig]\cupig[\sqrt{2},\inftyig)$$

C. c)
$$\left(-\infty, -\sqrt{2}\right] \cup \left[\sqrt{2}, \infty\right) \cup \{0\}$$

D. d) None of the above

Answer: C

Watch Video Solution

72. The domain of $f(x)=rac{\log\left(\sin^{-1}\sqrt{x^2+x+1}
ight)}{\log(x^2-x+1)}$ is a. (-1,1)

b. $(-1,0) \cup (0,1)$

c. $(-1,0) \cup \{1\}$

d. None of these

B.
$$(-1,0) \cup (0,1)$$

C.
$$(-1,0) \cup \{1\}$$

D. None of these

Answer: D

Watch Video Solution

73. The domain of $f(x) = \sqrt{\sin^{-1} \left(3x - 4x^3
ight)} + \sqrt{\cos^{-1} x}$ is equal to

$$A (a) \begin{bmatrix} -1 & -\frac{\sqrt{3}}{3} \end{bmatrix} \cup \begin{bmatrix} 0 & \frac{\sqrt{3}}{3} \end{bmatrix}$$

A. (a)
$$\left[-1,\ -rac{\sqrt{3}}{2}
ight] \cup \left[0,rac{\sqrt{3}}{2}
ight]$$
B. (b) $\left[-1,\ -rac{1}{2}
ight] \cup \left[0,rac{1}{2}
ight]$

C. (c)
$$\left[0, \frac{1}{2}\right]$$

D. (d) None of these

Answer: A

Watch Video Solution

74. The domain of the function

$$f(x) = \sqrt[6]{4^x + 8^{2/3(x-2)} - 52 - 2^{2(x-1)}}$$
 is

$$\mathrm{B.}\left[3,\infty\right]$$

D. None of these

Answer: B

Watch Video Solution

75. The domain of derivative of the function

$$f(x) = \left|\sin^{-1}\left(2x^2-1
ight)
ight|$$
, is

B.
$$(-1,1)$$
~ $\left\{0, \pm \frac{1}{\sqrt{2}}\right\}$

C.
$$(-1, 1)^{-}\{0\}$$

D.
$$(\,-1,1)$$
 ~ $\left\{\pm\frac{1}{\sqrt{2}}
ight\}$

Answer: B

Watch Video Solution

76. The range of a function

$$f(x) = an^{-1} \Bigl\{ \log_{5/4} \bigl(5x^2 - 8x + 4 ig) \Bigr\}$$
 is

A.
$$\left(\frac{-\pi}{4}, \frac{\pi}{2}\right)$$

B.
$$\left[\frac{-\pi}{4}, \frac{\pi}{2}\right)$$

$$\mathsf{C.}\left(\frac{-\pi}{4},\frac{\pi}{2}\right]$$

D.
$$\left\lceil \frac{-\pi}{4}, \frac{\pi}{2} \right\rceil$$

Answer: B

Exercise (More Than One Correct Option Type Questions)

1. Which of the following function(s) is/are transcendental?

a.
$$f(x) = 5\sin(\sqrt{x})$$

b.
$$f(x) = \frac{2\sin 3x}{x^2 + 2x - 1}$$

c.
$$f(x)=\sqrt{x^2+2x+1}$$

d.
$$f(x) = (x^2 + 3) \cdot 2^x$$

A.
$$f(x) = 5\sin\!\left(\sqrt{x}
ight)$$

$$\texttt{B.}\, f(x) = \frac{2\sin 3x}{x^2+2x-1}$$

$$\mathsf{C.}\, f(x) = \sqrt{x^2 + 2x + 1}$$

D.
$$f(x) = (x^2 + 3) \cdot 2^x$$

Answer: A::B

2. Let
$$f(x) = \frac{\sqrt{x - 2\sqrt{x - 1}}}{\sqrt{x - 1 - 1}} x$$
. The

A. domain of f(x) is $x \geq 1$

B. domain of f(x) is $[1,\infty)-\{2\}$

C. f'(10)=1

$$\mathsf{D}.\,f'\!\left(\frac{3}{2}\right) = \,-1$$

Answer: B::C::D

Watch Video Solution

3. prove that $f(x) = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right) - \cos x \cdot \cos \left(x + \frac{\pi}{3}\right)$ is constant function, find the value of that constant

A. an odd function

B. an even function

C. a periodic function

D.
$$f(0)=f(1)$$

Answer: B::C::D

Watch Video Solution

4. If the following functions are defined from [-1,1] o [-1,1], select those which are not bijective. $\sin\bigl(s\in^{-1}x\bigr)$ (b) $\frac{2}{\pi}\sin^{-1}(\sin x)$ $(sgn(x))1N(e^x)$ (d) $x^3(sgn(x))$

A.
$$\sin(\sin^{-1}x)$$

B.
$$\frac{2}{\pi} \cdot \sin^{-1}(\sin x)$$

$$\mathsf{C.}\, sgn(x) \cdot \log(e^x)$$

D.
$$x^3 sgn(x)$$

Answer: B::C::D

5. Let f(x)= $\begin{cases}x^2-4x+3, & x<3\\x-4, & x\geq 3\end{cases}$ and g(x)= $\begin{cases}x-3, & x<4\\x^2+2x+2, & x\geq 4\end{cases}$, which one of the following is/are true?

b)
$$f(g(3))=3$$

c) $(fg)(2)=1$

$$\mathsf{d)}\,(f-g)(4)=0$$

A. a)
$$(f+g)(3.5)=0$$

C. c)
$$f(g(2))=1$$

B. b) f(q(3)) = 3

D. d)
$$(f-g)(4)=0$$

Answer: A::B

6. $f(x)=x^2-2ax+a(a+1), f\colon [a,\infty)\longrightarrow [a,\infty)$. If one of the solution of the equation $f(x)=f^{-1}(x)$ is 5049 , then the other may be (a)5051 (b) 5048 (c) 5052 (d) 5050

- A. 5051
- B. 5048
- C. 5052
- D. 5050

Answer: B::D

Watch Video Solution

7. The function 'g' defined by $g(x)=\sin\bigl(\sin^{-1}\bigl\{\sqrt{x}\bigr\}+\cos\bigl(\sin^{-1}\bigl\{\sqrt{x}\bigr\}\bigr)-1$ where {x} denotes the functional part function is

A. an even function

B. periodic function

C. odd function

D. neither even or odd

Answer: A::B

Watch Video Solution

8. The graph of $f\!:\!R o R$ defined by y=f(x) is symmetric with respect to x=a and x=b. Which of the following is true?

A. f(2a-x)=f(x)

B. f(2a+x)=f(-x)

C. f(2b+x)=f(-x)

D. f is periodic

Answer: A::B::C::D

9. Let y=f(x) be a differentiable function such that f(-1)=2, f(2)=-1 and f(5)=3

If the equation f'(x)=2f(x) has real root. Then find f(x)

- **10.** Let f(x) = |x-1| + |x-2| + |x-3| + |x-4|, then
- a. least value of f(x) is 4
- b. least value is not attained at unique point
- c. the number of integral solution of f(x)=4 is 2
- d. the value of $rac{f(\pi-1)+f(e)}{2f\left(rac{12}{5}
 ight)}$ is 1
 - A. least value of f(x) is 4
 - B. least value is not attained at unique point
 - C. the number of integral solution of f(x)=4 is 2
 - D. the value of $\frac{f(\pi-1)+f(e)}{2f\left(\frac{12}{5}\right)}$ is 1

Answer: A::B::C::D

Watch Video Solution

11. Let A={1,2,3,4,5}, B={1,2,3,4} and $f:A \rightarrow B$ is a function, then

A. A. number of onto functions, if n(f(A))=4 is 240

B. B. number of onto functions, if n(f(A))=3 is 600

C. C. number of onto functions, if n(f(A))=2 is 180

D. D. number of onto functions, if n(f(A))=1 is 4

Answer: A::B::C::D

Watch Video Solution

12. In a function
$$2f(x)+xf\bigg(\frac{1}{x}\bigg)-2f\bigg(\bigg|\sqrt{2}\sin\bigg(\pi\bigg(x+\frac{1}{4}\bigg)\bigg)\bigg|\bigg)=4\cos^2\bigg[\frac{\pi x}{2}\bigg]+x\cos\bigg(\frac{\pi x}{x}\bigg)$$

. Prove that: 1. f(2)+f(1/2)=1 2. f(2)+f(1)=0

C. $f(2)+f(1)=f\Bigl(rac{1}{2}\Bigr)$

B. f(2)+f(1)=0

D. $f(1) \cdot f\Big(rac{1}{2}\Big) \cdot f(2) = 1$

A. $f(2)+f\Bigl(rac{1}{2}\Bigr)=1$

Answer: A::B::C

Watch Video Solution

condition

- - If f(x) is a differntiable function satisfying the
- f(100x) = x + f(100x 100), $orall x \in R$ and f(100) = 1, then $fig(10^4ig)$ is

 - A. 5049
 - B. $\sum_{r=1}^{100} r$ C. $\sum_{r=2}^{100} r$

D. 5050

- Answer: B::D

14. If [x] denotes the greatest integer function then the extreme values of the function $f(x)=[1+\sin x]$ is:

B. n

Answer: B::C

Watch Video Solution

15. Which of the following are true?

A.
$$f(x) = \begin{cases} 1, & ext{if x is rational} \\ 0, & ext{if x is irrational} \end{cases}$$

greatest integer function

function

Answer: B::C::D

Watch Video Solution

f(0)=0, $f(x)=rac{1}{2},$ $\ldots,$ $f(n)=rac{n}{n+1}$, then the value of f(n+1) is

A. 1, when n is even

B. $\frac{n}{n+2}$, when n is odd

16. If f(x) is a polynomial of degree n such

D. $f(x) = ax - [ax + a] + an\Bigl(rac{\pi x}{2}\Bigr), ext{ where } [\,\cdot\,] ext{ denotes}$ greatest integer function

B. $f(x)=\left\{egin{array}{ll} x-[x], & 2n\leq x<2n+1 \ rac{1}{2}, & 2n+1\leq x<2n+2 \end{array}
ight.$ where $[\ \cdot\]$ denotes the

C. $f(x)=(-1)^{\left \lceil rac{2x}{\pi}
ight
ceil}$, where $[\,\cdot\,]$ denotes the greatest integer

that

C. 1, when n is odd

D. $\frac{n}{n+2}$, when n is even

Answer: C::D

Watch Video Solution

17. Let $f\!:\!R o R$ be a function defined by $f(x+1)=rac{f(x)-5}{f(x)-3}orall x\in R$

. Then which of the following statement(s) is/are true?

- B. f(2006)=f(2010)
- C. f(2006)=f(2002)
- D. f(2006)=f(2018)

Answer: A::B::C::D

18. Let $f(x) = 1 - x - x^3$. Find all real values of x satisfying the inequality, $1 - f(x) - f^3(x) > f(1 - 5x)$

B.(0,2)

 $C.(2,\infty)$

D. $(-2,0) \cup (2,\infty)$

Answer: A::C

Watch Video Solution

f(1)=2, then

19. If a function satisfies $(x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3)$ AA x, y in R and

A. f(x) must be polynominal function

B. f(3)=12

C. f(0)=0

D. f(x) may not be differentiable

Answer: A::B::C

Watch Video Solution

20. the fundamental period of function If $f(x) = \sin x + \cos \left(\sqrt{4-a^2}
ight) x \;\; ext{is} \;\; 4\pi$, then the value of a is/are

A.
$$\frac{\sqrt{15}}{2}$$

$$\mathrm{B.}-\frac{\sqrt{15}}{2}$$

$$\operatorname{C.}\frac{\sqrt{7}}{2}$$

$$\mathrm{D.}-\frac{\sqrt{7}}{2}$$

Answer: A::B::C::D

21. Let f(x) be a real vaued continuous function such that

$$f(0) = rac{1}{2} \, ext{ and } \, f(x+y) = f(x)f(4-y) + f(y)f(4-x) \, orall x, y \in R,$$

then for some real a:

a. f(x) is a periodic function

b. f(x) is a constant function

$$\mathsf{c.}\,f(x)=\frac{1}{2}$$

 $\mathsf{d.}\,f(x)=\frac{\cos x}{2}$

A. f(x) is a periodic function

B. f(x) is a constant function

$$\mathsf{C.}\, f(x) = \frac{1}{2}$$

$$\mathsf{D}.\,f(x)=\frac{\cos x}{2}$$

Answer: A::B::C

A. g(x) must be one-one

B. f(x) must be one-one

C. f(x) may not be one-one

D. g(x) may not be one-one

Answer: A::C

Watch Video Solution

23. Which of the following functions have their range equal to R(the set of real numbers)?

A. xsinx

B. $\frac{x}{\tan 2x}\cdot x\in\Big(-\frac{\pi}{4}\cdot\frac{\pi}{4}\Big)-\{0\}$, where $[\ \cdot\]$ denotes the greatest integer function

C. $\frac{x}{\sin x}$

D. $[x]+\sqrt{\{x\}}$, where $\{\,\cdot\,\}$, respectively denote the greatest integer and fractional part functions

Answer: A::D

Watch Video Solution

24. Which of the following pairs of function are identical?

a.
$$f(x)=e^{In\sec^{-1}x}$$
 and $g(x)=\sec^{-1}x$

$$\mathsf{c.}\ f(x) = sgn(x) \ \ \mathrm{and} \ \ g(x) = sgn(sgn(x))$$

b. $f(x) = anig(an^{-1}xig)$ and $g(x) = \cotig(\cot^{-1}xig)$

d.
$$f(x) = \cot^2 \cdot \cos^2 x$$
 and $g(x) = \cot^2 x - \cos^2 x$

A.
$$f(x) = e^{In\sec^{-1}x}$$
 and $g(x) = \sec^{-1}x$

$$\mathsf{B}.\, f(x) = anig(an^{-1}xig) \;\; ext{and} \;\; g(x) = \cotig(\cot^{-1}xig)$$

$$\mathsf{C}.\, f(x) = sgn(x) \,\, ext{ and } \, g(x) = sgn(sgn(x))$$

D.
$$f(x) = \cot^2 \cdot \cos^2 x$$
 and $g(x) = \cot^2 x - \cos^2 x$

Answer: B::C::D

25. Let
$$f: R \to R$$
 defined by $f(x) = \cos^{-1}(-\{-x\})$, where $\{x\}$ denotes fractional part of x. Then, which of the following is/are correct?

A. f is many one but not even function

B. Range of f contains two prime numbers

C. f is non-periodic

D. Graphs of f does not lie below X-axis

Answer: B::D

Exercise (Statement I And Ii Type Questions)

1. Statement I The function f(x) =xsinx and f'(x)=xcosx+sinx are both non-periodic.

Statement II The derivative of differentiable functions (non-periodic) is non-periodic function.

A. (A) Statement I is true, Statement II is also true

B. (B) Statement I is false, Statement II is also false

C. (C)Statement I is true, Statement II is false

D. (D) Statement I is false ,Statement II is true

Answer: c

2. Statement I The maximum value of $\sin \sqrt{2}x + \sin ax$ cannot be 2 (where a is positive rational number).

Statement II $\frac{\sqrt{2}}{a}$ is irrartional.

3. Let $f\colon R\to R$ be a function defined by $f(x)=\frac{e^{\,|x\,|}-e^{\,-x}}{e^x+e^{\,-x}}$. Then, f is a bijection (b) f is an injection only (c) f is surjection on only (d) f is neither an injection nor a surjection

Watch Video Solution

4. Statement I The range of

$$f(x)=\sin\Bigl(rac{\pi}{5}+x\Bigr)-\sin\Bigl(rac{\pi}{5}-x\Bigr)-\sin\Bigl(rac{2\pi}{5}+x\Bigr)+\sin\Bigl(rac{2\pi}{5}-x\Bigr)$$
 is [-1,1].

Statement II $\cos \frac{\pi}{5} - \cos \frac{2\pi}{5} = \frac{1}{2}$

Watch Video Solution

5. Statement I The $f(x)=2\cos\frac{1}{3}(x-\pi)+4\sin\frac{1}{3}(x-\pi)$ is 3π .

Statement II If T is the period of f(x), then the period of f(ax+b) is $\frac{T}{|a|}$.

period

of

6. f is a function defined on the interval [-1,1] such that f(sin2x)=sinx+cosx.

Statement I If $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, then $f(\tan^2 x) = \sec x$

Statement II $f(x) = \sqrt{1+x}, \ \forall x \in [-1,1]$

7. Statement I The equation $f(x)=4x^5+20x-9=0$ has only one real root.

Statement II $f'(x) = 20x^4 + 20 = 0$ has no real root.

8. Statement I The range of $\log \left(\frac{1}{1+x^2} \right)$ is $(-\infty,\infty)$.

Statement II when $0 < x \le 1, \log x \in (-\infty, 0]$.

9. Let $f \colon\! X o Y$ be a function defined by

$$f(x) = 2\sin\!\left(x + rac{\pi}{4}
ight) - \sqrt{2}\cos x + c.$$

Statement I For set $X,x\in\left[0,\frac{\pi}{2}\right]\cup\left[\pi,\frac{3\pi}{2}\right]$, f(x) is one-one function.

Statement II $f'(x) \geq 0, x \in \left[0, rac{3\pi}{2}
ight]$

10. Let $f(x) = \sin x$

Statement I f is not a polynominal function.

Statement II nth derivative of f(x), w.r.t. x, is not a zero function for any positive integer n.

11. Find the inverse of the function, (assuming onto).

$$y=\log_a\Bigl(x+\sqrt{x^2+1}\Bigr),\,(a>1).$$

Exercise (Passage Based Questions)

1. Let $f\!:\!R o R$ be a continuous function such that

$$f(x)-2f\Bigl(rac{x}{2}\Bigr)+f\Bigl(rac{x}{4}\Bigr)=x^2.$$

f(3) is equal to

A. f(0)

B. 4+f(0)

C. 9+f(0)

D. 16+f(0)

Answer: d

2. Let $f\colon\! R o R$ be a continuous function such that

$$f(x) - 2f\left(\frac{x}{2}\right) + f\left(\frac{x}{4}\right) = x^2.$$

The equation f(x)-x-f(0)=0 have exactly

A. no solution

B. one solution

C. two solution

D. infinite solution

Answer: c

Watch Video Solution

3. Let $f\colon\! R o R$ be a continuous function such that

$$f(x) - 2f\left(\frac{x}{2}\right) + f\left(\frac{x}{4}\right) = x^2.$$

f'(0) is equal to

A. 0

B. 1

C. f(0)

D. -f(0)

Answer: a

Watch Video Solution

4. Consider the equation x + y - [x][y] = 0, where $[\cdot]$ is the greatest integer function.

Equation of one of the lines on which the non-integral solution of given equation lies is:

Watch Video Solution

5. Consider the equation x+y-[x][y]=0, where $[\cdot]$ is the greatest integer function.

The number of integral solutions to the equation is

A. (a)
$$x + y = -1$$

B. (b)
$$x + y = 0$$

C. (c)
$$x+y=1$$

D. (d)
$$x + y = 5$$

Answer: b

Watch Video Solution

6. Let
$$f(x)=rac{1}{2}igg[f(xy)+figg(rac{x}{y}igg)igg]$$
 for $x,y\in R^+$ such that $f(1)=0,f'(1)=2$.`

f(x)-f(y) is equal to

A.
$$f\left(\frac{y}{x}\right)$$

$$\mathsf{B.}\, f\!\left(\frac{x}{y}\right)$$

Watch Video Solution

7. Let $f(x)=rac{1}{2}igg[f(xy)+figg(rac{x}{y}igg)igg]$ for $x,y\in R^+$ such that

f(1)=0,f'(1)=2.`

f'(3) is equal to

 $\operatorname{A.}\frac{1}{3}$

 $\mathsf{B.}\;\frac{2}{3}$

 $\mathsf{C.}\,\frac{1}{2}$

D. $\frac{1}{4}$

Answer: b

8. Let
$$f(x)=rac{1}{2}igg[f(xy)+figg(rac{x}{y}igg)igg]$$
 for $x,y\in R^+$ such that $f(1)=0,f'(1)=2$.`

f(e) is equal to

8.

B. 1

C. 3

D. 4

Answer: a

Watch Video Solution

9. If $f: R \to R$ and f(x)=g(x)+h(x) where g(x) is a polynominal and h(x) is a continuous and differentiable bounded function on both sides, then f(x) is one-one, we need to differentiate f(x). If f'(x) changes sign in domain of f, then f, if many-one else one-one.

If $f\colon R o R$ and $f(\mathsf{x})$ = 2ax

A. one-one into

B. many-one onto

C. one-one onto

D. many-one into

Answer: c

Watch Video Solution

10. If $f: R \to R$ and f(x)=g(x)+h(x) where g(x) is a polynominal and h(x) is a continuous and differentiable bounded function on both sides, then f(x) is one-one, we need to differentiate f(x). If f'(x) changes sign in domain of f, then f, if many-one else one-one.

$$f{:}\,R o R$$
 and $f(x)=rac{xig(x^4+1ig)(x+1)+x^4+2}{x^2+x+1}$, then f(x) is

A. one-one into

B. many-one onto

C. one-one onto

D. many-one into

Answer: d

Watch Video Solution

11. If $f: R \to R$ and f(x)=g(x)+h(x) where g(x) is a polynominal and h(x) is a continuous and differentiable bounded function on both sides, then f(x) is one-one, we need to differentiate f(x). If f'(x) changes sign in domain of f, then f, if many-one else one-one.

If $f\colon R\to R$ and f(x)=2ax +sin2x, then the set of values of a for which f(x) is one-one and onto is

A.
$$a\in\left(-rac{1}{2},rac{1}{2}
ight)$$

B.
$$a\in (-1,1)$$

$$\mathsf{C.}\,a \in R - \left(-\,\frac{1}{2},\,\frac{1}{2}\right)$$

D.
$$a\in R-(\,-1,1)$$

Answer: d

The value of $a_1 + a_2$ is equal to

12. Let
$$g(x)=a_0+a_1x+a_2x^2+a_3x^3$$
 and $f(x)=\sqrt{g(x)}, f(x)$ have its non-zero local minimum and maximum values at -3 and 3 respectively. If $a_3\in$ the domain of the function $h(x)=\sin^{-1}\left(\frac{1+x^2}{2x}\right)$

A. 30

B. -30

D. -27

C. 27

Answer: c

Watch Video Solution

13. Let $g(x)=a_0+a_1x+a_2x^2+a_3x^3$ and $f(x)=\sqrt{g(x)},f(x)$ have its non-zero local minimum and maximum values at -3 and 3 respectively. A. equal to 50

The value of a_0 is

If $a_3\in ext{ the domain of the function }h(x)=\sin^{-1}\!\left(rac{1+x^2}{2x}
ight)$

14. Let $g(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ and $f(x) = \sqrt{g(x)}$, f(x) has

C. less than 54

B. greater than 54

D. less than 50

Answer: b

Watch Video Solution

its non-zero local minimum and maximum values at -3 and 3, respectively. If
$$a_3\in$$
 the domain of the function

 $h(x)=\sin^{-1}\Bigl(rac{1+x^2}{2x}\Bigr).$

The value of a_0 is

A. $a_0 > 830$

B.
$$a_0 < 830$$

C.
$$a_0 = 830$$

D. None of these

Answer: d

Watch Video Solution

15. Let
$$f\colon [2,\infty) o \{1,\infty)$$
 defined by $f(x)=2^{x^4-4x^3}$ and $g\colon \left[\frac{\pi}{2},\pi\right] o A$ defined by $g(x)=rac{\sin x+4}{\sin x-2}$ be

two invertible functions, then

$$f^{-1}(x)$$
 is equal to

A.
$$\sqrt{2+\sqrt{4-\log_2 x}}$$

B.
$$\sqrt{2+\sqrt{4+\log_2 x}}$$

C.
$$\sqrt{2-\sqrt{4+\log_2 x}}$$

D. None of these

Answer: b

Watch Video Solution

16. Let
$$f\colon [2,\infty) o \{1,\infty)$$
 defined

by

$$f(x)=2^{x^4-4x^3}$$
 and $g\!:\!\left[rac{\pi}{2},\pi
ight] o A$ defined by $g(x)=rac{\sin x+4}{\sin x-2}$ be

two invertible functions, then

The set "A" equals to

A. [-5,-2]

B. [2,5]

C. [-5,2]

D. [-3,-2]

Answer: a

17. Let $f\colon [2,\infty) o [1,\infty)$ defined by $f(x)=2^{x^4-4x^2}$ and $g\colon \left[\frac{\pi}{2},\pi\right] o A$ defined by $g(x)=\frac{\sin x+4}{\sin x-2}$ be two invertible functions.

The set A is equal to

$$\mathsf{B.}\left[\,-\,5,\,\frac{\sin 1}{2-\sin 1}\,\right]$$

C.
$$\left[-5, -\frac{(4+\sin 1)}{2-\sin 1} \right]$$

$$\mathsf{D.}\left[-\frac{(4+\sin 1)}{2-\sin 1},\;-2\right]$$

Answer: c

Watch Video Solution

18. Let P(x) be a polynomial of degree at most 5 which leaves remainders

-1 and 1 upon divison by $\left(x-1
ight)^3$ and $\left(x+1
ight)^3$, respectively.

The sum of pairwise product of all roots (real and complex) of P(x)=0

is

- A. 1
- B. 3
- C. 5
- D. 2

Answer: a

Watch Video Solution

19. Let P(x) be polynominal of degree atmost 5 which leaves remainders -1 and 1 upon division by $(x-1)^3$ and $(x+1)^3$, respectively.

Number of real roots of P(x)=0 is

- $A. \frac{1}{\sqrt{3}}$
- B. 0
- $\mathsf{C.}\ \frac{1}{\sqrt{3}}$
- D. 1

Answer: c

Watch Video Solution

20. Let P(x) be polynominal of degree atmost 5 which leaves remainders -1 and 1 upon division by $(x-1)^3$ and $(x+1)^3$, respectively.

Number of real roots of P(x)=0 is

$$\mathsf{A.}-\frac{5}{3}$$

$$\mathsf{B.}-\frac{10}{3}$$

C. 2

D. -5

Answer: b

21. Consider
$$\alpha>1$$
 and $f\colon\left[\frac{1}{\alpha},\alpha\right]\to\left[\frac{1}{\alpha},\alpha\right]$ be bijective function.

Suppose that
$$f^{-1}(x)=rac{1}{f(x)}, \ \ ext{for all} \ \ \in \left[rac{1}{lpha},lpha
ight].$$

Then f(1) is equal to

B. O

C. -1

D. does'nt attain a unique value

Answer: a

Watch Video Solution

22. Consider $\alpha>1$ and $f\colon \left[\frac{1}{\alpha},\alpha\right]\to \left[\frac{1}{\alpha},\alpha\right]$ be bijective function.

Suppose that $f^{-1}(x)=rac{1}{f(x)}, \ \ ext{ for all } \ \in \left\lceil rac{1}{lpha}, lpha
ight
ceil.$

Which of the following statements can be concluded about (f(x))?

A. f(x) is discontinuous in $\left| \frac{1}{\alpha}, \alpha \right|$

C. f(x) is decreasing in
$$\left[rac{1}{lpha},lpha
ight]$$

B. f(x) is increasing in $\left|\frac{1}{\alpha}, \alpha\right|$

Answer: b

Watch Video Solution

23. Consider
$$\alpha>1$$
 and $f\colon\left[\frac{1}{\alpha},\alpha\right]\to\left[\frac{1}{\alpha},\alpha\right]$ be bijective function.

Suppose that
$$f^{-1}(x)=rac{1}{f(x)}, \ \ ext{for all} \ \ \in \left[rac{1}{lpha}, lpha
ight].$$
 Which of the following statements can be concluded about (f(x))?

A.
$$f(f(x))$$
 is discontinuous in $\left[\frac{1}{\alpha}, \alpha\right]$

B.
$$f(f(x))$$
 is increasing in $\left[\frac{1}{\alpha}, \alpha\right]$

C.
$$f(f(x))$$
 is decreasing in $\left[\frac{1}{\alpha}, \alpha\right]$

D. None of the above

Answer: b

24. Let f be real valued function from N to N satisfying. The relation $f(m+n) = f(m) + f(n) \text{ for all } m, n \in N.$

The range of f contains all the even numbers, the value of f(1) is

- A. 1
- B. 2
- C. 1 or 2
- D. 4

Answer: b

Watch Video Solution

25. Let f be real valued function from N to N satisfying. The relation f(m+n)=f(m)+f(n) for all $m,n\in N$.

If domain of f is first 3m natural numbers and if the number of elements common in domain and range is m, then the value of f(1) is

A. 2

B. 3

C. 6

D. Can't say

Answer: B

Exercise (Matching Type Questions)

1. Prove that the function f(x) = $x^{2n} + 1$ is continuous at x = n , n > 0

2. Differentiate the following function w.r.t x cos(sinx)

Watch Video Solution

FUNCTION EXERCISE 5: Matching Type Questions

1. Find $\frac{dy}{dx}$ if $y = \sin^2 x$

Watch Video Solution

Exercise (Single Integer Answer Type Questions)

1. A wheel makes 720 revolutions in one minute. Through how many radians does it turn in one second?

$$rac{-f(10)}{7}$$
 is

- **4.** If $f(x)=\dfrac{2010x+165}{165x-2010}, x>0$ and $x\neq\dfrac{2010}{165}$, the least value of $f(f(x))+f\bigg(f\bigg(\dfrac{4}{x}\bigg)\bigg)$ is
 - Watch Video Solution

5. If $\alpha,\beta,\gamma\in R, \alpha+\beta+\gamma=4$ and $\alpha^2+\beta^2+\gamma^2=6$, the number of integers lie in the exhaustive range of α is

- **6.** The number or linear functions f satisfying $f(x+f(x))=x+f(x)\, orall x\in \mathbb{R}$ is
 - Watch Video Solution

- - Watch Video Solution

- **8.** If n(A)=4, n(B)=5 and number of functions from A to B such that range contains exactly 3 elements is k, $\frac{k}{60}$ is
 - Watch Video Solution

9. If a and b are constants, such that

$$f(x) = a \sin x + bx \cos x + 2x^2$$
 and f(2)=15, f(-2) is

10. If the function $f(x)=x^3+e^{x/2} \ ext{and} \ g(x)=f^{-1}(x)$, then the value of g'(1) is

12. The minimum value of the fuction f(x) given by

$$f(x)=rac{x^m}{m}+rac{x^{-n}}{n}whererac{1}{m}+rac{1}{n}=1$$
and m>1 is

13. If $x^2+y^2=4$ then find the maximum value of $\dfrac{x^3+y^3}{x+y}$

14. Let f(n) denotes the square of the sum of the digits of natural number f(n) denotes f(f(n)), f(n) denotes f(f(f(n))) and so on. Then,

the value of

$$rac{f^{2017}(2011)-f^{2016}(2011)}{f^{2017}(2011)-f^{2018}(2011)}$$
, is

15. If $[\sin x] + \left[\frac{x}{2\pi}\right] + \left[\frac{2x}{5\pi}\right] = \frac{9x}{10\pi}$, where $[\cdot]$ denotes the greatest integer function, the number of solutions in the interval (30,40) is

- - Watch Video Solution

- - Watch Video Solution

18. If $a+b=3-\cos 4 heta$ and $a-b=4\sin 2 heta$, then ab is always less than or equal to

19. Let 'n' be the number of elements in the domain set of the function $f(x) = \left|\ln\sqrt{^{x^2+4x}C_{2x^2+3}}\right| \text{ and 'Y' be the global maximum value of f(x),}$ then [n+[Y]] is (where $[\cdot]$ =greatest integer function).

20. Let
$$f(x)$$
 be a function such that , $f(x-1)+f(c+1)=\sqrt{3}f(x),\ orall x\in R.$ If $f(5)$ =100, find $\sum_{j=1}^{99}f(5+12r).$

21. If $2f(x)=f(xy)+f\left(\frac{x}{y}\right)$ for all positive values of x and y, f(1)=0 and f'(1)=1, then f(e) is.

22. Let f be a function from the set of positive integers to the set of real number such that f(1)=1 and $\sum_{r=1}^n rf(r)=n(n+1)f(n),\ \forall n\geq 2$ the value of 2126 f(1063) is

24. If $f^2(x) \cdot f\left(\frac{1-x}{1+x}\right) = x^3$, $[x \neq -1, 1 \text{ and } f(x) \neq 0]$, then find |[f(-2)]| (where [] is the greatest integer function).

25. An odd function is symmetric about the vertical line

$$x=a,$$
 $(a>0),$ and $ext{ if } \sum_{r=0}^{\infty} \left[f(1+4r)^r=8, ext{ then find the value of } f(1).$

- **26.** $Let \frac{e^x-e^{-x}}{e^x+e^{-x}}=\ln\sqrt{\frac{1+x}{1-x}}$,then find x.
 - Watch Video Solution

- 27. If x is real, the maximum value of $\frac{3x^2+9x+17}{2x^2+9x+7}$ is
- (a) $\frac{17}{7}$
- (b) $\frac{1}{4}$
- (c) 41
- (d) 1
 - **Watch Video Solution**

28. If f(x) satisfies the relation f(x)+f(x+4)=f(x+2)+f(x+6)

for all x, then prove that f(x) is periodic and find its period.

29. A non-zero function f (x) is symmetrical about the line y=x then the value of λ (constant) such that $f^2(x)=\left(f^{-1}(x)\right)^2-\lambda x f(x)f^{-1}(x)+3x^2f(x)$ where all $\mathbf{x}\in R^+$

30. Let $f\colon R o R$ and $f(x)=rac{3x^2+mx+n}{x^2+1}$. If the range of this function is $[\,-4,3]$, then the value of $rac{m^2+n^2}{4}$ is

31. Let f(x) be a monotic ploynomial of degree (2m-1) where $m \in N$ Then

the equation

$$f(x) - f(3x) + f(5x) + \ldots + f((2m-1))$$
 has

Watch Video Solution

Exercise (Subjective Type Questions)

1. Find $\frac{dy}{dx}$ if $y = \frac{\tan x}{x}$

Watch Video Solution

positive integer 2. Let be with na $f(n) = 1! + 2! + 3! + \dots + n!$ and p(x), Q(x) be polynomial in x

such that f(n+2)=P(n)f(n+1)+Q(n)f(n) for all $n\geq 1$, Then

(a) P(x) = x + 3

(b) Q(x) = -x - 2

$$(c) P(x) = -x - 2$$

$$\text{(d) } Q(x) = x + 3$$

Watch Video Solution

3. If x and y are connected parametrically by the equation ,without eliminating the parameter , find $\frac{dy}{dx}$

$$x = 4at^2, y = at^8$$

Watch Video Solution

4. Find the domain of the function

$$f(x) = \log_e \left\{ \log_{|\sin x|} \left(x^2 - 8x + 23
ight) - rac{3}{\log_{
ho} |\sin x|}
ight\}$$

Watch Video Solution

5. Solve $\frac{1}{[x]} + \frac{1}{[2x]} = \{x\} + \frac{1}{3}$ where [.] denotes the greatest integers function and{.} denotes fractional part function.

6. Let
$$f(x)=x^2+3x-3, x\leq 0.$$
 If n points x_1,x_2,x_3,\ldots,x_n are so chosen on the x-axis such that

1
$$\int 1^n$$

(1)
$$rac{1}{n}\sum_{n}f^{-1}(x_i)=figg(rac{1}{n}\sum_{i=1}^nx_iigg)$$

(2)
$$\sum_{i=1}^n f^{-1}(x_i) = \sum_{i=1}^n x_i$$
 where f^{-1} denotes the inverse of f, Then the

7. Let $f(x) = x^2 - 2x, x \in R, and g(x) = f(f(x) - 1) + f(5 - (x))$

AM of xi's is

b)2

c)3

d)4

Watch Video Solution

Show that
$$g(x) \geq 0 \, orall x \in R$$

8. If a function satisfies $(x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3)$ AA x, y in R and

f(1)=2, then

Watch Video Solution

- **9.** If a+b+c=abc,a,b and c $\in R^+$, prove that $a+b+c \geq 3\sqrt{3}$.
 - **Watch Video Solution**

10. Consider the function $f(x)=\left\{egin{array}{ll} x=[x]-rac{1}{2}, & ext{ if } x\in I \ 0, & ext{ if } x\in I \end{array}
ight.$ Where $[.\,]$ denotes greatest integer function and I is the set of integers, then $g(x) = \max \left\{ x^2, f(x), |x|
ight\}, \ -2 \leq x \leq 2$ is defined as

11. Let $g(t) = |t-1| - |t| + |t+1|, \ \forall \quad t \in R.$

- Find $f(x) = \max \left\{ g(t) \colon -rac{3}{2} \leq t \leq x
 ight\}, \ orall x \in \left(rac{-3}{2}, \infty
 ight)$.]
 - Watch Video Solution

- 12. Find the integral solution for $n_1 n_2 = 2n_1 - n_2$, where $n_1, n_2 \in \text{integer}$.
 - Watch Video Solution

FUNCTION EXERCISE 7: Subjective Type Questions

- **1.** If f(x) is continuous function in $[0, 2\pi]$ and f(0)=f(2\pi), then prove that there exists a point $c \in (0,\pi)$ such that $f(x) = f(x+\pi)$.
 - Watch Video Solution

FUNCTION EXERCISE 8: Questions Asked in Previous 10 Years Exams

1. Find all the points of discontinuity, where f is defined by

$$f(x) = \left\{ egin{array}{ll} rac{x}{|x|}, & ext{if} \;\; x \geq 1 \ -1, & ext{if} \;\; x \geq 0 \end{array}
ight.$$

A.
$$\begin{pmatrix} A & B & C & D \\ r & p & s & q \end{pmatrix}$$

$$r \quad p \quad q \quad s$$

D.
$$egin{array}{ccccc} A & B & C & D \\ p & r & q & s \end{array}$$

Answer: D

Watch Video Solution

2. Find the values of x for which f(x) is positive if $f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$.

Exercise (Questions Asked In Previous 13 Years Exam)

1. If the function $f(x)=x^3+e^{x/2}$ and $g(x)=f^{-1}(x)$, then the value of $g^{\prime}(1)$ is

Watch Video Solution

2. Let F(x) be an indefinite integral of $\sin^2 x$

Statement-1: The function F(x) satisfies $F(x+\pi)=F(x)$ for all real x.

because

Statement-2: $\sin^2(x+\pi)=\sin^2x$ for all real x.

A. Statement I is true, Statement II is also true, Statement II is the

correct explanation of Statement I.

B. Statement I is true, Statement II is also true, Statement II is not the

correct explanation of Statement I.

C. Statement I is true, Statement II is false.

D. Statement is false, Statement II is true.

Answer: D

- **3.** Find the range of values of t for which $2\sin t = \frac{1-2x+5x^2}{3x^2-2x-1}$
 - Watch Video Solution

- **4.** Let $F_k(x)=rac{1}{k}\Bigl(\sin^kx+\cos^kx\Bigr)$, where $x\in R$ and $k\geq 1$, then find the value of $F_4(x)-F_6(x)$.
 - A. 1/6
 - $\mathsf{B.}\,1/3$
 - C.1/4
 - D. 1/12

Answer: D

Watch Video Solution

- **5.** Let f:R-R be defined as $f(x)=x^4$, then (a) f is one-one (b) f is many-one onto (c) f is one-one but not onto (d) f is neither one-one nor onto
 - A. one-one and onto
 - B. onto but not one-one
 - C. one-one but not onto
 - D. neither one-one nor onto

Answer: D

6. Let
$$f(x)=x^2andg(x)=\sin x$$
 for all x in R Then the set of all x satisfying $(fogogof)(x)=(gogof)(x), where (fog)(x)=f(g(x)),$ is

A. (a)
$$\pm \sqrt{n\pi}, n \in \{0,1,2,...\}$$

B. (b)
$$\pm \sqrt{n\pi},\,n\in\{1,2,...\}$$

C. (c)
$$\pi/2+2n\pi,\,n\in\{...,\,-2,\,-1,0,1,2,...\}$$

D. (d)
$$2n\pi,\,n\in\{...,\,-2,\,-1,0,1,2,...\}$$

Answer: A

7. Let
$$f\!:\!(0,1) o R$$
 be defined by $f(x)=rac{b-x}{1-bx}$, where b is constant such that $0< b<1$.then ,

B. (b)
$$f
eq f^{-1}$$
 on (0,1) and $f'(b) = rac{1}{f'(0)}$
C. (c) $f = f^{-1}$ on (0,1) and $f'(b) = rac{1}{f'(0)}$

D. (d) f^{-1} is differentiable on (0,1)

Answer: B

Watch Video Solution

- **8.** Let f be a real-valued function defined on the inverval (-1,1) such that $e^{-x}f(x)=2+\int_0^x\sqrt{t^4+1}dt,$ for all, $x\in(-1,1)$ and f^{-1} be the inverse function of f. Then $\left(f^{-1}\right)'(2)$ is equal to
 - A. 1
 - B. 1/3
 - C.1/2
 - D. 1/e

Answer: B

9. If X and Y are two non-empty sets where $f\!:\!X o Y$,is function is defined such that $f(c)=\{f(x)\!:\!x\in C\}$ for

 $C\subseteq X ext{ and } f^{-1}(D)=\{x\!:\!f(x)\in D\}$ for $D\subseteq Y$,for any $A\subseteq Y ext{ and } B\subseteq Y$, then

A.
$$f^{-1}\{f(A)\}=A$$

C.
$$f^{-1}\{f(B)\}=B$$
, only if B \subset f(x)

B. $f^{-1}\{f(A)\}=A$, only if f(X)=Y

D.
$$f^{-1}\{f(B)\}=B$$

Answer: C

 $g(x)=\{0, ext{ when } x ext{ is rational and } x, ext{ when } x ext{ is irrational then } (f-g) ext{ is}$

10. If $f(x) = \{x, \text{ when } x \text{ is rational and } 0, \text{ when } x \text{ is irrational } \}$

A. one-one and onto

B. neither one-one nor onto

C. many one and onto

D one-one and into

A. one-one and into

B. neither one-one nor onto

C. many one and onto

D. one-one and onto

Answer: D

Watch Video Solution

11. If $f(x) = \sin x + \cos x$, $g(x) = x^2 - 1$, then g(f(x)) is invertible in the domain

A.
$$\left[0, \frac{\pi}{2}\right]$$

$$\mathsf{B.}\left[\,-\,\frac{\pi}{4},\frac{\pi}{4}\right]$$

$$\mathsf{C.}\left[\,-\,\frac{\pi}{2},\,\frac{\pi}{2}\right]$$

D.
$$[0,\pi]$$

Answer: B

Watch Video Solution

12. The domain of definition of the function $f(x)=\sqrt{\sin^{-1}(2x)+\frac{\pi}{6}}$ for real-valued x is $\left[-\frac{1}{4},\frac{1}{2}\right]$ (b) $\left[-\frac{1}{2},\frac{1}{2}\right]$ (c) $\left(-\frac{1}{2},\frac{1}{9}\right)$ (d)

$$\left[-rac{1}{4},rac{1}{4}
ight]$$

A.
$$\left[-rac{1}{4},rac{1}{2}
ight]$$

$$\mathsf{B.}\left\lceil -\frac{1}{2},\frac{1}{2}\right\rceil$$

$$\mathsf{C.}\left(-\frac{1}{2},\frac{1}{9}\right)$$

D. None of these

Answer: A

13. The range of the function $f(x)=rac{x^2+x+2}{x^2+x+1}, x\in R, \$ is

(a)
$$(1,\infty)$$
 (b) $\left(1,rac{11}{7}
ight)$ (c) $\left(1,rac{7}{3}
ight)$ (d) $\left(1,rac{7}{5}
ight)$

A.
$$(1, \infty)$$

Answer: C

Watch Video Solution

14. If $f\colon [0,\infty) o [0,\infty)$ and $f(x)=rac{x}{1+x}$, then f is

A. one-one and onto

B. one-one but not onto

C. onto but not one-one

D. neither one-one nor onto

Answer: B

Watch Video Solution

15. If $f\!:\!R o R$ be defined by $f(x)=2x+\sin x$ for $x\in R$, then check the nature of the function.

- a. one-to-one and onto
- b. one-to-one but not onto
- c. onto but not one-to-one
- d. neither one-to-one nor onto
 - A. one-to-one and onto
 - B. one-to-one but not onto
 - C. onto but not one-to-one
 - D. neither one-to-one nor onto

Answer: A

16. Let $E=\{1,2,3,4\}$ and $F=\{1,2\}$. If N is the number of onto functions fromE o F, then the value of N/2 is

B. 16

C. 12

D. 8

Answer: A

Watch Video Solution

17. Suppose $f(x)=(x+1)^2$ for $x\geq -1$. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y=x, then g(x) equals $a.\ 1-\sqrt{x}-1,\ x\geq 0$

$$\mathsf{b.}\,\frac{1}{\left(x+1\right)^2}, x>\,-\,1$$

d.
$$\sqrt{x} - 1, x > 0$$

c. $\sqrt{x+1}$, x > -1

A.
$$1-\sqrt{x}-1, x\geq 0$$

B.
$$\dfrac{1}{\left(x+1
ight)^2}, x>-1$$

C.
$$\sqrt{x+1}, x \geq -1$$

D.
$$\sqrt{x}-1, x\geq 0$$

Answer: D

equals

Watch Video Solution

18. If $F\colon [1,\infty) o [2,\infty)$ is given by $f(x) = x + rac{1}{r}, then \, f^{-1}(x)$

$$x + \sqrt{x^2 - 4}$$

A.
$$\dfrac{x+\sqrt{x^2-4}}{2}$$

B.
$$\dfrac{x}{1+x^2}$$
C. $\dfrac{x-\sqrt{x^2-4}}{2}$

$$\frac{x}{2}$$

D.
$$1 + \sqrt{x^2 - 4}$$

Answer: A

Watch Video Solution

- **19.** Let $f(x)=ig(1+b^2ig)x^2+2bx+1$ and let m(b) the minimum value of f(x). As b varies, the range of m(b) is
- (a) [0,1] (b) $\left(0,\frac{1}{2}\right]$ (c) $\left[\frac{1}{2},1\right]$ (d) (0,1]
 - A. [0,1]
 - $\mathsf{B.}\left[0,\frac{1}{2}\right]$
 - $\mathsf{C.}\left[\frac{1}{2},1\right]$
 - D. (0,1]

Answer: D

20. Find the domain of the following functions.

$$f(x) = rac{\log_2(x+3)}{(x^2+3x+2)}$$

a.
$$R/\{\,-1,\;-2\}$$

$$\mathsf{b.}\,(\,-2,\infty)$$

c.
$$R/\{-1, -2, -3\}$$

d.
$$(\,-3,\infty)\,/\,\{\,-1,\,-2\}$$

A.
$$R/\{-1, -2\}$$

B.
$$(-2,\infty)$$

D.
$$(-3, \infty)/\{-1, -2\}$$

 $C.R/\{-1, -2, -3\}$

Answer: D

Watch Video Solution

21. Let $f(x) = \frac{\alpha x}{(x+1)}, x \neq -1$. The for what value of α is f(f(x)) = x?

(a) $\sqrt{2}$ (b) $-\sqrt{2}$ (c) 1 (d) -1

D. -1

C. 1

Answer: D

Watch Video Solution

22.

 $\text{Let } g\left(x\right)=1+x-\left[x\right] \text{ and } f\left(x\right)=\begin{cases} -1, x<0\\ 0, x=0 & \text{Then for all } x, f\left(g\left(x\right)\right) \text{ is equal to }\\ 1, x>0 & \end{cases}$ (where [.] represents the greatest integer function)

A. x

B. 1

 $\mathsf{C}.\,f(x)$

D. g(x)

Answer: B

Watch Video Solution

23. The domain of definition of the function f(x) given by the equation

 $2^x = 2$ is

A. $0 < x \le 1$

 $\mathsf{B.}\, 0 \leq x \leq 1$

 $\mathsf{C}.-\infty < x \leq 0$

 $D.-\infty < x < 1$

Answer: D

24. Let $f(heta) = \sin heta (\sin heta + \sin 3 heta)$. Then f(heta) is

A. $\,\geq\,$ 0, only when $\, heta$ ge 0

B. \leq 0, for all real heta

C. $\,\geq\,$ 0, for all real $\, heta$

D. $\,\leq$ 0, only when $heta \leq 0$

Answer: C

