©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

PARABOLA

Examples

1. Find the locus of a point, which moves such
that its distance from the point $(0,-1)$ is
twice its distance from the line $3 x+4 y+1=0$

D Watch Video Solution
2. What conic does the equation
$25\left(x^{2}+y^{2}-2 x+1\right)=(4 x-3 y+1)^{2}$
represent?

D Watch Video Solution
3. What conic does
$13 x^{2}-18 x y+37 y^{2}+2 x+14 y-2=0$
represent?

D Watch Video Solution

4. Statement $\mathrm{I}:$ The conic $\sqrt{a} x+\sqrt{b} y=1$ represents a parabola.

Statement
II:
Conic
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a parabola if $h^{2}=a b$.
5. If the equation $x^{2}-y^{2}-2 x+2 y+\lambda=0$ represent a degenerate conic. Find the value of λ.

D Watch Video Solution

6. If the equation $x^{2}-y^{2}-2 x-2 y+c=0$ represent an empty set, then find the value of c.
7. IF the equation of conic
$2 x^{2}+x y+3 y^{2}-3 x+5 y+\lambda=0$
represent a single point, then find the value of
λ

D Watch Video Solution
8. For What value of λ the equation of conic
$2 x y+4 x-6 y+\lambda=0$ represents two intersecting
straight lines, if $\lambda=17$, then this equation represents?

- Watch Video Solution

9. The centre of the conic
$14 x^{2}-4 x y+11 y^{2}-44 x-58 y+71=0$,
is

D Watch Video Solution
10. Find the equation of the parabola whose focus is at $(-1,-2)$ and the directrix the line $x-2 y+3=0$

D Watch Video Solution

11. Find the equation of the parabola whose focus is (4,-3) and vertex is (4,-1).

D Watch Video Solution
12. The focal distance of a point on a parabola $y^{2}=8 x$ is 8. Find it.

D Watch Video Solution

13. $P Q$ is a double ordinate of a parabola
$y^{2}=4 a x$. Find the locus of its points of trisection.

D Watch Video Solution
14. If y_{1}, y_{2}, y_{3} be the ordinates of a vertices of the triangle inscribed in a parabola $y^{2}=4 a x$, then show that the area of the triangle is $\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$.

- Watch Video Solution

15. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose vertex is at the vertex of the parabola .Find the length of its side.
16. Prove that the equation of the parabola whose focus is $(0,0)$ and tangent at the vertex
is

$$
x-y+1=0
$$

$x^{2}+y^{2}+2 x y-4 x+4 y-4=0$.

D Watch Video Solution

17. Find the equation of the parabola whose latus-rectum is 4 units, axis is the line
$3 x+4 y-4=0$ and the tangent at the vertex is the line $4 x-3 y+7=0$.

D Watch Video Solution

18. Find the vertex, focus, and directrix of the
following parabolas:
$x^{2}+8 x+12 y+4=0$

D Watch Video Solution
19. Prove that
the equation
$y^{2}+2 a x+2 b y+c=0$
represents a
parabola whose axis is parallel to the axis of x.
Find its vertex.

D Watch Video Solution

20. Derive the equation of the parabola with
its vertex at $(3,2)$ and its focus at $(5,2)$.

D Watch Video Solution

21. Find the equation of the parabola with latusrectum joining the points $(3,6)$ and (3,-2).

- Watch Video Solution

22. Find the equation to the parabola whose axis parallel to the y-axis and which passes through the points $(0,4)(1,9)$ and $(4,5)$ and determine its latusrectum.
23. Show that the point $(2,3)$ lies outside the parabola $y^{2}=3 x$.

D Watch Video Solution

24. Find the position of the point $(-2,2)$ with respect to the
parabola
$y^{2}-4 y+9 x+13=0$.

D Watch Video Solution
25. If the point $\left(a t^{2}, 2 a t\right)$ be the extremity of a focal chord of parabola $y^{2}=4 a x$ then show that the length of the focal chord is $a\left(t+\frac{1}{t}\right)^{2}$.

- Watch Video Solution

26. Prove that the semi-latus rectum of the parabola $y^{\wedge}(2)=4 a x^{\wedge}$ is the harmonic mean between the segments of any focal chord of the parabola.

Watch Video Solution

27. Prove that the length of a focal chord of a parabola varies inversely as the square of its distance from the vertex.

- Watch Video Solution

28. If the line $l x+m y+n=0$ touches the parabola $y^{2}=4 a x$, prove that $\ln =a m^{2}$
29. Show that $x \cos \alpha+a \sin ^{2} \alpha=p$ touches
the parabola

$$
y^{2}=4 a x
$$

$p \cos \alpha+a \sin ^{2} \alpha=0$ and that the point of contact is $\left(a \tan ^{2} \alpha,-2 a \tan \alpha\right)$.

- Watch Video Solution

30. Prove that the line $\frac{x}{l}+\frac{y}{m}=1$ touches the parabola $y^{2}=4 a(x+b)$, $m^{2}(l+b)+a l^{2}=0$.
31. Find the equation of the straight lines touching both $x^{2}+y^{2}=2 a^{2}$ and $y^{2}=8 a x$.

D Watch Video Solution

32. Find the equation of common tangent of
$y^{2}=4 a x$ and $x^{2}=4 b y$.

D Watch Video Solution

33. Two tangents to the parabola $y^{2}=4 a x$ make supplementary angles with the x-axis.

Then the locus of their point of intersection is

- Watch Video Solution

34. Show that the locus of the point of intersection of mutually perpendicular tangetns to a parabola is its directrix.

- Watch Video Solution

35. The tangents to the parabola $y^{2}=4 a x$ at
$P\left(a t_{1}^{2}, 2 a t_{1}\right)$, and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$, intersect at R.
Prove that the area of the triangle $P Q R$ is $\frac{1}{2} a^{2}\left(t_{1}-t_{2}\right)^{3}$

- Watch Video Solution

36. Show that normal to the parabols $y^{2}=8 x$ at the point $(2,4)$ meets it again at (18.12) .

Find also the length of the normal chord.
37. Prove that the chord
$y-\sqrt{2} x+4 a \sqrt{2}=0$ is a normal chord of
the parabola $y^{2}=4 a x$. Also, find the point on
the parabola where the given chord is normal to the parabola.

- Watch Video Solution

38. If $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\}$. Find $A-$ B and $B-A$.
39. Prove that the normal chord to a parabola at the point whose ordinate is equal to the abscissa subtends a right angle at the focus.

D Watch Video Solution

40. If the normal to the parabola $y^{2}=4 a x$ at point t_{1} cuts the parabola again at point t_{2}, then prove that $\left(t_{2}\right)^{2} \geq 8$.
41. If two of the three feet of normal drawn from a point to the parabola $y^{2}=4 x$ are $(1,2)$ and ($1,-2$), then find the third foot.

- Watch Video Solution

42. The locus of the point through which pass
three normals to the parabola $y^{2}=4 a x$, such
that two of them make angles $\alpha \& \beta$ respectively with the axis $\& \tan \alpha \cdot \tan \beta=2$ is $(a>0)$
43. The locus of points such that two of the three normals drawn from them to the parabola $y^{2}=4 a x$ coincide is

- Watch Video Solution

44. The vertex of the parabola $y^{2}=4 a x$ is
45. Find the point on the axis of the parabola
$3 y^{2}+4 y-6 x+8=0$ from where three distinct normals can be drawn.

D Watch Video Solution
46. Evaluate $\int x^{2} d x$

D Watch Video Solution

47. Evaluate $\int 2 x^{2} d x$
48. Evaluate $\int 3 x^{2} d x$

- Watch Video Solution

49. Find the locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola.
50. The locus of the middle points of normal chords of the parabola $y^{2}=4 a x$ is-

D Watch Video Solution

51. If the diameter through any point P of a parabola meets any chord in A and the tangent at the end of the chord meets the diameter in B and C, then prove that $P A^{2}=P B . P C$
52. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.

D Watch Video Solution

53. A ray of light is coming along the line
$y=b$ from the positive direction of x-axis and
striks a concave mirror whose intersection
with x-plane is a parabola $y^{2}=4 a x$. Find the equation of the reflected ray and show that it
passes through the focus of the parabola. Both a and b are positive.

D Watch Video Solution
54. Evaluate $\int 4 x^{2} d x$

D Watch Video Solution

55. A ray of light travels along a line $y=4$ and strikes the surface of curves $y^{2}=4(x+y)$.

Then the equations of the line along which of
reflected ray travels is $x=0$ (b) $x=2$ (c)

$$
x+y \text { (d) } 2 x+y=4
$$

A. $x=0$
B. $x=2$
C. $x+y=4$
D. $2 x+y=4$

Answer: A

D Watch Video Solution
56. A parabola is drawn with focus at $(3,4)$ and vertex at the focus of the parabola $y^{2}-12 x-4 y+4=0$. The equation of the parabola is
A. $x^{2}-6 x-8 y+25=0$
B. $y^{2}-8 x-6 y+25=0$
C. $x^{2}-6 x+8 y-25=0$
D. $x^{2}+6 x-8 y-25=0$

Answer: D

57. Two parabolas have the same focus. If their directrices are the x - and the y-axis, respectively, then the slope of their common chord is ± 1 (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (d) none of these
A. ± 1
B. $\frac{4}{3}$
C. $\frac{3}{4}$
D. None of these

Answer: A

D Watch Video Solution

58. Let us define a region R is $x y$-plane as a set of points (x, y) satisfying $\left[x^{2}\right]=[y]$ (where $[\mathrm{x}]$ denotes greatest integer $\leq x$), then the region R defines
A. a parabola whose axis is horizontal
B. a parabola whose axis is vertical
C. integer point of the parabola $y=x^{2}$

D. None of the above

Answer: D

D Watch Video Solution

59. The minimum area of circle which touches
the parabolas $y=x^{2}+1$ and $y^{2}=x-1$ is
$\frac{9 \pi}{16}$ sqünit \quad (b) $\quad \frac{9 \pi}{32}$ squinit $\quad \frac{9 \pi}{8}$ squinit \quad (d)
$\frac{9 \pi}{4}$ sqünit
A. (a) $\frac{9 \pi}{16}$ sq units
B. (b) $\frac{9 \pi}{32}$ sq units
C. $\frac{9 \pi}{8}$ sq units
D. $\frac{9 \pi}{4}$ sq units

Answer: B

D Watch Video Solution

60. If a line $x+y=1$ cut the parabola $y^{2}=4 a x$ in points A and B and normals drawn at A and B meet at C. The normals to
the parabola from C other than above two meets the parabola in D, then point D is :

D Watch Video Solution

61. If d is the distance between the parallel
tangents with positive slope to $y^{2}=4 x$ and $x^{2}+y^{2}-2 x+4 y-11=0$, then d ${ }^{`} 10$
A. $10<d<20$
B. $4<d<6$
C. $d<4$

D. None of these

Answer: C

D Watch Video Solution

62. Two parabolas C and D intersect at two different points, where C is $y=x^{2}-3$ and D
is $y=k x^{2}$. The intersection at which the x
value is positive is designated Point A, and $x=a$
at this intersection the tangent line I at A to
the curve D intersects curve C at point B,
other than A. IF x-value of point B is 1 , then a equal to
A. 1
B. 2
C. 3
D. 4

Answer: C
(Watch Video Solution
63. Evaluate $\int 5 x^{2} d x$

- Watch Video Solution

64. The condition that the parabolas
$y^{2}=4 c(x-d) \quad$ and $\quad y^{2}=4 a x \quad$ have \quad a
common normal other than X -axis
$(a>0, c>0)$ is
a. $2 a<2 c+d$
b. $2 c<2 a+d$
c. $2 d<2 a+c$ d. $2 d<2 c+a$
A. $2 a<2 c+d$
B. $2 c<2 a+d$
C. $2 d<2 a+c$
D. $2 d<2 c+a$

Answer: A

D Watch Video Solution
65. The locus of the midpoint of the focal
distance of a variable point moving on theparabola $y^{2}=4 a x$ is a parabola whose (a)latus rectum is half the latus rectum of the original parabola (b)vertex is $\left(\frac{a}{2}, 0\right)$ (c)directrix is y-axis. (d)focus has coordinates $(a, 0)$
A. latusrectum is half the latusrectum of
the original parabola
B. Vertex is $\left(\frac{a}{2}, 0\right)$

C. directrix is Y -axis

D. focus has the coordinate $(a, 0)$

Answer: D

D Watch Video Solution

66. IF $P_{1} P_{2}$ and $Q_{1} Q_{2}$ two focal chords of a parabola $y^{2}=4 a x$ at right angles, then
A. area of the quadrilateral $P_{1} Q_{1} P_{2} Q_{2}$ is
at an angle $\pi / 4$ to the axis of the parabola.
B. minimum area is twice the area of the square on the latusrectum of the parabola.

C. minimum area of quadrilateral

$P_{1} Q_{1} P_{2} Q_{2}$ cannot be found
D. minimum area is thrice the area of the
square on the latusrectum of the parabola.

Answer: A

D Watch Video Solution

67. The equation of the line that touches the
curves $y=x|x|$ and $x^{2}+(y-2)^{2}=4$,
where $x \neq 0$, is:

$$
\begin{aligned}
& \text { A. } y=4 \sqrt{5} x+20 \\
& \text { B. } y=4 \sqrt{3} x-12 \\
& \text { C. } y=0 \\
& \text { D. } y=-4 \sqrt{5} x-20
\end{aligned}
$$

Answer: A

- Watch Video Solution

68. Let V be the vertex and L be the latusrectum of the parabola
$x^{2}=2 y+4 x-4$. Then the equation of the parabola whose vertex is at V. Latusrectum
$L / 2$ and axis s perpendicular to the axis of the given parabola.

$$
\text { A. } y^{2}=x-2
$$

B. $y^{2}=x-4$
C. $y^{2}=2-x$
D. $y^{2}=4-x$

Answer: A,C

D Watch Video Solution

69. If $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5$,

7, 9\}. Find A^{\prime}.

D Watch Video Solution
70. Find $\frac{d y}{d x} a t(6,1)$ if $y^{2}=4 a x$

D Watch Video Solution

71. Find $\frac{d y}{d x}$ if $2 x-3 y=e^{x}$

- Watch Video Solution

72. Tangents are drawn to the parabola $y^{2}=4 x$ at the point P which is the upper end
of latusrectum . Area enclosed by the tangent
line at, P, X axis and the parabola is
A. $\frac{2}{3} \mathrm{sq}$ units
B. $\frac{4}{3}$ sq units
C. $\frac{14}{3}$ sq units
D. $\frac{16}{3}$ sq units

Answer: A

D Watch Video Solution

73. Let C_{1} and C_{2} be parabolas $x^{2}=y-1$ and $y^{2}=x-1$ respectively. Let P be any point on C_{1} and Q be any point C_{2}. Let P_{1} and
Q_{1} be the reflection of P and Q , respectively w.r.t the line $\mathrm{y}=\mathrm{x}$ then prove that P_{1} lies on C_{2} and Q_{1} lies on C_{1} and $P Q \geq\left[P P_{1}, Q Q_{1}\right]$. Hence or otherwise, determine points P_{0} and
Q_{0} on the parabolas C_{1} and C_{2} respectively such that $P_{0} Q_{0} \leq P Q$ for all pairs of points
(P, Q) with P on C_{1} and Q on C_{2}
A. C_{1} and C_{2} respectively
B. C_{2} and C_{1} respectively
C. Cannot be determined
D. None of these

Answer: B

D Watch Video Solution
74. Evaluate $\int 6 x^{2} d x$
75. Let C_{1} and C_{2} be respectively, the parabolas $x^{2}=y-1$ and $y^{2}=x-1$ Let P be any point on C_{1} and Q be any point on C_{2}. Let P_{1} and Q_{1} be the refelections of P and Q , respectively with respect to the line $y=x$.

Arithemetic mean of $P P_{1}$ and $Q Q_{1}$ is always less than
A. PQ
B. $\frac{1}{2} \mathrm{PQ}$
C. 2 PQ
D. $\frac{3}{2} \mathrm{PQ}$

Answer: A

- Watch Video Solution

76. If $U=\{2,3,4,5,6,7,8,9\} X=\{3,5,7,9\} Y=\{2$,
$4,6,8\}$ Show that $X=Y^{\prime}$ and $Y=X^{\prime}$

- Watch Video Solution

77. Find $\frac{d y}{d x}$ if $y^{2}=4 a x$
78. Evaluate $\int 8 x^{2} d x$.

- Watch Video Solution

79. Find $\frac{d y}{d x}$ if $y^{2}=2 a x$

D Watch Video Solution

80. Parabola $y^{2}=4 a\left(x-c_{1}\right) \quad$ and
$x^{2}=4 a\left(y-c_{2}\right)$, where $c_{1} a n d c_{2}$ are variable,
are such that they touch each other. The locus
of their point of contact is (a) $x y=2 a^{2}$
$x y=4 a^{2}$ (c) $x y=a^{2}$ (d) none of these

D Watch Video Solution
81. The area formed by the normals to
$y^{2}=4 a x$ at the points t_{1}, t_{2}, t_{3} is

D Watch Video Solution
82. The condition that the parabolas
$y^{2}=4 c(x-d) \quad$ and $\quad y^{2}=4 a x \quad$ have \quad a
common normal other than X -axis
$(a>0, c>0)$ is
a. $2 a<2 c+d$
b. $2 c<2 a+d$
c. $2 d<2 a+c$
d. $2 d<2 c+a$

D Watch Video Solution
83. If on a given base $B C$, a triangle is described such that the sum of the tangents of the base angles is m, then prove that the locus of the opposite vertex A is a parabola.

- Watch Video Solution

84. A parabola mirror is kept along $y^{2}=4 x$ and two light rays parallel to its axis are reflected along one straight line. If one of the incident light rays is at 3 units distance from
the axis, then find the distance of the other incident ray from the axis.

D Watch Video Solution
85. Evaluate $\int 10 x^{2} d x$

D Watch Video Solution

86. Find the slope of normal to the curve if equation of the curve is $y=x^{2}+x-2$ at
$(1,2)$
87. $T P$ and $T Q$ are any two tangents to a parabola and the tangent at a third point R cuts them in P^{\prime} and Q^{\prime}. Prove that $\frac{T P^{\prime}}{T P}+\frac{T Q^{\prime}}{T Q}=1$

- Watch Video Solution

88. Prove that on the axis of any parabola there is a certain point ' k ' which has the
property that, if a chord PQ of parabola be drawn through it then $\frac{1}{(P K)^{2}}+\frac{1}{(Q K)^{2}}$ is the same for all positions of the chord.

D Watch Video Solution

89. If the distribution of weight is uniform,
then the rope of the suspended bridge takes
the form of parabola.The height of the supporting towers is 20 m , the distance between these towers is 150 m and the height of the lowest point of the rope from the road
is 3 m . Find the equation of the parabolic shape of the rope considering the floor of the parabolic shape of the rope considering the floor of the bridge as X -axis and the axis of the parabola as Y-axis. Find the height of that tower which supports the rope and is at a distance of 30 m from the centre of the road.

D Watch Video Solution

90. Evaluate $\int 11 x^{2} d x$
91. If a chord PQ of the parabola $y^{2}=4 a x$ subtends a right angle at the vertex, show that the locus of the point of intersection of the normals at P and Q is $y^{2}=16 a(x-6 a)$.

- Watch Video Solution

92. Find $\frac{d y}{d x}$ if $(3 x+a)(x+3 a)=y^{2}$
93. Find $\frac{d y}{d x}$ if $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}-a^{2}}=1$

D Watch Video Solution

94. Two straight lines are perpendicular to each other. One of them touches the parabola $y^{2}=4 a(x+a) \quad$ and the other touches $y^{2}=4 b(x+b)$. Their point of intersection
lies on the line. (a) $x-a+b=0$
$x+a-b=0$
(c) $x+a+b=0$
$x-a-b=0$

Jee Type Solved Examples

1. Evaluate $\int 7 x^{2} d x$

- Watch Video Solution

Exercise For Session 1

1. The vertex of the parabola
$y^{2}+6 x-2 y+13=0$ is
A. $(-2,1)$
B. $(2,-1)$
C. $(1,1)$
D. $(1,-1)$

Answer: A

- Watch Video Solution

2. If the parabola $y^{2}=4 a x$ passes through
the point $(3,2)$ then find the length of its latus rectum.
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

D Watch Video Solution

3. Find the value of P such that the vertex of $y=x^{2}+2 p x+13$ is 4 units above the x -axis.
A. ± 2
B. 4
C. ± 3
D. 5

Answer: C

D Watch Video Solution

4. The length of the latusrectum of the parbola whose focus is $(3,3)$ and directrix $3 x-4 y-2=0$, is
A. a) 1
B. b) 2
C. c) 4
D. d) 8

Answer: B

D Watch Video Solution

5. If the vertex and focus of a parabola are $(3,3)$ and $(-3,3)$ respectively, then its equation is
A. A. $x^{2}-6 x+24 y-63=0$
B. В. $x^{2}-6 x+24 y-81=0$
C. C. $y^{2}-6 y+24 x-63=0$
D. D. $y^{2}-6 y-24 x+81=0$

Answer: C

D Watch Video Solution

6. If the vertex of the parabola
$y=x^{2}-8 x+c$ lies on x-axis, then the value of c, is
A. 4
B. -4
C. 16
D. -16

Answer: C

D Watch Video Solution

7. The parabola having its focus at $(3,2)$ and directrix along the Y-axis has its vertex at
A. $\left(\frac{3}{2}, 1\right)$
B. $\left(\frac{3}{2}, 2\right)$
C. $\left(\frac{3}{2}, \frac{1}{2}\right)$
D. $\left(\frac{3}{2},-\frac{1}{2}\right)$

Answer: B

D Watch Video Solution

8. Let the set of integer be the universal set and let $A=$ set of whole numbers, then what is

A'?
9. The equation of the latus retum of the parabola $x^{2}+4 x+2 y=0$ is
A. $3 y-2=0$
B. $3 y+2=0$
C. $2 y-3=0$
D. $2 y+3=0$

Answer: C
10. The focus of the parabola
$x^{2}-8 x+2 y+7=0$ is
A. $\left(0,-\frac{1}{2}\right)$
B. $(4,4)$
C. $\left(4, \frac{9}{2}\right)$
D. $\left(-4,-\frac{9}{2}\right)$

Answer: B

D Watch Video Solution
11. The equation of the parabola with the focus
$(3,0)$ and directrix $x+3=0$ is

> A. $y^{2}=2 x$
> B. $y^{2}=3 x$
> C. $y^{2}=6 x$
> D. $y^{2}=12 x$

Answer: D

12. Equation of the parabola whose axis is parallel to Y - axis and which passes through the point $(1,0),(0,0)$ and $(-2,4)$, is

$$
\begin{aligned}
& \text { A. } 2 x^{2}+2 y=3 y \\
& \text { B. } 2 x^{2}-2 x=3 y \\
& \text { C. } 2 x^{2}+2 x=y \\
& \text { D. } 2 x^{2}-2 x=y
\end{aligned}
$$

Answer: B
13. Find the equation of the parabola whose focus is $(5,3)$ and directrix is the line $3 x-4 y+1=0$.

D Watch Video Solution

14. In a group of 60 people, 27 like cold drinks and 42 like hot drinks and each person likes at
least one of the two drinks. How many like both hot drinks and cold drinks?
15. Find the vertex, focus, axis, directrix and latusrectum of the parabola
$4 y^{2}+12 x-20 y+67=0$.

- Watch Video Solution

16. Find the name of the conic represented by
$\sqrt{\left(\frac{x}{a}\right)}+\sqrt{\left(\frac{y}{b}\right)}=1$.

D Watch Video Solution

17. The curve described parametrically by $x=t^{2}+t+1 \quad, \quad$ and $\quad y=t^{2}-t+1$ represents. (a) a pair of straight lines (b) an ellipse (c) a parabola (d) a hyperbola

- Watch Video Solution

18. Prove that the equation of the parabola whose vertex and focus are on the X-axis at a distance a and a'from the origin respectively is

$$
y^{2}=4\left(a^{\prime}-a\right)(x-a)
$$

19. Find the equatin to the parabola whose axis is parallel to the y-xis and which passes through the point
$(0,4),(1.9), \quad$ and $(-2,6)$ and determine its latus rectum.

- Watch Video Solution

20.

The
equation
$a x^{2}+4 x y+y^{2}+a x+3 y+2=0$
represents a parabola. Find the value of a.

D Watch Video Solution

Exercise For Session 2

1. If $2 x+y+\lambda=0$ is a normal to the
parabola $y^{2}=-8 x$, then λ is
(a)12 (b) -12 (c)24 (d) -24
A. -24
B. -16
C. -8
D. 24

Answer: D

D Watch Video Solution

> 2. The vertex of the parabola
> $y^{2}+6 x-2 y+13=0$ is
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$

C. $-\frac{1}{\sqrt{2}}$
 D. $-\sqrt{2}$

Answer: B::D

- Watch Video Solution

3. The common tangent to the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$ is
A. (a) $x+y+a=0$
B. (b) $x+y-a=0$
C. (c) $x-y+a=0$
D. (d) $x-y-a=0$

Answer: A
(Watch Video Solution
4. The circle $x^{2}+y^{2}+4 \lambda x=0$ which $\lambda \in R$ touches the parabola $y^{2}=8 x$. The value of λ is given by
5. If the normals at two points P and Q of a parabola $y^{2}=4 a x$ intersect at a third point R on the curve, then the product of ordinates of P and Q is
A. $4 a^{2}$
B. $2 a^{2}$
C. $-4 a^{2}$
D. $8 a^{2}$

Answer: D

6. Evaluate $\int 13 x^{2} d x$

D Watch Video Solution

7. The set of points on the axis of the parabola
$y^{2}-4 x-2 y+5=0$ from which all the
three normals to the parabola are real , is
A. $\lambda, 0), x>1$
B. $(\lambda, 1), \lambda>3$
C. $(\lambda, 2), \lambda>6$
D. $(\lambda, 3), \lambda>8$

Answer: B

D Watch Video Solution
8. Evaluate $\int 14 x^{2} d x$.

- Watch Video Solution

9. Find the multiplication of 85×0
10. Find the equation of the normal to the parabola $y^{2}=4 x$ which is parallel to the line $y=2 x-5$.

- Watch Video Solution

11. Find the equation of the normal to the parabola $y^{2}=4 x$ which is perpendicular to the line $2 x+6 y+5=0$.

Watch Video Solution

12. Find the multiplication of 95×0

- Watch Video Solution

13. Find the multiplication of 27×0

- Watch Video Solution

14. Find the multiplication of 78×0

Watch Video Solution

15. If m_{1}, m_{2} are the slopes of the two tangents that are drawn from $(2,3)$ to the parabola $y^{2}=4 x$, then the value of $\frac{1}{m_{1}}+\frac{1}{m_{2}}$ is
A. -3
B. 3
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: B

D Watch Video Solution

16. Find the angle between the tangents drawn from the origin to the parabolas $y^{2}=4 a(x-a)$
A. 90°
B. 30°
C. $\tan ^{-1}\left(\frac{1}{2}\right)$
D. 45°

Answer: A

D Watch Video Solution

17. If (a, b) is the midpoint of a chord passing
through the vertex of the parabola $y^{2}=4 x$,
then

$$
\text { (a) } a=2 b \text { (b) } a^{2}=2 b \text { (c) } a^{2}=2 b \text { (d) } 2 a=b^{2}
$$

A. $a=2 b$
B. $2 a=b$
C. $a^{2}=2 b$

$$
\text { D. } 2 a=b^{2}
$$

Answer: D

D Watch Video Solution

18. The diameter of the parabola $y^{2}=6 x$ corresponding to the system of parallel chords $3 x-y+c=0$ is
A. (a) $y-1=0$
B. (b) $y-2=0$

C. (c) $y+1=0$

D. $(d) y+2=0$

Answer: A

- Watch Video Solution

19. Tangents are drawn from the point $(-1,2)$ to
the parabola $y^{2}=4 x$ The area of the triangle
for tangents and their chord of contact is
A. 8
B. $8 \sqrt{3}$
C. $8 \sqrt{2}$
D. None of these

Answer: C

- Watch Video Solution

20. What is the focus of the parabola

$$
x^{2}+y^{2}+2 x y-6 x-2 y+3=0
$$

A. $(1,-1)$
B. $(1,1)$
C. $(3,1)$
D. None of these

Answer: C

D Watch Video Solution

21. Find the locus of the mid-points of the
chords of the parabola $y^{2}=4 a x$ which
subtend a right angle at the vertex of the parabola.
A. $y^{2}-2 a x+8 a^{2}=0$
B. $y^{2}=a(x-4 a)$
C. $y^{2}=4 a(x-4 a)$
D. $y^{2}+3 a x+4 a^{2}=0$

Answer: A

D Watch Video Solution

22. A ray of light moving parallel to the x-axis gets reflected form a parabolic mirror whose equation is $(y-2)^{2}=4(x+1)$. Find the
point on the axis of the parabola through which the ray must pass after reflection.
A. $(-2,0)$
B. $(-1,2)$
C. $(0,2)$
D. $(2,0)$

Answer: C
(Watch Video Solution
23. Evaluate $\int 16 x^{2} d x$.

- Watch Video Solution

24. Evaluate $\int 20 x^{2} d x$.

- Watch Video Solution

25. Evaluate $\int 17 x^{2} d x$.
26. A common tangent is drawn to the circle
$x^{2}+y^{2}=a^{2}$ and the parabola $y^{2}=4 b x$. If
the angle which his tangent makes with the axis of x is $\frac{\pi}{4}$, then the relationship between a and $\mathrm{b}(\mathrm{a}, \mathrm{b}>0)$
A. A. $b=\sqrt{2} a$
B. B. $a=b \sqrt{2}$
C. C. $c=2 a$
D. $D . a=2 c$

Answer: A

D Watch Video Solution

2. The equation of the parabola whose vertex
and focus lie on the axis of x at distances a
and a_{1} from the origin, respectively, is

$$
\begin{aligned}
& \text { A. } y^{2}=4\left(a_{1}-a\right) x \\
& \text { B. } y^{2}=4\left(a_{1}-a\right)(x-a) \\
& \text { C. } y^{2}=4\left(a_{1}-a\right)\left(x-a_{1}\right) \\
& \text { D. } y^{2}=4 a a_{1} x
\end{aligned}
$$

Answer: B

D Watch Video Solution

> 3. If parabolas $\quad y^{2}=\lambda x \quad$ and
> $25\left[(x-3)^{2}+(y+2)^{2}\right]=(3 x-4 y-2)^{2}$
are equal, then the value of λ is
A. 3
B. 6
C. 7
D. 9

Answer: B

- Watch Video Solution

4. $A B C D$ and $E F G C$ are squares and the curve
$y=k \sqrt{x}$ passes through the origin D and the points B and F.The ratio of $\frac{F G}{B C}$ is:
A. A. $\frac{\sqrt{3}+1}{4}$
B. B. $\frac{\sqrt{3}+1}{2}$
C. C. $\frac{\sqrt{5}+1}{4}$
D. D. $\frac{\sqrt{5}+1}{2}$

Answer: D

- Watch Video Solution

5. Find $\frac{d y}{d x}$ if $y^{2}=x$

D Watch Video Solution

6. The vertex of the parabola whose parametric equation is

$$
x=t^{2}-t+1, y=t^{2}+t+1, t \in R, \text { is }
$$

A. $(1,1)$
B. $(2,2)$
C. $(3,3)$
D. $\left(\frac{1}{2}, \frac{1}{2}\right)$

Answer: A

D Watch Video Solution

7. The circle $x^{2}+y^{2}+2 \lambda x=0, \lambda \in R$, touches the parabola $y^{2}=4 x$ externally.

Then,
A. $\lambda>0$
B. $\lambda<0$
C. $\lambda>1$
D. $\lambda>2$

Answer: A

D Watch Video Solution

8. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then
A. $d^{2}+(2 b+3 c)^{2}=0$
B. $d^{2}+(3 b+2 c)^{2}=a^{2}$
C. $d^{2}+(2 b-3 c)^{2}=0$
D. $d^{2}+(2 b+3 c)^{2}=a^{2}$

Answer: A

D Watch Video Solution
9. Evaluate $\int 18 x^{2} d x$.
10. Two mutually perpendicular tangents of
the parabola $y^{2}=4 a x$ meet the axis at
P_{1} and P_{2}. If S is the focal of the parabola,
Then $\frac{1}{S P_{1}}+\frac{1}{S P_{2}}$ is equal to

> A. $\frac{1}{4 a}$
> B. $\frac{1}{a}$
> C. $\frac{2}{a}$
> D. $\frac{4}{a}$
11. Evaluate $\int 22 x^{2} d x$.

- Watch Video Solution

12. The normal to the parabola $y^{2}=4 a x$ at three points P, Q and R meet at A. If S is the focus, then prove that $S P \cdot S Q \cdot S R=a S A^{2}$.

- Watch Video Solution

13. Evaluate $\int 23 x^{2} d x$

- Watch Video Solution

14. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.
A. $4 \sqrt{3}$
B. 4
C. $\frac{4 \sqrt{6}}{7}$
D. $2 \sqrt{3}$

Answer: D

- Watch Video Solution

15. From a point $(\sin \theta, \cos \theta)$, if three normals
can be drawn to the parabola $y^{2}=4 a x$ then
the value of a is
A. $\left(\frac{1}{2}, 1\right)$
B. $\left[-\frac{1}{2}, 0\right)$
C. $\left[\frac{1}{2}, 1\right]$
D. $\left(-\frac{1}{2}, 0\right) \cup\left(0, \frac{1}{2}\right)$

Answer: D

- Watch Video Solution

16. If two different tangents to $y^{2}=4 x$ are
the normals to $x^{2}=4$ by, then

- Watch Video Solution

17. The shortest distance between the

$$
\text { parabolas } 2 y^{2}=2 x-1 \text { and } 2 x^{2}=2 y-1 \text { is }
$$

$2 \sqrt{2}$ (b) $\frac{1}{2} \sqrt{2}$ (c) 4 (d) $\sqrt{\frac{36}{5}}$
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{2}$
C. $2 \sqrt{2}$
D. 4

Answer: A

-
 Watch Video Solution

18. Normals at two points $\left(x_{1} y_{1}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$
of the parabola $y^{2}=4 x$ meet again on the
parabola, where $x_{1}+x_{2}=4$. Then $\left|y_{1}+y_{2}\right|$ is equal to
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $4 \sqrt{2}$
D. $8 \sqrt{2}$

Answer: C

19. A line is drawn from $A(-2,0)$ to intersect the
curve $y^{2}=4 x$ at P and Q in the first quadrent
such that $\frac{1}{A P}+\frac{1}{A Q}<\frac{1}{4}$. Then the slope of the line is always

- Watch Video Solution

20. Find the length of the side of an equilateral traingle inscribed in the parabola
$y^{2}=4 a x$, so that one angular point is at the vertex.
A. $a-(2-\sqrt{3})$
B. $2 a(2-\sqrt{3})$
C. $4 a(2-\sqrt{3})$
D. $8 a(2-\sqrt{3})$

Answer: C

D Watch Video Solution

21. Let C be a circle with center $(0,1)$ and radius

unity. P is the parabola $y=a x^{2}$. The set of
values of a for which they meet at a point other than origin is

- Watch Video Solution

22. Evaluate $\int 24 x^{2} d x$.

- Watch Video Solution

23. If P be a point on the parabola $y^{2}=3(2 x-3)$ and M is the foot of perpendicular drawn from the point P on the directrix of the parabola, then find length of each sides of an equilateral triangle SMP(where S is the focus of the parabola).
A. 2
B. 4
C. 6
D. 8

Answer: C

D Watch Video Solution

24. Evaluate $\int 25 x^{2} d x$.

D Watch Video Solution

25. Through the vertex O of the parabola $y^{2}=4 a x$, two chords $O P a n d O Q$ are drawn and the circles on OP and $O Q$ as diameters intersect at R. If θ_{1}, θ_{2}, and φ are the angles
made with the axis by the tangents at P and
Q on the parabola and by $O R$, then value of $\cot \theta_{1}+\cot \theta_{2}$ is
A. $-2 \tan \phi$
B. $2 \tan \phi$
C. 0
D. $2 \cot \phi$

Answer: A

D Watch Video Solution
26. Evaluate $\int 26 x^{2} d x$

- Watch Video Solution

27. If the fourth term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, then find the values of a and n.
A. $q=p$
B. $q>p$
C. $q<p$

D. $p q=1$

Answer: D

D Watch Video Solution

28. The set of points on the axis of the parabola $y^{2}-4 x-2 y+5=0$ find the slope of normal to the curve at $(0,0)$

D Watch Video Solution

29. The tangent to the parabola $y=x^{2}$ has been drawn so that the abscissa x_{0} of the point of tangency belongs to the interval [1,2]. Find x_{0} for which the triangle bounded by the tangent, the axis of ordinates, and the straight line $y=x_{0}^{2}$ has the greatest area.
A. 0
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution

30. if $y=4 x+3$ is parallel to a tangent to
the parabola $y^{2}=12 x$, then its distance from
the normal parallel to the given line is

> A. $\frac{213}{\sqrt{17}}$ B. $\frac{219}{\sqrt{17}}$ C. $\frac{211}{\sqrt{17}}$ D. $\frac{210}{\sqrt{17}}$

Answer: D

D Watch Video Solution

Exercise More Than One Correct Option Type

 Questions1. Equation of the common tangent of a circle
$x^{2}+y^{2}=50$ and the parabola $y^{2}=40 x$ can
be

$$
\text { A. } x+y-10=0
$$

B. $x-y+10=0$
C. $x+y+10=0$
D. $x-y-10=0$

Answer: B::C

D Watch Video Solution
2. Find $\frac{d y}{d x} \cdot \mathrm{y}=\sin \left(\frac{1-x^{2}}{1+x^{2}}\right)$

- Watch Video Solution

3. Let $y^{2}=4 a x$ be a parabola and $x^{2}+y^{2}+2 b x=0$ be a circle. If parabola and circle touch each externally then:
A. $a>0, b<0$
B. $a>0, b>0$
C. $a<0, b>0$
D. $a<0, b<0$

Answer: B::D

D Watch Video Solution
4. Tangent is drawn at any point $\left(x_{1}, y_{1}\right)$ other
than the vertex on the parabola $y^{2}=4 a x$. If tangents are drawn from any point on this tangent to the circle $x^{2}+y^{2}=a^{2}$ such that all the chords of contact pass through a fixed point $\left(x_{2}, y_{2}\right)$, then
A. (a) x_{1}, a, x_{2} are in GP
B. (b) $\frac{y_{1}}{2}, a, y_{2}$ are in GP
C. (c) $-4, \frac{y_{1}}{y_{2}}, \frac{x_{1}}{x_{2}}$ are in GP
D. (d) $x_{1} x_{2}+y_{1} y_{2}=a^{2}$

Answer: B::C::D

D Watch Video Solution

5. Let P, Q and R are three co-normal points on the parabola $y^{2}=4 a x$. Then the correct statement(s) is /at
A. algebraic sum of the slopes of the normals at P, Q and R vanishes
B. algebraic sum of the ordinates of the points P, Q and R vanishes
C. centeroid of the traingle PQR lies on the axis of the parabola
D. Circle cicrcumscribing the traingle PQR passes through the vertex of the parabola.

Answer: A::B::C::D

- Watch Video Solution

6. Let P be a point whose coordinates differ by
unity and the point does not lie on any of the axes of reference. If the parabola $y^{2}=4 x+1$ passes through P, then the ordinate of P may be 3 (b) -1 (c) 5 (d) 1
A. 3
B. -1
C. 5
D. 1
7. If a point P on $y^{2}=4 x$, the foot of the perpendicular from P on the directrix and the focus form an equilateral traingle, then the coordinates of P may be
A. $(3,-2 \sqrt{3})$
B. $(-3,2 \sqrt{3})$
C. $(3,2 \sqrt{3})$
D. $(-3,-2 \sqrt{3})$

Answer: A::C

- Watch Video Solution

8. The locus of foot of the perpendiculars drawn from the focus on a variable tangent to the parabola $y^{2}=4 a x$ is

D Watch Video Solution

9. The extremities of latus rectum of a parabola are $(1,1)$ and $(1,-1)$. Then the equation
of the parabola can be
A. $y^{2}=2 x-1$
B. $y^{2}=1-2 x$
C. $y^{2}=2 x-3$
D. $y^{2}=2 x-4$

Answer: A::C

D Watch Video Solution

10. If from the vertex of a parabola $y^{2}=4 x$ a pair of chords be drawn at right angles to one another andwith these chords as adjacent sides a rectangle be made, then the locus of the further end of the rectangle is
A. an equal parabola
B. a parabola with focus at $(8 a, 0)$
C. a parabola with directrix as $x-7 a=0$
D. not a parabola

- Watch Video Solution

11. If two chords drawn from the point $A(4,4)$ to the parabola $x^{2}=4 y$ are bisected by the line $y=m x$, the interval in which m lies is $(-2 \sqrt{2}, 2 \sqrt{2}) \quad(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$
$(-\infty,-2 \sqrt{2}-2) \cup(2 \sqrt{2}-2, \infty) \quad$ none of these

$$
\begin{aligned}
& \text { A. } m \in(-\infty,-\sqrt{3}) \\
& \text { B. } m \in(-\infty,-\sqrt{3}-1) \\
& \text { C. } m \in(\sqrt{3}, \infty)
\end{aligned}
$$

$$
\text { D. } m \in(\sqrt{3}-1, \infty)
$$

Answer: B::C::D

D Watch Video Solution

12. The set of points on the axis of the parabola $y^{2}-4 x-2 y+5=0$ from which all the three normals to the parabola are real , is
A. $(3,2)$
B. $(1,2)$
C. $(4,2)$
D. $(5,2)$

Answer: A::C::D

D Watch Video Solution

13. Three normals are drawn from the point
$(14,7)$ to the curve $y^{2}-16 x-8 y=0$. Find the coordinates of the feet of the normals.

$$
\text { A. }(0,0),(8,-16),(3,-4)
$$

$$
\begin{aligned}
& \text { B. }(0,0),(8,16),(3,-4) \\
& \text { C. }(0,0),(-8,16),(3,-4) \\
& \text { D. }(0,0),(-8,-16),(3,-4)
\end{aligned}
$$

Answer: A::B::C

D Watch Video Solution

14. A quadrilateral is inscribed in a parabola.

Then
a. the quadrilateral may be cyclic
b. diagonals of the quadrilateral may be equa
c.l allpossible pairs of adjacent side may be perpendicular
d. none of these
A. the quadrilateral may be cyclic
B. diagonals of the quadrilateral may be
equal
C. all possible pairs of adjacent sides may
be perpendicular
D. None of the above

- Watch Video Solution

Exercise Passage Based Questions

1. Consider a parabola P touches coordinate axes at $(4,0)$ and $(0,3)$.
if focus of parabola P is (a, b) then the value of
$b-a$ is
A. $\frac{1}{25}$
B. $\frac{3}{25}$
C. $\frac{4}{25}$
D. $\frac{12}{25}$

Answer: D

D Watch Video Solution

2. Consider a parabola P touches coordinate
axes at $(4,0)$ and $(0,3)$.

Length of latus rectum of parabola P is
A.
B.
C.

D.

Answer: D

D Watch Video Solution

3. Consider a parabola P touches coordinate axes at $(4,0)$ and $(0,3)$.

Equation of directrix of parabola P is
A. $4 x+3 y=0$
B. $3 x+4 y=12$
C. $3 x+4 y=0$
D. $4 x+3 y=12$

Answer: C

- Watch Video Solution

4. Let C be the locus of the circumcentre of a variable traingle having sides Y -axis, $\mathrm{y}=2$ and $a x+b y=1$, where (a, b) lies on the parabola $y^{2}=4 \lambda x$.

For $\lambda=2$, the product of coordinates of the vertex of the curve C is
A. -8
B. -6
C. 6
D. 8

Answer: B
(Watch Video Solution
5. Find $\frac{d y}{d x}$ if $y^{2}=4 \lambda x$

- Watch Video Solution

6. The locus of the circumcenter of a variable triangle having sides the y-axis, $y=2$, and | $x+m y=1$, where $(1, m)$ lies on the parabola $y^{2}=4 x$, is a curve C.

The curve C is symmetric about the line

$$
\begin{aligned}
& \text { А. } x=-\frac{3}{2} \\
& \text { B. } y=-\frac{3}{2}
\end{aligned}
$$

> C. $x=\frac{3}{2}$
> D. $y=\frac{3}{2}$

Answer: D

D Watch Video Solution

$$
\begin{aligned}
& \text { 7. The focus of the parabola } \\
& x^{2}-8 x+2 y+7=0 \text { is }
\end{aligned}
$$

A. $(2,1)$
B. $(-2,1)$
C. $(-2,-1)$
D. $(2,-1)$

Answer: D

D Watch Video Solution

$$
\begin{aligned}
& \text { 8. The focus of the parabola } \\
& x^{2}-8 x+2 y+7=0 \text { is }
\end{aligned}
$$

A. $\frac{3}{\sqrt{5}}$
B. $\frac{6}{\sqrt{5}}$

> C. $\frac{12}{\sqrt{5}}$
> D. $\frac{24}{\sqrt{5}}$

Answer: C

- Watch Video Solution

$$
\begin{aligned}
& \text { 9. Consider a } \\
& x^{2}-4 x y+4 y^{2}-32 x+4 y+16=0 .
\end{aligned}
$$

The focus of the parabola (P) is
10. If l and m are variable real numbers such
that $5 l^{2}-4 l m+6 m^{2}+3 l=0$, then the
variable line $l x+m y=1$ always touches a
fixed parabola, whose axis is parallel to the Xaxis.

If (c, d) is the focus of the parabola, then the value of $2^{|d-c|}$ is
A. 1
B. 2
C. 4

D. 8

Answer: B

D Watch Video Solution

11. If l and m are variable real numbers such
that $5 l^{2}-4 l m+6 m^{2}+3 l=0$, then the
variable line $l x+m y=1$ always touches a
fixed parabola, whose axis is parallel to the Xaxis.

If ex $+\mathrm{f}=0$ is directrix of the parabola and e,f are prime numbers, then the value of $|e-f|$ is
A. 2
B. 4
C. 6
D. 8

Answer: D
(Watch Video Solution
12. Find the slope of tangent to the curve if equation of the curve is $y^{2}=4 x$ at (5,6)

- Watch Video Solution

13. Find the slope of normal to the curve if equation of the curve is $y^{2}=4 x$ at (4,5)

- Watch Video Solution

14. Find $\frac{d y}{d x}$ if $y^{2}=10 x$

- Watch Video Solution

15. Tangent to the parabola $y=x^{2}+a x+1$ at the point of intersection of the y-axis also touches the circle $x^{2}+y^{2}=r^{2}$. Also, no point of the parabola is below the x-axis.

The radius of circle when a attains its maximum value is
A. 1
B. 3
C. 5

Answer: A

D Watch Video Solution

16. Tangent to the parabola $y=x^{2}+a x+1$ at the point of intersection of the Y-axis also
touches the circle $x^{2}+y^{2}=c^{2}$. It is known that no point of the parabola is below X -axis.

The value of $5 c^{2}$ when a attains its maximum
value is
A. $1 /(r t .10)$
B. $1 /(r t .5)$
C. 1
D. Rt. 5

Answer: B

D Watch Video Solution

17. Tangent to the parabola $y=x^{2}+a x+1$ at the point of intersection of the y-axis also touches the circle $x^{2}+y^{2}=r^{2}$. Also, no point
of the parabola is below the x-axis.

The minimum area bounded by the tangent and the coordinate axes is
A. 1
B. 2
C. 4
D. 8

Answer: B

D Watch Video Solution
18. Find the slope of tangent to the curve if equation of the curve is
$x^{2}+x y+y^{2}-2 x-2 y+1=0$ at $(0,0)$

D Watch Video Solution

19. A parabola (P) touches the conic
$x^{2}+x y+y^{2}-2 x-2 y+1=0 \quad$ at the
points when it is cut by the line $x+y+1=0$.

The length of latusrectum of parabola (P) is
A. $\sqrt{2}$
B. $3 \sqrt{2}$
C. $5 \sqrt{2}$
D. $7 \sqrt{2}$

Answer: D

D Watch Video Solution

20. A parabola (P) touches the conic
$x^{2}+x y+y^{2}-2 x-2 y+1=0 \quad$ at the points when it is cut by the line $x+y+1=0$.

If (a, b) is the vertex of the parabola (P), then
the value of $|a-b|$ is
A. 0
B. $\frac{1}{2}$
C. 1
D. $\frac{3}{2}$

Answer: A
(Watch Video Solution
21. $y=3 x$ is tangent to the parabola
$2 y=a x^{2}+b$. The minimum value of $\mathrm{a}+\mathrm{b}$ is
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

22. $y=3 x$ is tangent to the parabola
$2 y=a x^{2}+b$.
If $(2,6)$ is the point of contact, then the value of $2 a$ is
A. 2
B. 3
C. 4
D. 5

Answer: B

23. $y=3 x$ is tangent to the parabola
$2 y=a x^{2}+a b$.

If $b=36$, then the point of contact is
A. $(1,3)$
B. $(2,6)$
C. $(3,9)$
D. $(6,18)$

Answer: D

Exercise Single Integer Answer Type Questions

1. Two tangent are drawn from the point
$(-2,-1)$ to parabola $y^{2}=4 x$. if α is the angle between these tangents, then find the
value of $\tan \alpha$.
2. If the distances of two points P and Q from the focus of a parabola $y^{2}=4 x$ are 4 and 9,respectively, then the distance of the point of intersection of tangents at P and Q from the focus is

- Watch Video Solution

3. The tangents and normals are drawn at the extremites of the latusrectum of the parabola
$y^{2}=4 x$. The area of quadrilateral so formed
is $\lambda \mathrm{sq}$ units, the value of λ is

D Watch Video Solution

4. Three normals are drawn from the point
$(a, 0)$ to the parabola $y^{2}=x$. One normal is
the X -axis . If other two normals are perpendicular to each other, then the value of $4 a$ is
5. $A B$ is a chord of the parabola $y^{2}=4 a x$ with vertex $A \dot{B} C$ is drawn perpendicular to
$A B$ meeting the axis at C. The projection of $B C$ on the axis of the parabola is a (b) $2 a$ (c) $4 a$ (d) $8 a$

- Watch Video Solution

6. If the points $a+b, a-b$ and $a+k b$ be collinear, then k is equal to

7. Let n be the number of integral points lying

 inside the parabola $y^{2}=8 x$ and circle $x^{2}+y^{2}=16$, then the sum of the digits of number n is
- Watch Video Solution

8. Radius of the largest circle which passes through the focus of the parabola $y^{2}=4 x$ and contained in it, is
9. If the circle $(x-6)^{2}+y^{2}=r^{2}$ and the parabola $y^{2}=4 x$ have maximum number of common chords, then the least integral value of r is \qquad

D Watch Video Solution

10. The slope of line which belongs to family
$(1+\mathrm{I}) \mathrm{x}+(\mathrm{I}-1) \mathrm{y}+2(1-\mathrm{I})=0$ and makes shortest intercept on $x^{2}=4 y-4$

Parabola Exercise 5

1. Find $\frac{d y}{d x}$ if $x=y^{2}-6 y+11$

- Watch Video Solution

2. Find $\frac{d y}{d x}$ if $x^{2}-a y+3=0$

- Watch Video Solution

1. Statement I the equation of the common
tangent to the parabolas $y^{2}=4 x$ and
$x^{2}=4 y$ is $x+y+1=0$.
Statement II Both the parabolas are reflected to each other about the line $y=x$.
A. Statement I is true, Statement II is true ,

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation
for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false,Statement II is true.

Answer: A

D Watch Video Solution
2. Statement I two perpendicular normals can be drawn from the point $\left(\frac{5}{2},-2\right)$ to the parabola $(y+1)^{2}=2(x-1)$.

Statement II two perpendicular normals can be drawn from the point $(3 a, 0)$ to the parabola $y^{2}=4 a x$.
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation
for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false,Statement II is true.

Answer: A

D Watch Video Solution
3. Statement I The line $y=m x+\frac{a}{m}$ is tangent to the parabola $y^{2}=4 a x$ for all values of m.

Statement II A straight line $y=m x+c$ intersects
the parabola $y^{2}=4 a x$ one point is a tangent line.

D Watch Video Solution

4. Statement I: The conic $\sqrt{a} x+\sqrt{b} y=1$ represents a parabola.
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
represents a parabola if $h^{2}=a b$.
A. (a) Statement I is true, Statement II is
true and Statement II is the correct
explanation for Statement I.
B. (b) Statement I is true and Statement II
is true but Statement II is not the
correct explanation for Statement I.

C. (c) Statement I is false, Statement II is

 false.D. (d) Statement I is false, Statement II is

true.

Answer: C

D Watch Video Solution

5. Statement I: The lines from the vertex to the two extremities of a focal chord of the parabola $y^{2}=4 a x$ are perpendicular to each
other.

Statement II: If the extremities of focal chord of a parabola are $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$, then $t_{1} t_{2}=-1$.
A. (a) Statement I is true, Statement II is
true and Statement II is the correct explanation for Statement I.
B. (b) Statement I is true and Statement II
is true but Statement II is not the
correct explanation for Statement I.
C. (c) Statement I is true, Statement II is

false.

D. (d) Statement I is false, Statement II is

true.

Answer: D

D Watch Video Solution

6. Statement 1: The length of focal chord of a parabola $y^{2}=8 x$ making on angle of 60° with the x-axis is 32 . Statement 2: The length of
focal chord of a parabola $y^{2}=4 a x$ making an angle with the x -axis is $4 a \operatorname{cosec}{ }^{2} \alpha$
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation
for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false,Statement II is true.

Answer: C

D Watch Video Solution

7. Statement I Straight line $x+y=k$ touch
the parabola $y=x-x^{2}$, if $\mathrm{k}=1$.

Statement
Discriminant
$(x-1)^{2}=x-x^{2}$ is zero.
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for
statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation
for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false,Statement II is true.

Answer: C

D Watch Video Solution

8. Statement I Length of latusrectum of parabola $(3 x+4 y+5)^{2}=4(4 x+3 y+2)$ is
9. Statement II Length of latusrectum of parabola $y^{2}=4 a x$ is 4 a.
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation
for Statement I.

C. Statement I is true, Statement II is false.

D. Statement I is false,Statement II is true.

Answer: D

D Watch Video Solution

Exercise Subjective Type Questions

1. If a tangent to the parabola $y^{2}=4 a x$ meets
the axis of the parabola in T and the tangent
at the vertex A in Y, and the rectangle
$T A Y G$ is completed, show that the locus of G
is $y^{2}+a x=0$.

- Watch Video Solution

2. If incident from point ($-1,2$) parallel to the axis of the parabola $y^{2}=4 x$ strike the parabola, then find the equation of the reflected ray.
3. Prove that the normal chord to a parabola
$y^{2}=4 a x$ at the point whose ordinate is equal
to abscissa subtends a right angle at the focus.

- Watch Video Solution

4. Find the shortest distance between the
parabola

$$
\begin{gathered}
y^{2}=4 x \\
y+128=0
\end{gathered}
$$

and
circle
$x^{2}+y^{2}-24 y+128=0$.

5. Let A and B be Two Given Finite Sets Such

That $n(A)=20, n(B)=28$, and $n(A \cup B)=36$, Find $n(A \cap B)$.

D Watch Video Solution

6. Find the slope of tangent to the curve if equation of the curve is $y^{2}=4 a x$ at $(0,0)$
7. Through the vertex O of the parabola $y^{2}=4 a x$, two chords $O P a n d O Q$ are drawn and the circles on $O P$ and $O Q$ as diameters intersect at R. If θ_{1}, θ_{2}, and φ are the angles made with the axis by the tangents at P and
Q on the parabola and by $O R$, then value of $\cot \theta_{1}+\cot \theta_{2}$ is

D Watch Video Solution

8. In a class of 40 students, 12 enrolled for
both English and German. 22 enrolled for

German. If the students of the class enrolled
for at least one of the two subjects, then how many students enrolled for only English and not German?

- Watch Video Solution

9. Find the slope of normal to the curve if equation of the curve is $y^{2}=4 a x$ at $(0,0)$
10. If equation of the curve is $y^{2}=4 x$ then find the slope of normal to the curve

- Watch Video Solution

11. Evaluate $\int 27 x^{2} d x$.

- Watch Video Solution

12. Let P, Q, R be three points on a parabola $y^{2}=4 a x$, normals at which are concurrent.

The centroid of the $\triangle P Q R$ must lie on
A. (a) a line parallel to the directix
B. (b) the axis of parabola
C. (c) a line of slope 1 passing through
vertix
D. (d) none of these

Answer: 0

13. The normal to the parabola $y^{2}=4 a x$ at
three points P, Q and R meet at A. If S is the focus, then prove that $S P \cdot S Q \cdot S R=a S A^{2}$.

- Watch Video Solution

14. Find slope of tangent to the curve
$x^{2}+y^{2}=\frac{a^{2}}{2}$

- Watch Video Solution

15. Prove that any three tangents to a parabola whose slopes are in harmonic progression enclose slopes are in harmonic progression enclose a traingle of constant area .

(Watch Video Solution

Exercise Questions Asked In Previous 13 Years

Exam

1. Let A and B be two finite sets such that $n(A)$
$=85, n(B)=65$ and $n(A \cup B)=135$, find $n(A \cap B)$?

D Watch Video Solution

2. Let P be the point $(1,0)$ and Q be a point on
the locus $y^{2}=8 x$. The locus of the midpoint of $P Q$ is

$$
\text { A. } x^{2}-4 y+2=0
$$

$$
\text { B. } x^{2}+4 y+2=0
$$

C. $y^{2}+4 y+2=0$
D. $y^{2}-4 y+2=0$

Answer: D

D Watch Video Solution

3. The axis of a parabola is along the line $y=x$ and the distance of its vertex and focus from origin are $\sqrt{2}$ and $2 \sqrt{2}$, respectively. If vertex and focus both lie in the first quadrant, then find equation of the parabola.
A. $(x+y)^{2}=(x-y-2)$
B. $(x-y)^{2}=(x+y+2)$
C. $(x-y)^{2}=4(x+y-2)$
D. $(x-y)^{2}=8(x+y-2)$

Answer: D

D Watch Video Solution

4. In a school, all pupils play either Hockey or

Football or both. 400 play Football, 150 play

Hockey, and 130 play both the games. Find the number of pupils who play Football only.

D Watch Video Solution

5. The locus of the vertex of the family of
parabolas $\quad y=\frac{a^{3} x^{2}}{3}+\frac{a^{2 x}}{2}-2 a$

$$
\begin{align*}
& x y=\frac{105}{64} \quad \text { (b) } \quad x y=\frac{3}{4} \quad x y=\frac{35}{16} \tag{d}\\
& x y=\frac{64}{105} \tag{is}
\end{align*}
$$

A. $x y=\frac{105}{64}$
B. $x y=\frac{3}{4}$

$$
\begin{aligned}
& \text { C. } x y=\frac{35}{16} \\
& \text { D. } x y=\frac{64}{105}
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. The angle between the tangents to the
curve $y=x^{2}-5 x+6$ at the point $(2,0)$ and
$(3,0)$ is (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{4}$
A. $\pi / 3$
B. $\pi / 2$
C. $\pi / 6$
D. $\pi / 4$

Answer: B

D Watch Video Solution

7. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in first and fourth quadrant respectively. Tangents to the circle at P and Q intersect the
x-axis at R and tangents at the parabola at P
and Q intersect the x -axis at S . The radius of the circumcircle of the triangle PRS is-
A. (a) $3 \sqrt{2}$
B. (b) $3 \sqrt{3}$
C. (c) 5
D. (d) 2

Answer: C

D Watch Video Solution
8. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in
first and fourth quadrant respectively.
Tangents to the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x -axis at S . The radius of the circumcircle of the triangle PRS is-
A. 5
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: B

D Watch Video Solution

9. Find slope of tangent to the curve if equation is $x^{2}+y^{2}=9$

D Watch Video Solution

10. Statement 1 : The curve
$y=-\frac{x^{2}}{2}+x+1$ is symmetric with respect
to the line $x=1$ Statement 2 : A parabola is symmetric about its axis.
a. Both the statements are true and Statements 1 is the correct explanation of

Statement 2.
b. Both the statements are true but

Statements 1 is not the correct explanation of

Statement 2.
c. Statement 1 is true and Statement 2 is false
d. Statement 1 is false and Statement 2 is true
A. Statement I is true, Statement II is true,

Statement II is a correct explanation for

Statement I

B. Statement I is true, Statement II is true,

Statement II is not a corrected explanation for Statement I
C. Statement is true, Statement II is false
D. Statement I is false, Statement II is true

Answer: A

D Watch Video Solution

11. The equation of a tangent to the parabola $y^{2}=8 x i s y=x+2$. The point on this line
from which the other tangent to the parabola is perpendicular to the given tangent is
A. $(-1,1)$
B. $(0,2)$
C. $(2,4)$
D. $(-2,0)$

Answer: D

12. Consider two curves $C 1: y^{2}=4 x$;
$C 2=x^{2}+y^{2}-6 x+1=0$. Then,
A. C_{1} and C_{2} touch each other only at one point
B. C_{1} and C_{2} touch each other exactly at
two points
C. C_{1} and C_{2} intersect (but do not touch)
at exactly two points

D. C_{1} and C_{2} neither intersect nor touch

 each otherAnswer: B

D Watch Video Solution

13. If a parabola has the origin as its focus and
the line $x=2$ as the directrix, then the coordinates of the vertex of the parabola are
A. $(0,2)$
B. $(1,0)$
C. $(0,1)$
D. $(2,0)$

Answer: B

D Watch Video Solution

14. In a school, there are 30 teachers who teach Mathematics or Physics. Of these, 18 teach Mathematics and 6 teach both Physics
and Mathematics. How many teach Physics

only?

D Watch Video Solution

15. Let A and B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having $A B$ as its diameter, then find the slope of the line joining A and B.

$$
\text { A. }-\frac{1}{r}
$$

B. $\frac{1}{r}$
C. $\frac{2}{r}$
D. $-\frac{2}{r}$

Answer: C::D

D Watch Video Solution

16. If two tangents drawn from a point P to the parabola $y 2=4 x$ are at right angles, then the locus of P is
A. $2 x+1=0$
B. $x=-1$
C. $2 x-1=0$
D. $x=1$

Answer: B

D Watch Video Solution

17. Of the 125 students in an elementary school, 89 students play checkers and 45
students play checkers and chess. How many students in the school play chess?

D Watch Video Solution

18. What is the 5th term of this sequence 9, 13,

17, ...?

D Watch Video Solution

19. In a group of 400 people, 250 can speak Punjabi and 200 can speak English. How many
people can speak only English?

D Watch Video Solution

20. If $\mathrm{f}(\mathrm{x})=\mathrm{a} \cos (\mathrm{bx}+\mathrm{c})+\mathrm{d}$, then what is the range of $f(x)$?

D Watch Video Solution

21. If $f(x)=3 x-5$, then inverse of $f(x)$ is
22. Let $P Q$ be a focal chord of the parabola $y^{2}=4 a x$. The tangents to the parabola at P and Q meet at point lying on the line $y=2 x+a, a<0$.

If chord $P Q$ subtends an angle θ at the vertex of $y^{2}=4 a x$, then $\tan \theta=$
A. $\frac{2}{3} \sqrt{7}$
B. $-\frac{2}{3} \sqrt{7}$
C. $\frac{2}{3} \sqrt{5}$
D. $-\frac{2}{3} \sqrt{5}$

Answer: D

D Watch Video Solution

23. Let $P Q$ be a focal chord of the parabola
$y^{2}=4 a x$. The tangents to the parabola at P
and Q meet at point lying on the line
$y=2 x+a, a<0$.

The length of chord PQ is
A. 7 a
B. 5 a
C. 2a
D. 3a

Answer: B
(Watch Video Solution
24. The slope of the line touching both the
parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is
A. $1 / 8$
B. $2 / 3$
C. $1 / 2$
D. $3 / 2$

Answer: C

- Watch Video Solution

25. Evaluate $\int 28 x^{2} d x$.

D Watch Video Solution

26. Let a, r, s, t be non-zero real numbers. Let
$P\left(a t^{2}, 2 a t\right), Q\left(a r^{2}, 2 a r\right)$ and $S\left(a s^{2}, 2 a s\right)$
be distinct points on the parabola $y^{2}=4 a x$.

Suppose that PQ is the focal chord and lines
$Q R$ and $P K$ are parallel, where K the point
(2a,0).

The value of r is

$$
\begin{aligned}
& \text { A. }-\frac{1}{t} \\
& \text { B. } \frac{t^{2}+1}{t} \\
& \text { C. } \frac{1}{t}
\end{aligned}
$$

D. $\frac{t^{2}-1}{t}$

Answer: D

D Watch Video Solution

27. Let a, r, s, t be non-zero real numbers. Let
$P\left(a t^{2}, 2 a t\right), Q\left(a r^{2}, 2 a r\right)$ and $S\left(a s^{2}, 2 a s\right)$
be distinct points on the parabola $y^{2}=4 a x$.

Suppose that PQ is the focal chord and lines

QR and PK are parallel, where K the point
(2a,0).

If $s t=1$, then the tangent at P and the normal at
S to the parabola meet at a point whose ordinate is
A. $\frac{\left(t^{2}+1\right)^{2}}{2 t^{3}}$
B. $\frac{a\left(t^{2}+1\right)^{2}}{2 t^{3}}$
C. $\frac{a\left(t^{2}+1\right)^{2}}{t^{3}}$
D. $\frac{a\left(t^{2}+2\right)^{2}}{t^{3}}$

Answer: B

28. Let O be the vertex and Q be any point on

 the parabola, $x^{2}=8 y$. It the point P divides the line segment $O Q$ internally in the ratio 1 : 3 , then the locus of P is :$$
\begin{aligned}
& \text { A. } x^{2}=y \\
& \text { B. } y^{2}=x \\
& \text { C. } y^{2}=2 x \\
& \text { D. } x^{2}=2 y
\end{aligned}
$$

Answer: D

29. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle
$(x-3)^{2}+(y+2)^{2}=r^{2}$ then the value of r^{2}
is \qquad

D Watch Video Solution

30. Let P and Q be distinct points on the parabola $y^{2}=2 x$ such that a circle with PQ as
diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle $\triangle O P Q$ is $3 \sqrt{2}$, then which of the following is (are) the coordinates of P ?
A. $(4,2 \sqrt{2})$
B. $(9,3 \sqrt{2})$
C. $\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$
D. $(1, \sqrt{2})$

Answer: A::D
31. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the center C of the circle,$x^{2}+(y+6)^{2}=1$.

Then the equation of the circle, passing through C and having its canter at P is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-4 x+8 y+12=0 \\
& \text { B. } x^{2}+y^{2}-x+4 y-12=0 \\
& \text { C. } x^{2}+y^{2}-\frac{x}{4}+2 y-24=0 \\
& \text { D. } x^{2}+y^{2}-4 x+9 y+18=0
\end{aligned}
$$

Answer: A

D Watch Video Solution

32. The circle $\mathrm{C} 1: x^{2}+y^{2}=3$, with center at O ,
intersects the parabola $x^{2}=2 y$ at the point P
in the first quadrant. Let the tangent to the
circle C1 at P touches other two circles C2 and

C3 at R2 and R3, respectively. Suppose C2 and
C3 have equal radii $2 \sqrt{3}$ and centers Q 2 and
Q3, respectively.If Q_{2} and Q_{3} lies on the y axis, then
A. $Q_{2} Q_{3}=12$
B. $R_{2} R_{3}=4 \sqrt{6}$
C. area of $\Delta O R_{2} R_{3}$ is $6 \sqrt{2}$
D. area of $\Delta P Q_{2} Q_{3}$ is $4 \sqrt{2}$

Answer: A::B::C

D Watch Video Solution

33. Let P be the point on the parabola $y^{2} 4 x$ which is at the shortest distance from the
$x^{2}+y^{2}-4 x-16 y+64=0$. Let Q be the
point on the circle dividing the line segment SP internally. Then
A. $S P=2 \sqrt{5}$
B. $S Q: Q P=(\sqrt{5}+1): 2$
C. the x-intercept of the normal to the parabola at P is 6
D. the slope of the tangent to the circle at

Q is $\frac{1}{2}$

- Watch Video Solution

34. The radius of a circle, having minimum area, which touches the curve $y=4-x^{2}$ and the lines $y=|x|$ is:

$$
\begin{aligned}
& \text { A. } 4(\sqrt{2}+1) \\
& \text { B. } 2(\sqrt{2}+1) \\
& \text { C. } 2(\sqrt{2}-1) \\
& \text { D. } 4(\sqrt{2}-1)
\end{aligned}
$$

35. If a chord which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 \mathrm{x}+\mathrm{y}=\mathrm{p}$, and mid-point (h, k), then which of the following is (are) possible value (s) of p, h and k?

$$
\begin{aligned}
& \text { А. } p=2, h=3, k=-4 \\
& \text { B. } p=-1, h=1, k=-3 \\
& \text { С. } p=-2, h=2, k=-4
\end{aligned}
$$

$$
\text { D. } p=5, h=4, k=-3
$$

Answer: A

D Watch Video Solution

