© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

MATHEMATICAL INDUCTION

Examples

1. Prove the following by using the principle of mathematical induction for all $n \in N:-1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

- Watch Video Solution

2. Prove the following by using the principle of mathematical induction for all $n \in N$
$1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$.

- Watch Video Solution

3. Prove the following by using the principle of mathematical $\begin{array}{lccc}\text { induction } & \text { for } & \text { all } & n \in N \\ 1.2 .3+2.3 .4+\ldots+n(n+1)(n+2) & =\frac{n(n+1)(n+2)(n+3)}{4} .\end{array}$

(D) Watch Video Solution

4. Prove by mathematical induction that
$\sum_{r=0}^{n} r^{n} C_{r}=n .2^{n-1}, \forall n \in N$.

- Watch Video Solution

5. Use the principle of mathematical induction to show that $5^{2 n+1}+3^{n+2} .2^{n-1}$ divisible by 19 for all natural numbers n.
6. Use the principle of mathematical induction to show that $a^{n}-b^{n}$) is divisble by $a-b$ for all natural numbers n .

- Watch Video Solution

7. If first term is 3 and common ratio is 3 then find the 6th term of G.P

D Watch Video Solution

8. Using mathematical induction prove that $n^{3}-7 n+3$ is divisible by $3, \forall n \in N$

- Watch Video Solution

9. if $a+b=c+d$ and $a^{2}+b^{2}=c^{2}+d^{2}$, then show by mathematical induction $a^{n}+b^{n}=c^{n}+d^{n}$

D Watch Video Solution

10. Evaluate $I=\int_{0}^{\frac{\pi}{4}}\left(\frac{\sin x}{\sin x \cos ^{2} x}\right) d x$

- Watch Video Solution

11. Given that $u_{n+1}=3 u_{n}-2 u_{n-1}$, and $u_{0}=2, u_{1}=3$, then prove that $u_{n}=2^{n}+1$ for all positive integer of n

D Watch Video Solution

12. How many numbers between 99 to 999 which are divisible by 11 .
13. If p is a natural number, then prove that $p^{n+1}+(p+1)^{2 n-1}$ is divisible by $p^{2}+p+1$ for every positive integer n .
A. P
B. $P^{2}+P$
C. $P^{2}+P+1$
D. $P^{2}-1$

Answer:

- Watch Video Solution

14. Let $\mathrm{P}(\mathrm{n})$ denote the statement that $n^{2}+n$ is odd. It is seen that $P(n) \Rightarrow P(n+1), P(n)$ is true for all
A. $n>1$
B. n
C. $n>2$
D. None of these

Answer:

- Watch Video Solution

15.

$a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots .+\frac{1}{\left(2^{n}\right)-1}$. Then
A. $a(100)>100$
B. $a(100)<200$
C. $a(200) \leq 100$
D. $a(200)>100$
16. Let $S(k)=1+3+5+\ldots+(2 k-1)=3+k^{2}$. Then which of the following is true?
A. Principle of mathematical induction can be used to prove the formula
B. $S(k) \Rightarrow S(k+1)$
C. $S(k) \nRightarrow S(k+1)$
D. $\mathrm{S}(1)$ is correct

Answer:

- Watch Video Solution

17. $10^{n}+3\left(4^{n+2}\right)+5$ is divisible by $(n \in N)$
A. 7
B. 5
C. 9
D. 8

Answer:

- Watch Video Solution

18. Statement-1 For all natural number n, $1+2+\ldots+n<(2 n+1)^{2}$ Statement -2 For all natural numbers , $(2 n+3)^{2}-7(n+1)<(2 n+3)^{3}$.
A. Statement -1 is true , Statement -2 is true Statement -2 is correct explanation for Statement -1 .
B. Statement -1 is true, Statement -2 is true, Statement -2 is not the correct explanation for Statement -1
C. Statement-1 is true , Statement-2 is false
D. Statement-1 is false , Statement -2 is true .

Answer: B

- Watch Video Solution

19. Prove the following by the principle of mathematical induction:
$7+77+777+\ldots .+777++\ddot{n}-$ digits $7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$ for all $n \in N B$.
A. Statement -1 is true , Statement -2 is true Statement -2 is correct explanation for Statement -1 .
B. Statement -1 is true, Statement -2 is true, Statement -2 is not the correct explanation for Statement -2
C. Statement-1 is true , Statement-2 is false
D. Statement-1 is false , Statement -2 is true .

- Watch Video Solution

20. Using the principle of mathematical induction to show that $41^{n}-14^{n}$ is divisible by 27 for all n.

- Watch Video Solution

21. Using mathematical induction, show that $n(n+1)(n+5)$ is a multiple of 3 .

- Watch Video Solution

22. Using the principle of mathematical induction to show that
$41^{n}-14^{n}$ is divisible by 27 for all n.
23. Use the principle of mathematical induction to prove that for all $n \in N$
$\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\ldots+\sqrt{2}}}}=2 \cos \left(\frac{\pi}{2^{n+1}}\right)$
when the LHS contains n radical signs.

D Watch Video Solution

24. Using the principle of mathematical induction to show that $41^{n}-14^{n}$ is divisible by 27 for all n.

D Watch Video Solution

25. Evaluate $\int_{0}^{\pi / 2} \frac{\sin x}{\sin x} d x$
26. Show that for all $n \in N$.
$\sqrt{a+\sqrt{a+\sqrt{a+\ldots+\sqrt{a}}}}<\frac{1+\sqrt{(4 a+1)}}{2}$
where'a' is fixed positive number and n radical signs are taken on LHS.

- Watch Video Solution

27. Prove that $\sum_{r=0}^{n}{ }^{\wedge} n C_{r} \sin r x \cos (n-r) x=2^{n-1} \sin (n x)$.

D Watch Video Solution

Mathematical Induction Exercise 1 Single Option Correct Tpye Questions

1. If $\left.a_{n}=\sqrt{7+\sqrt{7+\sqrt{7}+\ldots \ldots .}}\right)$ having n radical signs then by methods of mathematical induction which is true
A. $a_{n}>7, \forall n \geq 1$
B. $n_{n}>3, \forall n \geq 1$
C. $a_{n}<4, \forall n \geq 1$
D. $a_{n}<3, \forall n \geq 1$

Answer:

D Watch Video Solution

2. if $2 x-2 y=10$ find the value of $x-y$

- Watch Video Solution

3. Prove the following by using the principle of mathematical induction for all $n \in N:-(2 n+7)<(n+3)^{2}$.

- Watch Video Solution

1. If $a_{1}=1, a_{2}=5$ find the common difference and 5th term of A.P

- Watch Video Solution

2. Statement -1 for all natural numbers $n, 2.7^{n}+3.5^{n}-5$ is divisible by 24 .

Statement -2 if $\mathrm{f}(\mathrm{x})$ is divisible by x , then $f(x+1)-f(x)$ is divisible by $x+1, \forall x \in N$.
A. Statement -1 is true , Statement -2 is true, Statement -2 is correct explanation for Statement -2
B. Statement -1 is true , Statement -2 is true, Statement -2 is not correct explanation for Staement -2
C. Statement -1 is true , Statement -2 is false
D. Statement -1 is false, Statement -2 is true.

D Watch Video Solution

3. Statement -1 For all natural numbers $\mathrm{n}, 0.5+0.55+0.555+\ldots .$. upto n terms $=\frac{5}{9}\left\{n-\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)\right\}$,

Statement-2 $a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{(1-r)}, \quad$ for $0<r<1$.
A. (a)Statement -1 is true , Statement -2 is true, Statement -2 is correct explanation for Statement -1
B. (b)Statement -1 is true , Statement -2 is true , Statement -2 is not correct explanation for Staement -1
C. (c)Statement -1 is true , Statement -2 is false
D. (d)Statement -1 is false, Statement - 2 is true.

Answer:

Exercise Subjective Type Questions

1. Prove the following by the principle of mathematical induction: $11^{n+2}+12^{2 n+1}$ is divisible 133 for all $n \in N$.

- Watch Video Solution

2. Show that $n^{7}-n$ is divisible by 42 .

- Watch Video Solution

3. Prove that $3^{2 n}+24 n-1$ is divisible by 32 .
4. Prove using mathematical induction:-n $(n+1)(n+5)$ is divisible by 6 for all natural numbers

- Watch Video Solution

5. Prove that $3^{2 n}+24 n-1$ is divisible by 32 .

D Watch Video Solution

6. Prove the following by using the principle of mathematical induction for all $n \in N:-x^{2 n}-y^{2 n}$ is divisible by $x+y$.

- Watch Video Solution

7. Prove by induction that if n is a positive integer not divisible by 3 , then $3^{2 n}+3^{n}+1$ is divisible by 13 .
8. Prove that the product of three consecutive positive integers is divisible by 6 .

- Watch Video Solution

9. Find the sum of A.P first term 3 and common difference 2 and $n=5$

- Watch Video Solution

10. When the square of any odd number, greater than 1 , is divided by 8, it always leaves remainder

- Watch Video Solution

11. Prove the following by using induction for all $n \in N$.
$1+2+3+\ldots \ldots+n=\frac{n(n+1)}{2}$

- Watch Video Solution

12. Prove the following by the principle of mathematical induction:
$1^{2}+2^{2}+3^{2}++n^{2}=\frac{n(n+1)(2 n+1)}{6}$

- Watch Video Solution

13. Prove the following by the principle of mathematical induction:
$1.3+2.4+3.5++(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
14. If first term is 3 and common ratio is 3 then find the 6 th term of G.P

D Watch Video Solution

15. The third term of a GP is 3 . What is the product of the first five terms?

- Watch Video Solution

16. If First term of G.P is 1 and common ratio ' $1 / 2$ ' then find the infinite sum of G.P
17. Let $a_{0}=2, a_{1}=5$ and for $n \geq 2, a_{n}=5 a_{n-1}-6 a_{n-2}$. Then prove by induction that $a_{n}=2^{n}+3^{n} \forall n \in Z^{+}$.

- Watch Video Solution

18. If $a_{1}=1, a_{n+1}=\frac{1}{n+1} a_{n}, a \geq 1$, then prove by induction that $a_{n+1}=\frac{1}{(n+1)!} n \in N$.

- Watch Video Solution

19. if a, b, c, d, e and f are six real numbers such that $a+b+c=d+e+f \quad a^{2}+b^{2}+c^{2}=d^{2}+e^{2}+f^{2} \quad$ and $a^{3}+b^{3}+c^{3}=d^{3}+e^{3}+f^{3}$, prove by mathematical induction that $a^{n}+b^{n}+c^{n}=d^{n}+e^{n}+f^{n} \forall n \in N$.
20. The sum of the first ten terms of an AP is four times the sum of the first five terms, the ratio of the first term to the common difference is

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. If $t_{1}+t_{5}+t_{15}+t_{10}+t_{20}+t_{24}=225$ Find the sum of first 24 th term of that A.P?

- Watch Video Solution

2. Statement -1 For each natural number $n,(n+1)^{7}-n^{7}-1$ is divisible by 7 .

Statement -2 For each natural number $n, n^{7}-n$ is divisible by 7 .
A. Statement-1 is false , Statement-2 is true
B. Statement-1 is true , Statement-2 is true , Statement-2 is correct explanation for Statement-1
C. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
D. Statement- 1 is true , Statement- 2 is false

Answer:

