

MATHS

BOOKS - ARIHANT MATHS

PAIR OF STRAIGHT LINES

1. Find the joint equation of lines y =x and y=-x.

Watch Video Solution

2. Find the separate equation of lines represented by the equation $x^2-6xy+8y^2=0$

3. Find the condition that the slope of one of the lines represented by

 $ax^2+2hxy+by^2=0$ should be n times the slope of the other .

Watch Video Solution

4. If the slope of one of the lines represented by $ax^2 + 2hxy + by^2 = 0$

,

be the nth power of the other, prove that $(ab^n)^{rac{1}{n+1}}+(a^nb)^{rac{1}{n+1}}+2h=0.$

Watch Video Solution

5. Find the product of the perpendiculars drawn from the point (x_1, y_1)

on the lines $ax^2+2hxy+by^2=0$

6. Evaluate
$$\int 8^x dx$$

7. Show that the area of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx+my+n=0 is $\frac{n^2\sqrt{(h^2 - ab)}}{|(am^2 - 2hlm + bl^2)|}$ Watch Video Solution

8. Show that the area of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx+my+n=0 is $\frac{n^2\sqrt{(h^2 - ab)}}{|(am^2 - 2hlm + bl^2)|}$ Watch Video Solution

9. Show that the two straight lines

$$x^2ig(an^2 heta+\cos^2 hetaig)-2xy an heta+y^2\sin^2 heta=0$$

Make with the axis of x angles such that the difference of their tangents

is 2 .

10. The angle between the lines $ig(x^2+y^2ig) \sin^2lpha = ig(x\coseta-y\sinetaig)^2$ is

11. Show that the angle between the lines given by
$$ig(a+2hm+bm^2ig)x^2+2ig\{(b-a)m-ig(m^2-1ig)hig\}xy+ig(am^2-2hm+big)x^2ig\}xy$$

is the same whatever be the value of m ,.

Watch Video Solution

12. Evaluate
$$\int 9^x dx$$

Watch Video Solution

13. Differentiate $\sin^2 x + \cos^2 x$ with respect to x.

14. Find the equation of the bisectors of the angle between the lines

represented by $3x^2-5xy+4y^2=0$

Watch Video Solution

15. The lines y=mx bisects the angle between the lines $ax^2+2hxy+by^2=0$ if

Watch Video Solution

16. If the pair of straight lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ are such that each pair

bisects the angle between the other pair , then prove that $pq=\ -1.$

18. Show that the pair of lines given by $a^2x^2 + 2h(a+b)xy + b^2y^2 = 0$

is equally inclined to the pair given by $ax^2 + 2hxy + by = 0$.

Watch Video Solution

19. Evaluate
$$\int \left(5x^2-8x+5
ight)\,dx$$

Watch Video Solution

20. For what value of λ does the equation $12x^2-10xy+2y^2+11x-5y+\lambda=0$

represent a pair of straight lines ? Find their equations and the angle between them.

21. Prove that the equation $8x^2 + 8xy + 2y^2 + 26x + 13y + 15 = 0$ represents a pair of parallel straight lines . Also find the perpendicular distance between them .

Watch Video Solution

22. Find the combined equation of the straight lines passing through the point (1,1) and parallel to the lines represented by the equation . $x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$.

Watch Video Solution

23. Evaluate
$$\int \left(-6x^3 + 9x
ight) dx$$

26. Find the equation to the pair of straight lines joining the origin to the intersections of the straight line y = mx + c and the curve $x^2 + y^2 = a^2$. Prove that they are at right angles if $2c^2 = a^2(1 + m^2)$.

27. Prove that the pair of lines joining the origin to the intersection of the

curve
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$

the line lx+my+n=0 are coincident, if a $a^2l^2 + b^2m^2 = n^2$

28. The pair of lines joining origin to the points of intersection of, the two

curves
$$ax^2+2hxy+by^2+2gx=0$$
 and

 $a^{\,\prime}x^2+2h^{\,\prime}xy+b^{\,\prime}y^2+2g^{\,\prime}x=0$ will be at right angles, if

Watch Video Solution

29. If the pairs of lines $x^2 + 2xy + ay^2 = 0$ and $ax^2 + 2xy + y^2 = 0$ have exactly one line in common, then the joint equation of the other two lines is given by

a.
$$3x^2 + 8xy - 3y^2 = 0$$

b. $3x^2 + 10xy + 3y^2 = 0$

c.
$$y^2 + 2xy - 3x^2 = 0$$

d. $x^2 + 2xy - 3y^2 = 0$
A. $3x^2 + 8xy - 3y^2 = 0$
B. $3x^2 + 10xy + 3y^2 = 0$
C. $x^2 + 2xy - 3y^2 = 0$
D. $3x^2 + 2xy - y^2 = 0$

Answer: b

Watch Video Solution

30. The combined equation of the lines l_1andl_2 is $2x^2 + 6xy + y^2 = 0$ and that of the lines m_1andm_2 is $4x^2 + 18xy + y^2 = 0$. If the angle between l_1 and m_2 is α then the angle between l_2andm_1 will be $\frac{\pi}{2} - \alpha$ (b) $2\alpha \frac{\pi}{4} + \alpha$ (d) α

A.
$$\frac{\pi}{2} - \alpha$$

B. $\frac{\pi}{4} + \alpha$

 $\mathsf{C}.\,\alpha$

D. 2α

Answer: c

Watch Video Solution

31. If the pair of lines $\sqrt{3}x^2 - 4xy + \sqrt{3}y^2 = 0$ is rotated about the origin by $\pi/6$ in the anticlockwise sense , then find the equation of the pair of lines in the new position.

A.
$$x^2 - \sqrt{3}xy = 0$$

B. $y^2 - \sqrt{3}xy = 0$
C. $\sqrt{3}x^2 - xy = 0$
D. $\sqrt{3}y^2 - xy = 0$

Answer: c

32. If the pair of lines $ax^2 - 2xy + by^2 = 0$ and bx^2-2xy+ay^2=0` be such that each pair bisects the angle between the other pair , then |ab| equals to

A. 1 B. 2 C. 3 D. 4

Answer: b

Watch Video Solution

33. The equation of line which is parallel to the line common to the pair of lines given by $3x^2 + xy - 4y^2 = 0$ and $6x^2 + 11xy + 4y^2 = 0$ and at a distance of 2 units from it is

A.
$$3x - 4y = -10$$

B. x - y = 2

C. 3x + 4y = 10

D. 2x + y = -2

Answer: c

Watch Video Solution

34. The lines joining the origin to the point of intersection of $3x^2 + mxy - 4x + 1 = 0$ and 2x + y - 1 = 0 are at right angles. Then which of the following is a possible value of m? -4 (b) 4 (c) 7 (d) 3

A.
$$g^2 + f^2 = c$$

B. $g^2 - f^2 = c$
C. $g^2 - f^2 = 2c$
D. $g^2 + f^2 = c^2$

Answer: c

35. The lines joining the origin to the point of intersection of $3x^2 + mxy - 4x + 1 = 0$ and 2x + y - 1 = 0 are at right angles. Then which of the following is not a possible value of m?

A. -4

B. 3

C. 4

D. 7

Answer: (a,b,c,d)

Watch Video Solution

36. The lines $(lx+my)^2-3(mx-ly)^2=0$ and lx+my+n=0

forms

A. an isosecles triangle

B. a right angled triangle

C. an equilateral triangle

D. None of these

Answer: (a,c)

> Watch Video Solution

37. If the equatoin $ax^2 - 6xy + y^2 + 2bx + 2cy + d = 0$ represents a pair of lines whose slopes are m and m^2 , then value (s) of a is /are

A. -27

B. -8

C. 8

D. 27

Answer: (a,c)

38. Consider the equation of a pair of straight lines as

 $\lambda xy - 8x + 9y - 12 = 0$

A. 0

B. 2

C. 4

D. 6

Answer: d

Watch Video Solution

39. The point of intersection of lines is (lpha,eta) , then the equation whose

roots are α, β , is

A.
$$4x^2 + x - 8 = 0$$

$$\mathsf{B.}\, 6x^2 + x - 12 = 0$$

$$\mathsf{C}.\,4x^2-x-8=0$$

D.
$$6x^2 - x - 12 = 0$$

Answer: b

Watch Video Solution

40. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is

four times their product , then find the value of c.

D Watch Video Solution

41. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is 3x + 4y = 0 ,then

value of |c| is

42. Find the slope of tangent to the curve if $ax^2 + 2hxy + by^2 = 0$

Watch Video Solution

43. Statement I . The combined equation of l_1 , l_2 is $3x^2 + 6xy + 2y^2 = 0$ and that of m_1 , $m_2is5x^2 + 18xy + 2y^2 = 0$. If angle between l_1 , $m_2is\theta$, then angle between l_2 , $m_1is\theta$. Statement II . If the pairs of lines $l_1l_2 = 0$, $m_1m_2 = 0$ are equally

inclinded that angle between l_1 and m_2 = angle between l_2 and m_1 .

Watch Video Solution

44. Statement I . The equation $2x^2 - 3xy - 2y^2 + 5x - 5y + 3 = 0$ represents a pair of perpendicular straight lines.

Statement II A pair of lines given by $ax^2+2hxy+by^2+2gx+2fy+c=0$ are perpendicular if a+b=0

45. If the lines represented by $2x^2 - 5xy + 2y^2 = 0$ be the sides of a parallelogram and the line 5x + 2y = 1 be one of its diagonal. Find the equation of the other diagonal, and area of the parallelogram .

Watch Video Solution

46. Evaluate
$$\int (1+3t)t^2 dx$$

Watch Video Solution

47. If
$$u = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

represents a pair of straight lines , prove that the equation of the third pair of straight lines passing through the points where these meet the axes is $ax^2 - 2hxy + by^2 + 2gx + 2fy + c + \frac{4fgxy}{c}$ =0.

48. If the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents a pair of parallel lines,

if $h = \sqrt{ab}$ and $g\sqrt{b} = f\sqrt{a}$.

Prove that the distance between them is $2\sqrt{\left(rac{g^2-ac}{a(a+b)}
ight)}.$

Watch Video Solution

49. Find
$$rac{dy}{dx}$$
 if $x-3y=x^4$

Watch Video Solution

50. Evaluate
$$\int \left(-6x^3
ight) dx$$

Watch Video Solution

51. Show that if two of the lines $ax^3 + bx^2y + cxy^2 + dy^3 = 0 (a \neq 0)$

make complementary angles with X -axis in anti -clockwise sense, then a(a-

c)+d(b-d)=0.

Watch Video Solution

52. Show that the equation $a(x^4 + y^4) - 4bxy(x^2 - y^2) + 6cx^2y^2 = 0$ represents two pairs of lines at right angles and that

if $\ 2b^2=a^2+3ac$, the two pairs will coincide.

Watch Video Solution

53. Show that the perpendiculars let fall from any point of the straight line 2x+11y=5 upon the two straight lines 24x+7y=20 and 4x-3y=2 are equal to each other.

54. Evaluate
$$\int 5x^3 dx$$

1. The lines given by the equation $\left(2y^2+3xy-2x^2
ight)(x+y-1)=0$ form a triangle which is

A. equilateral

B. isosceles

C. right angled

D. obtuse angled

Answer: C

Watch Video Solution

2. Area of the triangle formed by the lines $y^2 - 9xy + 18x^2 = 0$ and y = 9 is

A. 27/4

B. 0

C.9/4

D. 27

Answer: A

Watch Video Solution

3. The equation $3x^2 + 2hxy + 3y^2 = 0$ represents a pair of straight lines passing through the origin . The two lines are

- A. real and distinct , if $h^2>3$
- B. real and distinct , if $h^2>9$
- C. real and coincident , if $h^2=3$
- D. real and coincident , if $h^2>3$

Answer: B

4. If one of the lines of the pair $ax^2 + 2hxy + by^2 = 0$ bisects the angle between the positive direction of the axes. Then find the relation for a, b and h.

A. a+b=2|h|

 $\mathsf{B.}\,a+b=\ -\ 2h$

 $\mathsf{C}.\,a-b=2|h|$

D.
$$(a - b)^2 = 4h^2$$

Answer: B

5. If the slope of the line given by $a^2x^2+2hxy+b^2y^2=0$ be three times of the other , then h is equal to

A. (a) $2\sqrt{3}ab$

B. (b)
$$-2\sqrt{3}ab$$

C. (c) $\frac{2}{\sqrt{3}}ab$
D. (d) $-\frac{2}{\sqrt{3}}ab$

Answer: C::D

6. Find the separate equation of two straight lines whose joint equation

is ab
$$ig(x^2-y^2ig)+ig(a^2-b^2ig)xy=0$$

Watch Video Solution

7. Find the coordinates of the centroid of the triangle whose sides are

$$12x^2 - 20xy + 7y^2 = 0 \,\, {
m and} \,\, 2x - 3y + 4 = 0$$

8. If the lines $ax^2 + 2hxy + by^2 = 0$ be two sides of a parallelogram and the line lx+my=1 be one of its diagonal, show that the equation of the other diagonal is y (bl-hm)=x(am-hl).

9. Find the condition that one of the lines given by $ax^2 + 2hxy + by^2 = 0$ may coincide with one of the lines given by $a'x^2 + 2h'xy + b'y^2 = 0$

Watch Video Solution

Exercise For Session 2

1. The angle between the pair of straight lines $y^2 \sin^2 heta - xy \sin^2 heta + x^2 (\cos^2 heta - 1) = 0$ is

A. $\frac{\pi}{4}$

B.
$$\frac{\pi}{2}$$

C. $\frac{\pi}{3}$
D. $\frac{2\pi}{3}$

 π

Answer: B

Watch Video Solution

2. The angle between the lines $ay^2 - \left(1 + \lambda^2\right)xy - ax^2 = 0$ is same as

the angle between the line:

A. (a)
$$5x^2 + 2xy - 3y^2 = 0$$

B. (b)
$$x^2 - 2xy - 3y^2 = 0$$

C. (c)
$$x^2 - y^2 = 100$$

D. (d) xy=0

Answer: C::D

3. Which of the following pair of straight lines intersect at right angles ?

A.
$$2x^2 = y(x + 2y)$$

B. $(x + y)^2 = x(y + 3x)$
C. $2y(x + y) = xy$
D. $y = +2x$

Answer: A

Watch Video Solution

4. if $h^2=ab$, then the lines represented by $ax^2+2hxy+by^2=0$ are

A. Parallel

B. perpendicular

C. coincident

D. None of these

Answer: C

5. Equation $ax^3 - 9x^2y - xy^2 + 4y^3 = 0$ represents three straight lines.	
If the two of the lines are perpendicular , then a is equal to	
a5	
b. 5	
c4	
d. 4	
A5	
B. 5	
C4	
D. 4	

Answer: B::C

8. Find the angle between the lines repersented by the equation $x^2 - 2pxy + y^2 = 0$

9. Show that the lines $x^2 - 4xy + y^2 = 0$ and x + y = 3 form an

equilateral triangle and find its area.

Watch Video Solution

10. Find
$$rac{dy}{dx}$$
 if $ax^2+2hxy+by^2=0$

Watch Video Solution

Exercise For Session 3

1. If the coordinate axes are the bisectors of the angles between the pair of lines $ax^2 + 2hxy + by^2 = 0$, then

A. (a) a=b

B. (b) h=0

C. (c) $a^2=b=0$

D. (d)
$$a + b^2 = 0$$

Answer: B

2. The equation of the bisectors of angle between the lines $x^2 - 4xy + y^2 = 0$ is

Watch Video Solution

3. If one of the lines of $my^2+ig(1-m^2ig)xy-mx^2=0$ is a bisector of the angle between lines xy=0 , then $\cos^{-1}(m)$ is

A. 0

B. $\pi/2$

 $\mathsf{C}.\,\pi$

D. $3\pi/2$

Answer: A::C

4. The bisectors of the angles between the lines $(ax+by)^2=c(bx-ay)^2, c>0$ are respectively parallel and perpendicular to the line $bx-ay+\mu=0$

A.
$$bx-ay+\mu=0$$

B. $ax + by + \lambda = 0$

$$\mathsf{C}.\,ax = by + v = 0$$

 $\mathsf{D}.\,bx + ay + \tau = 0$

Answer: B

5. If the pairs of straight lines $ax^2 + 2pxy - ay^2 = 0$ and $bx^2 + 2qxy - by^2 = 0$ be such that each bisects the angles between the other, then

(a) p = -q (b) pq = 1 (c) pq = -1 (d) p = q.

Watch Video Solution

6. Prove that the lines $2x^2+6xy+y^2=0$ are equally inclined to the lines $4x^2+18xy+y^2=0$

Watch Video Solution

7. Show that the equation of the pair of lines bisecting the angles between the pair of bisectors of the angles between the pair of lines $ax^2 + 2hxy + by^2 = 0$ is $(a - b)(x^2 - y^2) + 4hxy = 0$

8. Prove that the bisectors of the angle between the lines $ax^2+acxy+cy^2=0$ and $\Big(3+rac{1}{c}\Big)x^2+xy+\Big(3+rac{1}{a}\Big)y^2=0$ are

always the same .

Watch Video Solution

9. The lines represented by $x^2+2\lambda xy+2y^2=0$ and the lines represented by $(1+\lambda)x^2-8xy+y^2=0$ are equally inclined, then $\lambda=$

Exercise For Session 4

1. if $\lambda x^2 + 10xy + 3y^2 - 15x - 21y + 18 = 0$ represents a pair of straight lines. Then , the value of λ is

A. -3

C. 4

D. -4

Answer: B

Watch Video Solution

2. Prove that the equartion $3y^2 - 8xy - 3x^2 - 29x + 3y - 18 = 0$ represents two straight lines. Find also their point of intersection and the angle between them.

A.
$$\left(1, \frac{1}{2}\right)$$

B. $\left(1, -\frac{1}{2}\right)$
C. $\left(-\frac{3}{2}, \frac{5}{2}\right)$
D. $\left(-\frac{3}{2}, -\frac{5}{2}\right)$

Answer: D

3. if the equation $12x^2 + 7xy - py^2 - 18x + qy + 6 = 0$ represents two

perpendicular lines , then the value of p and q are

A. 12,1

B. 12,-1

C. 12,
$$\frac{23}{2}$$

D. $-\frac{23}{2}$

Answer: A::C

Watch Video Solution

4. If the angle between the two lines represented by $2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$ is $\tan^{-1}(m)$, then find the value of m.

A.
$$-\frac{1}{5}$$

B. $\frac{1}{5}$
C. $-\frac{3}{5}$
D. $\frac{3}{5}$

Answer: B

Answer: A

7. Evaluate
$$\int x^3 dx$$

Watch Video Solution

8. If the equation 2hxy + 2gx + 2fy + c = 0 represents two straight lines, then show that they form a rectangle of area $\frac{|fg|}{h^2}$ with the coordinate axes.

9. Find the area of the triangle formed by the lines represented by $ax^2+2hxy+by^2+2gx+2fy+c=0$ and axis of x .

Watch Video Solution

10. Find the combined equation of the straight lines passing through the point (1,1) and parallel to the lines represented by the equation . $x^2 - 5xy + 4y^2 + x + 2y - 2 = 0$.

Watch Video Solution

Exercise For Session 5

1. If the straight lines joining origin to the points of intersection of the line x+y=1 with the curve $x^2 + y^2 + x - 2y - m = 0$ are perpendicular to each other , then the value of m should be

A.
$$-rac{1}{2}$$

$$\mathsf{C}.\,\frac{1}{2}$$

D. 1

Answer: A

Watch Video Solution

2. The angle between the pair of straight lines formed by joining the points of intersection of $x^2 + y^2 = 4$ and y = 3x + c to the origin is a right angle. Then c^2 is equal to

A. -1

B. 6

C. 13

D. 20

Answer: A

3. If θ is an angle by which axes are rotated about origin and equation $ax^2 + 2hxy + by^2 = 0$ does not contain xy term in the new system, then prove that $\tan 2\theta = \frac{2h}{a-b}$. A. $\frac{(a-b)}{2h}$ B. $\frac{2h}{(a+b)}$ C. $\frac{(a+b)}{2h}$

D.
$$rac{2h}{(a-b)}$$

Answer: A

4. The lines joining the origin to the points of intersection of $2x^2 + 3xy - 4x + 1 = 0$ and 3x + y = .1 given by

A.
$$x^2 - y^2 - 5xy = 0$$

B. $x^2 - y^2 + 5xy = 0$
C. $x^2 + y^2 - 5xy = 0$
D. $x^2 + y^2 + 5xy = 0$

Answer: A

5. The equation of the line joining the origin to the point of intersection of the lines $2x^2 + xy - y^2 + 5x - y + 2 = 0$ is

A. x+y=0

B. x-y=0

C. x-2y=0

D. 2x+y=0

Answer: A

6. The lines joining the origin to the points of intersection of the line 3x-

2y -1 and the curve $3x^2 + 5xy - 3y^2 + 2x + 3y = 0$, are

Watch Video Solution

7. If the straight lines joining the origin and the points of intersection of y = mx + 1 and $x^2 + y^2 = 1$ are perpendicular to each other, then find the value of m.

Watch Video Solution

8. Prove that the straight lines joining the origin to the point of intersection of the straight line hx + ky = 2hk and the curve $(x - k)^2 + (y - h)^2 = c^2$ are perpendicular to each other if $h^2 + k^2 = c^2$.

9. Show that for all values of λ , the lines joining the origin to the points common to $x^2 + 2hxy - y^2 + gx + fy = 0$ and $fx - gy = \lambda$ are at right angles .

Watch Video Solution

10. Find the equations of the straight lines joining the origin to the points of intersection of $x^2 + y^2 - 4x - 2y = 4$ and $x^2 + y^2 - 2x - 4y = 4$.

Watch Video Solution

Exercise Single Option Correct Type Questions

1. If the sum of the slopes of the lines given by $x^2-2cxy-7y^2=0$ is

four times their product , then the value of c is

A. a) -4 B. b) -2 C. c) 2 D. d) 4

Answer: B

Watch Video Solution

2. The equation $3ax^2 + 9xy + (a^2 - 2)y^2 = 0$ represents two perpendicular straight lines for

A. a) only one value of a

B. b) for all values of a

C. c) for only two values of a

D. d) for no value of a

Answer: C

3. The image of the pair of lines represented by $ax^2 + 2hxy + by^2 = 0$ by the line mirror y = 0 is

A.
$$ax^{2} + 2hxy + by^{2} = 0$$

B. $bx^{2} - 2hxy + ay^{2} = 0$
C. $bx^{2} + 2hxy + ay^{2} = 0$

D.
$$ax^2-2hxy+by^2=0$$

Answer: D

Watch Video Solution

4. Number of points lying on the line 7x + 4y + 2 = 0 which is equidistant from the lines $15x^2 + 56xy + 48y^2 = 0$ is

D	1
D.	. 1

C. 2

D. 4

Answer: C

Watch Video Solution

5. Orthocentre of the triangle formed by the lines xy - 3x - 5y + 15 = 0 and 3x + 5y = 15 is A. (-5,-3) B. (5,3) C. (-3,-5)

D. (3,5)

Answer: B

6. Two of the straight lines given by $3x^3 + 3x^2y - 3xy^2 + dy^3 = 0$ are at right angles , if d equal to

A. -4 B. -3

- C. -2
- D. -1

Answer: B

7. Two lines are given by $\left(x-2y
ight)^2+k(x-2y)=0$. The value of k, so that the distance between them is 3, is:

A. (a) $\sqrt{5}$

B. (b) $2\sqrt{5}$

C. (c) $3\sqrt{5}$

D. (d) $4\sqrt{5}$

Answer: C

8. Evaluate
$$\int 7x^3 dx$$

B.
$$\frac{5}{\sqrt{29}}$$

C. $\frac{7}{\sqrt{29}}$
D. $\frac{9}{\sqrt{29}}$

Answer: C

10. Find the point of inersection of lines represented by $2x^2 - 7xy - 4y^2 - x + 22y - 10 = 0$ A. A. (-2,2) B. B. (-3,3) C. C. (3,3) D. D. (2,2)

Answer: C

Watch Video Solution

11. Evaluate
$$\int 8x^3 dx$$

12. If the equation of the pair of straight lines passing through the point (1, 1), one making an angle θ with the positive direction of the x-axis and the other making the same angle with the positive direction of the y-axis, is $x^2 - (a+2)xy + y^2 + a(x+y-1) = 0, a \neq 2$, then the value of $\sin 2\theta$ is

A. a-2

B. a+2

C.
$$\frac{2}{(a+2)}$$

D. $\frac{2}{a}$

Answer: C

Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The equation of image of pair of lines y=|x-1| with respect to y-axis is :

A. y=|x+1|

B. y=|x-1|+3

C.
$$x^2-y^2+2x+1=0$$

D.
$$x^2 - y^2 + 2x - 1 = 0$$

Answer: A::C

Watch Video Solution

2. If the equation $ax^2 + by^2 + cx + cy = 0$ represents a pair of straight

lines, then

A. a) a + b = 0

B. b) c=0

C. c) a + c = 0

D. d)
$$c(a+b)=0$$

Answer: A::B::D

3. If $x^2+lpha y^2+2eta y=a^2$ represents a pair of perpendicular straight lines , then A. lpha=1,eta=a

- $\texttt{B.}\,\alpha=1,\beta=\ -a$
- $\mathsf{C}.\,\alpha=\,-\,1,\beta=\,-\,a$
- $\mathsf{D}.\,\alpha=\,-\,1,\,\beta=a$

Answer: C::D

4. If the pair of lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ intersect on the y-axis then

A.
$$f^2 = bc$$

B. abc=2fgh

$$\mathsf{C}.\,bg^2\neq ch^2$$

$$\mathsf{D}.\, 2fgh=bg^2+ch^2$$

Answer: A::D

Watch Video Solution

5. Two pairs of straight lines have the equations
$$y^2 + xy - 12x^2 = 0$$
 and $ax^2 + 2hxy + by^2 = 0$. One line will be common among them if

A. a=-3(2h+3b)

B. a=8 (h-2b)

C. a=2(b+h)

D. a=-3(b+h)

Answer: A::B

Watch Video Solution

6. The three sides of a triangle are given by $ig(x^2-y^2ig)(2x+3y-6)=0.$

If the points (-2,a) lies inside and (b,1) lies outside the triangle, then

A.
$$2 < a < \frac{10}{3}$$

B. $-2 < a < \frac{10}{3}$
C. $-1 < b < \frac{9}{2}$
D. $-1 < b < 1$
A. $2 < a < \frac{10}{3}$
B. $-2 < a < \frac{10}{3}$
C. $-1 < b < \frac{9}{2}$

D. -1 < b < 1

Answer: A::D

Watch Video Solution

Exercise Passage Based Questions

1. Consider the equation of a pair of straight lines as $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$

The value of λ is

A. 1

B. 2

C. 3

D. 4

Answer: B

2. Consider the equation of a pair of straight lines as $x^2 - 3xy + \lambda y^2 + 3x = 5y + 2 = 0$

The point of intersection of line is (lpha,eta) , then the value of $lpha^2+eta^2$ is

A. 2 B. 5

C. 10

D. 17

Answer: C

Watch Video Solution

3. Consider the equation of a pair of straight lines as $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$

The angle between the lines is θ then the value of $\cos 2\theta$ is

A.
$$\frac{1}{3}$$

B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{4}{5}$

Answer: D

Watch Video Solution

4. Evaluate
$$\int 9x^3 dx$$

Watch Video Solution

5. Evaluate
$$\int 2x^3 dx$$

6. Evaluate
$$\int 3x^3 dx$$

7. Consider a pair of perpendicular straight lines $2x^2 + 3xy + by^2 - 11x + 13y + c = 0$ The value fo c is A. -2 B. 2 C. -3 D. 3

Answer: A

8. Find
$$\displaystyle rac{dy}{dx}$$
 if $\displaystyle 2x^2+3xy+by-11x+13y+c=0$

9. Consider the equation of a pair of straight lines as $x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0$ The value of λ is A. 2 B. 3 C. 4 D. 5

Answer: C

Watch Video Solution

Exercise Single Integer Answer Type Questions

1. Evaluate $\int 2x^4 dx$

2. Evaluate
$$\int 3x^4 \, dx$$

Watch Video Solution

3. The lines represented by $x^2+2\lambda xy+2y^2=0$ and the lines represented by $(1+\lambda)x^2-8xy+y^2=0$ are equally inclined, then $\lambda=$

Watch Video Solution

4. If the lines joining the origin to the intersection of the line y=nx+2 and the curve $x^2+y^2=1$ are at right angles, then the value of n^2 is

5. Area of the triangle formed by the line x + y = 3 and angle bisectors of the pair of straight lines $x^2 - y^2 + 2y = 1$ is 2squalts b. 4squalts c. 6squalts d. 8squalts

Watch Video Solution

Pair Of Straight Lines Exercise 5 Matching Type Questions

1. Evaluate
$$\int 4x^4 dx$$

Watch Video Solution

Exercise Statement I And Ii Type Questions

1. Evaluate
$$\int 6x^4 dx$$

2. Evaluate
$$\int 7x^4 dx$$

Watch Video Solution

3. Evaluate
$$\int 8x^4 dx$$

Watch Video Solution

4. Evaluate
$$\int 2x^5 \, dx$$

Watch Video Solution

Exercise Subjective Type Questions

1. Prove that the straight lines represented by

$$(y-mx)^2=a^2ig(1+m^2ig) \,\, ext{and}\,\, (y-nx)^2=a^2ig(1+n^2ig)$$
form rhombus.

2. Prove that the equation m $\left(x^3-3xy^2
ight)+y^3-3x^2y=0$ represents

three straight lines equally inclined to each other.

4. Find
$$rac{dy}{dx}$$
 if $x\cos x = 2\sin y$

5. Find
$$rac{dy}{dx}$$
 if $y = ax^2 + 2hxy + by^2$

6. Find
$$\displaystyle rac{dy}{dx}$$
 if $ax^2+2hxy+by^2+2gx+2fy+c=0$

Watch Video Solution

other two, then

Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. If the pair of lines $ax^2 + 2(a + b)xy + by^2 = 0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector then

A.
$$3a^2 + 2ab + 3b^2 = 0$$

B. $3a^2 + 10ab + 3b^2 = 0$
C. $3a^2 - 2ab + 3b^2 = 0$
D. $3a^2 - 10ab + 3b^2 = 0$

Answer: A

Watch Video Solution

2. If one of the lines of $my^2 + ig(1-m^2ig)xy - mx^2 = 0$ is a bisector of the angle between the lines xy = 0, then m is

A. —
$$rac{1}{2}$$

B. -2
C. 1
D. 2

Answer: C

