©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

MATRICES

Examples

1. IF a matrix has 12 elements, what are the possible orders it can have?

What, if it has 7 elements?

- Watch Video Solution

2. Construct a 2×3 matrix $A=\left[a_{i} j\right]$, whose elements are given by
$a_{i j}=\frac{(i+2 j)^{2}}{2}$
3. Construct a 2×3 matrix $A=\left[a_{i j}\right]$, whose elements are given by $a_{i j}=\frac{1}{2}|2 i-3 j|$.

- Watch Video Solution

4. construct a 2×3 matrix $A=\left[a_{i j}\right]$, whose elements are give by $a_{i j}=\left\{\begin{array}{l}i-j, i \geq j \\ i+j, i<j\end{array}\right.$

- Watch Video Solution

5. Construct a 2×3 matrix $A=\left[a_{i j}\right]$, whose elements are give by $a_{i j}=\left[\frac{i}{j}\right]$, where [.] denotes the greatest integer function.

- Watch Video Solution

6. Construct a 2×3 matrix $A=\left[a_{i} j\right]$, whose elements are given by $a_{i j}=\left\{\frac{2 i}{3 j}\right\}$

- Watch Video Solution

7. construct a 2×3 matrix $A=\left[a_{i j}\right]$, whose elements are give by
$a_{i j}=\left(\frac{3 i+4 j}{2}\right)$
where (.) denotes the least integer function.

- Watch Video Solution

8. construct a 2×3 matrix $A=\left[a_{i j}\right]$, whose elements are give by $a_{i j}=\left(\frac{3 i+4 j}{2}\right)$
where (.) denotes the least integer function.

- Watch Video Solution

9. In Which quadrant Point $(5,-3)$ will be lie.

- Watch Video Solution

10. If $\left[\begin{array}{lc}2 \alpha+1 & 3 \beta \\ 0 & \beta^{2}-5 \beta\end{array}\right]=\left[\begin{array}{ll}\beta+3 & \beta^{2}+2 \\ 0 & -6\end{array}\right]$
find the equation whose roots are alpha and beta.

- Watch Video Solution

11. Given, $A=\left[\begin{array}{lll}1 & 3 & 5 \\ -2 & 0 & 2 \\ 0 & 0 & -3\end{array}\right], B=\left[\begin{array}{ll}0 & 3 \\ -2 & 0 \\ 0 & -4\end{array}\right]$ and $C=\left[\begin{array}{lll}4 & 1 & -2 \\ 3 & 2 & 1 \\ 2 & -1 & 7\end{array}\right]$, find (whichever defined)
(i) $\mathrm{A}+\mathrm{B}$. (ii) $\mathrm{A}+\mathrm{C}$.

- Watch Video Solution

12. If $\mathrm{a}, \mathrm{b} \mathrm{b}, \mathrm{c}$, and c, a are the roots of $x^{2}-4 x+3=0, x^{2}-8 x+15=0$ and $x^{2}-6 x+5=0$,

$$
\left[\begin{array}{lll}
a^{2} & +c^{2} & a^{2}+b^{2} \\
b^{2} & +c^{2} & a^{2}+c^{2}
\end{array}\right]+\left[\begin{array}{ll}
2 a c & -2 a b \\
-2 b c & -2 a c
\end{array}\right]
$$

- Watch Video Solution

13. Determine the matrix A, when
$A=4\left[\begin{array}{lll}1 & 2 & 3 \\ -1 & -2 & -3 \\ 4 & 2 & 6\end{array}\right]+2\left[\begin{array}{lll}5 & 4 & 1 \\ 3 & 2 & 4 \\ 3 & 8 & 2\end{array}\right]$
A. $\left[\begin{array}{lll}-14 & 16 & 14 \\ -2 & -4 & -4 \\ 22 & 24 & 28\end{array}\right]$
B. $\left[\begin{array}{lll}14 & -16 & 14 \\ 2 & -4 & -4 \\ 22 & 24 & 28\end{array}\right]$
C. $\left[\begin{array}{lll}14 & 16 & 14 \\ 2 & -4 & -4 \\ 22 & 24 & 28\end{array}\right]$
D. $\left[\begin{array}{lll}-14 & 16 & 14 \\ 2 & -4 & -4 \\ -22 & 24 & -28\end{array}\right]$

Answer: C

14. If $A=\left[\begin{array}{ll}0 & 2 \\ 3 & -4\end{array}\right]$ and $k A=\left[\begin{array}{ll}0 & 3 a \\ 2 b & 24\end{array}\right]$, then find the value of $\mathrm{b}-\mathrm{a}-\mathrm{k}$.
A. 1
B. 0
C. 10
D. 5

Answer: A

15. If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ then find matrix C such that $A+2 C=B$
16. Solve the following equations for X and Y :
$2 X-Y=\left[\begin{array}{ccc}3 & -3 & 0 \\ 3 & 3 & 2\end{array}\right], 2 Y+X=\left[\begin{array}{ccc}4 & 1 & 5 \\ -1 & 4 & -4\end{array}\right]$

Watch Video Solution

17. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & -2 \\ -1 & 0 \\ 2 & -1\end{array}\right]$ obtain the product $A B$ and explain why $B A$ is not defined?

- Watch Video Solution

18. If $A=\left[\begin{array}{cc}0 & -\frac{\tan \alpha}{2} \\ \frac{\tan \alpha}{2} & 0\end{array}\right]$ and I is the identity matrix of order 2 , show that $I+A=(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

- Watch Video Solution

19. If $A=\left[\begin{array}{ll}1 & 2 \\ -2 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right]$ and $C=\left[\begin{array}{ll}-3 & 1 \\ 2 & 0\end{array}\right]$,verify that (AB)C $=A(B C)$ and $A(B+C)=A B+A C$.

Watch Video Solution

20. If $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ p & q & r\end{array}\right]$, show that Itbargt $A^{3}=p I+q A+r A^{2}$

- Watch Video Solution

21. In Which quadrant Point $(-1,-5)$ will be lie.

- Watch Video Solution

22. show that the matrix
$A=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ is idempotent.
23. show that $\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]=A$ is nilpotent matrix of order 3 .

- Watch Video Solution

24. show that the matrix
$A=\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$ is involutory.

- Watch Video Solution

25. If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, then find the values of θ satisfying the equation $A^{T}+A=I_{2}$.

- Watch Video Solution

26. the square matrix $A=\left[a_{i j}\right]_{m} \times m$ given bya $a_{i j}=(i-j)^{n}$, show that A is symmetic and skew-sysmmetic matrices according as n is even or odd, repectively.

- Watch Video Solution

27. Express A as the sum of a symmetric and a skew-symmetric matrix, where $A=\left[\begin{array}{cc}3 & 5 \\ -1 & 2\end{array}\right]$

- Watch Video Solution

28. If $\left[\begin{array}{ccc}0 & 2 \beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma\end{array}\right]$ is orthogonal, then find the value of $2 \alpha^{2}+6 \beta^{2}+3 \gamma^{2}$.

- Watch Video Solution

29. if $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisfying $A A^{\prime}=9 I_{3}$, find the value of $|a|+|b|$.

- Watch Video Solution

30. Express A as the sun of a hermitian and skew-hermitian matrix, where
$A=\left[\begin{array}{cc}2+3_{i} & 7 \\ 1-i & 2_{i}\end{array}\right], i=\sqrt{-1}$.

- Watch Video Solution

31. Verify that the matrix $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary, where $i=\sqrt{-1}$

- Watch Video Solution

32. If A, B and C are square matrices of order n and $\operatorname{det}(A)=2, \operatorname{det}(B)=3$ and det $\odot=5$, then find the value of 10 det $\left(A^{3} B^{2} C^{-1}\right)$.
33. If $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right], a b c=1, A^{T} A=I$, then find the value of $a^{3}+b^{3}+c^{3}$.

- Watch Video Solution

34. If $\omega \neq 1$ is a complex cube root of unity, then prove that
$\left[\begin{array}{lll}1+2 \omega^{2017}+\omega^{2018} & \omega^{2018} & 1 \\ 1 & 1+2 \omega^{2018}+\omega^{2017} & \omega^{2017} \\ \omega^{2017} & \omega^{2018} & 2+2 \omega^{2017}+\omega^{2018}\end{array}\right]$ is
singular

- Watch Video Solution

35. find the real value of x for which the matrix $=\left[\begin{array}{ccc}x+1 & 3 & 5 \\ 1 & x+3 & 5 \\ 1 & 3 & x+5\end{array}\right]$ is non-singular.
36. find the cofactor of a_{23} in $\left[\begin{array}{ccc}3 & 1 & 4 \\ 0 & 2 & -1 \\ 1 & -3 & 5\end{array}\right]$

Watch Video Solution
37. find the adjoint of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 5 & 0 \\ 2 & 4 & 3\end{array}\right]$

- Watch Video Solution

38. If $\mathrm{A}=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$ find the values of
(i) $|\mathrm{A}||\operatorname{adj} \mathrm{A}|$
(ii) $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))|$
(iii) $|\operatorname{adj}(3 A)|$
(iv) $\operatorname{adj} \operatorname{adj} \mathrm{A}$

- Watch Video Solution

39. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ and B is the adjoint of A, find the value of
$|A B+2 I|$,where I is the identity matrix of order 3 .

- Watch Video Solution

40. Compute the inverse of the matix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]$

- View Text Solution

41. If A and B are symmetric non-singular matrices of same order, $A B=B A$ and $A^{-1} B^{-1}$ exist, prove that $A^{-1} B^{-1}$ is symmetric.

- Watch Video Solution

42. Matrices A and B Satisfy $A B=B^{-1}$, where $B=\left[\begin{array}{ll}2 & -2 \\ -1 & 0\end{array}\right]$, find the value of λ for which $\lambda A-2 B^{-1}+1=O$, without finding B^{-1}.

- Watch Video Solution

43. If A, B and C arae three non-singular square matrices of order 3 satisfying the equation $A^{2}=A^{-1}$ let $B=A^{8}$ and $C=A^{2}$,find the value of $\operatorname{det}(B-C)$

- Watch Video Solution

44. Transform $\left[\begin{array}{ccc}1 & 3 & 3 \\ 2 & 4 & 10 \\ 3 & 8 & 4\end{array}\right]$ into a unit matrix.

- Watch Video Solution

45. Given $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 4 & 1 \\ 2 & 3 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$. Find P such that $\mathrm{BPA}=$ $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

Watch Video Solution

46. find the invese of the matraix $\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]$, using elementary row operaations.

- Watch Video Solution

47. If $A=\left[\begin{array}{cc}k & l \\ m & n\end{array}\right]$ and $k n \neq l m$, show that
$A^{2}-(k+n) A+(k n-l m) l=O$. Hence, find A^{-1}

- Watch Video Solution

48. For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that $A^{2}+a A+b I=O$

- Watch Video Solution

49. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, show that $(a I+b A)^{n}=a^{n} I+n a^{n-1} b A$, where I is the identity matrix of order 2 and $n \in N$

Watch Video Solution

50. Evluate $\int 7 x^{2} d x$

(D) Watch Video Solution

51. Solve the system of equations
$x+2 y+3 z=1,2 x+3 y+2 z=2$ and $3 x+3 y+4 z=1$ with the help of matrix inversion.

- Watch Video Solution

52. solve the system of equations $x+y+z=6, x+2 y+3 z=14$ and $x+4 y+7 z=30$ with the help of matrix method.
53. Determine whether the following equations will have non-trivial solutions,
$x+3 y-2 z=0,2 x-y+4 z=0, x-11 y+14 z=0$

- Watch Video Solution

54. Solve the system of equations $2 x+3 y-3 z=0,3 x-3 y+z=0$ and $3 x-2 y-3 z=0$

- Watch Video Solution

55. Find the rank of $\left[\begin{array}{ccc}3 & -1 & 2 \\ -3 & 1 & 2 \\ -6 & 2 & 4\end{array}\right]$
56. . For what values of λ and μ the system of equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ has (i) Unique solution (ii) No solution (iii) Infinite number of solutions

- Watch Video Solution

57. The point $p(3,4)$ undergoes a reflection in the X -axis followed by a reflection in the y-axis. Show that their combined effect is the same as the single reflection of $p(3,4)$ in the orign.

- Watch Video Solution

58. Find the image of the $(-2,-7)$ under the transformations (x, y) to $(x-2 y,-3 x+y)$.

- Watch Video Solution

59. the image of the point $A(2,3)$ by the line mirror $\mathrm{y}=\mathrm{x}$ is the point B and the image of B by the line mirror $\mathrm{y}=0$ is the point (α, β), find α and β

- Watch Video Solution

60. Find the image of the point $(-\sqrt{2}, \sqrt{2})$ by the line mirror $y=x \tan \left(\frac{\pi}{8}\right)$.

- Watch Video Solution

61. Find the matrices of transformation $T_{1} T_{2}$ and $T_{2} T_{1}$ when T_{1} is rotated through an angle 60° and T_{2} is the reflection in the Y -asix Also, verify that $T_{1} T_{2} \neq T_{2} T_{1}$.

- Watch Video Solution

62. Write down 2×2 matrix A which corresponds to a counterclockwise rotation of 60° about tha origin. In the diagram OB of $2 \sqrt{2}$ units in lenth. The square is rotated counterclockwise about O through 60° find the coordiates of the vertices of the square after rotating.

- Watch Video Solution

63. Let matrix $A=\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3\end{array}\right]$, Find the non-zero column vector X such that $A X=\lambda X$ for some scalar λ.

- Watch Video Solution

64. If A and P are the square matrices of the same order and if P be invertible, show that the matrices A and P^{-1} have the same characteristic roots.
65. Show that the characteristic roots of an idempotent matrix are either zero or unity.

Watch Video Solution

66. If $3,-2$ are the eigen values of a non-singular matrix A and $|A|=4$, find the eigen values of $a d j(A)$

- Watch Video Solution

67. Find the characteristic equation of the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$ and hence find its inverse using Cayley-hamilton theorem.

- Watch Video Solution

68. If A is a square matrix of order 2 such that $A\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $A^{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ the sum of elements
and product of elements of A are S and $\mathrm{P}, \mathrm{S}+\mathrm{P}$ is
A. (a)-1
B. (b) 2
C. (c) 4
D. (d) 5

Answer:

- Watch Video Solution

69. If P is an orthogonal matrix and $Q=P A P^{T}$ andx $=P^{T} A$ b. I c.
$A^{1000} \mathrm{~d}$. none of these
A. A
B. A^{1000}
C. 1
D. None of these

D Watch Video Solution

70. If A is a diagonal matrix of order 3×3 is commutative with every square matrix of order 3×3 under multiplication and trace $(A)=12$, then find $|\mathrm{A}|$
A. $|A|=64$
B. $|A|=16$
C. $|A|=12$
D. $|A|=4$

Answer:

71. let $A=\left\{a_{i j}\right\}_{3 \times 3}$ such that $a_{i j}=\{3, i=j$ and $0, i \neq j$. then $\left\{\frac{\operatorname{det}(\operatorname{adj}(a d j A))}{5}\right\}$ equals: (where \{.\} represents fractional part)
A. $1 / 5$
B. $\frac{2}{7}$
C. $\frac{3}{7}$
D. $\frac{4}{7}$

Answer:

72. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $\operatorname{det}\left(A^{n}-1\right)=1-\lambda^{n}, n \in N$, then the value of λ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

73. If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $f(x)=\frac{1+x}{1-x}$, then $\mathrm{f}(\mathrm{A})$ is
A. $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right]$
D. None of these

Answer: C

- Watch Video Solution

74. The number of solutions of the matrix equation $X^{2}=[1123]$ is a. more than2 b. 2 c. 0 d. 1
A. more then 2
B. 2
C. 0
D. 1

Answer: A

- Watch Video Solution

75. For a matrix $A=\left[\begin{array}{cc}1 & 2 r-1 \\ 0 & 1\end{array}\right]$ then $\prod_{r=1}^{60}\left[\begin{array}{cc}1 & 2 r-1 \\ 0 & 1\end{array}\right]=$
A. $\left[\begin{array}{cc}1 & 100 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 4950 \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 5050 \\ 0 & 1\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 2500 \\ 0 & 1\end{array}\right]$

Answer: D

- Watch Video Solution

76. If $A_{1}, A_{3}, \ldots, A_{2 n-1}$ are n skew-symmetric matrices of same order, then $B=\sum_{r=1}^{n}(2 r-1)\left(A_{2 r-1}\right)^{2 r-1}$ will be
A. symmetric
B. skew-symmetric
C. neither symmetric nor skew- symmetric
D. data not adequate

Answer: B

- Watch Video Solution

77. Elements of a matrix A of order 10×10 are defined as $a_{\mathrm{ij}}=\omega^{i+j}$ (where ω is imaginary cube root of unity), then trace (A) of the matrix is
A. 0
B. 1
C. 3
D. None of these

Answer: D

- Watch Video Solution

78. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ (where $b c \neq 0$) satisfies the equations $x^{2}+k=0$, then
A. $a+d=0$
B. $k=-|A|$
C. $k=|A|$
D. None of these

Answer: A::C

- Watch Video Solution

79. If $A=\left(a_{i j}\right)_{n \times n}$ and f is a function, we define $f(A)=\left(\left(f\left(a_{i j}\right)\right)\right)_{n \times n}$, Let $A=\left(\begin{array}{cc}\pi / 2-\theta & \theta \\ -\theta & \pi / 2-\theta\end{array}\right)$. Then
A. $\sin A$ is invertible
B. $\sin A=\cos A$
C. $\sin A$ is orthogonal
D. $\sin 2 A=2 \sin A \cos A$

Answer: A::C

80. Let A and b are two square idempotent matrices such that $A B \pm B A$ is a null matrix, the value of $\operatorname{det}(A-B)$
cann vbe equal
A. -1
B. 0
C. 1
D. 2

Answer: A::B::C

- Watch Video Solution

81. if $A B=A$ and $B A=B$, then
A. $A^{2} B=A^{2}$
B. $B^{2} A=B^{2}$
C. $A B A=A$
D. $B A B=B$

Answer: A::B::C::D

- Watch Video Solution

82. If A is a square matrix of order 3 and I is an Identity matrix of order 3 such that $A^{3}-2 A^{2}-A+2 l=0$, then A is equal to
A. I
B. 21
C. $\left[\begin{array}{ccc}2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
D. $\left[\begin{array}{ccc}2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

Answer: A::B::D

83. If $A_{0}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ and $B_{0}\left[\begin{array}{ccc}-4 & -4 & -4 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$ then find $A_{0}+B_{0}$

- Watch Video Solution

84. If $A_{0}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ and $B_{0}=\left[\begin{array}{ccc}-4 & -4 & -4 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$ then find $A_{0}-B_{O}$
A. B_{0}
B.
C.
D.

Answer: C

85. If $A_{0}=\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ and $B_{0}=\left[\begin{array}{ccc}-4 & -4 & -4 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{array}\right]$ then find $A_{0}-B_{O}$
A. unique solution
B. infinite solution
C. finitrly many solution
D. no solution

Answer: D

- Watch Video Solution

86. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$ and consider matrix $\underset{3 \times 3}{U}$ with its columns as U_{1}, U_{2}, U_{3}, such that $A^{50} U_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} U_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A^{50} U_{3}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Trace of A^{50} equals
A. (a) -1
B. (b) 0
C. (c) 1
D. (d) 25

Answer: C

(Watch Video Solution

87. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$. And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal.

Further consider a matrix $\underset{3 \times 3}{\bigcup}$ with its column as $\cup_{1}, \cup_{2}, \cup_{3}$ such that
$A^{50} \cup_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} \cup_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], A^{50} \cup_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Then answer the following question :
Trace of A^{50} equals
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

88. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ satisfies $A^{n}=A^{n-2}+A^{2}-I$ for $n \geq 3$ and consider matrix $\underset{3 \times 3}{U}$ with its columns as U_{1}, U_{2}, U_{3}, such that
$A^{50} U_{1}=\left[\begin{array}{c}1 \\ 25 \\ 25\end{array}\right], A^{50} U_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A^{50} U_{3}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Trace of A^{50} equals
A. -1
B. 0
C. 1

D. 2

Answer: C

- Watch Video Solution

89. Let A be $a 3 \times 3$ diagonal matrix which commutes
with every 3×3 matrix. If det $(A)=8$, then $\operatorname{tr} A$ is
A.
B.
C.
D.

Answer:
90. Suppose A and B are two non singular matrices such that $B \neq I, A^{6}=I$ and $A B^{2}=B A$. Find the least value of k for $B^{k}=1$
A.
B.
c.
D.

Answer:

- Watch Video Solution

91. Evluate $\int\left(1+x^{2}\right) d x$

- Watch Video Solution

D View Text Solution

93. Statement -1 (Assertion) and Statement - 2 (Reason)

Each of these examples also has four alternative choices, ONLY ONE of which is the correct answer. You have to select the correct choice as given below

Statement-1 A is singular matrox pf order $n \times n$, then $\operatorname{adj} \mathrm{A}$ is singular.

Statement -2 \mid adj $A\left|=|A|^{n-1}\right.$
A. Statement -1 is true, Statement -2 is true , Statement -2
is correct explanaction for Statement -1
B. Statement -1 is true, Statement - 2 is true, Statement - 2
is not a correct explanation for Statement-1
C. Statement-1 is true, Statement-2 is false
D. Statement- 1 is false, Statement- 2 is true

Answer: D

- Watch Video Solution

94. Statement -1 (Assertion) and Statement - 2 (Reason)

Each of these examples also has four alternative choices,
select the correct choice as given below
Statement-1 If A and B are two matrices such that $\mathrm{AB}=\mathrm{B}, \mathrm{BA}=\mathrm{A}$, then $A^{2}+B^{2}=A+B$.

Statement-2 A and B are idempotent motrices, then
$A^{2}=A, B^{2}=B$.
A. Statement -1 is true, Statement -2 is true , Statement -2
is correct explanaction for Statement -2
B. Statement -1 is true, Statement -2 is true, Statement -2
is not a correct explanation for Statement-2
C. Statement-1 is true, Statement-2 is false
D. Statement- 1 is false, Statement- 2 is ttrue

Answer: B

- Watch Video Solution

95. If $A^{n}=0$, then evaluate
(i) $I+A+A^{2}+A^{3}+\ldots+A^{n-1}$
(ii) $I-A+A^{2}-A^{3}+\ldots+(-1) A^{n-1}$ for odd ' n ' where I is the identity matrix having the same order of A .

- Watch Video Solution

96. If A is an idempotent matrix satisfying $(I-0.4 A)^{-1}=I-\alpha A$ where I is the unit matrix of the same order as that of A then the value of α is

(D) Watch Video Solution

97. If the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right](a, b, c d$ not all simultaneously zero) commute, find the value of $\frac{d-b}{a+c-b}$. Also show that the matrix which commutes with A is of the form $\left[\begin{array}{cc}\alpha-\beta & \frac{2 \beta}{3} \\ \beta & \alpha\end{array}\right]$
98. Given the matrix $A=\left[\begin{array}{ccc}-1 & 3 & 5 \\ 1 & -3 & -5 \\ -1 & 3 & 5\end{array}\right]$ and X be the solution set of the equation $A^{x}=A$, where $x \in N-\{1\}$. Evaluate $\prod\left(\frac{x^{3}+1}{x^{3}-1}\right)$ where the continued extends for all $x \in X$.

- Watch Video Solution

99. If P is non-singular matrix, then value of $\operatorname{adj}\left(P^{-1}\right)$ in terms of P is $P /|P|$ b. $P|P|$ c. P d. none of these

- Watch Video Solution

100. Let A and B be matrices of order n. Prove that if
(I-AB) is invertible, (I-BA) is also invertible and
$(I-B A)^{-1}=I+B(I-A B)^{-1} A$, where I be the identity matrix of order n.
101. If B and C are non-singular matrices and O is null matrix, then show that $\left[\begin{array}{ll}A & B \\ C & O\end{array}\right]^{-1}=\left[\begin{array}{cc}O & C^{-1} \\ B^{-1} & -B^{-1} A C^{-1}\end{array}\right]$.

- Watch Video Solution

102. $A=\left[\begin{array}{ccc}3 & a & -1 \\ 2 & 5 & c \\ b & 8 & 2\end{array}\right]$ is symmetric and $B=\left[\begin{array}{ccc}d & 3 & a \\ b-a & e & -2 b-c \\ -2 & 6 & -f\end{array}\right]$ is skew-symmetric, then find AB.

- Watch Video Solution

103. If B, C are square matrices of order nand if $A=B+C, B C=C B, C^{2}=O$, then without using mathematical induction, show that for any positive integer $p, A^{p-1}=B^{p}[B+(p+1) C]$.
104. If there are three square matrix A, B, C of same order satisfying the equation $A^{2}=A^{-1}$ and $B=A^{2^{n}}$ and $C=A^{2^{(n-2)}}$, then prove that $\operatorname{det} .(B-C)=0, n \in N$.

- Watch Video Solution

105. Construct an orthogonal matrix using the
skew- symmetric matrix $A=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$.

- Watch Video Solution

106. If $A=\left[\begin{array}{ccc}3 & 2 & 2 \\ 2 & 4 & 1 \\ -2 & -4 & -1\end{array}\right]$ and X, Y are two non-zero
column vectors such that $A X=\lambda X, A Y=\mu Y, \lambda \neq \mu$, find angle between X and Y .
107. If $A=\left|\begin{array}{cc}\alpha & 2 \\ 2 & \alpha\end{array}\right|$ and $|A|^{3}=125$, then the value of α is a. $\pm 1 \mathrm{~b}$. $\pm 2 \mathrm{c}$. ± 3 d. ± 5
A. $\pm=2$
B. $\pm=3$
C. $\pm=5$
D. 0

Answer: B

- Watch Video Solution

2. If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{ll}a & -1 \\ b & -1\end{array}\right]$ and $(A+B)^{2}=\left(A^{2}+B^{2}\right)$ then find the values of a and b.
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

3. if $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $A^{2}-\lambda A-l_{2}=O$, then λ is equal to
A. -4
B. -2
C. 2
D. 4

Answer: D
4. Let $A=\left[\begin{array}{ll}0 & \alpha \\ 0 & 0\end{array}\right]$ and $(A+I)^{50}-50 A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ Then the value of $a+b+c+d$ is (A) 2 (B) 1 (C) 4 (D) none of these
A. 1
B. 2
C. 4
D. None of these

Answer: B

- Watch Video Solution

5. if $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $A^{2}=I$ is true for
A. $\theta=0$
B. $\theta=\frac{\pi}{4}$
C. $\theta=\frac{\pi}{2}$
D. None of these

Answer: A

- Watch Video Solution

6. If $\left[\begin{array}{cc}\alpha & \beta \\ \gamma & -\alpha\end{array}\right]$ is to be square root of two-rowed unit matrix, then α, β and γ should satisfy the relation. a. $1-\alpha^{2}+\beta \gamma=0$ b. $\alpha^{2}+\beta \gamma=0 \mathrm{c}$.
$1+\alpha^{2}+\beta \gamma=0 \mathrm{~d} .1-\alpha^{2}-\beta \gamma=0$
A. $1-\alpha^{2}+\beta \lambda=0$
B. $\alpha^{2}+\beta \lambda-1=0$
C. $1+$ alpha^(2)+beta=0` D. 1-alpha-betalambda=0`

Answer: B

7. If $A=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$, then A^{100} is equal to
A. $\left[\begin{array}{cc}1 & 0 \\ 25 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 0 \\ 50 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 0 \\ 1 / 2^{100} & 1\end{array}\right]$
D. none of these

Answer: B

- Watch Video Solution

value of n is equal to
A. 26
B. 27
C. 377
D. 378

Answer: B

- Watch Video Solution

9. Evluate $\int 5 x^{4} d x$

- Watch Video Solution

Exercise For Session 2

1. If $A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]$ is symmetric, then $\mathrm{x}=$
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

2. If A and B are symmetric matrices, then $A B A$ is (a) symmetric matrix
(b) skew-symmetric matrix (c) diagonal matrix (d) scalar matrix
A. symmetric matrix
B. skew-symmetric matrix
C. diagonal matrix
D. scalar matrix

Answer: A

- Watch Video Solution

3. if A and B are symmetric matrices of the same order and $P=A B+B A$ and $Q=A B-B A$, then $(P Q)^{\prime}$ is equal to
A. PQ
B. QP
C. $-Q P$
D. none of these

Answer: C

- Watch Video Solution

4. If A is a skew-symmetric matrix and n is odd positive integer, then A^{n} is a skew-symmetric matrix a symmetric matrix a diagonal matrix none of these
A. a skew-symmetric matrix
B. a symmetric matrix
C. a diagonal matrix
D. nono of these

Answer: A

- Watch Video Solution

5. If A is symmetric as well as skew-symmetric matrix, then A is
A. diagonal matrix
B. null matrix
C. triangular matrix
D. nono of these

Answer: B

- Watch Video Solution

6. If A is square matrix order 3 , then $\left|\left(A-A^{\prime}\right)^{2015}\right|$ is
A. $|A|$
B. $\left|A^{\prime}\right|$
C. 0
D. none of these

Answer: C

- Watch Video Solution

7. Find the maximum number of different elements requried to from a symmetric matrx of order 6 is
A. 15
B. 17
C. 19
D. 21

Answer: D

- Watch Video Solution

8. A and B are square matrices of order $3 \times 3, A$ is an orthogonal matrix and B is a skew symmetric matrix. Which of the following statement is not true
A. (a) $|A B|=1$
B. (b) $|A B|=0$
C. (c) $|A B|=-1$
D. (d) none of these

Answer: B

Watch Video Solution

9. the matrix $A=\left[\begin{array}{cc}i & 1-2 i \\ -1-2 i & 0\end{array}\right]$, where $I=\sqrt{-1}$, is
A. symmetric matrix
B. skew-symmetric matric
C. hermitain
D. skew-hermitain

Answer: D

- Watch Video Solution

10. if A and B are square matrices of same order such that $A^{*}=A$ and $B^{*}=B$, where A^{*} denotes the conjugate transpose of A, then `(AB-BA)* is equal to
A. null matrix
B. $A B-B A$
C. BA-AB
D. none of these

Answer: C

11. if matrix $A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & i \\ -i & a\end{array}\right], i=\sqrt{-1}$ is unitary matrix, a is equal to
A. 2
B. -1
C. 0
D. 1

Answer: B

12. If A is a $3 x 3$ matrix and $\operatorname{det}(3 A)=k\{\operatorname{det}(A)\}, k$ is equal to
A. 9
B. 6
C. 1
D. 27

Answer: D

- Watch Video Solution

13. If A and B are square matrices of order 3 such that $|A|=-1$,
$|B|=3$ then the value of determinant of $3 A B$ is
A. -9
B. 81
C. -27
D. 81

Answer: B

- Watch Video Solution

14. if A is a square matrix such that $A^{2}=A$, then $\operatorname{det}(\mathrm{A})$ is equal to
A. 0 or 1
B. -2 or 2
C. -3 or 3
D. none of these

Answer: A

- Watch Video Solution

15. If I is a unit matrix of order 10 , then the determinant of I is equal to
A. 10
B. 1
C. $\frac{1}{10}$
D. 9

- Watch Video Solution

16. If $A_{i}=\left[\begin{array}{ll}2^{-i} & 3^{-i} \\ 3^{-i} & 2^{-i}\end{array}\right]$, then $\sum_{i=1}^{\infty} \operatorname{det}\left(A_{i}\right)$ is equal to
A. $\frac{3}{4}$
B. $\frac{5}{24}$
C. $\frac{5}{4}$
D. $\frac{7}{144}$

Answer: B

D Watch Video Solution

17. The number of values of x for which the matrix
$A=\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ is singular, is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

18. For how many values of ' x ' in the closed interval $[-4,-1]$ is the matrix $\left[\begin{array}{ccc}3 & -1+x & 2 \\ 3 & -1 & x+2 \\ x+3 & -1 & 2\end{array}\right]$ singular ? (A) 2 (B) 0 (C) 3 (D) 1
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

19. The value of x for which the matrix $\left|\begin{array}{ccc}-x & x & 2 \\ 2 & x & -x \\ x & -2 & -x\end{array}\right|$ will be nonsingular, are
A. $-2 \leq x \leq 2$
B. for all x other than 2 and -2
C. $x \geq 2$
D. $x \leq-20$

Answer: B

1. Find the adjoint of the matrix $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ and hence show that $A(\operatorname{adj} A)=|A| I_{3}$.
A. A
B. A^{T}
C. 3A
D. $3 A^{T}$

Answer: D

- Watch Video Solution

2. If A is a 3×3 matrix and B is its adjoint matrix the determinant of B is 64 then determinant of A is
A. 64
B. ± 64
C. ± 8
D. 18

Answer: C

- Watch Video Solution

3. For any 2×2 matrix, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to
(a) 20 (b) 100 (c) 10 (d) 0
A. 0
B. 10
C. 20
D. 100

Answer: B
4. If A is a singular matrix, then $\operatorname{adj} A$ is a. singular b . non singular c . symmetric d. not defined
A. singular
B. non-singular
C. symmetic
D. not defined

Answer: D

- Watch Video Solution

5. If $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]$, then $\operatorname{det}(\operatorname{adj}(\operatorname{adjA}))$ is
A. 14^{4}
B. 14^{3}
C. 14^{2}
D. 14

Answer: A

- Watch Video Solution

6. If $k \in R_{o}$ then $\operatorname{det}\left\{a d j\left(k I_{n}\right)\right\}$ is equal to
a. K^{n-1}
b. $K^{n(n-1)}$
c. K^{n}
d. k
A. k^{n-1}
B. $k^{n(n-1)}$
C. k^{n})
D. k

Answer: B

7. With $1, \omega, \omega^{2}$ as cube roots of unity, inverse of which of the following matrices exists?
A. $\left[\begin{array}{ll}1 & \omega \\ \omega & \omega\end{array}\right]$
B. $\left[\begin{array}{ll}\omega^{2} & 1 \\ 1 & \omega\end{array}\right]$
C. $\left[\begin{array}{ll}\omega & \omega^{2} \\ \omega^{2} & 1\end{array}\right]$
D. None of these

Answer: D

- Watch Video Solution

8. If the matrix A is such that $A\left[\begin{array}{ll}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{ll}-4 & 1 \\ 7 & 7\end{array}\right]$,then A is equal to
A. (a) $\left[\begin{array}{ll}1 & 1 \\ 2 & -3\end{array}\right]$
B. (b) $\left[\begin{array}{ll}1 & 1 \\ -2 & 3\end{array}\right]$
C. (c) $\left[\begin{array}{ll}1 & -1 \\ 2 & 3\end{array}\right]$
D. (d) $\left[\begin{array}{ll}-1 & 1 \\ 2 & 3\end{array}\right]$

Answer: C

- Watch Video Solution

9. If $A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$ then find $|\mathrm{A}|$

- Watch Video Solution

10. The element in the first row and third column of the inverse of the matrix $\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ is
A. -2
B. 0
C. 1
D. None of these

Answer: D

- Watch Video Solution

11. If $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1\end{array}\right]$ then $\left(A(\operatorname{adj} A) A^{-1}\right) A=$
A. $\left[\begin{array}{lll}-6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6\end{array}\right]$
B. $\left[\begin{array}{lll}0 & \frac{1}{6} & -\frac{1}{6} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6}\end{array}\right]$
C. $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$
D. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Answer: C

12. A is an involuntary matrix given by $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$, then the inverse of $A / 2$ will be
A. 2 A
B. $\frac{A^{-1}}{2}$
C. $\frac{A}{2}$
D. A^{2}

Answer: A

- Watch Video Solution

13. If A satisfies the equation $x^{3}-5 x^{2}+4 x+\lambda=0$, then A^{-1} exists if (a) $\lambda \neq 1$ (b) $\lambda \neq 2$ (c) $\lambda \neq-1$ (d) $\lambda \neq 0$
A. $\lambda \neq 1$
B. $\lambda \neq 2$
C. $\lambda \neq-1$
D. $\lambda \neq 0$

Answer: D

- Watch Video Solution

14. A square non-singular matrix A satisfies $A^{2}-A+2 I=0$, then $A^{-1}=$
A. I-A
B. $(I-A) / 2$
C. $1+A$
D. $(1+) / 2$

Answer: B

15. Matrix A such that $A^{2}=2 A-I$, where I is the identity matrix, then for $n \geq 2, A^{n}$ is equal to
A. $n^{A}-n(n-1)$
B. nA-I
C. $2^{n-1} A-(n-1) I$
D. $2^{n-1} A-I$

Answer: A

- Watch Video Solution

16. If $X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$, the value of X^{n} is equal to
A. $\left[\begin{array}{cc}3 n & -4 n \\ n & -n\end{array}\right]$
B. $\left[\begin{array}{cc}2 n+n & 5-n \\ n & -n\end{array}\right]$
C. $\left[\begin{array}{ll}3^{n} & (-4)^{n} \\ 1^{n} & (-1)^{n}\end{array}\right]$
D. None of these

Answer: D

- Watch Video Solution

Exercise For Session 4

1. If the system of equations $a x+y=1, x+2 y=3,2 x+3 y=5$ are consistent, then a is given by
A. 0
B. 1
C. 2
D. None of these

Answer: A

Watch Video Solution
2.
$x+y+z=2,2 x+y-z=3,3 x+2 y+k z=4 \quad$ has \quad a unique solution if (A) $k \neq 0$ (B) $-1<k<1$ (C) $-2<k<2$ (D) $k=0$
A. $\lambda \neq 0$
B. $-1<\lambda<1$
C. $\lambda=0$
D. $-2<\lambda<2$

Answer: A

- Watch Video Solution

3. The value of a for which system of equations, $a^{3} x+(a+1)^{3} y+(a+2)^{3} z=0, a x+(a+1) y+(a+2) z=0, x+y+$ has a non-zero solution is:
A. 2
B. 1
C. 0
D. -1

Answer: D

- Watch Video Solution

4. Let a, b, c be the real numbers. The following system of equations in
$x, y, a n d z$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{a^{2}}=1, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1,-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1$ has
(a.) no solution
(b). unique solution
(c). infinitely many solutions
(d).
finitely many solutions
A. (a) 6
B. (b) 7
C. (c) 8
D. (d) 9

Answer: D

D Watch Video Solution

5. the matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is the matrix reflection in the line
A. $x=1$
B. $x+y=1$
C. $y=1$
D. $x=y$

Answer: D

- Watch Video Solution

6. Let A be the the square matrix of order 3 and deteminant of A is 5 then find the value of determinant of $\operatorname{adj}(A)$
A. 71
B. 51
C. 31
D. 25

Answer: D

- Watch Video Solution

7. If $A=\left[\begin{array}{ll}-2 & 3 \\ -1 & 1\end{array}\right]$ then A^{3} is equal to
A. 2 A
B. A
C. 21.
D. I

Answer: D
8. If $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ and the sum of eigen values of A is m anda product of eigen values of A is n, then $m+n$ is equal to
A. 10
B. 12
C. 14
D. 16

Answer: B

- Watch Video Solution

9. If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ and θ be the angle between the two non-zero column vectors X such that $A X=\lambda X$ for some scalar λ, then $9 \sec ^{2} \theta$ is equal to
A. 13
B. 12
C. 11
D. 10

Answer: D

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. If $A^{5}=O$ such that $A^{n} \neq I$ for $1 \leq n \leq 4$, then $(I-A)^{-1}$ is equal to
A. A^{4}
B. A^{3}
C. $I+A$
D. None of these

D Watch Video Solution

2. Let $A=\left[\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right]$ and suppose then $\operatorname{det}(A)=2$, then $\operatorname{det}(B)$ equals,
where $B=\left[\begin{array}{ccc}4 x & 2 a & -p \\ 4 y & 2 b & -q \\ 4 z & 2 c & -r\end{array}\right]$
A. -2
B. -8
C. -16
D. 8

Answer: C

3. If A is any square matrix such that $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 8\end{array}\right]$ then find $A+I$

- Watch Video Solution

4. Let $a=\lim _{x \rightarrow 1}\left(\frac{x}{\ln x}-\frac{1}{x \ln x}\right), b=\lim _{x \rightarrow 0}\left(\frac{x^{3}-16 x}{4 x+x^{2}}\right)$,
$c=\lim _{x \rightarrow 0}\left(\frac{\ln (1+\sin x)}{x}\right) \&$
$d=\lim _{x \rightarrow-1} \frac{(x+1)^{3}}{3([\sin (x+1)-(x+1)])}$
Then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is
A. idempotent
B. involutory
C. non-singular
D. nilpotent

Answer: D

5. Let $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$ If θ is the angle between the two non- zero column vectors X such that $A X=\lambda X$ for some scalar λ then $\tan \theta$ is equal to
A. 3
B. 5
C. 7
D. 9

Answer: C

Watch Video Solution

6. If a square matrix A is involutory, then $A^{2 n+1}$ is equal to:
A. (a) I
B. (b) A
C. (c) A^{2}
D. (d) $(2 n+1) A$

Answer: B

D Watch Video Solution

7. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$, then $\lim _{n \rightarrow \infty} \frac{A^{n}}{n}$ is (where $\theta \in R$)
a. a zero matrix
b. an identity matrix
c. $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
d. $\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right]$
A. a zero matrix
B. an identity matrix
C. $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
D. $\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right]$

Answer: A

8. The rank of the matrix $\left[\begin{array}{ccc}-1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1\end{array}\right]$ is (where $a=-6$)
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

9. A is an involutory matrix given by $A=\left[\begin{array}{lll}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ then the inverse of $\frac{A}{2}$ will be
A. $2 A$
B. $\frac{A^{-1}}{2}$
C. $\frac{A}{2}$
D. A^{2}

Answer: A

- Watch Video Solution

10. Let A be an nth-order square matrix and B be its adjoint, then $\left|A B+K I_{n}\right|$ is (where K is a scalar quantity) a. $(|A|+K)^{n-2}$ b. $(|A|+K)^{n}$ c. $(|A|+K)^{n-1}$ d. none of these
A. $(|A|+k)^{n-2}$
B. $(|A|+k)^{n}$
C. $(|A|+k)^{n-1}$
D. $(|A|+k)^{n+1}$

Answer: B

11. If A and B are two square matrices such that $B=-A^{-1} B A$, then $(A+B)^{2}$ is equal to
A. O
B. $A^{2}+B^{2}$
C. $A^{2}+2 A B+B^{2}$
D. $A+B$

Answer: B

- Watch Video Solution

12. If matrix $A=\left[a_{i j}\right]_{3 \times}$, matrix $B=\left[b_{i j}\right]_{3 \times 3}$, where $a_{i j}+a_{j i}=0$ and $b_{i j}-b_{j i}=0 \forall i, j$, then $A^{4} \cdot B^{3}$ is
A. skew- symmetric matrix
B. singular
C. symmetric
D. zero matrix

Answer: D

- Watch Video Solution

13. Let A be a $n \times n$ matrix such that $A^{n}=\alpha A$, where α is a real number different from 1 and -1 . The matrix $A+I_{n}$ is
A. singular
B. invertible
C. scalar matrix
D. None of these

Answer: B

D Watch Video Solution

14. If $A=\left[\begin{array}{cc}\frac{-1+i \sqrt{3}}{2 i} & \frac{-1-i \sqrt{3}}{2 i} \\ \frac{1+i \sqrt{3}}{2 i} & \frac{1-i \sqrt{3}}{2 i}\end{array}\right], i=\sqrt{-1}$ and $f(x)=x^{2}+2$, then $f(A)$ equals to
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left(\frac{3-i \sqrt{3}}{2}\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
C. $\left(\frac{5-i \sqrt{3}}{2}\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
D. $(2+i \sqrt{3})\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Answer: D

- Watch Video Solution

15. The number of $2 x 2$ matrices X satisfying the matrix equation $X^{2}=I($ Iis $2 x 2$ unitmatrix $)$ is 1 (b) 2 (c) 3 (d) infinite
A. 0
B. 1
C. 2
D. more then 3

Answer: D

- Watch Video Solution

16. if A and B are squares matrices such that $A^{2006}=O$ and $A B=A+B$, then, $\operatorname{det}(B)$ equals
A. -1
B. 0
C. 1
D. None of these

Answer: B

17. Prove that: $2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$

(Watch Video Solution

18. There are two possible values of A in the solution of the matrix equation $\left[\begin{array}{cc}2 A+1 & -5 \\ -4 & A\end{array}\right]^{-1}\left[\begin{array}{cc}A-5 & B \\ 2 A-2 & C\end{array}\right]=\left[\begin{array}{cc}14 & D \\ E & F\end{array}\right]$,
where A, B, C, D, E, F are real numbers. The absolute
value of the difference of these two solutions, is
A. $\frac{8}{3}$
B. $\frac{11}{3}$
C. $\frac{1}{3}$
D. $\frac{19}{3}$

Answer: D
19. If $f(\theta)=\left[\begin{array}{ccc}\cos ^{2} \theta & \cos \theta \sin \theta & -\sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta & \cos \theta \\ \sin \theta & -\cos \theta & 0\end{array}\right]$, then $\mathrm{f}(\pi / 7)$ is
A. symmetric
B. skew-symmetric
C. singular
D. non-singular

Answer: D

- Watch Video Solution

20. In a square matrix A of order 3 the elements $a_{i i}$'s are the sum of the roots of the equation $x^{2}-(a+b) x+a b=0$, $a_{i, i+1}$'s are the product of the roots, $a_{i, i-1}$'s are all unity and the rest of the elements are all zero. The value of the $\operatorname{det}(A)$ is equal to
21. If $A a n d B$ are two non-singular matrices of the same order such that $B^{r}=I, \quad$ for some positive integer $r>1$, then $A^{-1} B^{r-1} A=A^{-1} B^{-1} A=I$ b. $2 I$ c. O d. -1
A. I
B. $2 I$
C. 0
D. $-I$

Answer: C

- Watch Video Solution

22. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], C=A B A^{T}$, then
$A^{T} C^{n} A, n \in I^{+}$equals to
a. $\left[\begin{array}{cc}-n & 1 \\ 1 & 0\end{array}\right]$
b. $\left[\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right]$
c. $\left[\begin{array}{cc}0 & 1 \\ 1 & -n\end{array}\right]$
d. $\left[\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right]$
A. $\left[\begin{array}{cc}-n & 1 \\ 1 & 0\end{array}\right]$
B. $\left[\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}0 & 1 \\ 1 & -n\end{array}\right]$
D. $\left[\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right]$

Answer: D

- Watch Video Solution

23. If A is a square matrix of order 3 such that $|A|=2$, then
$\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
A. 1
B. 2
C. 4
D. 8

Answer: C

- Watch Video Solution

24. If A and B are different matrices satisfying $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$, then
A. $\operatorname{det}\left(A^{2}+B^{2}\right)$ must be zero
B. det $(A-B)$ must be zero
C. $\operatorname{det}\left(A^{2}+B^{2}\right)$ as well as $\operatorname{det}(A-B)$ must be zero
D. alteast one of $\operatorname{det}\left(A^{2}+B^{2}\right)$ or $\operatorname{det}(A-B)$ must be zero

Answer: D

- Watch Video Solution

25. Show that A is a symmetric matrix if $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
A. a symmetric matrix
B. a skew-symmetric matrix
C. an identity matrix
D. None of these

Answer: B

- Watch Video Solution

26. If $A=\left[\begin{array}{lll}a & b & c \\ x & y & z \\ p & q & r\end{array}\right], B=\left[\begin{array}{ccc}q & -b & y \\ -p & a & -x \\ r & -c & z\end{array}\right]$ and if A is
invertible, then which of the following is not true?
A. $|A|=|B|$
B. $|A|=-|B|$
C. $|a d j A|=|a d j B|$
D. A is invertible $\Leftrightarrow B$ is invertble

Answer: A

- Watch Video Solution

27.

Consider
three
matrices
$A=\left[\begin{array}{ll}2 & 1 \\ 4 & 1\end{array}\right], B=\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right]$. Then the value of
the
sum
$\operatorname{tr}(A)+\operatorname{tr}\left(\frac{A B C}{2}\right)+\operatorname{tr}\left(\frac{A(B C)^{2}}{4}\right)+\operatorname{tr}\left(\frac{A(B C)^{3}}{8}\right)+\ldots \ldots .+\infty$
is (A) 6 (B) 9 (C) 12 (D) none of these
A. 4
B. 9
C. 12
D. 6
28. If A is non-singular and $(A-2 I)(A-4 I)=0$, then, $\frac{1}{6} A+\frac{4}{3} A^{-1}$ is equal to $\mathrm{a} .0 I \mathrm{~b} .2 I \mathrm{c} .6 I \mathrm{~d} . I$
A. O
B. I
C. $2 I$
D. $6 I$

Answer: B

- Watch Video Solution

29. If $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1\end{array}\right]$ and $A^{-1}\left[\begin{array}{ccc}1 / 2 & -1 / 2 & 1 / 2 \\ -4 & 3 & b \\ 5 / 2 & -3 / 2 & 1 / 2\end{array}\right]$ then
A. $a=1, b=-1$
B. $a=2, b=-\frac{1}{2}$
C. $a=-1, b=1$
D. $a=\frac{1}{2}, b=\frac{1}{2}$

Answer: A

- Watch Video Solution

30. Given the matrix $A=\left[\begin{array}{lll}x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z\end{array}\right]$.
$x y z=60$ and $8 x+4 y+3 z=20$, then $A(a d j A)$ is equal to
a. $64 I$
b. $88 I$
c. $68 I$
d. $34 I$
A. $64 I$
B. $88 I$
C. $68 I$
D. $34 I$

Answer: C

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ then
a. $A^{3}=9 A$
b. $A^{3}=27 A$
c. $A+A=A^{2}$
d. A^{-1} does not exist
A. $A^{3}=9 A$
B. $A^{3}=27 A$
C. $A+A=A^{2}$
D. A^{-1} does not exist

- Watch Video Solution

2. A square matrix A with elements form the set of real numbers is said to be orthogonal if $A^{\prime}=A^{-1}$. If A is an orthogonal matris, then
A. (a) A^{\prime} is orthogonal
B. (b) A^{-1} is orthogonl
C. (c) $a d j A=A^{\prime}$
D. (d) $\left|A^{-1}\right|=1$

Answer: A::B::D

3. Let $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, then
A. $A^{2}-4 A-5 I_{3}=O$
B. $A^{-1}=\frac{1}{5}\left(A-4 I_{3}\right)$
C. A^{3} is not invertible
D. A^{2} is invertible

Answer: A::B::D

- Watch Video Solution

4. D is a 3×3 diagonal matrix. Which of the following statements are not true?
A. $D^{T}=D$
B. $A D=D A$ for every matrix A of order 3×3
C. D^{-1} if exists is a scalar matrix
D. None of the above

Answer: B::C

- Watch Video Solution

5. If the rank of the matrix $\left[\begin{array}{ccc}-1 & 2 & 5 \\ 2 & -4 & a-4 \\ 1 & -2 & a+1\end{array}\right]$ is 1 then the value of a is
(A) -1 (B) 2 (C) -6 (D) 4
A. 2, if $a=-6$
B. 2, if $a=1$
C. 1, if $a=2$
D.1, if $a=-6$

Answer: B::D
6. If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then
A. $\operatorname{adj}(\operatorname{adj} A)=A$
B. $|\operatorname{adj}(\operatorname{adj}(A))|=1$
C. $|\operatorname{adj}(A)|=1$
D. None of these

Answer: A::B::C

- Watch Video Solution

7. If B is an idempotent matrix, and $A=I-B$, then $A^{2}=A$ b. $A^{2}=I$
c. $A B=O$ d. $B A=O$
A. $A^{2}=A$
B. $A^{2}=I$
C. $A B=O$
D. $B A=O$

Answer: A::C::D

- Watch Video Solution

8. If A is a non - singular matrix then
A. A^{-1} is a non-singular matrix,
B. A^{-1} is skew-symmetric if A is symmetric
C. $\left|A^{-1}\right|=|A|$
D. $\left|A^{-1}\right|=|A|^{-1}$

Answer: A: D

- Watch Video Solution

9. Let A and B are two matrices such that $A B=B A$, then for every $n \in N$
A. $A^{n} B=B A^{n}$
B. $(A B)^{n}=A^{n} B^{n}$
C. $(A+B)^{n}={ }^{n} C_{0} A^{n}+{ }^{n} C_{1} A^{n-1} B+\ldots+{ }^{n} C_{n} B^{n}$
D. $A^{2 n}-B^{2 n}=\left(A^{n}-B^{n}\right)\left(A^{n}+B^{n}\right)$

Answer: A::C::D

- Watch Video Solution

10. If A and B are 3×3 matrices and $|A| \neq 0$, which of the following are true?
A. $|A B|=0 \Rightarrow|B|=0$
B. $|A B|=0 \Rightarrow B=0$
C. $\left|A^{-1}\right|=|A|^{-1}$
D. $|A+A|=2|A|$

Answer: A: C

- Watch Video Solution

11. If A is a matrix of order $m \times m$ such that
$A^{2}+A+2 I=O$, then
A. A is non-singular
B. A is symmetric
C. $|A| \neq 0$
D. $A^{-1}=\frac{1}{2}(A+I)$

Answer: A::C::D

- Watch Video Solution

12. If $A^{2}-3 A+2 I=0$, then A is equal to
A. I
B. $2 I$
C. $\left[\begin{array}{cc}3 & -2 \\ 1 & 0\end{array}\right]$
D. $\left[\begin{array}{cc}3 & 1 \\ -2 & 0\end{array}\right]$

Answer: A::B::C::D

- Watch Video Solution

13. If A and B are two matrices such that their product $A B$ is a null matrix, then
A. $\operatorname{det} A \neq 0 \Rightarrow B$ must be a null matrix
B. det $B \neq 0 \Rightarrow A$ must be a null matrix
C. alteast one of the two matrices must be singular
D. if neither $\operatorname{det} A$ nor $\operatorname{det} \mathrm{B}$ is zero, then the given statement is not possible

Answer: C::D

- Watch Video Solution

14. If D_{1} and D_{2} are two $3 x 3$ diagnal matrices where none of the diagonal elements is zero, then
A. $D_{1} D_{2}$ is a diagonal matrix
B. $D_{1} D_{2}=D_{2} D_{1}$
C. $D_{1}^{2}+D_{2}^{2}$ is a diagonal matrix
D. None of the above

Answer: A::B::C

15. Let, $C_{k}={ }^{n} C_{k}$ for $0 \leq k \leq n$ and $A_{k}=\left[\begin{array}{cc}C_{k-1}^{2} & 0 \\ 0 & C_{k}^{2}\end{array}\right]$ for $k \geq l$ and
$A_{1}+A_{2}+A_{3}+\ldots+A_{n}=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right]$, then
A. $k_{1}=K_{2}$
B. $k_{1}+k_{2}=2$
C. $k_{1}={ }^{2 n} C_{n}-1$
D. $k_{2}={ }^{2 n} C_{n+1}$

Answer: A:C

- Watch Video Solution

Exercise Passage Based Questions

1. Suppose A and B be two ono-singular matrices such that
$A B=B A^{m}, B^{n}=I$ and $A^{p}=I$, where I is an identity matrix.
If $m=2$ and $n=5$ then p equals to
A. 30
B. 31
C. 33
D. 81

Answer: B

- Watch Video Solution

2. Let A and B be two non-singular matrices such that $A \neq I, B^{2}=I$ and $A B=B A^{2}$, where I is the identity matrix, the least value of k such that ${ }^{`} A^{\wedge}(k)=11$ is
A. $p=m n^{2}$
B. $p=m^{n}-1$
C. $p=n^{m}-1$
D. $p=m^{n-1}$

- Watch Video Solution

3. Suppose A and B be two ono-singular matrices such that $A B=B A^{m}, B^{n}=I$ and $A^{p}=I$, where I is an identity matrix. Which of the following orderd triplet (m, n, p) is false?
A. $(3,2,80)$
B. $(6,3,215)$
C. $(8,3,510)$
D. $(2,8,255)$

Answer: C

4. Let $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ is an orthogonal matrix and $a b c=\lambda(<0)$. The value $a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}$, is
A. 2λ
B. -2λ
C. λ^{2}
D. $-\lambda$

Answer: B

- Watch Video Solution

5. Let $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ then find tranpose of A matrix

- Watch Video Solution

6. Let $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right]$ is an orthogonal matrix and $a b c=\lambda(<0)$. The value $a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}$, is
A. $x^{3}-2 x^{2}+\lambda=0$
B. $x^{3}-\lambda x^{2}+\lambda x+\lambda=0$
C. $x^{3}-2 x^{2}+2 \lambda x+\lambda=0$
D. $x^{3} \pm x^{2}-\lambda=0$

Answer: D

D Watch Video Solution

7. Lat $A=\left[a_{i j}\right]_{3 \times 3}$. If tr is arithmetic mean of elements of rth row and $a_{i j}+a_{j k}+a_{k i}=0$ holde for all $1 \leq i, j, k \leq 3$.

Matrix A is
A. $t_{1}+t_{2}+t_{3}$
B. zero
C. $(\operatorname{det}(A))^{2}$
D. $t_{1} t_{2} t_{3}$

Answer: D

- Watch Video Solution

8. Lat $A=\left[a_{i j}\right]_{3 \times 3}$. If tr is arithmetic mean of elements of rth row and $a_{i j}+a_{j k}+a_{k i}=0$ holde for all $1 \leq i, j, k \leq 3$.

Matrix A is
A. non- singular
B. symmetric
C. skew-symmetric
D. nether symmetric nor skew-symmetric

Answer: C

9. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$ be a square matrix and C_{1}, C_{2}, C_{3} be three

column

matrices
satisfying
$A C_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A C_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ and $A C_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ of matrix B. If the matrix
$C=\frac{1}{3}(A \cdot B)$.
The ratio of the trace of the matrix B to the matrix C, is
A. 2
B. $\frac{1}{2}$
C. 3
D. $\frac{1}{3}$

Answer: D

10. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$ be a square matrix and C_{1}, C_{2}, C_{3} be three
column
matrices
satisfying
$A C_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A C_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ and $A C_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ of matrix B. If the matrix $C=\frac{1}{3}(A \cdot B)$.

The ratio of the trace of the matrix B to the matrix C, is
A. $-\frac{9}{5}$
B. $-\frac{5}{9}$
C. $-\frac{2}{3}$
D. $-\frac{3}{2}$

Answer: A

- Watch Video Solution

11. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$ be a square matrix and C_{1}, C_{2}, C_{3} be three
column matrices
satisfying
$A C_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A C_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ and $A C_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ of matrix B. If the matrix $C=\frac{1}{3}(A \cdot B)$.

The ratio of the trace of the matrix B to the matrix C, is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. π

Answer: C

D Watch Video Solution

12. If A is a symmetric matrix, B is a skew-symmetric matrix, $A+B$ is nonsingular and $C=(A+B)^{-1}(A-B)$, then prove that
(i) $C^{T}(A+B) C=A+B$
(ii) $C^{T}(A-B) C=A-B$
(iii) $C^{T} A C=A$
A. $A+B$
B. $A-B$
C. A
D. B

Answer: A

- Watch Video Solution

13. If A is a symmetric matrix, B is a skew-symmetric matrix, $A+B$ is nonsingular and $C=(A+B)^{-1}(A-B)$, then prove that
(i) $C^{T}(A+B) C=A+B$
(ii) $C^{T}(A-B) C=A-B$
(iii) $C^{T} A C=A$
A. $A+B$
B. $A-B$
C. A
D. B

Answer:

- Watch Video Solution

14. If A is a symmetric matrix, B is a skew-symmetric matrix, $A+B$ is nonsingular and $C=(A+B)^{-1}(A-B)$, then prove that
(i) $C^{T}(A+B) C=A+B$
(ii) $C^{T}(A-B) C=A-B$
(iii) $C^{T} A C=A$
A. $A+B$
B. $A-B$
C. A
D. B

Answer: C

- Watch Video Solution

15. Evluate $\int x^{3} d x$

- Watch Video Solution

16. Let A be a square matrix of order 3 satisfies the relation $A^{3}-6 A^{2}+7 A-8 I=O$ and $B=A-2 I$. Also, det. $A=8$, then find the det.B
A. 7
B. 10
C. 29
D. 41

Answer: A

D Watch Video Solution

Exercise Single Integer Answer Type Questions

1. Let A, B, C, D be (not necessarily) real matrices such that $A^{T}=B C D, B^{T}=C D A, C^{T}=D A B$ and $D^{T}=A B C$ for the matrix $S=A B C D$ the least value of k such that $S^{k}=S$ is

- Watch Video Solution

2. $A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]$ and $f(x)$ is defined as $f(x)=\operatorname{det} .\left(A^{T} A^{-1}\right)$ then the value of $\underbrace{f(f(f(f \ldots \ldots \ldots f(x))))}_{\mathrm{n} \text { times }}$ is $(n \geq 2)$ \qquad .

- Watch Video Solution

3. If the matrix $A=\left[\begin{array}{ccc}\lambda_{1}^{2} & \lambda_{1} \lambda_{2} & \lambda_{1} \lambda_{3} \\ \lambda_{2} \lambda_{1} & \lambda_{2}^{2} & \lambda_{2} \lambda_{3} \\ \lambda_{3} \lambda_{1} & \lambda_{3} \lambda_{2} & \lambda_{3}^{2}\end{array}\right]$ is idempotent, the value of $\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}$ is

- Watch Video Solution

4. Let A be a 3×3 matrix given by $A=\left[a_{i j}\right]$. If for every column vector $X, X^{T} A X=O$ and $a_{23}=-1008$, the sum of the digits of a_{32} is

- Watch Video Solution

5. If $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$ find the transpose of A matrix

(Watch Video Solution

6. If A is an idempotent matrix and I is an identify matrix of the Same order, then the value of n , such that $(A+I)^{n}=I+127 A$ is

(D) Watch Video Solution

7. If $A=\left[\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right], a b c=1, A^{T} A=I$, then find the value of $a^{3}+b^{3}+c^{3}$.

- Watch Video Solution

8. If $A=\left[\begin{array}{ll}0 & 1 \\ 3 & 0\end{array}\right]$ and $\left(A^{8}+A^{6}+A^{4}+A^{2}+I\right) V=\left[\begin{array}{c}0 \\ 11\end{array}\right]$,
where V is a vertical vector and I is the 2×2 identity matrix and if λ is sum of all elements of vertical vector V, the value of 11λ is

Watch Video Solution

9. Let the matrix A and B defined as $A=\left|\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right|$ and $B=\left|\begin{array}{ll}3 & 1 \\ 7 & 3\end{array}\right|$ Then the value of $\mid \operatorname{det}\left(2 A^{9} B^{-1} \mid=\right.$
10. Let $A=\left[\begin{array}{cc}0 & \alpha \\ 0 & 0\end{array}\right]$ and $(A+I)^{70}-70 A=\left[\begin{array}{ll}a-1 & b-1 \\ c-1 & d-1\end{array}\right]$, the value of $a+b+c+d$ is

- Watch Video Solution

Matrices Exercise 5 Matching Type Questions

1. Find $A+B$ if $A=\left[\begin{array}{ll}2 & 5 \\ 3 & 6\end{array}\right]$ and $B=\left[\begin{array}{ll}7 & 9 \\ 6 & 5\end{array}\right]$

(Watch Video Solution

2. Find $|\operatorname{adj}(a)|$ if $|\mathrm{A}|=7$ and A is a square matrix of order 3

- Watch Video Solution

3. If A is a square matrix of order 2 and $|A|=8$ then find the value of $|a d j(A)|$

- Watch Video Solution

4. Evluate $\int x^{4} d x$

- Watch Video Solution

Exercise Statement I And Ii Type Questions

1. (Statement 1 Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You
have to select the correct choice as given below.
Statement - 1 If matrix $A=\left[a_{i j}\right]_{3 \times 3}, B=\left[b_{i j}\right]_{3 \times 3}$, where $a_{i j}+a_{j i}=0$ and $b_{i j}-b_{j i}=0$ then $A^{4} B^{5}$ is non-singular
matrix.
Statement-2 If A is non-singular matrix, then $|A| \neq 0$.
A. Statement- is true, Statement -2 is true, Statement-2
is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Sttatement-2
is not a correct explanation for Stamtement-1
C. Statement 1 is true, Statement -2 is false
D. Statement-1 is false, Statement-2 is true

Answer: D

- Watch Video Solution

2. Statement-1 (Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below.

Statement-1 if A and B are two square matrices of order $n \times n$ which satisfy $A B=A$ and $B A=B$, then $(A+B)^{7}=2^{6}(A+B)$

Statement- $2 A$ and B are unit matrices.
A. Statement-1 is true, Statement -2 is true, Statement-1
is a correct explanation for Statement-2
B. Statement-1 is true, Statement-2 is true, Sttatement - 2
is not a correct explanation for Stamtement-2
C. Statement 1 is true, Statement -2 is false
D. Statement-1 is false, Statement-2 is true

Answer: C

- Watch Video Solution

3. Statement-1 (Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of
which is the correct answer. You have to select the correct choice as given below.

Statement-1 For a singular matrix A, if $A B=A C \Rightarrow B=C$ Statement-2 If $|A|=0$, thhen A^{-1} does not exist.
a. Statement- is true, Statement -2 is true, Statement-2 is a correct explanation for Statement-1
b. Statement-1 is true, Statement-2 is true, Sttatement-2 is not a correct explanation for Stamtement-1
c. Statement 1 is true, Statement -2 is false
d. Statement-1 is false, Statement-2 is true
A. Statement- is true, Statement -2 is true, Statement-2
is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Sttatement - 2
is not a correct explanation for Stamtement-1
C. Statement 1 is true, Statement -2 is false
D. Statement-1 is false, Statement-2 is true

Answer: D

Watch Video Solution

4. Statement-1 (Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You
have to select the correct choice as given below.

Statement-1 If A is skew-symnmetric matrix of order 3,
then its determinant should be zero.

Statement - 2 If A is square matrix, $\operatorname{det}(A)=\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}\left(-A^{\prime}\right)$
A. Statement- 1 is true, Statement -2 is true, Statement- 2
is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Sttatement - 2
is not a correct explanation for Stamtement-1
C. Statement 1 is true, Statement -2 is false
D. Statement- 1 is false, Statement- 2 is true

Answer: C

- Watch Video Solution

5. Statement-1 (Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Let A be a skew-symmetric matrix, $B=(I-A)(I+A)^{-1}$ and X and Y be column vectors conformable for multiplication with B .

Statement-1 $(B X)^{\wedge}(T)(B Y)=X^{\wedge}(T) Y$

Statement- 2 If A is skew-symmetric, then ($1+A$) is non-singular.
A. Statement- 1 is true, Statement -2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Sttatement - 2
is not a correct explanation for Stamtement-5
C. Statement 1 is true, Statement - 2 is false
D. Statement- 1 is false, Statement- 2 is true

Answer: A

- Watch Video Solution

6. Let A 2×2 matrix A has determinant Find $|\operatorname{adj}(A)|$ if determinant of A Is 9

- Watch Video Solution

7. If $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]$ then find transpose of A
8. Statement-1 (Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You
have to select the correct choice as given below.
Statement - $1 A=\left[a_{i j}\right]$ be a matrix of order 3×3 where $a_{i j}=\frac{i-j}{i+2 j}$ cannot be expressed as a sum of symmetric and skew-symmetric matrix.
Statement-2 Matrix $A=\left[a_{i j}\right]_{n \times n}, a_{i j}=\frac{i-j}{i+2 j}$ is neither symmetric nor skew-symmetric.
A. Statement- is true, Statement -2 is true, Statement-2
is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Sttatement-2
is not a correct explanation for Stamtement-1
C. Statement 1 is true, Statement -2 is false
D. Statement- 1 is false, Statement- 2 is true

- Watch Video Solution

9. Statement-1 (Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You
have to select the correct choice as given below.

Statement- 1 If A, B, C are matrices such that
$\left|A_{3 \times 3}\right|=3,\left|B_{3 \times 3}\right|=-1$ and $\left|C_{2 \times 2}\right|=2,|2 A B C|=-12$.
Statement - 2 For matrices A, B, C of the same order
$|A B C|=|A||B||C|$.
A. Statement- is true, Statement -2 is true, Statement-2
is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Sttatement-2
is not a correct explanation for Stamtement-1
C. Statement 1 is true, Statement -2 is false
D. Statement 1 is false, Statement- 2 is true

Answer: D

- Watch Video Solution

10. Statement-1 (Assertion and Statement- 2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement-1 The determinant fo a matrix $A=\left[a_{i j}\right]_{n \times n}$, where $a_{i j}+a_{j i}=0$ for all i and j is zero.

Statement- 2 The determinant of a skew-symmetric matrix of odd order is zero.
A. Statement- is true, Statement -2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Sttatement - 2
is not a correct explanation for Stamtement-1
C. Statement 1 is true, Statement -2 is false
D. Statement- 1 is false, Statement- 2 is true

Answer: A

- Watch Video Solution

Exercise Subjective Type Questions

1. If S is a real skew-symmetric matrix, then prove that $I-S$ is nonsingular and the matrix $A=(I+S)(I-S)^{-1}$ is orthogonal.
A.
B.
C.
D.

Answer:
2. If M is a 3×3 matrix, where det $M=1 a n d M M^{T}=1$, where I is an identity matrix, prove theat $\operatorname{det}(M-I)=0$.
A.
B.
C.
D.

Answer:

- Watch Video Solution

3. If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right], B=\left[\begin{array}{cc}\cos 2 \beta & \sin 2 \beta \\ \sin 2 \beta & -\cos 2 \beta\end{array}\right]$ where $0<\beta<\frac{\pi}{2}$ then prove that $B A B=A^{-1}$ Also find the least positive value of α for which $B A^{4} B=A^{-1}$
A.
B.
C.
D.

Answer: $\alpha=\frac{2 \pi}{3}$

- Watch Video Solution

4. find the derivative of $\tan (2 x)$
A.
B.
C.
D.

Answer: $\left[\begin{array}{ll}\cos \theta \cos \phi \cos (\theta \sim \phi) & \cos \theta \sin \phi \cos (\theta \sim \phi) \\ \sin \theta \cos \phi \cos (\theta \sim \phi) & \sin \theta \sin \phi \cos (\theta \sim \phi)\end{array}\right]$
5. If $\mathrm{A}=\left[\begin{array}{ccc}l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2} \\ l_{3} & m_{3} & n_{3}\end{array}\right]$ then Find $A+I$
A.
B.
C.
D.

Answer:

(Watch Video Solution

6. A finance company has offices located in every division, every district and every taluka in a certain state in India.

Assume that there are five divisions, thirty districts and 200 talukas in the state. Each office has one head clerk, one cashier, one clerk and one peon. A divisional office has, in addition, one office superintendent, two clerks, one typist and one peon. A district office, has in
addition, one clerk and one peon. The basic monthly
salaries are as follows:

Office superintendent Rs 500, Head clerk Rs 200, cashier Rs 175, clerks and typist

Rs 150 and peon Rs 100. Using matrix notation find

The total number of posts of each kind in all the offices
taken together,
A.
B.
C.
D.

Answer: Number of posts in all the offices taken together are 5 office superintendents; 235 had clerks; 235 cashiers; 275 clerks; 5 typisit and 270

- Watch Video Solution

7. A finance company has offices located in ewery division, every didtrict and every taluka in a certain state in India. Assume that there are five divisions, thirty districts and 200 talukas in the state. Each office has one head clerk, one cashier, one clerk and one peon. A divisional office has, in addition, one office superntendent, two clerks, one typist and one poen. A district office, has in addition, one clerk and one peon. The basic monthly salaries are as follows :

Office superintendernt Rs 500, Head clerk Rs 200, cashier Rs 175, clerks and typist

Rs 150 and peon Rs 100 . Using matrix motation find the total basic monthly salary bill of all the offices taken together.
A.
B.
C.
D.

Answer: Total basic monthly salary bill of each division of district and taluka offices an Rs 1675, Rs 675 and Rs 625, respectively.

- Watch Video Solution

8. A finance company has offices located in ewery division, every didtrict and every taluka in a certain state in India.

Assume that there are five divisions, thirty districts and
200 talukas in the state. Each office has one head clerk, one cashier, one clerk and one peon. A divisional office has, in addition, one office superntendent, two clerks, one typist and one poen. A district office, has in addition, one clerk and one peon. The basic monthly salaries are as follows :

Office superintendernt Rs 500 , Head clerk Rs 200 , cashier Rs 175 , clerks and typist

Rs 150 and peon Rs 100 . Using matrix motation find
the total basic monthly salary bill of all the offices taken
together.
A.
B.
C.
D.

Answer: Total basic monthly salary bill of all the offices taken together is Rs 159625.

- Watch Video Solution

9. In a development plan of a city, a contractor has taken a contract to construct certain houses for which he needs building materials like stones, sand etc. There are three firms A, B, C that can supply him these materials. At one time these firms A, B, C supplied him 40,35 and 25 truck loads of stones and 10,5 and 8 truck load of sand respectively. If the cost of one truckload of stone and sand are Rs 1200 and 500 respectively, then
find the total amount paid by the contractor to each of these firms A, B, C separately.
A.
B.
C.
D.

Answer: Rs 53000; Rs 44500; Rs 34000 , respectively

- Watch Video Solution

10. Evluate $\int 8 x^{3} d x$
A.
B.
C.
D.

Answer:

- Watch Video Solution

11. Evluate $\int 8 x^{3} d x$
A.
B.
C.
D.

Answer: $x-1, u=-1, y=3, v=2, z=5, w=1$

Watch Video Solution
12. If $x_{1}=3 y_{1}+2 y_{2}-y_{3}, \quad y_{1}=z_{1}-z_{2}+z_{3}$

$$
x_{2}=-y_{1}+4 y_{2}+5 y_{3}, y_{2}=z_{2}+3 z_{3}
$$

$x_{3}=y_{1}-y_{2}+3 y_{3}, \quad y_{3}=2 z_{1}+z_{2}$
espress x_{1}, x_{2}, x_{3} in terms of z_{1}, z_{2}, z_{3}.
A.
B.
C.
D.

Answer:

$x_{1}=z_{1}-2 z_{2}+9 z_{3}, x_{2}=9 z_{1}+10 z_{2}+11 z_{3}, x_{3}=7 z_{1}+z_{2}-2 z_{3}$

- Watch Video Solution

13. For what values of k the set of equations
$2 x-3 y+6 z-5 t=3, y-4 z+t=1$,
$4 x-5 y+8 z-9 t=k$ has infinite solution and no solution.
A.
B.
C.
D.

Answer: $(i) k \neq 7(i i) k=7$

- Watch Video Solution

14. $A=\left[\begin{array}{lll}a & 1 & 0 \\ 1 & b & d \\ 1 & b & c\end{array}\right]$ then find the value of $|\mathrm{A}|$
A.
B.
c.
D.

Answer:

1.

$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4\end{array}\right], I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A^{-1}=\left[\frac{1}{6}\left(A^{2}+c A+d I\right)\right]$
Then value of c and d are (a) $(-6,-11)$ (b) $(6,11)$ (c) $(-6,11)$ (d)
$(6,-11)$
A. $(6,11)$
B. $(6,-11)$
C. $(-6,11)$
D. $(-6,-11)$

Answer: C

D Watch Video Solution

2. Evluate $\int 3 x^{2} d x$
3. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then which one of the following holds for all $n \geq 1$ by the principle of mathematica induction? (A)
$A^{n}=2^{n-1} A+(n-1) I$
(B) $\quad A^{n}=n A+(n-1) I$
$A^{n}=2^{n-1} A-(n-1) I$ (D) $A^{n}=n A-(n-1) A I$
A. $A^{n}=n A+(n-1) I$
B. $A^{n}=2^{n-1} A+(n-1) I$
C. $A^{n}=n A-(n-1) I$
D.

Answer: C

- Watch Video Solution

4. If $A^{2}-A+I=O$, then A^{-1} is equal to
B. $A+I$
C. $I-A$
D. $A-I$

Answer: C

- Watch Video Solution

5. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$ and U_{1}, U_{2}, U_{3} be column matrices satisfying
$A U_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 6\end{array}\right], A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$.f U is 3×3 matrix whose columns are U_{1}, U_{2}, U_{3}, then $|U|=$
A. 3
B. -3
C. $3 / 2$
D. 2

- Watch Video Solution

6. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right]$, and U_{1}, U_{2} and U_{3} are columns of a 3×3 matrix U. If column matrices U_{1}, U_{2} and U_{3} satisfy $A U_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A U_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right], A U_{3}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ then the sum of the elements of the matrix U^{-1} is
A. -1
B. 0
C. 1
D. 3

Answer: B

7. If $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right), U_{1}, U_{2}$, and U_{3} are column matrices
satisfying $A U_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), A U_{2}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$ and $A U_{3}=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and
U is 3×3 matrix when columns are U_{1}, U_{2}, U_{3} then
answer the following questions
The value of $\left[\begin{array}{lll}3 & 2 & 0\end{array}\right]\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$ is
A. 5
B. $5 / 2$
C. 4
D. 13

Answer: A

8. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ where a, b are natural numbers, then which one of the following is correct ?
A. there cannot exist any B such that $A B=B A$
B. There exist more than one but finite number of B ' s such that

$$
A B=B A
$$

C. there exists exactly one B such that $A B=B A$
D. there exist infinitely among $B^{\prime} \mathrm{s}$ such that $A B=B A$

Answer: B

- Watch Video Solution

9. If A and B are square matrices of size $n \times n$ such that $A^{2}-B^{2}=(A-B)(A+B)$, then which of the following will be always true

$$
\text { A. } A=B
$$

B. $A B=B A$
C. Either of A or B is a zero matrix
D. Either of A or B is dientity matrix

Answer: B

D Watch Video Solution

10. Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right] . I f\left|A^{2}\right|=25$, then α equals to:
A. 5^{2}
B. 1
C. $1 / 5$
D. 5

Answer: C

11. Let A and B be 3×3 matrtices of real numbers, where A is symmetric, B is skew-symmetric , and $(A+B)(A-B)=(A-B)(A+B)$.
$(A B)^{t}=(-1)^{k} A B$, where. $(A B)^{t}$ is the transpose of the mattix $A B$, then find the possible values of k.
A. 0
B. 1
C. 2
D. 3

Answer: B::D

- Watch Video Solution

12. Let A be a square matrix all of whose entries are integers. Then which one of the following is true? (1) If $\operatorname{det} A= \pm 1, \operatorname{then} A^{1}$ exists but all its
entries are not necessarily integers (2) If $\operatorname{det} A \neq \pm 1$, then A^{1} exists and all its entries are non-integers (3) If $\operatorname{det} A= \pm 1, \operatorname{then} A^{1}$ exists and all its entries are integers (4) If $\operatorname{det} A= \pm 1$, then A^{1} need not exist
A. If $\operatorname{det} A \neq 1$, then A^{-1} exists and all its entries are non-integers
B. If $\operatorname{det} A= \pm 1$. then A^{1} then A^{-1} exist and all its entries are integers
C. If $\operatorname{det} A= \pm 1$, then A^{-1} need not exist
D. If $\operatorname{det} A= \pm 1$, then A^{-1} exists but all its entries are not necessarily integers

Answer: D

- Watch Video Solution

13. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by tr (A), the sum of diagonal entries of A. Assume that $A^{2}=I$. Statement 1: If $A \neq I$ and $A \neq-I$, then $\operatorname{det} A=-1$.

Statement 2: If $A \neq I$ and $A \neq-I$, then $\operatorname{tr}(A) \neq 0$. (1) Statement 1 is false, Statement (2)(3) $-2(4)$ is true (6) Statement 1 is true, Statement $(7)(8)-2(9)(10)$ is true, Statement $(11)(12)-2(13)$ is a correct explanation for Statement 1 (15) Statement 1 is true, Statement $(16)(17)-2(18)(19)$ is true; Statement $(20)(21)-2(22)$ is not a correct explanation for Statement 1. (24) Statement 1 is true, Statement $(25)(26)-2(27)$ is false.
A. Statement -1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement -1 is true, Statement - 2 is true, Statement -2 is not a correct explanation for Statement-1
C. Statement-1 is true, Statement-2 is false
D. Statement-1 is false, Statement-2 is true

Answer: C

- Watch Video Solution

14. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0.

The number of matrices in A is
A. 12
B. 6
C. 9
D. 3

Answer: A

- Watch Video Solution

15. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations
$A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
is inconsistent is
A. less then 4
B. atleast 4 but les then 7
C. atleast 7 but less then 10
D. atleast 10

Answer: B

- Watch Video Solution

16. The number of 3×3 matrices A whose are ether 0 or 1
and for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions, is
A. 0
B. more then 2
C. 2
D. 1

Answer: B

- Watch Video Solution

17. Let A be a 2×2 matrix

Statement $1 \mathbf{1} \operatorname{adj}(\operatorname{adj} A)=A$
Statement-2 \mid adj $A|=|A|$
A. Statement -1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement -1 is true, Statement -2 is true, Statement -2 is not a correct explanation for Statement-1
C. Statement-1 is true, Statement- 2 is false
D. Statement-1 is false, Statement-2 is true

Answer: B

18. The number of 3×3 matrices a whose entries are either 0 or 1 and for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions is
A. o
B. $2^{9}-1$
C. 168
D. 2

Answer: A

- Watch Video Solution

19. Let P be an odd prime number and T_{p} be the following set of 2×2 matrices:
$T_{P}=\left\{A=\left[\begin{array}{ll}a & b \\ c & a\end{array}\right]: a, b, c \in\{0,1, \ldots, p-1\}\right\}$
The number of A in T_{P} such that $\operatorname{det}(\mathrm{A})$ is not divisible by p is
A. $(p-1)^{2}$
B. $2(p-1)$
C. $(p-1)^{2}+1$
D. $2 p-1$

Answer: D

- Watch Video Solution

20. Let p be an odd prime number and T_{P} be the following set of 2×2 matrices.
$T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], a, b, c \in\{0,1,2, \ldots, p-1\}\right\}$
The number of A in T_{p} such that A is either symmetric or skew-symmetric or both and det (A) divisible by p, is
A. $(p-1)\left(p^{2}-p+1\right)$
B. $p^{3}-(p-1)^{2}$
C. $(p-1)^{2}$
D. $(p-1)\left(p^{2}-2\right)$

Answer: A

- Watch Video Solution

21. Let p be an odd prime number and T_{P} be the following
set of 2×2 matrices.
$T_{p}=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], a, b, c \in\{0,1,2, \ldots, p-1\}\right\}$
The number of A in T_{p} such that A is either symmetric or
skew-symmetric or both and det (A) divisible by p, is
A. $2 P^{2}$
B. $p^{3}-5 p$
C. $p^{3} 3 p$
D. $P^{3}=p^{2}$

Answer: B

22. Let K be a positive real number and $A=\left[\begin{array}{ccc}2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1\end{array}\right]$ and
$B=\left[\begin{array}{ccc}0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \\ -\sqrt{k} & -2 \sqrt{k} & 0\end{array}\right]$. If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=10^{6}$, then $[k]$ is equal to \qquad .
[Note : adj M denotes the adjoint of a square matrix M and $[k]$ denotes the largest integer less than or equal to k.]

- Watch Video Solution

23. The number of 3×3 non-singular matrices, with four entries as 1 and all other entries as 0 , is:
A. 5
B. 6
C. atleast 7
D. less then 4

Answer: C

D Watch Video Solution

24. Let a be a 2×2 matrix with non-zero entries and let $A^{2}=I$, where I is a 2×2 identity matrix. Define $\operatorname{Tr}(A)=$ sum of diagonal elements of A and
$|A|=$ determinant of matrix A.
Statement 1: $\operatorname{Tr}(A)=0$
Statement 2: $|A|=1$
A. Statement -1 is true, Statement -2 is true, Statement -2 is not a correct explanation for Statement-1
B. Statement- 1 is true, Statement- 2 is false
C. Statement-1 is false, Statement-2 is true
D. Statement -1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1

Answer: B

Watch Video Solution

25. Let M and N be two 3×3 nonsingular skew-symmetric matrices such that $M n=N M$. If P^{T} denotes the transpose of P , then $M^{2} N^{2}\left(M^{T} N\right)^{-1}\left(M N^{-1}\right)^{T}$ is equal to
A. M^{2}
B. $-N^{2}$
C. $-M^{2}$
D. MN

Answer: C

- Watch Video Solution

26. Let a, b, and c be three real numbers satifying $\left[\begin{array}{lll}a & b & c\end{array}\right]$
$\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

If the point $P(a, b, c)$ with reference to (E) lies on the plane $2 x+y+z=1$, then the value of $7 a+b+c$ is
A. 0
B. 12
C. 7
D. 6

Answer: D

- Watch Video Solution

27. Let a, b, and c be three real numbers satifying $\left[\begin{array}{lll}a & b & c\end{array}\right]$
$\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

Let ω be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\omega)>0$. If $a=2$ with b and c satisfying (E), then the value of $\frac{3}{\omega^{a}}+\frac{1}{\omega^{b}}+\frac{3}{\omega^{c}}$ is equal to A. -2
B. 2
C. 3
D. -3

Answer: A

D Watch Video Solution

28. Let a, b, and c be three real numbers satifying $\left[\begin{array}{lll}a & b & c\end{array}\right]$
$\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

Let $b=6$, with a and c satisfying (E). If α and β are the roots of the quadratic equation $a x^{2}+b x+c=0$, then $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$ is
A. 6
B. 3
C. $\frac{6}{7}$
D. ∞

Answer: B

- Watch Video Solution

29. Let $\omega \neq 1$ be cube root of unity and S be the set of all non-singular matrices of the form $\left[1 a b \omega 1 c \omega^{2} \omega 1\right]$, where each of $a, b, a n d c$ is either ω or ω^{2}. Then the number of distinct matrices in the set S is a. 2 b. 6 c. 4 d. 8
A. 2
B. 6
C. 4
D. 8

Answer: A

30. Let M be a 3×3 matrix satisfying $M[010]=M[1-10]=[11-1]$, and $M[111]=[0012]$ Then the sum of the diagonal entries of M is \qquad .
A.
B.
C.
D.

Answer:

- Watch Video Solution

31. Let A and B two symmetric matrices of order 3 .

Statement 1: $A(B A)$ and $(A B) A$ are symmetric matrices.
Statement $2: A B$ is symmetric matrix if matrix multiplication of A with B is commutative.
A. Statement -1 is true, Statement -2 is true, Statement -2 is not a correct explanation for Statement-1
B. Statement- 1 is true, Statement-2 is false
C. Statement- 1 is false, Statement- 2 is true
D. Statement -1 is true, Statement- 2 is true, Statement- 2 is a correct explanation for Statement-1

Answer: A

- Watch Video Solution

32. Let $P=\left[a_{i j}\right]$ be a 3×3 matrix and let $Q=\left[b_{i j}\right], w h e r e b_{i j}=2^{i+j} a_{i j} f$ or $1 \leq i, j \leq 3$. If the determinant of P is 2 , then the determinant of the matrix Q is
A. 2^{11}
B. 2^{12}
C. 2^{13}
D. 2^{10}

Answer: C

- Watch Video Solution

33. If P is a 3×3 matrix such that $P^{T}=2 P+I$, where P^{T} is the transpose of P and I is the 3×3 identity matrix, then there exists a column matrix, $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ such that
A. $P X=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
B. $P X=X$
C. $P X=2 X$
D. $P X=-X$

Answer: D

34. If the adjoint of a 3×3 matrix P is (144)(217)(113), then the possible value(s) of the determinant of P is (are)
A. -2
B. -1
C. 1
D. 2

Answer: A::D

- Watch Video Solution

35. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$. If u_{1} and u_{2} are column matrices such that $A u_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $A u_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, then $u_{1}+u_{2}$ is equal to :
A. $\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right)$
B. $\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$
C. $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
D. $\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)$

Answer: B

Watch Video Solution
36. Let P and Q be 3×3 matrices $P \neq Q$. If $P^{3}=Q^{3}$ and $P^{2} Q=Q^{2} P$, then determinant of $\left(P^{2}+Q^{2}\right)$ is equal to :
A. 0
B. -1
C. -2
D. 1
37. IF $P=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then α is equal to :
A. 11
B. 5
C. 0
D. 4

Answer: A

- Watch Video Solution

38. For 3×3 matrices M and N, which of the following statement (s) is (are) NOT correct ?

Statement-I: $N^{T} M N$ is symmetricor skew-symmetric, according as M is
symmetric or skew-symmetric.
Statement - II : $M N-N M$ is skew-symmetric for all symmetric matrices
MandN.

Statement - III : $M N$ is symmetric for all symmetric matrices Mand N.
Statement - IV : $(a d j M)(a d j N)=a d j(M N)$ for all invertible matrices MandN.
A. $N^{T} M N$ is symmetric or skew-symmetric, according as M is symmetric of skew-symmetric
B. $M N-N M$ is skew-symmetric for all symmetric matrices M and N
C. MN is symmetric for all symmetric matrices M and N
D. $(\operatorname{adj} M)(\operatorname{adj} N)=\operatorname{adj}(M N)$ for all invertible matrices M and N

Answer: C::D

- Watch Video Solution

39. Let ω be a complex cube root of unity with $\omega \neq 1$ and $P=\left[p_{i j}\right]$ be a $n \times n$ matrix withe $p_{i j}=\omega^{i+j}$. Then $p^{2} \neq O$, when $=$
a. 55
b. 56
c. 57
d. 58
A. 55
B. 56
C. 57
D. 58

Answer: A::B::D

D Watch Video Solution

40. If A is an 3×3 non-singular matrix such that
$A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then $B B^{T}$ equals
A. B^{-1}
B. $\left(B^{-1}\right)$
C. $I+B$
D. I

Answer: D

D Watch Video Solution

41. Let M be a 2×2 symmetric matrix with integer entries.

Then , M is invertible, if
A. the first column of M is the transpose of the second row of M
B. The second row of M is the transpose of the first column of
C. m is a diagonal matrix with non- zero entries in the main diagonal
D. the product of entries in the main diagonal of M is not the square of an integer

Answer: C::D

D Watch Video Solution

42. Let M and N be two 3×3 matrices such that $M N=N M$. Further, if $M \neq N^{2}$ and $M^{2}=N^{4}$, then
A. determinant of $\left(M^{2}+M N^{2}\right)$ is 0
B. there is a 3×3 non-zero matrix U such that $\left(M^{2}+M N^{2}\right) U$
is the zero matrix
C. determinant of $\left(m^{2}+M N^{2}\right) \geq 1$
D. for a 3×3 matrix U if $\left(M^{2}+M N^{2}\right) U$ equals the zero
matrix, then U is the zero matrix

Answer: A: B

- Watch Video Solution

43. If $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ is a matrix satisying the equation $A A^{T}=9 I$,
where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to
A. $(2,1)$
B. $(-2,-1)$
C. $(2,-1)$
D. $(-2,1)$

Answer: B

44. Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
A. $Y^{3} Z^{4}-Z^{4} Y^{3}$
B. $X^{44}+Y^{44}$
C. $X^{4} Z^{3}-Z^{3} X^{4}$
D. $X^{23}+Y^{23}$

Answer: C::D

- Watch Video Solution

45. If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and A adj $A=A A^{T}$, then $5 a+b$ is equal to
A. 5
B. 13
C. 4
D. -1

Answer: A

- Watch Video Solution

46. Let $p=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$. Suppose $Q=\left[q_{i j}\right]$ is a
matrix such that $P Q=k I$, where $k \in \mathbb{R}, k \neq 0$ and I is the identity matrix of order 3. If $q_{23}=-\frac{k}{8}$ and $\operatorname{det}(Q)=\frac{k^{2}}{2}$, then
A. $\alpha=0, k=8$
B. $4 \alpha-k+8=0$
C. $\operatorname{det}(\operatorname{padj}(Q))=2^{9}$
D. $\operatorname{det}(\operatorname{Qadj}(P))=2^{13}$

Answer: B::C

47. Let $z=\frac{-1+\sqrt{3} i}{2}$, where $i=\sqrt{-1}$, and $r, s \in\{1,2,3\}$. Let $P=\left[\begin{array}{cc}(-z)^{r} & z^{2 s} \\ z^{2 s} & z^{r}\end{array}\right]$ and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which $P^{2}=-I$ is \qquad .
A. $\frac{1}{2}|a-b|$
B. $\frac{1}{2}|a+b|$
C. $|a-b|$
D. $|a+b|$

Answer: A

- Watch Video Solution

48. Let $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 9 & 3 & 1\end{array}\right]$ and $\mathrm{Q}=\left[q_{i j}\right]$ be two 3×3 matrices such that
$Q-P^{5}=I_{3}$. Then $\frac{q_{21}+q_{31}}{q_{32}}$ is equal to
A. 52
B. 103
C. 201
D. 205

Answer: B

- Watch Video Solution

49. If $A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$, then $\operatorname{adj}\left(3 A^{2}+12 A\right)$ is equal to
A. $\left[\begin{array}{cc}72 & -63 \\ -84 & 51\end{array}\right]$
B. $\left[\begin{array}{cc}72 & -84 \\ -63 & 51\end{array}\right]$
C. $\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]$
D. $\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]$

Answer: C

- Watch Video Solution

\square

