©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

PRODUCT OF VECTORS

Example

1. If θ is the angle between the vectors
$a=2 \hat{i}+2 \hat{j}-\hat{k}$ and $b=6 \hat{i}-3 \hat{j}+2 \hat{k}$, then
A. $\cos \theta=\frac{4}{21}$
B. $\cos \theta=\frac{3}{19}$
C. $\cos \theta=\frac{2}{19}$
D. $\cos \theta=\frac{5}{21}$

Watch Video Solution

2. $(a \cdot \hat{i}) \hat{i}+(a \cdot \hat{j}) \hat{j}+(a \cdot \hat{k}) \hat{k}$ is equal to
A. a
B. 2 a
C. 3 a
D. 0

Answer: A

- Watch Video Solution

3. If $|\vec{a}|=3,|\vec{b}|=4$, then the value 'lambda' for which $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{a}-\lambda \vec{b}$, is
A. $9 / 16$
B. $3 / 4$
C. $3 / 2$
D. $-3 / 4$

Answer: B

- Watch Video Solution

4. The projection of vectors $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on vacb $=\hat{i}+2 \hat{j}+\hat{k}$ is:
A. $\frac{1}{\sqrt{14}}$
B. $\frac{2}{\sqrt{14}}$
C. $\sqrt{14}$
D. $\frac{-2}{\sqrt{14}}$

Answer: B

5. If $\vec{a}=5 \hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\lambda \hat{k}$. Find λ such that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are orthogonal.

- Watch Video Solution

6. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a}+\vec{b}-\vec{c}=0$. If the area of triangle formed by vectors \vec{a} and $\vec{b} i s A$, then what is the value of $4 A^{2}$?

- Watch Video Solution

7. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \vec{a} and $\vec{a}+\vec{b}+\vec{c}$.

- Watch Video Solution

8. If $a+2 b+3 c=4$, then find the least value of $a^{2}+b^{2}+c^{2}$.
9. Prove using vectors: The median to the base of an isosceles triangle is perpendicular to the base.

- Watch Video Solution

10. In $\triangle A B C$, prove that $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ by vector method.

- Watch Video Solution

11. In any triangle $A B C$, prove the projection formula $a=b \cos C+c \cos B$ using vector method.

- Watch Video Solution

12. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{j}+4 \hat{k}$ find the vector component of \vec{a} along \vec{b}.

- Watch Video Solution

13. Express the vector $\vec{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}$ as the sum of two vectors such that one is parallel to the vector $\vec{b}=3 \hat{i}+\hat{k}$ and other is perpendicular to \vec{b}.

- Watch Video Solution

14. Two forces $f_{1}=3 \hat{i}-2 \hat{j}+\hat{k}$ and $f_{2}=\hat{i}+3 \hat{j}-5 \hat{k}$ acting on a particle at A move it to B. find the work done if the position vector of A and B are $-2 \hat{i}+5 \hat{k}$ and $3 \hat{i}-7 \hat{j}+2 \hat{k}$.

- Watch Video Solution

15. Forces of magnitudes 5 and 3 units acting in the directions $6 \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+6 \hat{k}$ respectively act on a particle which is displaced from the point ($2,2,-1$) to ($4,3,1$) . The work done by the forces, is

- Watch Video Solution

16. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$ then find (m, n)

- Watch Video Solution

17. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.

- Watch Video Solution

18. If \vec{a} is any vector, then $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}=$
A. $|a|^{2}$
B. 0
C. $3|a|^{2}$
D. $2|a|^{2}$

- Watch Video Solution

19. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=0$, prove that $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$.

- Watch Video Solution

20. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that
$\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$, then show that $\vec{b}=\vec{c}$
21. Let $\vec{a}, \vec{b}, \vec{c}$, be three non-zero vectors. If $\vec{a} \cdot(\vec{b} \times \vec{c})=0$ and \vec{b} and \vec{c} are not parallel, then prove that $\vec{a}=\lambda \vec{b}+\mu \vec{c}$, where λ are some scalars.

- Watch Video Solution

22. If $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq \vec{c}$, show that $\vec{b}=\vec{c}+t \vec{a}$ for some scalar t.

- Watch Video Solution

23. For any two vectors \vec{u} and \vec{v} prove that
$(\vec{u} \vec{v})^{2}+|\vec{u} \times \vec{v}|^{2}=|\vec{u}|^{2}|\vec{v}|^{2}$ and
$\left(\overrightarrow{1}+|\vec{u}|^{2}\right)\left(\overrightarrow{1}+|\vec{v}|^{2}\right)=(1-\vec{u} \vec{v})^{2}+|\vec{u}+\vec{v}+(\vec{u} \times \vec{v})|^{2}$

- Watch Video Solution

24. The sine of the angle between the vector $a=3 \hat{i}+\hat{j}+\hat{k}$ and $b=2 \hat{i}-2 \hat{j}+\hat{k}$ is
A. $\sqrt{\frac{74}{99}}$
B. $\sqrt{\frac{55}{99}}$
C. $\sqrt{\frac{37}{99}}$
D. $\frac{5}{\sqrt{41}}$

Answer: A

- Watch Video Solution

25. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, find $\vec{a} \vec{b}$.

- Watch Video Solution

26. The unit vector perpendicular to the vectors $6 \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-6 \hat{j}-2 \hat{k}$, is
A. $\frac{2 \hat{i}-3 \hat{j}+6 \hat{k}}{7}$
B. $\frac{2 \hat{i}-3 \hat{j}-6 \hat{k}}{7}$
C. $\frac{2 \hat{i}+3 \hat{j}-6 \hat{k}}{7}$
D. $\frac{2 \hat{i}+3 \hat{j}+6 \hat{k}}{7}$

Answer: C

- Watch Video Solution

27. Find a unit vector perpendicular to the plane determined by the points $(1,-1,2),(2,0,-1)$ and $(0,2,1)$.

- Watch Video Solution

28. Let A, B and C be unit vectors. Suppose $A \cdot B=A \cdot C=0$ and the angle betweenn B and C is $\frac{\pi}{4}$. Then,
a. $A= \pm 2(B \times C)$
b. $A= \pm \sqrt{2}(B \times C)$
c. $A= \pm 3(B+C)$
d. $A= \pm \sqrt{3}(B \times C)$.
A. $A= \pm 2(B \times C)$
B. $A= \pm \sqrt{2}(B \times C)$
C. $A= \pm 3(B+C)$
D. $A= \pm \sqrt{3}(B \times C)$.

Answer: b

- Watch Video Solution

29. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right-handed system, then find \vec{c}.
A. $z \hat{i}-x \hat{k}$
B. 0
C. $y \hat{j}$
D. $-z \hat{i}+x \hat{k}$

Answer: A

- Watch Video Solution

30. Let $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$; prove that $\vec{a}, \vec{b}, \vec{c}$ are mutually at righ angles such that $|\vec{b}|=1 a n d|\vec{c}|=|\vec{a}|$.

(Watch Video Solution

31. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices A, B, C of a triangle $A B C$, show that the area triangle

ABCis $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$. Deduce the condition for points $\vec{a}, \vec{b}, \vec{c}$ to be collinear.

- Watch Video Solution

32. Show that perpendicular distance of the point \vec{c} from the line joining
\vec{a} and \vec{b} is $\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}{|\vec{b}-\vec{a}|}$

- Watch Video Solution

33. find the area of a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$.

- Watch Video Solution

34. Find the moment about $(1,-1,-1)$ of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at $(1,0,-2)$.
35. Three forces $\hat{i}+2 \hat{j}-3 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $-\hat{i}-\hat{j}+\hat{k}$ acting on a particle at the point $(0,1,2)$ the magnitude of the moment of the forces about the point $(1,-2,0)$ is
A. $2 \sqrt{35}$
B. $6 \sqrt{10}$
C. $4 \sqrt{7}$
D. none of these

Answer: B

- Watch Video Solution

36. The moment about a line through the origin having the direction of $30(12 \hat{i}-4 \hat{j}-3 \hat{k})$ is
37. The moment of the couple formed by the forces $5 \hat{i}+\hat{j}$ and $-5 \hat{i}-\hat{k}$ acting at the points (9,-1,2) and ($3,-2,1)$ respectively, is
A. $-\hat{i}+\hat{j}+5 \hat{k}$
B. $\hat{i}-\hat{j}-5 \hat{k}$
C. $2 \hat{i}-2 \hat{j}-10 \hat{k}$
D. $-2 \hat{i}+2 \hat{j}+10 \hat{k}$

Answer: B

- Watch Video Solution

38. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2) \operatorname{and}(1,2,-2)$. Find the velocity of the particle at point $P(3,6,4)$.
39. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$. Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

40. Find the volume of the parallelopiped whose edges are represented by $a=2 \hat{i}-3 \hat{j}+4 \hat{k}, b=\hat{i}+2 \hat{j}-\hat{k}$ and $c=3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

41. Let $a=x \hat{i}+12 \hat{j}-\hat{k}, b=2 \hat{i}+2 x \hat{j}+\hat{k}$ and $c=\hat{i}+\hat{k}$. If $\mathrm{b}, \mathrm{c}, \mathrm{a}$ in that order form a left handed system, then find the value of x .

- Watch Video Solution

42. For any three vectors a, b, c prove that
$[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

- Watch Video Solution

43. Show that vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar if $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar.

- Watch Video Solution

44. For any three vectors a, b and c prove that
$[\mathrm{abc}]^{2}=\left|\begin{array}{lll}a \cdot a & a \cdot b & a \cdot c \\ b \cdot a & b \cdot b & b \cdot c \\ c \cdot a & c \cdot b & c \cdot c\end{array}\right|$

- Watch Video Solution

45. If a, b, c, l and m are vectors, prove that
[a b c] $(l \times m)=\left|\begin{array}{ccc}a & b & c \\ a \cdot l & b \cdot l & c \cdot l \\ a \cdot m & b \cdot m & c \cdot m\end{array}\right|$

- Watch Video Solution

46. If a and b are non-zero and non-collinear vectors, then show that $a \times b=[\mathrm{abi}] \hat{i}+[\mathrm{abj}] \hat{j}+[\mathrm{abk}] \hat{k}$

- Watch Video Solution

47. If a, b and c are any three vectors in space, then show that
$(c+b) \times(c+a) \cdot(c+b+a)=[\mathrm{ab} \mathrm{c}]$

- Watch Video Solution

48. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that $(\vec{u}+\vec{v}-\vec{w}) \cdot[(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})]=\vec{u} \cdot(\vec{v} \times \vec{w})$

- Watch Video Solution

49. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when
A. no value of λ
B. all except one value of λ
C. all except two values of λ
D. all values of λ

Answer: C

- Watch Video Solution

50. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non -coplanar and l, m, n are distinct scalars such that

$$
[l \vec{a}+m \vec{b}+n \vec{c} l \vec{b}+m \vec{c}+n \vec{a} l \vec{c}+m \vec{a}+n \vec{b}]=0 \text { then }
$$

A. $l+m+n=0$
B. $l m+m n+n l=0$
C. $l^{3}+m^{3}+n^{3}=0$
D. $l^{2}+m^{2}+n^{2}=0$

Answer: A

- Watch Video Solution

51. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar unit vectors each inclined with other at an angle of 30°, then the volume of tetrahedron whose edges are $\vec{a}, \vec{b}, \vec{c}$ is (in cubic units)
A. $\frac{\sqrt{3 \sqrt{3}-5}}{12}$
B. $\frac{3 \sqrt{3}-5}{12}$
C. $\frac{5 \sqrt{2}+3}{12}$
D. none of these

- Watch Video Solution

52. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+\hat{j}, \vec{c}=\hat{i} \quad$ and
$(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}+\mu \vec{b}$, then $\lambda+\mu=$
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

53. Q8) Ifa, $\mathrm{b}, \mathrm{c}(\mathrm{b}$, care non-parallel) are unit vectors such that $a \times(b \times c)=$ $(1 / 2)$ then the angle which a makes with b and are en the angle which a
makes with b and c are A. 30, 60 B. $600,90^{\circ} \mathrm{C} .90,60$ D. $60^{\circ}, 30^{\circ}$

- Watch Video Solution

54. If $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+0 \hat{j}+\hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b},
(ii) that its projection on \vec{b} is 0 .

- Watch Video Solution

55. Prove that
$a \times(b \times c)+b \times(c \times a)+c \times(a \times b)=0$

- Watch Video Solution

56.
57. If $[a \times b b \times c c \times a]=\lambda[a b c]^{2}$, then λ is equal to

- Watch Video Solution

58. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are also coplanar.

- Watch Video Solution

59. If A, B and C are vectors such that $|B|=|C|$, prove that $\{(A+B) \times(A+C)\} \times(B \times C) \cdot(B+C)=0$

- Watch Video Solution

60. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a}|\mid(\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$.
61. Find the set of vector reciprocal to the set off vectors $2 \hat{i}+3 \hat{j}-\hat{k}, \hat{i}-\hat{j}-2 \hat{k},-\hat{i}+2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

62. Find a set of vector reciprocal to the vectors a,b and $a \times b$.

- Watch Video Solution

63. If $a^{\prime}=\frac{b \times c}{[\mathrm{abc}]}, b^{\prime}=\frac{c \times a}{[\mathrm{abc}]}, c^{\prime}=\frac{a \times b}{[\mathrm{abc}]}$
then show that
$a \times a^{\prime}+b \times b^{\prime}+c \times c^{\prime}=0$, where a, b and c are non-coplanar.

- Watch Video Solution

64. If $\left(e_{1}, e_{2}, e_{3}\right)$ and ($\left.e_{1}^{\prime}, e_{2}^{\prime}, e^{\prime}{ }_{3}\right)$ are two sets of non-coplanar vectors such that $i=1,2,3$ we have $e_{i} \cdot e_{j}^{\prime}=\left\{\begin{array}{ll}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{array}\right.$ then show that $\left[e_{1} e_{2} e_{3}\right]\left[e_{1}^{\prime} e_{2}^{\prime} e^{\prime}{ }_{3}\right]=1$

- Watch Video Solution

65. Solve the vector equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{r} \cdot \vec{c}=0$ provided that \vec{c} is not perpendicular to \vec{b}

- Watch Video Solution

66. Solve for X , such that $A \cdot X=C$ and $A \times X=B$ with $C \neq 0$.

- Watch Video Solution

67. Solve the vector equation $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$, where \vec{a}, \vec{b} are two non-collinear vectors and k is any scalar.
68. Solve for vectors A and B, where
$A+B=a, A \times B=b, A \cdot a=1$.

- Watch Video Solution

69. If $|\vec{a}|=5,|\vec{a}-\vec{b}|=8$ and $|\vec{a}+\vec{b}|=10$, then find $|\vec{b}|$.
A. 1
B. $\sqrt{57}$
C. 3
D. none of these

Answer: B
70. Find the area of a parallelogram whose adjacent sides are given by $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{2}\right)$
C. $\cos ^{-1}\left(\frac{4}{9}\right)$
D. $\cos ^{-1}\left(\frac{5}{9}\right)$

Answer: A

- Watch Video Solution

71. Let $\vec{a}, \vec{b}, \vec{c}$ be vectors of length $3,4,5$ respectively. Let \vec{a} be perpendicular to $\vec{b}+\vec{c}, \vec{b}$ to $\vec{c}+\vec{a}$ and \vec{c} to $\vec{a}+\vec{b}$. Then $|\vec{a}+\vec{b}+\vec{c}|$ is :
A. $2 \sqrt{5}$
B. $2 \sqrt{2}$
C. $10 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: D

- Watch Video Solution

72. Let $a, b>0$ and $\alpha=\frac{\hat{i}}{a}+\frac{4 \hat{j}}{b}+b \hat{k}$ and $\beta=b \hat{i}+a \hat{j}+\frac{\hat{k}}{b}$, then the maximum value of $\frac{30}{5+\alpha \cdot \beta}$ is
A. 3
B. 2
C. 4
D. 8

Answer: A

73. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval
A. $\left[0, \frac{\pi}{6}\right)$
B. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
C. $\left(\frac{5 \pi}{6}, \pi\right]$
D. $\left[\frac{\pi}{2}, \frac{5 \pi}{6}\right]$.

Answer: A

- Watch Video Solution

74. If $\vec{a}=3 \hat{i}-\hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ are given vectors. A vector \vec{c} which is perpendicular to z -axis satisfying $\vec{c} \cdot \vec{a}=9$ and $\vec{c} \cdot \vec{b}=-4$. If inclination of \vec{c} with x -axis and y -axis and y -axis is α and β respectively, then which of the following is not true?
A. $\alpha>\frac{\pi}{4}$
B. $\beta>\frac{\pi}{2}$
C. $\alpha>\frac{\pi}{2}$
D. $\beta<\frac{\pi}{2}$

Answer: C

- Watch Video Solution

75. If A is 3×3 matrix and u is a vector. If $A u$ and u are orthogonal for all real u, then matrix A is a
A. singular
B. non-singular
C. symmetric
D. skew-symmetric

Answer: A

76. Let the cosine of angle between the vectors p and q be λ such that $2 p+q=\hat{i}+\hat{j}$ and $p+2 q=\hat{i}-\hat{j}$, then λ is equal to
A. $\frac{5}{9}$
B. $-\frac{4}{5}$
C. $\frac{3}{9}$
D. $\frac{7}{9}$

Answer: B

- Watch Video Solution

77. The three vectors a, b and c with magnitude 3,4 and 5 respectively and $a+b+c=0$, then the value of $a . b+b . c+c . a$ is

$$
\text { A. } 47
$$

B. 25
C. 50
D. -25

Answer: D

- Watch Video Solution

78. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2 a n d|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals a 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d. 14
A. $\sqrt{14}$
B. $\sqrt{7}$
C. 2
D. 14

Answer: A

79.

$\vec{a}, \vec{b}, \vec{c}$ areunit $\longrightarrow r s$, then $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+\left|\vec{c}^{2}-\vec{a}^{2}\right|^{2}$ does not exceed
A. 4
B. 9
C. 8
D. 6

Answer: B

D Watch Video Solution

80. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between \vec{b} and the z-axis is acute and less then $\pi / 6$
A. $0<\lambda<\frac{1}{2}$
B. $\lambda>\sqrt{159}$
C. $-\frac{1}{2}<\lambda<0$
D. null set

Answer: D

- Watch Video Solution

81. The locus of a point equidistant from two points with position vectors \vec{a} and \vec{b} is
A. $\left[r-\frac{1}{2}(a+b)\right] \cdot(a+b)=0$
B. $\left[r-\frac{1}{2}(a+b)\right] \cdot(a-b)=0$
C. $\left[r-\frac{1}{2}(a+b)\right] \cdot a=0$
D. $[r-(a+b)] \cdot b=0$
82. If A is $\left(x_{1}, y_{1}\right)$ where $x_{1}=1$ on the curve $y=x^{2}+x+10$. The value of $\overline{O A} \cdot \overline{A B}$ is
A. $-\frac{520}{3}$
B. -148
C. 140
D. 12

Answer: B

- Watch Video Solution

83. In a tetrahedron $O A B C$, the edges are of lengths,

$$
|O A|=|B C|=a,|O B|=|A C|=b,|O C|=|A B|=c .
$$

G_{1} and G_{2} be the centroids of the triangle ABC and AOC such that $O G_{1} \perp B G_{2}$, then the value of $\frac{a^{2}+c^{2}}{b^{2}}$ is
A. 2
B. 3
C. 6
D. 9

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 84. The OABC is a tetrahedron such that } \\
& O A^{2}+B C^{2}=O B^{2}+C A^{2}=O C^{2}+A B^{2} \text {,then }
\end{aligned}
$$

A. $O A \perp B C$
B. $O B \perp A C$
C. $O C \perp A B$
D. $A B \perp A C$
85. If a, b, c and $A, B, C \quad \in R-\{0\}$ such that
$a A+b B+c D+\sqrt{\left(a^{2}+b^{2}+c^{2}\right)\left(A^{2}+B^{2}+C^{2}\right)}=0$, then value of $\frac{a B}{b A}+\frac{b C}{c B}+\frac{c A}{a C}$ is
A. 3
B. 4
C. 5
D. 6

Answer: A

Watch Video Solution

86. The unit vector in $X O Z$ plane and making angles 45° and 60° respectively with $\vec{a}=2 i+2 j-k$ and $\vec{b}=0 i+j-k$, is
A. $\frac{1}{\sqrt{2}}(-\hat{i}+\hat{k})$
B. $\frac{1}{\sqrt{2}}(\hat{i}-\hat{k})$
C. $\frac{\sqrt{3}}{2}(\hat{i}+\hat{k})$
D. none of these

Answer: B

- Watch Video Solution

87. the unit vector orthogonal to vector $-\hat{i}+2 \hat{j}+2 \hat{k}$ and making equal angles with the x - and y -axes is
A. $\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
B. $\frac{1}{3}(2 \hat{i}-2 \hat{j}-\hat{k})$
C. $-\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
D. $\frac{1}{3}(2 \hat{i}+2 \hat{j}+\hat{k})$
88. If $(a+3 b) \cdot(7 a-5 b)=0$ and $(a-4 b) \cdot(7 a-2 b)=0$. Then, the angle between a and b is
A. 60°
B. 30°
C. 90°
D. none of these

Answer: A

- Watch Video Solution

89. Let two non-collinear vectors \vec{a} and \vec{b} inclined at an angle $\frac{2 \pi}{3}$ be such that $|\vec{a}|=3$ and $|\vec{b}|=2$. If a point P moves so that at any time t its position vector $\overrightarrow{O P}$ (where O is the origin) is given as
$\overrightarrow{O P}=\left(t+\frac{1}{t}\right) \vec{a}+\left(t-\frac{1}{t}\right) \vec{b}$ then least distance of P from the origin is
A. $\sqrt{2 \sqrt{133}-10}$
B. $\sqrt{2 \sqrt{133}+10}$
C. $\sqrt{5+\sqrt{133}}$
D. none of these

Answer: B

- Watch Video Solution

90. If a, b, c be non-zero vectors such that a is perpendicular to b and c and $|a|=1,|b|=2,|c|=1, b \cdot c=1$ and there is a non-zero vector d coplanar with $\mathrm{a}+\mathrm{b}$ and $2 \mathrm{~b}-\mathrm{c}$ and $d \cdot a=1$, then minimum value of $|\mathrm{d}|$ is
A. $\frac{2}{\sqrt{13}}$
B. $\frac{3}{\sqrt{13}}$
C. $\frac{4}{\sqrt{5}}$
D. $\frac{4}{\sqrt{13}}$.

Answer: D

- Watch Video Solution

91. A groove is in the form of a broken line ABC and the position vectors fo the three points are respectively $2 \hat{i}-3 \hat{j}+2 \hat{k}, 3 \hat{i}-\hat{k}, \hat{i}+\hat{j}+\hat{k}$, A force of magnitude $24 \sqrt{3}$ acts on a particle of unit mass kept at the point A and moves it angle the groove to the point C. If the line of action of the force is parallel to the vector $\hat{i}+2 \hat{j}+\hat{k}$ all along, the number of units of work done by the force is
A. $144 \sqrt{2}$
B. $144 \sqrt{3}$
C. $72 \sqrt{2}$
D. $72 \sqrt{3}$

- Watch Video Solution

92. For any vectors $a, b,|a \times b|^{2}+(a \cdot b)^{2}$ is equal to
A. $|a|^{2}|b|^{2}$
B. $|a+b|$
C. $|a|^{2}-|b|^{2}$
D. 0

Answer: A

Watch Video Solution
93. If $a=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}+\hat{j}-\hat{k}$, then vectors perpendicular to a and b is/are
A. $\lambda(\hat{i}+\hat{j})$
B. $\lambda(\hat{i}+\hat{j}+\hat{k})$
C. $\lambda(\hat{i}+\hat{k})$
D. none of these

Answer: C

- Watch Video Solution

94. If $a \times b=b \times c \neq 0$, then the correct statement is
a. $b \| c$
b. $a \| b$
c. $(a+c) \| b$
d. none of these
A. $b|\mid c$
B. $a|\mid b$
C. $(a+c)|\mid b$
D. none of these

Answer: C

- Watch Video Solution

95. If $a=\hat{i}+2 \hat{j}+3 \hat{k}, b=-\hat{i}+2 \hat{j}+\hat{k}$ and $c=3 \hat{i}+\hat{j}$. If
$(a+t b) \perp c$, then t is equal to
A. 5
B. 4
C. 3
D. 2

Answer: A

96. If $a=2 \hat{i}-3 \hat{j}+\hat{k}, b=-\hat{i}+\hat{k}, c=2 \hat{k} j-\hat{k}$, then the area (in sq units) of parallelogram with diagonals $a+b$ and $b+c$ will be
A. $\sqrt{21}$
B. $2 \sqrt{21}$
C. $\frac{1}{2} \sqrt{21}$
D. none of these

Answer: C

- Watch Video Solution

97. The coordinates of the mid-points of the sides of $\triangle P Q R$, are $(3 a, 0,0),(0,3 b, 0)$ and $(0,0,3 c)$ respectively, then the area of $\triangle P Q R$ is
A. $18 \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}$
B. $9 \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}$
C. $\frac{9}{2} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}$
D. $18 \sqrt{a b+b c+c a}$

Answer: A

- Watch Video Solution

98. In a parallelogram $A B C D, A B=\hat{i}+\hat{j}+\hat{k}$ and diagonal $A C=\hat{i}-\hat{j}+\hat{k}$ and area of parallelogram is $\sqrt{8} s q$ units, $\angle B A C$ is equal to
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\sin ^{-1}\left(\frac{\sqrt{8}}{3}\right)$
D. $\cos ^{-1}\left(\frac{\sqrt{8}}{3}\right)$

Answer: C

99. Let $\triangle A B C$ be a given triangle. If $|\overrightarrow{B A}-t \overrightarrow{B C}| \geq|\overrightarrow{A C}|$ for any $t \in R$,then $\triangle A B C$ is
A. Equilateral
B. Right angled
C. Isosceles
D. none of these

Answer: B

- Watch Video Solution

100. If $a^{2}+b^{2}+c^{2}=1$ where, $\mathrm{a}, \mathrm{b}, \mathrm{c} \in R$, then the maximum value of $(4 a-3 b)^{2}+(5 b-4 c)^{2}+(3 c-5 a)^{2}$ is
A. 25
B. 50
C. 144
D. none of these

Answer: B

- Watch Video Solution

101. If a, b, c are then $p^{t h}, q^{t h}, r^{t h}$, terms of an HP and $\vec{u}=(q-r) \hat{i}+(r-p) \hat{j}+(p-q) \hat{k}$ and $\vec{v}=\frac{\hat{i}}{a}+\frac{\hat{j}}{b}+\frac{\hat{k}}{c}$ then
A. u and v are parallel vectors
B. u and v are orthogonal vectors
C. $u \cdot v=1$
D. $u \times v=\hat{i}+\hat{j}+\hat{k}$.

Answer: B

102. If the vector product of a constant vector $\vec{O} A$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is (a)a straight line perpendicular to $\vec{O} A$ (b)a circle with centre O and radius equal to $|\vec{O} A|$ (c) a straight line parallel to $\vec{O} A$ (d) none of these
A. a straight line perpendicular to OA
B. a circle with centre O radius equal to $|\mathrm{OA}|$
C. a straight line parallel to $O A$
D. none of these

Answer: C

- Watch Video Solution

103. Unit vector perpendicular to the plane of $\triangle A B C$ with position vectors $\mathrm{a}, \mathrm{b}, \mathrm{c}$ of the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is

$$
\text { A. } \frac{a \times b+b \times c+c \times a}{\Delta}
$$

B. $\frac{a \times b+b \times c+c \times a}{2 \Delta}$
C. $\frac{a \times b+b \times c+c \times a}{4 \Delta}$
D. none of these

Answer: B

D Watch Video Solution

104. The vector r satisfying the conditions that I . it is perrpendicular to $3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $18 \hat{i}-22 \hat{j}-5 \hat{k}$ II. It makes an obtuse angle with $Y-$ axis III. $|r|=14$.
A. $2(-2 \hat{i}-3 \hat{j}+6 \hat{k})$
B. $2(2 \hat{i}-3 \hat{j}+6 \hat{k})$
C. $4 \hat{i}+6 \hat{j}-12 \hat{k}$
D. none of these
105. Let a, b, c denote the lengths of the sides of a triangle such that
$(a-b) \vec{u}+(b-c) \vec{v}+(c-a)(\vec{u} \times \vec{v})=\overrightarrow{0}$
For any two non-collinear vectors \vec{u} and \vec{v}, then the triangle is
A. right angled
B. equilateral
C. isosceles
D. scalene

Answer: B

- Watch Video Solution

106. The value of the following expression
$\hat{i} .(\hat{j} \times \hat{k})+j .(\hat{i} \times \hat{k})+\hat{k} .(\hat{j} \times \hat{i})$ is
A. 3
B. 2
C. 1
D. 0

Answer: A

- Watch Video Solution

107. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if
A. $a \cdot b=0, b \cdot c=0$
B. $b \cdot c=0, c \cdot a=0$
C. $c \cdot a=0, a \cdot b=0$
D. $a \cdot b=b \cdot c=c \cdot a=0$
108. The position vectors of three vertices A, B, C of a tetrahedron OABC with respect to its vertex O are $6 \hat{i}, 6 \hat{j}, \hat{k}$, then its volume (in cu units) is
A. 3
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. 6

Answer: D

- Watch Video Solution

109. A parallelepiped is formed by planes drawn parallel to coordinate axes through the points $A=(1,2,3)$ and $B=(9,8,5)$. The volume of that parallelepiped is equal to (in cubic units)
A. 192
B. 48
C. 32
D. 96

Answer: D

- Watch Video Solution

110. If $|a|=1,|b|=3$ and $|c|=5$, then the value of $\left[\begin{array}{ccc}a-b & b-c & c-a\end{array}\right]$ is
A. 0
B. 1
C. -1
D. none of these
111. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three non-coplanar vectors, then $3 a-7 b-4 c, 3 a-2 b+c$ and $a+b+\lambda c$ will be coplanar, if λ is
A. -1
B. 1
C. 3
D. 2

Answer: D

- Watch Video Solution

112. Find the number of terms in the AP -3,1,5,9......,237
113. Let a, b, c be distinct non-negative numbers. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+b \hat{k}$ lies in a plane then c is
A. HM of a and b
B. 0
C. AM of a and b
D. GM of a and b

Answer: D

- Watch Video Solution

114. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and λ is a real number, then $\left[\begin{array}{lll}\lambda(\vec{a}+\vec{b}) & \lambda^{2} \vec{b} & \lambda \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{c} & \vec{b}\end{array}\right]$ for
A. exactly two values of λ
B. exactly one value of λ
C. exactly three values of λ.
D. no value of λ

Answer: C

- Watch Video Solution

115. In a regular tetrahedron, let θ be angle between any edge and a face not containing the edge. Then the value of $\cos ^{2} \theta$ is
A. $1 / 6$
B. $1 / 9$
C. $1 / 3$
D. none of these

Answer: C

- Watch Video Solution

116. $D A B C$ be a tetrahedron such that $A D$ is perpendicular to the base $A B C$ and $\angle A B C=30^{\circ}$. The volume of tetrahedron is 18 . if value of $A B+B C+A D$ is minimum, then the length of AC is
A. $6 \sqrt{2-\sqrt{3}}$
B. $3(\sqrt{6}-\sqrt{2})$
C. $6 \sqrt{2+\sqrt{3}}$
D. $3(\sqrt{6}+\sqrt{2})$.

Answer: A

- Watch Video Solution

117. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the value of $\left|\begin{array}{ccc}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$
A. 2
B. 4
C. 16
D. 64

Answer: C

- Watch Video Solution

118. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.
A. -3
B. 3
C. $1 / \sqrt{3}$
D. $\sqrt{3}$

Answer: C

119. If a, b and c be any three non-zero and non-coplanar vectors, then any vector r is equal to
where, $x=\frac{[r b c]}{[a b c]}, y=\frac{[r c a]}{[a b c]}, z=\frac{[r a b]}{[a b c]}$
A. $z a+x b+y c$
B. $x z+y b+z c$
C. $y a+z b+x c$
D. none of these

Answer: B

- Watch Video Solution

120. The position vectors of vertices of $\triangle A B C$ are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $a \cdot a=b \cdot b=c \cdot c=3$. if $[\mathrm{abc} \mathrm{c}]=0$, then the position vectors of the orthocentre of $\triangle A B C$ is
A. $a+b+c$
B. $\frac{1}{3}(a+b+c)$
C. 0
D. none of these

Answer: A

- Watch Video Solution

121. Find the discriminant of the following quadratic equation :
$2 x^{2}+5 x+7=0$

- Watch Video Solution

122. Let $\vec{b}=-\vec{i}+4 \vec{j}+6 \vec{k}, \vec{c}=2 \vec{i}-7 \vec{j}-10 \vec{k}$. If \vec{a} be a unit vector and the scalar triple product $[\vec{a} \vec{b} \vec{c}]$ has the greatest value then \vec{a} is
A. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
B. $\frac{1}{\sqrt{5}}(\sqrt{2} \hat{i}-\hat{j}-\sqrt{2} \hat{k})$
C. $\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
D. $\frac{1}{\sqrt{59}}(3 \hat{i}-7 \hat{j}-\hat{k})$
A. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
B. $\frac{1}{\sqrt{5}}(\sqrt{2} \hat{i}-\hat{j}-\sqrt{2} \hat{k})$
C. $\frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
D. $\frac{1}{\sqrt{59}}(3 \hat{i}-7 \hat{j}-\hat{k})$

Answer: C

- Watch Video Solution

123.

that
vectors
$\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$
$\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$
$\vec{w}=\left(c l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}$ are coplanar.
124. Find the discriminant of the following quadratic equation :
$16 x^{2}=40 x-25$

- Watch Video Solution

125. If a, b and c are three mutually perpendicular vectors, then the projection of the vectors
$l \frac{a}{|a|}+m \frac{b}{|b|}+n \frac{(a \times b)}{|a \times b|}$ along the angle bisector of the vectors a and b is
A. $\frac{l+m}{\sqrt{2}}$
B. $\sqrt{l^{2}+m^{2}+n^{2}}$
C. $\frac{\sqrt{l^{2}+m^{2}}}{\sqrt{l^{2}+m^{2}+b^{2}}}$
D. none of these
126. If the volume of the parallelopiped formed by the vectors $\vec{a}, \vec{b}, \vec{c}$ as three coterminous edges is 27 units, then the volume of the parallelopiped having $\vec{\alpha}=\vec{a}+2 \vec{b}-\vec{c}, \vec{\beta}=\vec{a}-\vec{b}$ and $\vec{\gamma}=\vec{a}-\vec{b}-\vec{c}$ as three coterminous edges, is
A. 27
B. 9
C. 81
D. none of these

Answer: C

(D) Watch Video Solution

127. If V is the volume of the parallelepiped having three coterminous edges as \vec{a}, \vec{b} and \vec{c}, then the volume of the parallelepiped having
three coterminous edges as
$\vec{\alpha}=(\vec{a} \cdot \vec{a}) \vec{a}+(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}$,
$\vec{\beta}=(\vec{b} \cdot \vec{a}) \vec{a}+(\vec{b} \cdot \vec{b})+(\vec{b} \cdot \vec{c}) \vec{c}$
and $\vec{\lambda}=(\vec{c} \cdot \vec{a}) \vec{a}+(\vec{c} \cdot \vec{b}) \vec{b}+(\vec{c} \cdot \vec{c}) \vec{c}$ is
A. V^{3}
B. 3 V
C. V^{2}
D. 2 V

Answer: A

- Watch Video Solution

128. The nth term of an AP is $5-6 n$.Find a and d.
129. The 4th term of AP is 7 and 10th term is 16 . Find a and d.

- Watch Video Solution

130. let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 , respectively, if $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, then the acute angle between \vec{a} and \vec{c} is \qquad
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. none of these

Answer: C

- Watch Video Solution

131. Let $a=2 \hat{i}+\hat{j}+\hat{k}, b=\hat{i}+2 \hat{j}-\hat{k}$ and c is a unit vector coplanar to them. If c is perpendicular to a , then c is equal to
A. $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$
B. $-\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
C. $\frac{1}{\sqrt{5}}(\hat{i}-2 \hat{j})$
D. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$

Answer: A

- Watch Video Solution

132. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2} \quad$ and \quad the angle between $\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer: B

- Watch Video Solution

133. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. If \hat{d} is a unit vector such that $\vec{a} \cdot \hat{d}=0=[\vec{b} \vec{c} \vec{d}]$ then \hat{d} equals
A. $\pm \frac{(\hat{i}+\hat{j}+2 \hat{k})}{\sqrt{6}}$
B. $\pm \frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$
C. $\pm \frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$
D. $\pm \hat{k}$

Answer: A

134. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$ then the angle between \vec{a} and \vec{b} is
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: A

- Watch Video Solution

135. The unit vector which is orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is (a) $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ (b) $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ (c) $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$ (d) $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$.

Answer: C

- Watch Video Solution

136. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ if θ is the acute angle between vectors \vec{b} and \vec{c} then find value of $\sin \theta$.
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$
137. The value for $[a \times(b+c), b \times(c-2 a), c \times(a+3 b)]$ is equal to
A. $[a b c]^{2}$
B. $7[a b c]^{2}$
C. $-5\left[\begin{array}{lll}a \times b & b \times c & c \times a\end{array}\right]$
D. none of these

Answer: B

- Watch Video Solution

138. If a, b, c and p, q, r are reciprocal systemm of vectors, then $a \times p+b \times q+c \times r$ is equal to
A. $[a b c]$
B. $[p+q+r]$
C. 0
D. $a+b+c$

Answer: C

- Watch Video Solution

139. Find the AP whose third term is 4 times first term and 6 th term is 17.

- Watch Video Solution

140. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$, then the pair of complex numbers $\omega_{1}=a+i c$ and $\omega_{2}=b+i d$ satisfies
a. $\left|\omega_{1}\right|=1$
b. $\left|\omega_{2}\right|=1$
c. $\operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right)=0$
d. None of these
A. $\left|w_{1}\right|=r$
B. $\left|w_{2}\right|=r$
C. $w_{1} \cdot w_{2}=0$
D. none of these

Answer: A::B::C

- Watch Video Solution

141. If unit vectors \hat{i} and \hat{j} are at right angles to each other and $p=3 \hat{i}+4 \hat{j}, q=5 \hat{i}, 4 r=p+q$ and $2 s=p-q$, then
A. $|r+k s|=|r-k s|$ for all real k
B. r is perpendicular to s
C. $r+s$ is perpendicular to $r-s$
D. $|r|=|s|=|p|=|q|$
142. Let $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a} \cdot \vec{a}=\vec{b} \cdot \vec{b}=\vec{c} \cdot \vec{c}=3$ and $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=$ then
A. a,b and c are necessarily coplanar
B. a, b and c represent sides of a triangle in magnitude and direction
C. $a \cdot b+b \cdot c+c \cdot a$ has the least value $-9 / 2$
D. a,b and c represent orthogonal triad of vectors

Answer: A::B::C

- Watch Video Solution

143. Find the discriminant of the following quadratic equation:
$6 x^{2}-4 x-7=0$
144. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest postive
integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$
A. 2
B. 3
C. 4
D. 5

Answer: B::C::D

- Watch Video Solution

145. Which of the following expressions are meaningful?
A. $u \cdot(v \times w)$
B. $(u \cdot v) \cdot w$
C. $(u \cdot v) w$
D. $u \times(v \cdot w)$

Answer: A:C

- Watch Video Solution

146. If $a+2 b+3 c=0$, then $a \times b+b \times c+c \times a$ is equal to
A. $2(a \times b)$
B. $6(b \times c)$
C. $3(c \times a)$
D. 0

Answer: A: B::C

147. Let $\alpha=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplanar vectors with $a \neq b$ and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. α
B. β
C. γ
D. none of these

Answer: A::B::C

- Watch Video Solution

148. If \vec{a} is perpendicular to \vec{b} and \vec{r} is non-zero vector such that
$p \vec{r}+(\vec{r} \dot{\vec{a}}) \vec{b}=\vec{c}, \quad$ then $\quad \vec{r}=\frac{\vec{c}}{p}-\frac{(\vec{a} \dot{\vec{c}}) \vec{b}}{p^{2}}$
$\frac{\vec{a}}{p}-\frac{(\rightarrow \vec{b}) \vec{a}}{p^{2}} \frac{\vec{a}}{p}-\frac{(\vec{a} \vec{b}) \vec{c}}{p^{2}}$ (d) $\frac{\vec{c}}{p^{2}}-\frac{(\vec{a} \dot{\vec{c}}) \vec{b}}{p}$
A. $[r a c]=0$
B. $p^{2} r=p a-(c \cdot a) b$
C. $p^{2} r=p b-(a \cdot b) c$
D. $p^{2} r=p c-(b \cdot c) a$

Answer: A::D

- Watch Video Solution

149. If $\alpha(a \times b)+\beta(b \times c)+\gamma(c \times a)=0$, then
A. a,b,c are coplanar if all of $\alpha, \beta, \gamma \neq 0$
B. a,b,c are coplanar if any one of $\alpha, \beta, \gamma \neq 0$
C. a,b,c are non-coplanar for any $\alpha, \beta, \gamma \neq 0$
D. none of these

Answer: A: B

150. If $a=\hat{i}+\hat{j}+\hat{k}$ and $b=\hat{i}-\hat{j}$, then vectors $((a \cdot \hat{i}) \hat{i}+(a \cdot \hat{j}) \hat{j}+(a \cdot \hat{k}) \hat{k}),\{(b \cdot \hat{i}) \hat{i}+(b \hat{j}) \hat{j}+(b \cdot \hat{k}) \hat{k}\}$ and $(\hat{i}$
A. are mutually perpendicular
B. are coplanar
C. form a parallepiped of volume 6 units
D. form a parallelopiped of volume 3 units

Answer: A::C

- Watch Video Solution

151. The volume of the parallelepiped whose coterminous edges are represented by the vectors $2 \vec{b} \times \vec{c}, 3 \vec{c} \times \vec{a}$ and $4 \vec{a} \times \vec{b}$ where

$$
\begin{aligned}
& \vec{b}=\sin \left(\theta+\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta+\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta+\frac{4 \pi}{3}\right) \hat{k}, \\
& \vec{c}=\sin \left(\theta-\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta-\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta-\frac{4 \pi}{3}\right) \hat{k}
\end{aligned}
$$

is 18 cubic units, then the values of θ, in the interval $\left(0, \frac{\pi}{2}\right)$, is/are
A. $\frac{\pi}{9}$
B. $2 \frac{\pi}{9}$
C. $\frac{\pi}{3}$
D. $4 \frac{\pi}{9}$

Answer: A::B::D

- Watch Video Solution

152. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}$ and $\vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
(a)parallel to $\quad(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k} \quad$ (b)orthogonal to $\hat{i}+\hat{j}+\hat{k} \quad$ (c)orthogonal \quad to $\quad(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
(d)orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. parallel to $\hat{i}+\hat{j}+\hat{k}$

Answer: A::B::C

- Watch Video Solution

153. If a, b, c are three non-zero vectors, then which of the following statement(s) is/are ture?
A. $a \times(b \times c), b \times(c \times a), c \times(a \times b)$ from a right handed system.
B. $c,(a \times b) \times c, a \times b$ from a right handed system.
C. $a \cdot b+b \cdot c+c \cdot a<0$, iff $a+\mathrm{b}+\mathrm{c}=0$
D. $\frac{(a \times b) \cdot(b \times c)}{(b \times c) \cdot(a \times c)}=-1$, if $a+b+c=0$.

Answer: B::C::D

- Watch Video Solution

154. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both
\vec{a} and $\vec{b} . \operatorname{If} \vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $\alpha=\beta$
B. $\gamma^{2}=1-2 \alpha^{2}$
C. $\gamma^{2}=-\cos 2 \theta$
D. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

Answer: A::B::C::D

- Watch Video Solution

155. $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to which vectors:
A. $(a \cdot c)|b|^{2}=(a \cdot b)(b \cdot c)$
B. $a \cdot b=0$
C. $a \cdot c=0$
D. $b \cdot c=0$

Answer: A: C

- Watch Video Solution

156. If $(\vec{a} \times \vec{b})=0$ then what can we say about vectors?

- Watch Video Solution

157. Find the angle of triangle, two of whose angles are 25 and 60 degree.

- Watch Video Solution

158. Let the vectors $\mathrm{PQ}, \mathrm{OR}, \mathrm{RS}, \mathrm{ST}, \mathrm{TU}$ and UP represent the sides of a regular hexagon.

Statement I: $P Q \times(R S+S T) \neq 0$
Statement II: $P Q \times R S=0$ and $P Q \times S T \neq 0$
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: C

- Watch Video Solution

159. p, q and r are three vectors defined by $p=a \times(b+c), q=b \times(c+a)$ and $r=c \times(a+b)$

Statement I: p,q and r are coplanar.
Statement II: Vectors p,q,r are linearly independent.
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: C

- Watch Video Solution

160. Statement
I. If
in
a
$\triangle A B C, \overrightarrow{B C}=\frac{\vec{p}}{|\vec{p}|}-\frac{\vec{q}}{|\vec{q}|}$ and $\overrightarrow{A C}=\frac{2 \vec{p}}{|\vec{p}|},|\vec{p}| \neq|\vec{q}|$ then the value of $\cos 2 A+\cos 2 B+\cos 2 C$ is -1 .,

Statement

II.

If
in
$\triangle A B C, \angle C=90^{\circ}$ then $\cos 2 A+\cos 2 B+\cos 2 C=-1$
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: B

- Watch Video Solution

161. Statement I: If a is perpendicular to b and c , then $a \times(b \times c)=0$ Statement II: if a is perpendicular to b and c , then $b \times c=0$
A. Both statement I and statement II are correct and statement II is the correct explanation of statement I
B. both statement I and statement II are correct but statement II is not the correct explanation of statement I
C. Statement I is correct but statement II is incorrect
D. Statement II is correct but statement I is incorrect

Answer: C

- Watch Video Solution

162. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$. Find their dot product.

- Watch Video Solution

163.

$\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let
\vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}
.Then
\vec{a}_{2} is equal to
A.
B.
C.
D.

Answer: A

- Watch Video Solution

164.

Let
$\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}
.Then
\vec{a}_{2} is equal to
A. a and a_{2} are collinear
B. a_{1} and c are collinear
C. a, a_{1} and b are coplanar
D. a, a_{1} and a_{2} are coplanar

Answer: C

- Watch Video Solution

165. Let a, b be two vectors perependicular to each other and $|a|=2,|b|=3$ and $c \times a=b$. Q. The least value of $|c-a|$ is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

166. Let a, b be two vectors perependicular to each other and $|a|=2,|b|=3$ and $c \times a=b$. Q. The least value of $|c-a|$ is
A. $\tan ^{-1}(2)$
B. $\frac{\tan ^{-1}(3)}{4}$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. None of these

Answer: B

D Watch Video Solution

167. Let a, b be two vectors perependicular to each other and $|a|=2,|b|=3$ and $c \times a=b$. Q. The least value of $|c-a|$ is
A. $\frac{1}{2}$
B. $\frac{7}{2}$
C. $\frac{5}{2}$
D. 4

Answer: C

168. Consider a triangular pyramid $A B C D$ the position vectors of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$. Let G be the point of intersection of the medians of triangle BCD. Q. Area of triangle $A B C$ in sq. units is
A. $\sqrt{17}$
B. $\frac{\sqrt{51}}{3}$
C. $\frac{3}{\sqrt{6}}$
D. $\frac{\sqrt{59}}{4}$

Answer: B

- Watch Video Solution

169. Consider a triangulat pyramid $A B C D$ the position vector of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$
. Let G be the point of intersection of the medians of the $\triangle(B C D)$.
Q. Area of the $\triangle(A B C)$ (in sq. units) is
A. 24
B. $8 \sqrt{6}$
C. $4 \sqrt{6}$
D. None of these

Answer: C

- Watch Video Solution

170. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$

Let G be the point of intersection of the medians of the triangle BCD. The length of AG is
A. $\frac{14}{\sqrt{6}}$
B. $\frac{2}{\sqrt{6}}$
C. $\frac{3}{\sqrt{6}}$
D. None of these

Answer: A

- Watch Video Solution

171. If $A P, B Q$ and $C R$ are the altitudes of acute
$\triangle A B C$ and $9 A P+4 B Q+7 C R=0 \angle A B C$ is equal to
A. a. $\frac{\cos ^{-1}(2)}{\sqrt{7}}$
B. b. $\frac{\pi}{2}$
C. c. $\cos ^{-1}\left(\frac{\sqrt{7}}{3}\right)$
D. d. $\frac{\pi}{3}$

Answer: A

172. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \quad \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. Volume of parallelopiped with edges a, b, c is
A. $p+(q+r) \cos \theta$
B. $(p+q+r) \cos \theta$
C. $2 p-(q+r) \cos \theta$
D. None of these

Answer: A

- Watch Video Solution

173. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \quad \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. The value of $\left(\frac{q}{p}+2 \cos \theta\right)$ is
A. (a) 1
B. (b) 0
C. (c) $2[a b c]$
D. (d) None of these

Answer: B

- Watch Video Solution

174. Let a, b, c are non-zero unit vectors inclined pairwise with the same angle $\theta, \quad \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. The value of $\left(\frac{q}{p}+2 \cos \theta\right)$ is
A. $(1+\cos \theta)(\sqrt{1-2 \cos \theta})$
B. $2 \frac{\sin (\theta)}{2} \sqrt{(1+2 \cos \theta)}$
C. $(1-\sin \theta) \sqrt{1+2 \cos \theta})$
D. None of these

Answer: B

D Watch Video Solution

175. Given that $\vec{u}=\hat{i}-2 \hat{j}+3 \hat{k} ; \vec{v}=2 \hat{i}+\hat{j}+4 \hat{k} ; \vec{w}=\hat{i}+3 \hat{j}+3 \hat{k}$ and $(\vec{u} \stackrel{\vec{R}}{R}-15) \hat{i}+(\vec{v} \vec{R}-30) \hat{j}+(\vec{w} \dot{\vec{R}}-20) \hat{k}=0$. Then find the greatest integer less than or equal to $|\vec{R}|$.

- Watch Video Solution

176. The position vector of a point P is $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, where $x, y, z \in N$ and $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$. If $\vec{r} \cdot \vec{a}=20$ and the number of possible of P is 9λ, then the value of λ is:

- Watch Video Solution

177. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60°. Suppose that $|\vec{u}-\hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $(\sqrt{2}+1)|\vec{u}|$.

- Watch Video Solution

178. Let $A(2 \hat{i}+3 \hat{j}+5 \hat{k}), B(-\hat{i}+3 \hat{j}+2 \hat{k})$ and $C(\lambda \hat{i}+5 \hat{j}+\mu \hat{k})$
are vertices of a triangle and its median through A is equally inclined to the positive directions of the axes, the value of $2 \lambda-\mu$ is equal to

- Watch Video Solution

179. Three vectors $a(|a| \neq 0), b$ and c are such that $a \times b=3 a \times c$, also $|a|=|b|=1$ and $|c|=\frac{1}{3}$. If the angle between b and c is 60° and $|b-3 c|=\lambda|a|$, then the value of λ is
180. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \vec{b}=0=\vec{a} \vec{c}$ and the angle between \vec{b} and \vec{c} is $\pi / 3$, then the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$ is $1 / 2 \mathrm{~b} .1 \mathrm{c} .2 \mathrm{~d}$. none of these

- Watch Video Solution

181. The area of the triangle whose vertices are $\mathrm{A}(1,-1,2), \mathrm{B}(1,2,-1), \mathrm{C}(3$, $-1,2$) is \qquad .

- Watch Video Solution

182. Let $\vec{O} A=\vec{a}, \widehat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, AandC are non-collinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with $O A a n d O C$ as adjacent sides. If $p=k q$, then find k.

- Watch Video Solution

183. If, \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying
$\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}$
$\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right](\vec{x} \times \vec{y})=0, \quad$ where α, β, γ are three distinct distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$

D Watch Video Solution

184. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k} \operatorname{and} \vec{W}=\hat{i}+3 \hat{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[U V W]$ is a. -1 b. $\sqrt{10}+\sqrt{6}$
c. $\sqrt{59}$ d. $\sqrt{60}$

(Watch Video Solution

185. Let $a=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, b=\hat{i}+2 \alpha \hat{j}-2 \hat{k}$ and $c=2 \hat{i}-\alpha \hat{j}+\hat{k}$.

Then the value of 6α, such that $\{(a \times b) \times(b \times c)\} \times(c \times a)=a$, is

- Watch Video Solution

186. If \widehat{a} and \hat{b} are unit vectors such that $(\widehat{a}+\hat{b})$ is a unit vector, what is the angle between \widehat{a} and \hat{b} ?

- Watch Video Solution

187. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

188. A, B, C and D are four points in space. Then, $A C^{2}+B D^{2}+A D^{2}+B C^{2} \geq$

- Watch Video Solution

189. Prove that the perpendicular let fall from the vertices of a triangle to the opposite sides are concurrent.

- Watch Video Solution

190. Using vector method, prove that the angel in a semi circle is a right angle.

- Watch Video Solution

191. The corner P of the square $O P Q R$ is folded up so that the plane $O P Q$ is perpendicular to the plane $O Q R$, find the angle between $O P$ and $Q R$.

- Watch Video Solution

192. In a $\triangle A B C$, prove by vector method that $\cos 2 A+\cos 2 B+\cos 2 C \geq \frac{-3}{2}$.
193. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy-plane. All vectors in the sme plane having projections 1 and 2 along \vec{b} and \vec{c}., respectively, are given by \qquad

- Watch Video Solution

194. If a, b and c are three coplanar vectors. If a is not parallel to b , show

- Watch Video Solution

195. In $\triangle A B C$, D is the mid point of the side AB and E is centroid of $\triangle C D A$. If $O E \cdot C D=0$, where O is the circumcentre of $\triangle A B C$, using vectors prove that $A B=A C$.
196. Let I be the incentre of $\triangle A B C$. Using vectors prove that for any point P $\quad a(P A)^{2}+b(P B)^{2}+c(P C)^{2}=$ $a(I A)^{2}+b(I B)^{2}+c(I C)^{2}+(a+b+c)(I P)^{2}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ have usual meanings.

- Watch Video Solution

197. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.

- Watch Video Solution

198.

Prove
by
vector
method
that
$\cos (A+B)=\cos A \cos B-\sin A \sin B$.

- Watch Video Solution

199. A circle is inscribed in an n-sided regular polygon $A_{1}, A_{2}, \ldots . A_{n}$ having each side a unit for any arbitrary point P on the circle, pove that $\sum_{i=1}^{n}\left(P A_{i}\right)^{2}=n \frac{a^{2}}{4} \frac{1+\cos ^{2}\left(\frac{\pi}{n}\right)}{\sin ^{2}\left(\frac{\pi}{n}\right)}$

- Watch Video Solution

200. If a, b and c are position vectors off the vertices A, B and C of $\triangle A B C$, show that the area of $\triangle A B C$ is $\frac{1}{2}|a \times b+b \times c+c \times a|$.

Deduce the condition for points a, b and c to be collinear.

- Watch Video Solution

201. In a $\triangle A B C$ points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are taken on the sides BC, CA and AB respectively such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n \quad$ prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle A B C$

- Watch Video Solution

202. Let the area of a given triangle ABC be Δ. Points A_{1}, B_{1}, and C_{1}, are the mid points of the sides BC, CA and AB respectively. Point A_{2} is the mid point of $C A_{1}$. Lines $C_{1} A_{1}$ and $A A_{2}$ meet the median $B B_{1}$ points E and D respectively. If Δ_{1} be the area of the quadrilateral $A_{1} A_{2} D E$, using vectors or otherwise find the value of $\frac{\Delta_{1}}{\Delta}$

- Watch Video Solution

203. If \vec{a}, \vec{b}, and \vec{c} are three vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$.

(Watch Video Solution

204. If a, b, c and d are four coplanr points, then prove that $[a b c]=[b c d]+[a b d]+[c a d]$.
205. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

206.

Prove
that
$\vec{R}+\frac{[\vec{R} \vec{\beta} \times(\vec{\beta} \times \vec{\alpha})] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \vec{\alpha} \times(\vec{\alpha} \times \vec{\beta})] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}]}{\mid \vec{\alpha} \times}$

(Watch Video Solution

207. Prove that the formula for the volume V of a tetrahedron, in terms of the lengths of three coterminous edges and their mutul inclinations is $V^{2}=\frac{a^{2} b^{2} c^{2}}{36}\left|\begin{array}{ccc}1 & \cos \phi & \cos \psi \\ \cos \phi & 1 & \cos \theta \\ \cos \psi & \cos \theta & 1\end{array}\right|$
208. A pyramid with vertex at point P has a regular hexagonal base ABCDEF. Position vectors of points A and B are \hat{i} and $\hat{i}+2 \hat{j}$, respectively. The centre of the base has the position vector $\hat{i}+\hat{j}+\sqrt{3} \hat{k}$.

Altitude drawn from P on the base meets the diagonal AD at point G. Find all possible vectors of G . It is given that the volume of the pyramid is $6 \sqrt{3}$ cubic units and AP is 5 units.

- Watch Video Solution

209. Let \hat{a}, \hat{b},and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α, between \hat{c} and \hat{a} is β and between \widehat{a} and \hat{b} is γ. If $A(\widehat{a} \cos \alpha, 0), B(\hat{b} \cos \beta, 0)$ and $C(\hat{c} \cos \gamma, 0)$, then show that in triangle $A B C, \frac{|\widehat{a} \times(\hat{b} \times \hat{c})|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \widehat{a})|}{\sin B}=\frac{|\hat{c} \times(\widehat{a} \times \hat{b})|}{\sin C}$

- Watch Video Solution

210. Let a and b be given non-zero and non-collinear vectors, such that $c \times a=b-c$. Express c in terms for a, b and aXb .

- Watch Video Solution

JEE Type Solved Examples: Passage Based Type Questions

1. Let A, B, C respresent the vertices of a triangle, where A is the origin and B and C have position b and c respectively. Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that ${ }^{`}(A M) /(A B)=(B N) /(B C)=$ $(C P) /(C A)=a l p h a \mathrm{Q} \cdot \mathrm{AN}+\mathrm{BP}+\mathrm{CM}$ is
A. a. $3 \alpha(b+c)$
B. b. $\alpha(b+c)$
C. c. $(1-\alpha)(b+c)$
D. d. 0

Answer: D

- Watch Video Solution

2. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respresent the vertices of a triangle, where A is the origin and B and C have position b and c respectively. Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that ${ }^{`}(\mathrm{AM}) /(\mathrm{AB})=(\mathrm{BN}) /(\mathrm{BC})=$ $(C P) /(C A)=$ alpha $Q \cdot A N+B P+C M$ is
A. concurrent
B. sides of a triangle
C. non coplanar
D. None of these

Answer: B

- Watch Video Solution

3. Let A, B, C represent the vertices of a triangle, where A is the origin and B and C have position b and c respectively.* Points M, N and P are taken
on sides AB, BC and CA respectively, such that $\frac{A M}{A B}=\frac{B N}{B C}=\frac{C P}{C A}=\alpha$. If \triangle represent the area enclosed by the three vectors $A N, B P$ and $C M$, then the value of α, for which \triangle is least
A. a. does not exist
B. b. $\frac{1}{2}$
C. c. $\frac{1}{4}$
D. d. None of these

Answer: B

- Watch Video Solution

JEE Type Solved Examples: Match Type Questions

1. Match the items of column I with items of column II
2. Match the items of column I with items of column II

- Watch Video Solution

3. Match the items of column I with items of column II

(Watch Video Solution

4. Match the items of column I with items of column II

(Watch Video Solution

JEE Type Solved Examples: Subjective Type Questions

1. If the angles of a right angle triangle are in AP then the angles of triangle are:
2. Find the slope of the normal to the curve $x=1-\sin 2 \theta, y=\cos 2 \theta$ at θ $=\pi$.

- Watch Video Solution

Exercise For Session 1

1. The angle between the vectors $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\hat{b}=3 \hat{i}-2 \hat{j}-\hat{k}$ is :

- Watch Video Solution

2. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 ,respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$
3. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}-3 \hat{j}-5 \hat{k}$ are at right angles.

- Watch Video Solution

4. If $\vec{r} \cdot \hat{i}=\vec{r} \cdot \hat{j}=\vec{r} \cdot \hat{k}$ and $|\vec{r}|=3$, then find the vector \vec{r}.

- Watch Video Solution

5. Find the angle between the vectors $a+b$ and $a-b$, if $a=2 \hat{i}-\hat{j}+3 \hat{k}$ and $b=3 \hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

6. Find the angle between the vectors $\hat{i}+3 \hat{j}+7 \hat{k}$ and $7 \hat{i}-\hat{j}+8 \hat{k}$.

- Watch Video Solution

7. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k}$ on vector $2 \hat{i}-\hat{j}+5 \hat{k}, i s \frac{1}{\sqrt{30}}$,then find the value of x.

(Watch Video Solution

8. If $|\vec{a}|+|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

9. If three unit vectors \vec{a}, \vec{b}, and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=0$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

10. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ make an acute angle $\forall x \in R$, then find the values of a.
11. Find the component of \widehat{a} in the direction of vector $\hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

12. Find the vector component of a vector $2 \hat{i}+3 \hat{j}+6 \hat{k}$ along and perpendicular to the non-zero vector $2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

13. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$. find the total work done by the forces in units.

- Watch Video Solution

1. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.

(Watch Video Solution

2. Find the values of γ and μ for which $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\gamma \hat{j}+\mu \hat{k})=\overrightarrow{0}$

- Watch Video Solution

3. If $a=2 \hat{i}+3 \hat{j}-\hat{k}, b=-\hat{i}+2 \hat{j}-4 \hat{k}, c=\hat{i}+\hat{j}+\hat{k}$, then find the value of $(a \times b) \cdot(a \times c)$.

- Watch Video Solution

4.

Prove
that
$(\vec{a} \cdot \hat{i})(\vec{a} \times \hat{i})+(\vec{a} \cdot j)(\vec{a} \times \hat{j})+(\vec{a} \cdot \hat{k})(\vec{a} \times \hat{k})=0$.
5. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, show that $\vec{a}-\vec{d}$ is parallel to $\vec{b}-\vec{c}$, provided $\vec{a} \neq \vec{d}$ and $\vec{b} \neq \vec{c}$

- Watch Video Solution

6. If $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$, then find the value of $|\vec{b}|$.

- Watch Video Solution

7. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

8. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

- Watch Video Solution

9. If $|\vec{a}|=\sqrt{26},|\vec{b}|=7$ and $|\vec{a} \times \vec{b}|=35, f \in d \vec{a} \cdot \vec{b}$

- Watch Video Solution

10. Find a unit vector perpendicular to the plane of two vectors $a=\hat{i}-\hat{j}+2 \hat{k}$ and $b=2 \hat{i}+3 \hat{j}-\hat{k}$.

- Watch Video Solution

11. Find a vector of magnitude 15 , which is perpendicular to both the vectors $(4 \hat{i}-\hat{j}+8 \hat{k})$ and $(-\hat{j}+\hat{k})$.
12. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \quad \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$.

- Watch Video Solution

13. Let A, B and C be unit vectors. Suppuse that $A . B=A . C=O$ and that the angle between Band C is $\pi / 6$ then prove that

$$
A= \pm 2(B \times C)
$$

- Watch Video Solution

14. Find the area of the triangle whose adjacent sides are determined by the vectors $\vec{a}=(-2 \hat{i}-5 \hat{k})$ and $\vec{b}=(\hat{i}-2 \hat{j}-\hat{k})$.

- Watch Video Solution

15. Find the area of parallelogram whose adjacent sides are represented by the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-2 \hat{j}-\hat{k}$.

- Watch Video Solution

16. Find the area of the parallelogram whose diagonals are $a=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{b}=\hat{i}-3 \hat{j}+4 \hat{k}$.

- Watch Video Solution

17. A force $F=2 \hat{i}+\hat{j}-\hat{k}$ acts at point A whose position vector is $2 \hat{i}-\hat{j}$. Find the moment of force F about the origin.

- Watch Video Solution

18. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.
19. Forces $2 \hat{i}+\hat{j}, 2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\hat{i}+2 \hat{j}-\hat{k}$ act at a point P , with position vector $4 \hat{i}-3 \hat{j}-\hat{k}$. Find the moment of the resultant of these force about the point Q whose position vector is $6 \hat{i}+\hat{j}-3 \hat{k}$.

- Watch Video Solution

Exercise For Session 3

1. If \vec{a} and \vec{b} are two vectors such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$.

- Watch Video Solution

2. If the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k}$ and $3 \hat{i}-\hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.
3. If the volume of a parallelepiped whose adjacent edges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ is 15 , then find the value of α if $(\alpha>0)$.

- Watch Video Solution

4. The position vectors of the four angular points of a tetrahedron are $A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k}) \operatorname{and} D(2 \hat{i}+3 \hat{j}+2 \hat{k})$. Find the volume of the tetrahedron $A B C D$.

- Watch Video Solution

5. Find the altitude of a parallelopiped whose three conterminous edges are verctors $A=\hat{i}+\hat{j}+\hat{k}, B=2 \hat{i}+4 \hat{j}-\hat{k}$ and $C=\hat{i}+\hat{j}+3 \hat{k}$ with A and B as the sides of the base of the parallelopiped.

- Watch Video Solution

6.

$a=2 \hat{i}+3 \hat{j}+2 \hat{k}, b=\hat{i}-\hat{j}+2 \hat{k}$ and $c=4 \hat{i}+2 \hat{j}+4 \hat{k}$ form a left handed or a right handed system.

- Watch Video Solution

7. Show that the vectors $\hat{i}-\hat{j}-6 \hat{k}, \hat{i}-3 \hat{j}+4 \hat{k}$ and $2 \hat{i}-5 \hat{j}+3 \hat{k}$ are coplanar.

- Watch Video Solution

8. Prove that $[a b c][u v w]=\left|\begin{array}{lll}a \cdot u & b \cdot u & c \cdot u \\ a \cdot v & b \cdot v & c \cdot v \\ a \cdot w & b \cdot w & c \cdot w\end{array}\right|$

- Watch Video Solution

9. If $[a b c]=2$, then find the value of $[(a+2 b-c)(a-b)(a-b-c)]$.
10. If \vec{a}, \vec{b}, and \vec{c} are three non-coplanar vectors, then find the value of $\frac{\vec{a} \vec{b} \times \vec{c}}{\vec{b} \vec{c} \times \vec{a}}+\frac{\vec{b} \vec{c} \times \vec{a}}{\vec{c} \vec{a} \times \vec{b}}+\frac{\vec{c} \vec{b} \times \vec{a}}{\vec{a} \vec{b} \times \vec{c}}$.

(Watch Video Solution

Exercise For Session 4

1. Find the value of $\alpha \times(\beta \times \gamma)$, where $\alpha=2 \hat{i}-10 \hat{j}+2 \hat{k}, \beta=3 \hat{i}+\hat{j}+2 \hat{k}, \gamma=2 \hat{i}+\hat{j}+3 \hat{k}$.

- Watch Video Solution

2. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k} a n d 2 \hat{k}-3 \hat{j}$.
3.

Show
$(b \times c) \cdot(a \times d)+(a \times b) \cdot(c \times d)+(c \times a) \cdot(b \times d)=0$

- Watch Video Solution

4. Prove that $\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$.

- Watch Video Solution

5. Prove that $[a \times b, a \times c, d]=(a \cdot d)[a, b, c]$

- Watch Video Solution

6. If \vec{a}, \vec{b}, and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}, \vec{b}$ and \vec{c} are non-parallel, then prove that the angel between \vec{a} and $\vec{b}, i s 3 \pi / 4$.
7. Find a set of vectors reciprocal to the set $-\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+j+\hat{k}$.

- Watch Video Solution

8. If a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ are recoprocal system of vectors, then prove that $a^{\prime} \times b^{\prime}+b^{\prime} \times c^{\prime}+c^{\prime} \times a^{\prime}=\frac{a+b+c}{[a b c]}$.

- Watch Video Solution

9. Solve: $\vec{r} \times \vec{b}=\vec{a}$, where \vec{a} and \vec{b} are given vectors such that $\vec{a} \cdot \vec{b}=0$.
10. Find vector \vec{r} if $\vec{r} . \vec{a}=m$ and $\vec{r} \times \vec{b}=\vec{c}$, where $\vec{a} \cdot \vec{b} \neq 0$

- Watch Video Solution

Exercise (Single Option Correct Type Questions)

1. If a has magnitude 5 and points North-East and vector b has magnitude 5 and point North-West, then $|a-b|$ is equal to
A. 25
B. 5
C. $7 \sqrt{3}$
D. $5 \sqrt{2}$

Answer: D

- Watch Video Solution

2. If $|a+b|>|a-b|$, then the angle between a and b is
A. acute
B. obtuse
C. $\frac{\pi}{2}$
D. π

Answer: A

- Watch Video Solution

3. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}=\vec{b}+\vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{2}$, then
A. $a^{2}=b^{2}+c^{2}$
B. $b^{2}=a^{2}+c^{2}$
C. $c^{2}=a^{2}+b^{2}$
D. $2 a^{2}-b^{2}=c^{2}$

- Watch Video Solution

4. If the angle between the vectors a and b be θ and $a \cdot b=\cos \theta$ then the true statement is
A. a and b are equal vectors
B. a and b are like vectors
C. a and b are unlike vectors
D. a and b are unit vectors

Answer: D

D Watch Video Solution

5. If the vectors $\hat{i}+\hat{j}+\hat{k}$ makes angle α, β and γ with vectors \hat{i}, \hat{j} and \hat{k} respectively, then
A. $\alpha=\beta \neq \gamma$
B. $\alpha=\gamma \neq \beta$
C. $\beta=\gamma \neq \alpha$
D. $\alpha=\beta=\gamma$

Answer: D

- Watch Video Solution

6. $(r \cdot \hat{i})^{2}+(r \cdot \hat{j})^{2}+(r \cdot \hat{k})^{2}$ is equal to
A. $3 r^{2}$
B. r^{2}
C. 0
D. None of these

Answer: B

7. If \widehat{a} and \hat{b} are two unit vectors inclined at an angle θ, then $\sin \left(\frac{\theta}{2}\right)$
A. $\frac{1}{2}|a-b|$
B. $\frac{1}{2}|a+b|$
C. $|a-b|$
D. $|a+b|$

Answer: A

- Watch Video Solution

8. If $\vec{A}=4 \hat{i}+6 \hat{j}$ and $\vec{B}=3 \hat{j}+4 \hat{k}$, then find the component of \vec{A} along \vec{B}
A. $\frac{18}{10 \sqrt{3}}(3 \hat{j}+4 \hat{k})$
B. $\frac{18}{25}(3 \hat{j}+4 \hat{k})$
C. $\frac{18}{\sqrt{3}}(3 \hat{j}+4 \hat{k})$
D. $(3 \hat{j}+4 \hat{k})$

Answer: B

- Watch Video Solution

9. If vectors $a=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and vector $b=-2 \hat{i}+2 \hat{j}-\hat{k}$, then (projection of vector a on b vectors)/(projection of vector b on a vector) is equal to
A. $\frac{3}{7}$
B. $\frac{7}{3}$
C. 3
D. 7

Answer: B

- Watch Video Solution

10. If \vec{a} and \vec{b} are two vectors, then prove that
$(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$
A. $\left|\begin{array}{ll}a \cdot b & a \cdot a \\ b \cdot b & b \cdot a\end{array}\right|$
B. $\left|\begin{array}{ll}a \cdot a & a \cdot b \\ b \cdot a & b \cdot b\end{array}\right|$
C. $\left|\begin{array}{l}a \cdot b \\ b \cdot a\end{array}\right|$
D. None of these

Answer: b

- Watch Video Solution

11. The moment of the force F acting at a point P, about the point C is
A. $F \times C P$
B. $C P \cdot F$
C. a vector having the same direction as F
D. $C P \times F$

Answer: D

- Watch Video Solution

12. The moment of a force represented by $F=\hat{i}+2 \hat{j}+3 \hat{k}$ about the point $2 \hat{i}-\hat{j}+\hat{k}$ is equal to
A. $5 \hat{i}-5 \hat{j}+5 \hat{k}$
B. $5 \hat{i}+5 \hat{j}-6 \hat{k}$
C. $-5 \hat{i}-5 \hat{j}+5 \hat{k}$
D. $-5 \hat{i}-5 \hat{j}+2 \hat{k}$

Answer: D

- Watch Video Solution

13. A force of magnitude 6 acts along the vector $(9,6,-2)$ and passes through a point $A(4,-1,-7)$. Then moment of force about the point
$O(1,-3,2)$ is
A. $\frac{150}{11}(2 \hat{i}-3 \hat{j})$
B. $\frac{6}{11}(50 \hat{i}-75 \hat{j}+36 \hat{k})$
C. $150(2 \hat{i}-3 \hat{k})$
D. $6(50 \hat{i}-75 \hat{j}+36 \hat{k})$

Answer: A

- Watch Video Solution

14. A force $F=2 \hat{i}+\hat{j}-\hat{k}$ acts at point A whose position vector is $2 \hat{i}-\hat{j}$. Find the moment of force F about the origin.
A. $\hat{i}+2 \hat{j}-4 \hat{k}$
B. $\hat{i}-2 \hat{j}-4 \hat{k}$
C. $\hat{i}+2 \hat{j}+4 \hat{k}$
D. $\hat{i}-2 \hat{j}+4 \hat{k}$

- Watch Video Solution

15. If a, b and c are any three vectors and their inverse are a^{-1}, b^{-1} and c^{-1} and $[a b c] \neq 0$, then $\left[a^{-1} b^{-1} c^{-1}\right]$ will be
A. zero
B. one
C. non-zero
D. $[\mathrm{abc}]$

Answer: C

- Watch Video Solution

16. If a, b and c are three non-coplanar vectors, then find the value of
$\frac{a \cdot(b \times c)}{b \cdot(c \times a)}+\frac{b \cdot(c \times a)}{c \cdot(a \times b)}+\frac{c \cdot(a \times b)}{a \cdot(b \times c)}$.
A. a) 0
B. b) 2
C. c) -2
D. d) None of these

Answer: A

D Watch Video Solution

17. $a \times(b \times c)$ is coplanar with
A. b and c
B. a and c
C. a and b are unlike vectors
D. a, b and c

Answer: A

18. If $u=\hat{i}(a \times \hat{i})+\hat{j}(a \times \hat{j})+\hat{k}(a \times \hat{k})$, then
A. $u=0$
B. $u=\hat{i}+\hat{j}+\hat{k}$
C. $u=2 a$
D. $u=a$

Answer: a

- Watch Video Solution

19. If $a=\hat{i}+2 \hat{j}-2 \hat{k}, b=2 \hat{i}-\hat{j}+\hat{k}$ and $c=\hat{i}+3 \hat{j}-\hat{k}$, then $a \times(b \times c)$ is equal to
A. $20 \hat{i}-3 \hat{j}+7 \hat{k}$
B. $20 \hat{i}-3 \hat{j}-7 \hat{k}$
C. $20 \hat{i}+3 \hat{j}-7 \hat{k}$
D. None of these

Answer: A

- Watch Video Solution

20. If $a \times(b \times c)=0$, then
A. $|a|=|b| \cdot|c|=1$
B. $b \mid c$
C. $a|\mid b$
D. $b \dot{c}$

Answer: B

- Watch Video Solution

21. A vectors which makes equal angles with the vectors $\frac{1}{3}(\hat{i}-2 \hat{j}+2 \hat{k}), \frac{1}{5}(-4 \hat{i}-3 \hat{k}), \hat{j}$ is:
A. a) $5 \hat{i}+5 \hat{j}+\hat{k}$
B. b) $5 \hat{i}+\hat{j}-5 \hat{k}$
C. c) $5 \hat{i}+\hat{j}+5 \hat{k}$
D. d) $\pm(5 \hat{i}-\hat{j}-5 \hat{k})$

Answer: D

- Watch Video Solution

22. Find by vector method the horizontal force and the force inclined at an angle of 60° to the vertical whose resultant is a vertical force P.
A. $P, 2 P$
B. $P, P \sqrt{3}$
C. $2 P, P \sqrt{3}$
D. None of these

Answer: D

- Watch Video Solution

23. If $x+y+z=0,|x|=|y|=|z|=2$ and θ is angle between y and z , then the value of $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta$ is equal to
A. $\frac{4}{3}$
B. $\frac{5}{3}$
C. $\frac{1}{3}$
D. 1

Answer: B

- Watch Video Solution

24. Find the least positive integral value of x for which the angle betweenn vectors $a=x \hat{i}-3 \hat{j}-\hat{k}$ and $b=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute.
A. $x>0$
B. $x<0$
C. $x>1$ only
D. $x<-1$ only

Answer: B

- Watch Video Solution

25. If a, b and c are non-coplanar vectors and $d=\lambda \vec{a}+\mu \vec{b}+\nu \vec{c}$, then
λ is equal to
A. $\frac{[d b c]}{[b a c]}$
B. $\frac{[b c d]}{[b c a]}$
C. $\frac{[b d c]}{[a b c]}$
D. $\frac{[c b d]}{[a b c]}$

Answer: B

- Watch Video Solution

26. If the vectors $3 \vec{p}+\vec{q} ; 5 \vec{p}-3 \vec{q}$ and $2 \vec{p}+\vec{q} ; 4 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular then $\sin (\vec{p}, \vec{q})$ is:
A. a) $\frac{\sqrt{55}}{4}$
B. b) $\frac{\sqrt{55}}{8}$
C. c) $\frac{3}{16}$
D. d) $\frac{\sqrt{247}}{16}$

Answer: B

- Watch Video Solution

27. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$.lf \hat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0$ then $|\vec{w} \cdot \widehat{n}|$ is equal to
A. 1
B. 2
C. 3
D. 0

Answer: C

- Watch Video Solution

28. Given a parallelogram $A B C D$. If $|\overrightarrow{A B}|=a,|\overrightarrow{A D}|=b \&|\overrightarrow{A C}|=c$, then $\overrightarrow{D B} \cdot \overrightarrow{A B}$ has the value
A. $\frac{3 a^{2}+b^{2}-c^{2}}{2}$
B. $\frac{a^{2}+3 b^{2}-c^{2}}{2}$
c. $\frac{a^{2}-b^{2}+3 c^{2}}{2}$
D. None of these

Answer: A

- Watch Video Solution

29. For two particular vectors \vec{A} and \vec{B} it is known that
$\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$. What must be true about the two vectors?
A. Atleast one of the two vectors must be the zero vector
B. $A \times B=B \times A$ is true for any two vectors
C. One of the two vectors is a scalar multiple of the other vector
D. The two vectors must be perpendicular to each other

Answer: C

- Watch Video Solution

30. For some non zero vector \vec{v}, if the sum of \vec{v} and the vector obtained from \vec{v} by rotating it by an angle 2α equals to the vector obtained from \vec{v} by rotating it by α then the value of α, is
A. $2 n \pi \pm \frac{\pi}{3}$
B. $n \pi \pm \frac{\pi}{3}$
C. $2 n \pi \pm \frac{2 \pi}{3}$
D. $n \pi \pm \frac{2 \pi}{3}$

Answer: A

- Watch Video Solution

31. In isosceles triangles $A B C,|\vec{A} B|=|\vec{B} C|=8$, a point E divides $A B$ internally in the ratio 1:3, then find the angle between $\vec{C} \operatorname{Eand} \vec{C} A($ where $|\vec{C} A|=12)$.
A. $\frac{-3 \sqrt{7}}{8}$
B. $\frac{3 \sqrt{8}}{17}$
C. $\frac{3 \sqrt{7}}{8}$
D. $\frac{-3 \sqrt{8}}{17}$

Answer: C

- Watch Video Solution

32. Given an equilateral triangle $A B C$ with side length equal to 'a'. Let M and N be two points respectively $A B$ In the side $A B$ and $A C$ such that $\overrightarrow{A N}=K \overrightarrow{A C}$ and $\overrightarrow{A M}=\frac{\overrightarrow{A B}}{3}$ if $\overrightarrow{B N}$ and $\overrightarrow{C M}$ are orthogonalthen the value of K is equal to
A. $\frac{1}{5}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

D Watch Video Solution

33. In a quadrilateral $A B C D, A C$ is the bisector of the ($A B, A D$) which is $\frac{2 \pi}{3}$, $15|A C|=3|A B|=5|A D|$, then $\cos (B A, C D)$ is equal to
A. $\frac{-\sqrt{14}}{7 \sqrt{2}}$
B. $-\frac{\sqrt{21}}{7 \sqrt{3}}$
C. $\frac{2}{\sqrt{7}}$
D. $\frac{2 \sqrt{7}}{14}$

Answer: C

D Watch Video Solution

34. If the distance from the point $P(1,1,1)$ to the line passing through the points $Q(0,6,8)$ and $R(-1,4,7)$ is expressed in the form $\sqrt{\frac{p}{q}}$, where
p and q are co-prime, then the value of $\frac{(q+p)(p+q-1)}{2}$ is equal to
A. 4950
B. 5050
C. 5150
D. None of these

Answer: A

- Watch Video Solution

35.

Given
the
vectors
$\vec{u}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{v}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{w}=\hat{i}-\hat{k}$ If the volume of the parallelopiped having $-c \vec{u}, \vec{v}$ and $c \vec{w}$ as concurrent edges, is 8 then c can be equal to
A. a) ± 2
B. b) 4
C. c) 8
D. d) cannot be determine

Answer: A

- Watch Video Solution

36. Vector \vec{c} is perpendicular to vectors
$\vec{a}=(2,-3,1) \operatorname{and} \vec{b}=(1,-2,3)$ and satisfies the condition $\vec{c} \hat{i}+2 \dot{\hat{j}}-7 \hat{k}=10$. Then vector \vec{c} is equal to $(7,5,1)$ b.
$-7,-5,-1 \mathrm{c} .1,1,-1 \mathrm{~d}$. none of these
A. $(7,5,1)$
B. $(-7,,-5,-1)$
C. $(1,1,-1)$
D. None of these

Answer: B

37. Let $\vec{a}=\hat{j}+\hat{j}, \vec{b}=\hat{j}+\hat{k}$ and $\vec{c}=\alpha \vec{a}+\beta \vec{b}$. If the vectors, $\hat{i}-2 \hat{j}+\hat{k}, 3 \hat{i}+2 \hat{j}-\hat{k}$ and \vec{c} are coplanar then $\frac{\alpha}{\beta}$ is
A. 1
B. 2
C. 3
D. -3

Answer: D

- Watch Video Solution

38. A rigid body rotates about an axis through the origin with an angular velocity $10 \sqrt{3} \mathrm{rad} / \mathrm{s}$. If ω points in the direction of $\hat{i}+\hat{j}+\hat{k}$, then the equation to the locus of the points having tangential speed $20 \mathrm{~m} / \mathrm{s}$.
A. $x^{2}+y^{2}+z^{2}-x y-y z-x z-1=0$
B. $x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 x z-1=0$
C. $x^{2}+y^{2}+z^{2}-x y-y z-x z-2=0$
D. $x^{2}+y^{2}+z^{2}-2 x y-2 y z-2 x z-2=0$

Answer: C

- Watch Video Solution

39. A rigid body rotates with constant angular velocity ω about the line whose vector equation is, $r=\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$. The speed of the particle at the instant it passes through the point with position vector $(2 \hat{i}+3 \hat{j}+5 \hat{k})$ is equal to
A. $\omega \sqrt{2}$
B. 2ω
C. $\frac{\omega}{\sqrt{2}}$
D. None of these
40. Consider $\triangle A B C$ with $A=(\vec{a}) ; B=(\vec{b})$ and $C=(\vec{c})$. If $\vec{b} \cdot(\vec{a}+\vec{c})=\vec{b} \cdot \vec{b}+\vec{a} \cdot \vec{c} ;|\vec{b}-\vec{a}|=3 ;|\vec{c}-\vec{b}|=4 \quad$ then the angle between the medians $A \vec{M}$ and $B \vec{D}$ is
A. $\pi-\cos ^{-1}\left(\frac{1}{5 \sqrt{13}}\right)$
B. $\pi-\cos ^{-1}\left(\frac{1}{13 \sqrt{5}}\right)$
C. $\cos ^{-1}\left(\frac{1}{5 \sqrt{13}}\right)$
D. $\cos ^{-1}\left(\frac{1}{13 \sqrt{5}}\right)$

Answer: A

Watch Video Solution

41. Given unit vectors m, n and p such that angle between m and n. Angle between p and $(m \times n)=\frac{\pi}{6}$, then $[\mathrm{n} \mathrm{p} \mathrm{m}]$ is equal to
A. $\frac{\sqrt{3}}{4}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. None of these

Answer: A

- Watch Video Solution

42. If \vec{a} and \vec{b} are two unit vectors, then the vector $(\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})$ is parallel to the vector
A. $a+b$
B. $a-b$
C. $2 a-b$
D. ${ }^{`} a+2 b$

- Watch Video Solution

43. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} noncoplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to
A. $[r \widehat{a} \hat{b}](\widehat{a} \times \hat{b})$
B. $[r \widehat{a} \hat{b}] \widehat{a}+(r \cdot \widehat{a})(\widehat{a} \times \hat{b})$
C. $[r \widehat{a} \hat{b}] \hat{b}+(r \cdot \hat{b})(\widehat{a} \times \hat{b})$
D. $[r \widehat{a} \hat{b}] \hat{b}+(r \cdot \widehat{a})(\widehat{a} \times \hat{b})$

Answer: C

- Watch Video Solution

44. If vector $\vec{i}+2 \vec{j}+2 \vec{k}$ is rotated through an angle of 90°, so as to cross the positivedirection of y-axis, then the vector in the new position is

$$
\text { A. }-\frac{2}{\sqrt{5}} \hat{i}+\sqrt{5} \hat{j}-\frac{4}{\sqrt{5}} \hat{k}
$$

B. $-\frac{2}{\sqrt{5}} \hat{i}-\sqrt{5} \hat{j}+\frac{4}{\sqrt{5}} \hat{k}$
C. $4 \hat{i}-\hat{j}-\hat{k}$
D. None of these

Answer: A

- Watch Video Solution

45. 10 different vectors are lying on a plane out of which four are parallel with respect to each other. Probability that three vectors chosen from them will satisfy the equation $\lambda_{1} a+\lambda_{2} b+\lambda_{3} c=0$, where λ_{1}, λ_{2} and $\lambda_{3} \neq=0$ is
A. (a) $\frac{{ }^{6} C_{2} \times .{ }^{4} C_{1}}{.{ }^{10} C_{3}}$
B. (b) $\frac{\left(.{ }^{6} C_{3} \times .{ }^{4} C_{1}\right)+,{ }^{6} C_{3}}{.{ }^{10} C_{3}}$
C. (c) $\frac{\left({ }^{6} C_{3}+\times .{ }^{4} C_{1}\right)+,{ }^{4} C_{3}}{.{ }^{10} C_{3}}$
D. (d) $\frac{\left(.{ }^{6} C_{3}+.{ }^{4} C_{1}\right)+,{ }^{6} C_{2} \times .{ }^{4} C_{1}}{.{ }^{10} C_{3}}$

Answer: D

D Watch Video Solution

46. If \widehat{a} is a unit vector and projection of x along \widehat{a} is 2 units and
$(\widehat{a} \times x)+b=x$, then x is equal to
A. $\frac{1}{2}(\widehat{a}-b+(\widehat{a} \times b))$
B. $\frac{1}{2}(2 \widehat{a}+b+(\widehat{a} \times b))$
C. $(\widehat{a}+(\widehat{a} \times b))$
D. None of these

Answer: B

- Watch Video Solution

47. If \vec{a}, \vec{b} and \vec{c} are any three non-zero vectors, then the component of $\vec{a} \times(\vec{b} \times \vec{c})$ perpendicular to \vec{b} is
A. $\vec{a} \times(\vec{b} \times \vec{c})+\frac{(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{a})}{|b|^{2}} \vec{b}$
в. $\vec{a} \times(\vec{b} \times \vec{c})+\frac{(\vec{a} \times \vec{c}) \cdot(\vec{a} \times \vec{b})}{|b|^{2}} \vec{b}$
c. $\vec{a} \times(\vec{b} \times \vec{c})+\frac{(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{a})}{|b|^{2}} \vec{b}$
D. $\vec{a} \times(\vec{b} \times \vec{c})+\frac{(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})}{|b|^{2}} \vec{b}$

Answer: D

Watch Video Solution

48. The position vector of a point P is $r=x \hat{i}+y \hat{j}+\hat{k} z$, where $x, y, z \in N$ and $a=\hat{i}+2 \hat{j}+\hat{k}$. If $\cdot a=20$ and the number of possible of P is 9λ, then the value of λ is
A. a) 81
B. b) 9
C. c) 100
D. d) 36

Answer: A

- Watch Video Solution

49. Let $a, b>0$ and $\alpha=\frac{\hat{i}}{a}+\frac{4 \hat{j}}{b}+b \hat{k}$ and $\beta=b \hat{i}+a \hat{j}+\frac{\hat{k}}{b}$, then the maximum value of $\frac{30}{5+\alpha \cdot \beta}$ is
A. 3
B. 2
C. 4
D. 8

Answer: A

50. If \vec{a}, \vec{b} and \vec{c} are any three vectors forming a linearly independent system, then $\forall \theta \in R$
$\vec{p}=\vec{a} \cos \theta+\vec{b} \sin \theta+\vec{c}(\cos 2 \theta)$
$\vec{q}=\vec{a} \cos \left(\frac{2 \pi}{3}+\theta\right)+\vec{b} \sin \left(\frac{2 \pi}{3}+\theta\right)+\vec{c}(\cos 2)\left(\frac{2 \pi}{3}+\theta\right)$
and $\vec{r}=\vec{a} \cos \left(\theta-\frac{2 \pi}{3}\right)+\vec{b} \sin \left(\theta-\frac{2 \pi}{3}\right)+\vec{c} \cos 2\left(\theta-\frac{2 \pi}{3}\right)$
then $[\vec{p} \vec{q} \vec{r}]$
A. $[a b c] \sin \theta$
B. [a b c] $\cos 2 \theta$
C. [a b c] $\cos 3 \theta$
D. None of these

Answer: D

- Watch Video Solution

51. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side $A D$ is
rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: B

- Watch Video Solution

52. If in a $\triangle A B C, B C=\frac{e}{|e|}-\frac{f}{|f|}$ and $A C=\frac{2 e}{|e|}:|e| \neq|f|$, then the value of $\cos 2 A+\cos 2 B+\cos 2 C$ must be
A. (a) -1
B. (b) 0
C. (c) 2
D. (d) $\frac{-3}{2}$

Answer: A

- Watch Video Solution

53. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both
\vec{a} and $\vec{b} . I f \vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $\alpha=\beta=-\cos \theta, y^{2}=\cos 2 \theta$
B. $\alpha=\beta=\cos \theta, y^{2}=\cos 2 \theta$
C. $\alpha=\beta=\cos \theta, y^{2}=-\cos 2 \theta$
D. $\alpha=\beta=-\cos \theta, y^{2}=-\cos 2 \theta$

Answer: C

54. In triangle $A B C$ the mid point of the sides $A B, B C$ and $A C$ respectively (1 , $0,0),(0, \mathrm{~m}, \mathrm{0})$ and $(0,0, \mathrm{n})$. Then, $\frac{A B^{2}+B C^{2}+C A^{2}}{l^{2}+m^{+} n^{2}}$ is equal to
A. 2
B. 4
C. 8
D. 16

Answer: C

- Watch Video Solution

55. Find the angle between the two lines whose direction cosines are given by the equation
$l+m+n=0,2 l+2 m-m n=0$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

D Watch Video Solution

56. A line makes an angle θ both with x-axis and y-axis. A possible range of θ is
A. $\left[0, \frac{\pi}{4}\right]$
B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$.

Answer: C

57. Let \vec{a}, \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3 , respectively, such that the angle between
\vec{a} and \vec{b} is θ and $\vec{a} \times(\vec{a} \times \vec{b})=\vec{c}$. Then $\tan \theta$ is equal to
A. 0
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$

Answer: D

- Watch Video Solution

58. Find the perpendicular distance of a corner of a cube of unit side length from a diagonal not passing through it.
A. $\sqrt{\frac{3}{2}}$
B. $\sqrt{\frac{2}{3}}$
C. $\sqrt{\frac{3}{4}}$
D. $\sqrt{\frac{4}{3}}$

Answer: B

- Watch Video Solution

59. If p, q are two non-collinear and non-zero vectors such that $(b-c) p \times q+(c-a) p+(a-b) q=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are lengths of sides of a triangle, then the triangle is
A. right angled
B. obtuse
C. equilateral
D. right angled isosceles triangle

Answer: C

60.

$a=\hat{i}+\hat{j}+\hat{k}, b=-\hat{i}+\hat{j}+\hat{k}, c=\hat{i}-\hat{j}+\hat{k}$ and $d=\hat{i}+\hat{j}-\hat{k}$.
Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to
A. X-axis
B. Y-axis
C. Both X and Y axes
D. Both y and z-axes

Answer: D

- Watch Video Solution

61. A parallelopiped is formed by planes drawn parallel to coordinate axes through the points $A=(1,2,3)$ and $B=(9,8,5)$. The volume of that
parallelopiped is equal to (in cubic units)
A. 192
B. 48
C. 32
D. 96

Answer: D

- Watch Video Solution

62. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three non-coplanar vectors and d be a non-zerro vector, which is perrpendicular to $a+b+c$ now, if $d=(\sin x)(a \times b)+(\cos y)(b \times c)+2(c \times a)$, then the minimum value of $\left(x^{2}+y^{2}\right)$ is
A. π^{2}
B. $\frac{\pi^{2}}{2}$
C. $\frac{\pi^{2}}{4}$
D. $\frac{5 \pi^{2}}{4}$

Answer: D

- Watch Video Solution

63. If $\alpha(a \times b)+\beta(b \times c)+\gamma(c \times a)=0$, then
A. a, b, c are coplanar if all of $\alpha, \beta, \gamma \neq 0$
B. a, b, c are non-coplanar if any one $\alpha, \beta \gamma=0$
C. a, b, c are non-coplanar for any α, β, γ.
D. None of these

Answer: A

- Watch Video Solution

64. Given four non zero vectors $\bar{a}, \bar{b}, \bar{c}$ and \bar{d}. The vectors \bar{a}, \bar{b} and \bar{c} are coplanar but not collinear pair by pairand vector \bar{d} is not coplanar with vectors

$$
\bar{a}, \bar{b} \text { and } \bar{c} \text { and } \widehat{\bar{a} \bar{b}}=\widehat{\bar{b} \bar{c}}=\frac{\pi}{3},(\bar{d} \bar{b})=\beta
$$

$$
(\bar{d} \bar{c})=\cos ^{-1}(m \cos \beta+n \cos \alpha) \text { then } m-n \text { is : }
$$

A. $\cos ^{-1}(\cos \beta-\cos \alpha)$
B. $\sin ^{-1}(\cos \beta-\cos \alpha)$
C. $\sin ^{-1}(\sin \beta-\sin \alpha)$
D. $\cos ^{-1}(\tan \beta-\tan \alpha)$

Answer: A

- Watch Video Solution

65. The shortest distance between a diagonal of a unit cube and the edge skew to it, is
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{6}}$

Answer: A

- Watch Video Solution

66. Let $v=2 \hat{i}+\hat{j}-\hat{k}$ and $w=\hat{i}+3 \hat{k}$. If \hat{u} is unit vector and the maximum value of $[u v w]=\sqrt{\lambda}$, then the value of $(\lambda-51)$ is
A. -1
B. $\sqrt{35}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: B

67. The length of the edge of the regular tetradedron ABCD is 'a'. Points E and F are taken on the edges $A D$ and $B D$ respectively such that ' E ' divides DA and ' F ' divides BD in the ratio of 2:1 each. Then, area of $\triangle C E F$ is
A. $\frac{5 a}{12 \sqrt{3}}$ sq. units
B. $\frac{a}{12 \sqrt{3}}$ sq. units
C. $\frac{a^{2}}{12 \sqrt{3}}$ sq. unit
D. $\frac{5 a^{2}}{12 \sqrt{3}}$ sq. units

Answer: D

- Watch Video Solution

68. If the two adjacent sides of two rectangles are represented by vectors
$\vec{p}=5 \vec{a}-3 \vec{b} ; \vec{q}=-\vec{a}-2 \vec{b}$ and $\vec{r}=-4 \vec{a}-\vec{b} ; \vec{s}=-\vec{a}+$
respectively, then the angel between the vector
$\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$ is
A. $\pi-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
D. $\pi-\cos ^{-1}\left(\frac{19}{\sqrt{43}}\right)$

Answer: B

- Watch Video Solution

69. Let $\vec{a}, \vec{b}, \vec{c}$ are three vectors along the adjacent edges ofa tetrahedron, if $\quad|\vec{a}|=|\vec{b}|=|\vec{c}|=2 \quad$ and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=2$ then volume of tetrahedron is (A) $\frac{1}{\sqrt{2}}$
(B) $\frac{2}{\sqrt{3}}$ (C) $\frac{\sqrt{3}}{2}$
(D) $2 \frac{\sqrt{2}}{3}$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{2}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{2 \sqrt{2}}{3}$

Answer: D

- Watch Video Solution

70. If the angle between the vectors $\vec{a}=\hat{i}+(\cos x) \hat{j}+\hat{k}$ and
$\vec{b}=\left(\sin ^{2} x-\sin x\right) \hat{i}-(\cos x) \hat{j}+(3-4 \sin x) \hat{k}$
is obutse and x in $\left(0, \frac{\pi}{2}\right)$, then the exhaustive set of values of ' x ' is equal to-
A. $x \in\left(0, \frac{\pi}{6}\right)$
B. $x \in\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$
C. $x \in\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$
D. $x \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

Answer: B

71. If position vectors of the points A, B and C are a, b and c respectively and the points D and E divides line segment $A C$ and $A B$ in the ratio 2:1 and $1: 3$, respectively. Then, the points of intersection of BD and EC divides EC in the ratio
A. $2: 1$
B. 1:3
C. 1:2
D. 3: 2

Answer: D

- Watch Video Solution

Exercise (More Than One Correct Option Type Questions)

1. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector (B) in the plane of \vec{a} and \vec{b} (C) equally inclined to \vec{a} and \vec{b} (D) perpendicular to $\vec{a} \times \vec{b}$
A. a unit vector
B. in the plane of a and b
C. equally inclined to a and b
D. perpendicular to $a \times b$

Answer: B::C::D

- Watch Video Solution

2. If $a \times(b \times c)=(a \times b) \times c$, then
A. $(c \times a) \times b=0$
B. $c \times(a \times b)=0$
C. $b \times(c \times a)=0$
D. $b \times(c \times a)=0$

Answer: A::C::D

- Watch Video Solution

3. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is
A. $|u|$
B. $|u|+|u \cdot a|$
C. $|u|+|u \cdot b|$
D. $|u|+u \cdot(a+b)$

Answer: A::C

4. scalars
and
$l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to
A. $l=\frac{(c \times b) \cdot(a \times b)}{(a \times b)^{2}}$
B. $l=\frac{(c \times s a) \cdot(b \times a)}{(b \times a)^{2}}$
C. $m=\frac{(c \times a) \cdot(b \times a)}{(b \times a)^{2}}$
D. $n=\frac{(c \times s a) \cdot(b \times a)}{(b \times a)^{2}}$

Answer: A:C

- Watch Video Solution

5. Let \vec{r} be a unit vector satisfying
$\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$, then
A. $\hat{r}=\frac{2}{3}(a+a \times b)$
B. $\hat{r}=\frac{1}{3}(a+a \times b)$
C. $\hat{r}=\frac{2}{3}(a-a \times b)$
D. $\hat{r}=\frac{1}{3}(-a+a \times b)$

Answer: B::D

- Watch Video Solution

6. The number of all possible triplets $\left(a_{1}, a_{2}, a_{3}\right)$ such that $a_{1}+a_{2} \cos 2 x+a_{3}, \sin ^{2} x=0$ for all x is
A. vectors $\quad a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $b=4 \hat{i}+2 \hat{j}+\hat{k} \quad$ are perpendicular to each other
B. vectors

$$
a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} \text { and } b=-\hat{i}+\hat{j}+\hat{k}
$$

are
perpendicular to each other
C. if vectors $a=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then one of the ordered triplet $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
D. if vectors $2 a_{1}+3 a_{2}+6 a_{3}$, then $\left|a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$.
7. If \vec{a} and \vec{b} are two vectors and angle between them is θ, then
a. $|a \times b|^{2}+(a \cdot b)^{2}=|a|^{2}|b|^{2}$
b. $|a \times b|=(a \cdot b), \quad$ if $\theta=\frac{\pi}{4}$
c. $a \times b=(a \cdot b) \widehat{n}$, (where \widehat{n} is a normal unit vector), if $\theta=\frac{\pi}{4}$
d. $|a \times b| \cdot(a+b)=0$
A. $|a \times b|^{2}+(a \cdot b)^{2}=|a|^{2}|b|^{2}$
B. $|a \times b|=(a \cdot b), \quad$ if $\quad \theta=\frac{\pi}{4}$
C. $a \times b=(a \cdot b) \widehat{n}$, (where \widehat{n} is a normal unit vector), if $\theta=\frac{\pi}{4}$
D. $|a \times b| \cdot(a+b)=0$

Answer: A::B::C::D

8. If the unit vectors e_{1} and e_{2} arke inclined at an angle 2θ and $\left|e_{1}-e_{2}\right|<1$, the for $\theta \in[0, \pi], \theta$ may lie in the interval
A. $\left[0, \frac{\pi}{6}\right]$
B. $\left(\frac{5 \pi}{6}, \pi\right]$
C. $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
D. $\left(\frac{\pi}{2}, \frac{5 \pi}{6}\right]$

Answer: A::B

- Watch Video Solution

9. \vec{b}, \vec{c} being non-collinear if $\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$, then

$$
\text { A. A. } x=1
$$

B. В. $x=-1$
C. C. $y=(4 n+1) \frac{\pi}{2}, n \in I$
D. D. $y=(2 n+1) \frac{\pi}{2}, n \in I$

Answer: A: C

- Watch Video Solution

10. If in
triangle
$A B C, \vec{A} B=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}$ and $\vec{A} C=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then
a. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
b. $\sin A=\cos C$
c. projection of $A C$ on $B C$ is equal to $B C$
d. projection of $A B$ on $B C$ is equal to $A B$
A. $1+\cos 2 A+\cos 2 B+\cos 3 C=0$
B. $\sin A=\cos C$
C. projection of $A C$ on $B C$ is equal to $B C$
D. projection of $A B$ on $B C$ is equal to $A B$

D Watch Video Solution

11. If a, b and c be the three non-zero vectors satisfying the condition $a \times b=c$ and $b \times c=a$, then which of the following always hold(s) good?
A. a, b and c are orthogonal in pairs
B. $[\mathrm{a} b \mathrm{c}]=|\mathrm{b}|$
C. $[\mathrm{abc}]=\left|c^{2}\right|$
D. $|b|=|c|$

Answer: A::C

12. Given the following informations about the non-zero vectors A, B and C
$(i)(A \times B) \times A=0:(i i) B \cdot B=4$
$(i i i) A \cdot B=-6:(i v) B \cdot C=6$
which one of the following holds good?
A. $A \times B=0$
B. $A \cdot(B \times C)=0$
C. $A \cdot A=8$
D. $A \cdot C=-1$

Answer: A: B

- Watch Video Solution

13. Find the area of the triangle having all side equal to 8 .
14. Given vectors $U=2 \hat{i}+3 \hat{j}-6 \hat{k}, V=6 \hat{i}+2 \hat{j}+2 \hat{k}$. Find their dot product.
A. U, V and W are linearly dependent
B. $(U \times V) \times W=0$
C. U, V and W form a triplet of mutually perpendicular vectors
D. $U \times(V \times W)=0$

Answer: B::C::D

- Watch Video Solution

15. Let $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c}, whose projection on \vec{a} is of magnitude $\sqrt{2 / 3}$, is
A. (a) $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. (b) $0 \hat{i}+\hat{j}+3 \hat{k}$
C. (b) $-2 \hat{i}-\hat{j}+5 \hat{k}$
D. (d) $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: A:C

- Watch Video Solution

16. Three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \times \vec{b}=3(\vec{a} \times \vec{c})$ Also $|\vec{a}|=|\vec{b}|=1,|\vec{c}|=\frac{1}{3}$ If the angle between \vec{b} and \vec{c} is 60° then
A. $b=3 c+a$
B. $b=3 c-a$
C. $a=6 c+2 b$
D. $a=6 c-2 b$

Answer: A: B

17. Let a, b and c be non-zero vectors and $|a|=1$ and r is a non-zero vector such that $r \times a=b$ and $r \cdot a=1$, then
a. $a \perp b$
b. $r \perp b$
c. $r \cdot a=\frac{1-[a b c]}{a \cdot b}$
d. [rab]=0
A. $a \perp b$
B. $r \perp b$
C. $r \cdot a=\frac{1-[a b c]}{a \cdot b}$
D. $[r$ a b $]=0$

Answer: A::B::C

- Watch Video Solution

18. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$ then the following is (are) true
A. (a) $\lambda_{1}=a \cdot c$
B. (b) $\lambda_{2}=|a \times b|$
C. (c) $\lambda_{3}=|(a \times b) \times c|$
D. (d) $\lambda_{1}+\lambda_{2}+\lambda_{3}=(a+b+a \times b) \cdot c$

Answer: A::D

- Watch Video Solution

19. Given three non-coplanar vectors $O A=a, O B=b, O C=c$. Let S be the centre of the sphere passing through the points $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ if $\mathrm{OS}=\mathrm{x}$, then
A. x must be linear combination of a, b, c
B. \times must be linear combination of $b \times c, c \times a$ and $a \times b$
C. $x=\frac{a^{2}(b \times c)+b^{2}(c \times a)+c^{2}(a \times b)}{2[a b c]}, a=|a|, b=|b| . C=|c|$
D. $x=a+b+c$
20. If $a=\hat{i}+\hat{j}+\hat{k}$ and $b=\hat{i}-\hat{j}$, then
$(a \cdot \hat{i}) \hat{i}+(a \cdot \hat{j}) \hat{j}+(a \cdot \hat{k}) \hat{k},(b \cdot \hat{i}) \hat{i}+(b \cdot \hat{j}) \hat{j}+(b \cdot \hat{k}) \hat{k}$ is equal to

- Watch Video Solution

21. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}$. The dot product of vectors is
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. parallel to $\hat{i}+\hat{j}+\hat{k}$

Answer: A::B::C

22. Which of the following statement(s) is/are true?
A. $a \times(b \times c), b \times(c \times a), c \times(a \times b)$ form a right handed system
B. $c,(a \times b) \times, a \times b$ form a right handed system
C. $a \cdot b+b \cdot c+c \cdot a<0, \quad$ if $\quad a+b+c=0$
D. $\frac{(a \times b) \cdot(b \times c)}{(b \times c) \cdot(a \times c)}=-1, \quad$ if $a+b+c=0$

Answer: B::C::D

- Watch Video Solution

23. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and $\vec{b} . \operatorname{If} \vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $l=m$
B. $n^{2}=1-2 l^{2}$
C. $n^{2}=-\cos 2 \alpha$
D. $m^{2}=\frac{1+\cos 2 \alpha}{2}$

Answer: A::B::C::D

- Watch Video Solution

24. If a, b and c are three non-zero vectors, then which of the following statement(s) is/are true?
A. $a \times(b \times c), b \times(c \times a), c \times(a \times b)$ form a right handed system
B. $c,(a \times b) \times, a \times b$ form a right handed system
C. $a \cdot b+b \cdot c+c \cdot a<0, \quad$ if $a+b+c=0$
D. $\frac{(a \times b) \cdot(b \times c)}{(b \times c) \cdot(a \times c)}=-1, \quad$ if $a+b+c=0$

Answer: C::D

- Watch Video Solution

25. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
a $. b-\frac{a \times b}{|b|^{2}}$
b. $2 b-\frac{a \times b}{|b|^{2}}$
c. $|a| b-\frac{a \times b}{|b|^{2}}$
d. $|b| b-\frac{a \times b}{|b|^{2}}$
A. $b-\frac{a \times b}{|b|^{2}}$
B. $2 b-\frac{a \times b}{|b|^{2}}$
C. $|a| b-\frac{a \times b}{|b|^{2}}$
D. $|b| b-\frac{a \times b}{|b|^{2}}$

Answer: A::B::C::D

26. If a and b are any two unit vectors, then the possible integers in the range of $\frac{3|a+b|}{2}+2|a-b|$, is/are
A. 2
B. 3
C. 4
D. 5

Answer: B::C::D

- Watch Video Solution

27. If a is perpendicular to b and p is non-zero scalar such that $p r+(r \cdot b) a=c$, then $\mathrm{r}=$

- Watch Video Solution

28. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and \hat{l}, and $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}, \vec{a}_{4}$ are four non-zero vectors such that no vector can be expressed as a linear combination of others and $(\lambda-1)\left(\vec{a}_{1}-\vec{a}_{2}\right)+\mu\left(\vec{a}_{2}+\vec{a}_{3}\right)+\gamma\left(\vec{a}_{3}+\vec{a}_{4}-2 \vec{a}_{2}\right)+\vec{a}_{3}+\delta \vec{a}$ then
A. $\lambda=1$
B. $\mu=\frac{-2}{3}$
C. $\lambda=\frac{2}{3}$
D. $\delta=\frac{1}{3}$

Answer: A::B::D

- Watch Video Solution

29. A vector(d) is equally inclined to three vectors $a=\hat{i}-\hat{j}+\hat{k}, b=2 \hat{i}+\hat{j}$ and $c=3 \hat{j}-2 \hat{k}$. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be three vectors in the plane $\mathrm{a}, \mathrm{b}: \mathrm{b}, \mathrm{c}: \mathrm{c}, \mathrm{a}$ respectively, then
A. $x \cdot d=14$
B. $y \cdot d=3$
C. $z \cdot d=0$
D. $r \cdot d=0$, where $r=\lambda x+\mu y+\delta z$

Answer: C::D

- Watch Video Solution

30. Find the nth term of AP whose first term is 12 and common difference is 7.

- Watch Video Solution

31. Given three vectors a, b and c are non-zero and non-coplanar vectors.

Then which of the following are coplanar.
A. $a+b, b+c, c+a$
B. $a-b, b+c, c+a$
C. $a+b, b-c, c+a$
D. $a+b, b+c, c-a$

Answer: B::C::D

- Watch Video Solution

32. Find the nth term of GP if the first term is 7 and common ratio is 3 .

- Watch Video Solution

33. If vectors \vec{a} and \vec{b} are two adjecent sides of a paralleogram, then the vector representing the altitude of the parallelogram which is perpendicular to \vec{a} is
A. $b+\frac{b \times a}{|a|^{2}}$
B. $\frac{a \cdot b}{|b|^{2}} b$
C. $b-\frac{a \cdot b}{|b|^{2}} b$
D. $\frac{a \times(b \times a)}{|a|^{2}}$

Answer: C::D

- Watch Video Solution

34. Let a, b, c be three vectors such that each of them are non-collinear, $\mathrm{a}+\mathrm{b}$ and $\mathrm{b}+\mathrm{c}$ are collinear with c and a respectively and $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{k}$. Then (|k|, $|k|)$ lies on
A. $y^{2}=4 a x$
B. $x^{2}+y^{2}-a x-b y=0$
C. $x^{2}-y^{2}=1$
D. $|x|+|y|=1$

Answer: A: B

35. If a, b and c are non-collinear unit vectors also b, c are non-collinear and $2 a \times(b \times c)=b+c$, then
A. angle between a and c is 60°
B. angle between b and c is 30°
C. angle between a and b is 120°
D. b is perpendicular to c

Answer: A::C

- Watch Video Solution

36.

$a=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}): b=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k}): c=c_{1} \hat{i}+c_{2} \hat{j}+c_{2} \hat{k}$
and matrix $A=\left[\begin{array}{ccc}\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$ and $A A^{T}=I$, then c
A. (a) $\frac{3 \hat{i}+6 \hat{j}+2 \hat{k}}{7}$
B. (b) $\frac{3 \hat{i}-6 \hat{j}+2 \hat{k}}{7}$
C. (c) $\frac{-3 \hat{i}+6 \hat{j}-2 \hat{k}}{7}$
D. (d) $-\frac{3 \hat{i}+6 \hat{j}+2 \hat{k}}{7}$

Answer: B::C

- Watch Video Solution

Exercise (Statement I And li Type Questions)

1. Statement 1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular totehdirectin of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$. Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s 2 \hat{i}+2 \hat{j}+2 \hat{k}$.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: C

D Watch Video Solution

2. Statement-I $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are three mutually perpendicular unit vector, then $a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}$ and $a_{3} \hat{i}+b_{3} \hat{j}+3 \hat{k}$ may be mutually perpendicular unit vectors.

Statement-II Value of determinant and its transpose are the same .

A. (a)Both Statement-I and Statement-II are correct and Statement-II is

 the correct explanation of Statement-IB. (b)Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. (c)Statement-I is correct but Statement-II is incorrect
D. (d)Statement-II is correct but Statement-I is incorrect

Answer: A

D Watch Video Solution

3. Consider three vectors \vec{a}, \vec{b} and \vec{c} Statement 1 $\vec{a} \times \vec{b}=((\hat{i} \times \vec{a}) \cdot \vec{b}) \hat{i}+((\hat{j} \times \vec{a}) \cdot \vec{b}) \hat{j}+((\hat{k} \times \vec{a}) \cdot \vec{b}) \hat{k}$ Statement 2: $\vec{c}=(\hat{i} \cdot \vec{c}) \hat{i}+(\hat{j} \cdot \vec{c}) \hat{j}+(\hat{k} \cdot \vec{c}) \hat{k}$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

D Watch Video Solution

4. Statement 1: Distance of point $D(1,0,-1)$ from the plane of points $A($ $1,-2,0), B(3,1,2)$ and $C(-1,1,-1)$ is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points A, B, C and D is $\frac{\sqrt{229}}{2}$
A. Both Statement-I and Statement-II are correct and Statement-II is
the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is
not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: D

D Watch Video Solution

5.

Statement
1 :
If

$$
\begin{aligned}
& \vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{i}+\hat{j}-2 \hat{k} \text { and } \vec{C}=\hat{i}+2 \hat{j}+\hat{k} \\
& |\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \vec{C}|=243 \\
& |\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \vec{C}|=|\vec{A}|^{2}|[\vec{A} \vec{B} \vec{C}]|
\end{aligned}
$$

A. (a) Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. (b) Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. (c) Statement-I is correct but Statement-II is incorrect
D. (d) Statement-II is correct but Statement-I is incorrect

Answer: D

6. Statement-I The number of vectors of unit length and perpendicular to both the vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is zero.

Statement-II a and b are two non-zero and non-parallel vectors it is true that $a \times b$ is perpendicular to the plane containing a and b
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: D

- Watch Video Solution

7. Statement-I $\left(S_{1}\right)$: If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are non-collinear points. Then, every point (x, y) in the plane of $\triangle A B C$, can be expressed in the form $\left(\frac{k x_{1}+l x_{2}+m x_{3}}{k+l+m}, \frac{k y_{1}+l y_{2}+m y_{3}}{k+l+m}\right)$

Statement-II (S_{2}) The condition for coplanarity of four $\mathrm{A}(\mathrm{a}), \mathrm{B}(\mathrm{b}), \mathrm{C}(\mathrm{c})$, $\mathrm{D}(\mathrm{d})$ is that there exists scalars $\mathrm{I}, \mathrm{m}, \mathrm{n}, \mathrm{p}$ not all zeros such that $l a+m b+n c+p d=0$ where $l+m+n+p=0$.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

8. If a, b are non-zero vectors such that $|a+b|=|a-2 b|$, then

Statement-I Least value of $a \cdot b+\frac{4}{|b|^{2}+2}$ is $2 \sqrt{2}-1$.
Statement-II The expression $a \cdot b+\frac{4}{|b|^{2}+2}$ is least when magnitude of b is $\sqrt{2 \tan \left(\frac{\pi}{8}\right)}$.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

9.

Statement-I
, then there exist real numbers α, β, γ such that $a=\alpha b+\beta c+\gamma d$
Statement-II a, b, c, d are four vectors in a 3-dimensional space. If b, c, d are non-coplanar, then there exist real numbers α, β, γ such that $a=\alpha b+\beta c+\gamma d$.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: B

- Watch Video Solution

10. Statement 1: Let $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be the position vectors of four points $A, B, C a n d D$ and $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=0$. Then points
$A, B, C, a n d D$ are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $(\vec{P} Q, \vec{P} \operatorname{Rand} \vec{P} S)$ are coplanar. Then $\vec{P} Q=\lambda \vec{P} R+\mu \vec{P} S$, where $\lambda a n d \mu$ are scalars.
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

11. If $a=\hat{i}+\hat{j}-\hat{k}, b=2 \hat{i}+\hat{j}-3 \hat{k}$ and r is a vector satisfying $2 r+\rtimes a=b$.

Statement- I r can be expressed in terms of a, b and $a \times b$.
Statement-II $r=\frac{1}{7}(7 \hat{i}+5 \hat{j}-9 \hat{k}+a \times b)$.
A. (a)Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. (b)Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. (c)Statement-I is correct but Statement-II is incorrect
D. (d)Statement-II is correct but Statement-I is incorrect

Answer: A

- Watch Video Solution

12. Let \widehat{a} and \hat{b} be unit vectors at an angle $\frac{\pi}{3}$ with each other. If $(\widehat{a} \times(\hat{b} \times \hat{c})) \cdot(\widehat{a} \times \hat{c})=5$ then
Statement-I $[\hat{a} \hat{b} \hat{c}]=10$
Statement-II [x y z]=0, if $\mathrm{x}=\mathrm{y}$ or $\mathrm{y}=\mathrm{z}$ or $\mathrm{z}=\mathrm{x}$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: B

D Watch Video Solution

Exercise (Passage Based Questions)

$\vec{p}=\hat{i}+\hat{j}+\hat{k}, \vec{q}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{r}=\hat{i}+\hat{j}+3 \hat{k}$ and let \vec{s} be a unit vector, then \vec{p}, \vec{q} and \vec{r} are
a. linealy dependent
b. can form the sides of a possible triangle
c. such that the vectors ($q-r$) is orthogonal to p
d. such that each one of these can be expressed as a linear combination of the other two
A. linealy dependent
B. can form the sides of a possible triangle
C. such that the vectors ($q-r$) is orthogonal to p
D. such that each one of these can be expressed as a linear combination of the other two

Answer: C

- Watch Video Solution

2.

$p=\hat{i}+\hat{j}+\hat{k}, q=2 \hat{i}+4 \hat{j}-\hat{k}$ and $r=\hat{i}+\hat{j}+3 \hat{k}$ and let s be a unit vector, then
Q. If $(p \times q) \times r=u p+v q+w r$, then $(\mathrm{u}+\mathrm{v}+\mathrm{w})$ is equal to
A. 8
B. 2
C. -2
D. 4

Answer: B

- Watch Video Solution

3.

Consider
three
vectors
$p=\hat{i}+\hat{j}+\hat{k}, q=2 \hat{i}+4 \hat{j}-\hat{k}$ and $r=\hat{i}+\hat{j}+3 \hat{k}$ and let s be a unit vector, then Q. The magnitude of the vector $(p \cdot s)(q \times r)+(q \cdot s)(r \times p)+(r \cdot s)(p \times q)$ is
A. A. 4
B. B. 8
C. C. 18
D. D. 2

- Watch Video Solution

4. Consider the three vectors $\mathrm{p}, \mathrm{q}, \mathrm{r}$ such that $p=\hat{i}+\hat{j}+\hat{k}$ and $q=\hat{i}-\hat{j}+\hat{k}, p \times r=q+c p$ and $p \cdot r=2$
Q.The value of [$p q r$] is
A. $\frac{5 \sqrt{2} c}{|r|}$
B. $-\frac{8}{3}$
C. 0
D. greater than 0

Answer: B

5. Consider the three vectors p, q, r such that $p=\hat{i}+\hat{j}+\hat{k}$ and $q=\hat{i}-\hat{j}+\hat{k}, p \times r=q+c p$ and $p \cdot r=2$ Q.The value of [p q r] is
A. $c(\hat{i}-2 \hat{j}+\hat{k})$
B. a unit vector
C. independent, as [p q r]
D. $-\frac{\hat{i}-2 \hat{j}+\hat{k}}{2}$

Answer: D

- Watch Video Solution

6. Consider the three vectors p, q, r such that $p=\hat{i}+\hat{j}+\hat{k}$ and $q=\hat{i}-\hat{j}+\hat{k}, p \times r=q+c p$ and $p \cdot r=2$
Q.The value of [p q r] is
A. are collinear
B. are coplanar
C. represent the coterminus edges of a tetrahedron whose volume is c cu. Units
D. represent the coterminus edges of a parallelopiped whose volume is c cu. Units

Answer: C

- Watch Video Solution

7. Let P, Q are two points on the curve $y=\log _{\frac{1}{2}}(x-0.5)+\log _{2} \sqrt{4 x^{2} 4 x+1} \quad$ and $\quad \mathrm{P} \quad$ is also on the $x^{2}+y^{2}=10, Q$ lies inside the given circle such that its abscissa is an integer.
a. $(1,2)$
b. $(2,4)$
c. $(3,1)$
d. $(3,5)$
A. $(1,2)$
B. $(2,4)$
C. $(3,1)$
D. $(3,5)$

Answer: C

- Watch Video Solution

8. Let P and Q are two points on the curve $y=\log _{\frac{1}{2}}(x-0.5)+\log _{2} \sqrt{4 x^{2}-4 x+1}$ and P is also on the circle $x^{2}+y^{2}=10$. Q lies inside the given circle such that its abscissa is an integer.
Q. $O P \cdot O Q$, O being the origin is
a. 4 or 7
b. 4 or 2
c. 2 or 3
d. 7 or 8
A. 4 or 7
B. 4 or 2
C. 2 or 3
D. 7 or 8

Answer: A

- Watch Video Solution

9. Let P, Q are two points on the curve $y=\log _{\frac{1}{2}}(x-0.5)+\log _{2} \sqrt{4 x^{2}-4 x+1}$ and P is also on the $x^{2}+y^{2}=10, Q$ lies inside the given circle such that its abscissa is an integer.so x coordinate of P are
A. 1
B. 4
C. 0
D. 3

- Watch Video Solution

10. If a, b, c are three given non-coplanar vectors and any arbitratry vector
r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. (a) $r=\frac{\Delta_{1}}{2 \Delta} a+\frac{\Delta_{2}}{2 \Delta} b+\frac{\Delta_{3}}{2 \Delta} c$
B. (b) $r=\frac{2 \Delta_{1}}{\Delta} a+\frac{2 \Delta_{2}}{\Delta} b+\frac{2 \Delta_{3}}{\Delta} c$
C. (c) $r=\frac{\Delta}{\Delta_{1}} a+\frac{\Delta}{\Delta_{2}} b+\frac{\Delta}{\Delta_{3}} c$
D. (d) $r=\frac{\Delta_{1}}{\Delta} a+\frac{\Delta_{2}}{\Delta} b+\frac{\Delta_{3}}{\Delta} c$

Answer: D

- Watch Video Solution

11. If a, b, c are three given non-coplanar vectors and any arbitratry vector
r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. $r=\frac{[r b c]}{2[a b c]} a+\frac{[r b c]}{2[a b c]} b+\frac{[r b c]}{2[a b c]} c$
B. $r=\frac{2[r b c]}{[a b c]} a+\frac{2[r b c]}{[a b c]} b+\frac{2[r b c]}{[a b c]} c$
C. $r=\frac{1}{[a b c]}([r b c] a+[r c a] b+[r a b] c)$
D. None of these

Answer: D

- Watch Video Solution

12. If a, b, c are three given non-coplanar vectors and any arbitratry vector r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. $a=\frac{1}{[a b c]}[(a \cdot a)(b \times c)+(b \cdot b)(c \times a)+c \cdot c(a \times b)]$
B. $a=\frac{1}{[a b c]}[(a \cdot a)(b \times c)+(b \cdot a)(c \times a)+(a \cdot a)(a \times b)]$
C. $a=[(a \cdot a)(b \times c)+(a \cdot b)(c \times a)+(c \cdot a)(a \times b)]$
D. None of these

Answer: C

- Watch Video Solution

13. If a, b, c are three given non-coplanar vectors and any arbitratry vector
r is in space, where $\Delta_{1}=\left|\begin{array}{lll}r \cdot a & b \cdot a & c \cdot a \\ r \cdot b & b \cdot b & c \cdot b \\ r \cdot c & b \cdot c & c \cdot c\end{array}\right|: \Delta_{2}=\left|\begin{array}{lll}a \cdot a & r \cdot a & c \cdot a \\ a \cdot b & r \cdot b & c \cdot b \\ a \cdot c & r \cdot c & c \cdot c\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}a \cdot a & b \cdot a & r \cdot a \\ a \cdot b & b \cdot b & r \cdot b \\ a \cdot c & b \cdot c & r \cdot c\end{array}\right|, \Delta_{4}=\left|\begin{array}{lll}a \cdot a & b \cdot a & c \cdot a \\ a \cdot b & b \cdot b & c \cdot b \\ a \cdot c & c \cdot c & c \cdot c\end{array}\right|$
Q. The vector r is expressible in the form
A. $(p \times q)[a \times b b \times c c \times a]$
B. $2(p \times q)[a \times b b \times c c \times a]$
C. $4(p \times q)[a \times b b \times c c \times a]$
D. $(p \times q) \sqrt{[a \times b b \times c c \times a]}$

Answer: B

- Watch Video Solution

14. Let $g(x)=\int_{0}^{x}\left(3 t^{2}+2 t+9\right) d t$ and $f(x)$ be a decreasing function $\forall x \geq 0$ such that $A B=f(x) \hat{i}+g(x) \hat{j}$ and $A C=g(x) \hat{i}+f(x) \hat{j}$ are the two smallest sides of a triangle $A B C$ whose circumcentre lies outside the triangle $\forall c>0$. Q. Which of the following is true (for $x \geq o$)
A. (a) $f(x)>0, g(x)<0$
B. (b) $f(x)<0, g(x)<0$
C. (c) $f(x)>0, g(x)>0$
D. (d) $f(x)<0, g(x)>0$

Answer: D

- Watch Video Solution

15. Let $g(x)=\int_{0}^{x}\left(3 t^{2}+2 t+9\right) d t$ and $f(x)$ be a decreasing function $\forall x \geq 0$ such that $A B=f(x) \hat{i}+g(x) \hat{j}$ and $A C=g(x) \hat{i}+f(x) \hat{j}$ are the two smallest sides of a triangle ABC whose circumcentre lies outside the triangle $\forall c>0$ then,

- Watch Video Solution

16. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be the vector, such that $|x|=|y|=|z|=\sqrt{2}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ make angles of 60° with each other also, $x \times(y \times z)=a$ and $y \times(z \times x)=b x \times y=c$, . The value of z is
A. $(a+b) \times x-(a+b)$
B. $(a+b)-(a+b) \times c$
C. $\frac{1}{2}\{(a+b) \times c-(a+b)\}$
D. None of these

Answer: C

- Watch Video Solution

17. Let x, y, z be the vector, such that $|x|=|y|=|z|=\sqrt{2}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ make angles of 60° with each other. If $x \times(y \times z)=a, y \times(z \times x)=b$ and $(x \times y)=c$

The value of y is:
A. $\frac{1}{2}[(a+b)+(a+b) \times c]$
B. $2[(a+b)+(a+b) \times c]$
C. $4[(a+b)+(a+b) \times c]$
D. None of these

Answer: A

18. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be the vector, such that $|x|=|y|=|z|=\sqrt{2}$ and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ make angles of 60° with each other also, $x \times(y \times z)=a$ and $y \times(z \times x)=b x \times y=c$, . The value of z is
A. $\frac{1}{2}[(b-a) \times c+(a+b)]$
B. $\frac{1}{2}[(b-a)+c \times(a+b)]$
C. $[(b-a) \times c+(a+b)]$
D. None of these

Answer: B

- Watch Video Solution

19. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero unit vectors inclined pairwise with the same angle $\theta, \quad \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. Volume of parallelopiped with edges a, b, c is
A. $p+(q+r) \cos \theta$
B. $(p+q+r) \cos \theta$
C. $2 p-(q+r) \cos \theta$
D. None of these

Answer: A

- Watch Video Solution

20. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non zero scalars satisfying $a \times b+b \times c=p a+q b+r c$ Q. The value of $\left(\frac{q}{p}+2 \cos \theta\right)$ is
A. 1
B. 2[abc]
C. 0
D. None of these

- Watch Video Solution

21. $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non-zero unit vectors inclined pairwise with the same angle $\theta, \mathrm{p}, \mathrm{q}, \mathrm{r}$ are non-zero scalars satisfying $a \times b+b \times c=p a+q b+r c$.

Now, answer the following questions. $\mathrm{Q} .|(q+p) \cos \theta+r|$ is equal to
a. $(1+\cos \theta)(\sqrt{1-2 \cos \theta})$
b. $2 \sin ^{2}\left(\frac{\theta}{2}\right) \sqrt{(1+2 \cos \theta)}$
c. $(1-\sin \theta) \sqrt{1+2 \cos \theta})$
d. None of these
A. $(1+\cos \theta)(\sqrt{1-2 \cos \theta})$
B. $2 \sin ^{2}\left(\frac{\theta}{2}\right) \sqrt{(1+2 \cos \theta)}$
C. $(1-\sin \theta) \sqrt{1+2 \cos \theta})$
D. None of these

Answer: B

Product of Vectors Exercise 5 : Matching Type Questions

1. Given two vectors $a=\hat{i}+2 \hat{j}+2 \hat{k}$ and $b=\hat{i}+\hat{j}+2 \hat{k}$. Find their dot product.

- Watch Video Solution

2. Volume of parallelopiped formed by vectors $a \times b, b \times c$ and $c \times a$ is 36 sq.units. then the volumn formed by the vector $a b$ and c is

- Watch Video Solution

3. Match the statements of Column I with values of Column II.

Column I
 Column II

(A) A circular plate is expanded by heat (p) 4 from radius 5 cm to 5.06 cm .
Approximate increase in area is
(B) If an edge of a cube increases by 1%, (q) 0.6π then percentage increase in volume is
(C) If the rate of decrease of $\frac{x^{2}}{2}-2 x+5 \quad$ (r) 3 is twice the rate of decrease of x, then x is equal to (rate of decrease is non-zero)
(D) Rate of increase in area of equilateral triangle of side 15 cm , when each side is increasing at the rate of $0.1 \mathrm{~cm} / \mathrm{s}$, is

(D) Watch Video Solution

4. Find the solutions of the trigonometric equation $\tan 3 x=1$.

- Watch Video Solution

5. Find the solution of trigonometric equation $\sin 5 x=1$.

Exercise (Single Integer Answer Type Questions)

1. Let \widehat{u}, \hat{v} and \widehat{w} are three unit vectors, the angle between \widehat{u} and \hat{v} is twice that of the angle between \widehat{u} and \widehat{w} and \hat{v} and \widehat{w}, then $[\widehat{u} \hat{v} \widehat{w}]$ is equal to

- Watch Video Solution

2. If a, b and c are three vectors such that $[a b c]=1$, then find the value of
$[\mathrm{a}+\mathrm{b} \mathrm{b}+\mathrm{c} \mathrm{c}+\mathrm{a}]+[a \times b b \times c c \times a]$

- Watch Video Solution

3. If \widehat{a}, \hat{b} and \hat{c} are the three unit vector and α, β and γ are scalars such that $\hat{c}=\alpha \widehat{a}+\beta \hat{b}+\gamma(\widehat{a} \times \hat{b})$. If is given that $\widehat{a} \cdot \hat{b}=o$ and \hat{c} makes equal angle with both \widehat{a} and \hat{b}, then evaluate $\alpha^{2}+\beta^{2}+\gamma^{2}$.
4. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \qquad

- Watch Video Solution

5. Let \hat{c} be a unit vector coplanar with $a=\hat{i}-\hat{j}+2 \hat{k}$ and $b=2 \hat{i}-\hat{j}+\hat{k}$ such that \hat{c} is perpendicular to a. If P be the projection of \hat{c} along, where $p=\frac{\sqrt{11}}{k}$ then find k .

- Watch Video Solution

6. Let a, b and c are three vectors hacing magnitude 1,2 and 3 respectively satisfying the relation $[\mathrm{abc}]=6$. If \hat{d} is a unit vector coplanar with b and c such that $b \cdot \hat{d}=1$, then evaluate $|(a \times c) \cdot d|^{2}+|(a \times c) \times \hat{d}|^{2}$.
7. Let $A(2 \hat{i}+3 \hat{j}+5 \hat{k}), B(-\hat{i}+3 \hat{j}+2 \hat{k})$ and $C(\lambda \hat{i}+5 \hat{j}+\mu \hat{k})$ are vertices of a triangle and its median through A is equally inclined to the positive directions of the axes, the value of $2 \lambda-\mu$ is

- Watch Video Solution

8. If V is the volumes of the parallelopiped having three coterminous edges as a, b and c, then the volume of parallelopipied having three coterminous edges as $\alpha=(a \cdot a) a+(a \cdot b) b+(a \cdot c) c, \beta=(a \cdot b) a+(b \cdot b) b+(b \cdot c) c$ and γ is

- Watch Video Solution

9. If \vec{a}, \vec{b} are vectors perpendicular to each other and $|\vec{a}|=2,|\vec{b}|=3, \vec{c} \times \vec{a}=\vec{b}$, then the least value of $2|\vec{c}-\vec{a}|$ is
10. M and N are mid-point of the diagnols $A C$ and BD respectivley of quadrilateral ABCD , then $\overline{A B}+\overline{A D}+\overline{C B}+\overline{C D}=$

- Watch Video Solution

11. If $a \times b=c, b \times c=a, c \times a=b$. If vectors a, b and c are forming a right handed system, then the volume of tetrahedron formed by vectors $3 a-2 b+2 c,-a-2 c$ and $2 a-3 b+4 c$ is

- Watch Video Solution

12. Let \vec{a} and \vec{c} be unit vectors inclined at $\pi / 3$ with each other. If $(\vec{a} \times(\vec{b} \times \vec{c})) \cdot(\vec{a} \times \vec{c})=5$, then $[\vec{a} \vec{b} \vec{c}]$ is equal to

- Watch Video Solution

13. Volume of parallelopiped formed by vectors $a \times b, b \times c$ and $c \times a$ is 36 sq.units. then the volumn formed by the vector $\mathrm{a} b$ and c is

- Watch Video Solution

14. If α and β are two perpendicular unit vectors such that $x=\widehat{\beta}-(\alpha \times x)$, then the value of $4|x|^{2}$ is.

- Watch Video Solution

15. The volume of the tetrahedron whose vertices are the points with position
$\hat{i}+\hat{j}+\hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, \hat{i}+2 \hat{j}-7 \hat{k}$ and $3 \hat{i}-4 \hat{j}+\lambda \hat{k}$ is 22 , then the digit at unit place of λ is.

- Watch Video Solution

16. The volume of a tetrahedron formed by the coterminous edges \vec{a}, \vec{b}, and \vec{c} is 3 . Then the volume of the parallelepiped formed by the coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is

- Watch Video Solution

Exercise (Subjective Type Questions)

1. For any two vectors \vec{a} and \vec{b}, prove that $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$ Also write the name of this inequality.

- Watch Video Solution

2. P and Q are two points on the curve $y=2^{x+2}$ in the rectangular cartesian coordinate system such that $\overline{O P} \cdot \bar{C}=-1$ and $\overline{O Q} \cdot \bar{C}=2$. where \bar{c} is the unit vector along the positive direction of the x -axis. Then $\overline{O Q}-4 \overline{O P}=$
3. O is the origin and A is a fixed point on the circle of radius 'a' with centre O.The vector $\vec{O} A$ is denoted by \vec{a}. A variable point P lie on the tangent at A and $\overrightarrow{O P}=\vec{r}$. Show that $\vec{a} \vec{r}=a^{2}$. Hence if $P(x, y)$ and $A\left(x_{1}, y_{1}\right)$, deduce the equation of tangent at A to this circle.

- Watch Video Solution

4. If a is real constant $A, B a n d C$ are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan c=6 a$, then the least vale of $\tan ^{2} A+\tan ^{2} b+\tan ^{2}$ Cis 6 b. 10 c. 12 d. 3

- Watch Video Solution

5. Given, the edges A, B and C of triangle ABC . Find $\cos \angle B A M$, where M is mid-point of $B C$.
6. Distance of point $A(1,4,-2)$ is the distance from $B C$, where B and C The coordinates are respectively $(2,1,-2)$ and $(0,-5,1)$, respectively

- Watch Video Solution

7. Given, the angles A, B and C of $\triangle A B C$. Let M be the mid-point of segment AB and let D be the foot of the bisector of $\angle C$. Find the ratio of $\frac{\text { AreaOf } \triangle C D M}{\text { Areaof } \triangle A B C}$

- Watch Video Solution

8. In $\triangle A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection of the lines $A Q a n d C P$, using vector method, find the area of $A B C$ if the area of $B R C$ is 1 unit

(D) Watch Video Solution

9. Which of the following statements are True or False :

If the diaonals of a quadilateral are equal and bisect each other at right angles then the quadrilateral is a square.

- Watch Video Solution

10. Two forces $F_{1}=\{2,3\}$ and $F_{2}=\{4,1\}$ are specified relative to a general cartesian form. Their points of application are respectivel, $A=(1,1)$ and $B=(2,4)$. Find the coordinates of the resultant and the equation of the straight line I containing it.

- Watch Video Solution

11. A non zero vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\hat{i}, \hat{i}+\hat{j}$ and the plane determined by the vectors $\hat{i}-\hat{j}, \hat{i}+\hat{k}$. The angle between \vec{a} and $\hat{i}-2 \hat{j}+2 \hat{k}$ can be

- Watch Video Solution

12. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$.

- Watch Video Solution

13. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$. Find the value of $[\vec{u} \vec{v} \vec{w}]$.

Watch Video Solution

14. A, B and C are three vectors given by $2 \hat{i}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $4 \hat{i}-3 \hat{j}+7 \hat{k}$. Then, find R , which satisfies the relation $R \times B=C \times B$ and $R \cdot A=0$.

- Watch Video Solution

15. If $x \cdot a=0, x \cdot b=1,[\mathrm{x} a \mathrm{~b}]=1$ and $a \cdot b \neq 0$, then find x in terms of a and b .

- Watch Video Solution

16. Let \hat{x}, \hat{y} and \hat{z} be unit vectors such that $\widehat{x}+\hat{y}+\hat{z}=a . \widehat{x} \times(\hat{y} \times \hat{z})=b,(\widehat{x} \times \hat{y}) \times \hat{z}=c, a \cdot \widehat{x}=\frac{3}{2}, a \cdot \hat{y}=\frac{7}{4}$ and $|a|=2$. Find x, y and z in terms of a, b and c .

- Watch Video Solution

17. Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies th equation $p x((x-q) x p)+q x((x-r) x q)+r x((x-p) x r)=0$ Then x is given by :
18. Given vectors $\bar{C} B=\bar{a}, \bar{C} A=\bar{b}$ and $\bar{C} O=\bar{x}$ where O is the centre of circle circumscribed about $\triangle A B C$, then find vector \bar{x}

- Watch Video Solution

Exercise (Questions Asked In Previous 13 Years Exam)

1. Let O be the origin and let PQR be an arbitrary triangle. The point S is such that
$\overline{O P} \cdot \overline{O Q}+\overline{O R} \cdot \overline{O S}=\overline{O R} \cdot \overline{O P}+\overline{O Q} \cdot \overline{O S}=\overline{O Q} \cdot \overline{O R}+\overline{O P} \cdot \overline{O S}$
Then the triangle $P Q R$ has S as its
A. centroid
B. orthogonal
C. incentre
D. circumcentre

Answer: B

- Watch Video Solution

2. Let O be the origin and $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ be three unit vector in the directions of the sides $\overrightarrow{Q R}, \overrightarrow{R P}, \overrightarrow{P Q}$ respectively, of a triangle PQR. if the triangle $P Q R$ varies , then the manimum value of $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$ is
A. $\frac{-3}{2}$
B. $\frac{3}{2}$
C. $\frac{5}{3}$
D. $\frac{-5}{3}$

Answer: A

- Watch Video Solution

3. Let O be the origin, and $O X, O Y, O Z$ be three unit vectors in the direction of the sides $Q R, R P, P Q$, respectively of a triangle PQR.
$|O X \times O Y|=\quad(a) \sin (P+R) \quad$ (b) $\quad \sin 2 R \quad(c) \sin (Q+R)$ $\sin (P+Q)$.
A. $\sin (P+Q)$
B. $\sin (P+R)$
C. $\sin (Q+R)$
D. $\sin 2 R$

Answer: A

- Watch Video Solution

4. Let a, b and c be three unit vectors such that $a \times(b \times c)=\frac{\sqrt{3}}{2}(b+c)$. If b is not parallel to c , then the angle between a and b is
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

Answer: D

- Watch Video Solution

5. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c} then a value of $\sin \theta$ is: (1) $\frac{2 \sqrt{2}}{3}$ (2) $\frac{-\sqrt{2}}{3}$ (3) $\frac{2}{3}(4) \frac{-2 \sqrt{3}}{3}$
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{-\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $-\frac{2 \sqrt{3}}{3}$

Answer: (a)
6. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is.

- Watch Video Solution

7. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is/are
A. $\hat{j}-\hat{k}$
B. $-\hat{i}+\hat{j}$
C. $\hat{i}-\hat{j}$
D. $-\hat{j}+\hat{k}$

Answer: A

8. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by a. $\hat{i}-3 \hat{j}+3 \hat{k}$ b. $-3 \hat{i}-3 \hat{j}+3 \hat{k}$ c. $3 \hat{i}-\hat{j}+3 \hat{k}$ d. $\hat{i}+3 \hat{j}-3 \hat{k}$
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}-\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$

Answer: C

- Watch Video Solution

9. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$
becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: B

- Watch Video Solution

10. Let $P, Q R$ and S be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$, respectively. The quadrilateral PQRS must be:
A. parallelogram, which is neither a rhombus nor a rectangle
B. square
C. rectangle, but not a square
D. rhombus, but not a square

Answer: (a)

- Watch Video Solution

11. If aandb are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{\hat{2} i+\hat{j}+3 \hat{k}}{\sqrt{14}}$, then find the value of
$(2 \vec{a}+\vec{b})[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$.

- Watch Video Solution

12. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$, then
A. a, b, c are non-coplanar
B. a, b, d are non-coplanar
C. b, d are non-parallel
D. a, d are parallel and b, c are parallel

Answer: C

- Watch Video Solution

13. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b}=\hat{b} \cdot \hat{c}=\hat{c} \cdot \hat{a}=\frac{1}{2}$. Then, the volume of the parallelopiped is
A. a) $\frac{1}{\sqrt{2}}$ cu units
B. b) $\frac{1}{2 \sqrt{2}} \mathrm{cu}$ units
C. c) $\frac{\sqrt{3}}{2}$ cu units
D. d) $\frac{1}{\sqrt{3}}$ cu units

Answer: A

- Watch Video Solution

14. Let two non-collinear unit vectors \vec{a} and \vec{b} form an acute angle. A point P moves so that at any time t , time position vector, $\overrightarrow{O P}$ (where O is the origin) is given by $\widehat{a} \cot t+\hat{b} \sin t$. When p is farthest fro origing o , let M be the length of $\overrightarrow{O P}$ and \widehat{u} be the unit vector along $\overrightarrow{O P}$.then
A. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{\frac{1}{2}}$
B. $\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{\frac{1}{2}}$
C. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+2 \widehat{a} \cdot \hat{b})^{\frac{1}{2}}$
D. $\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+2 \widehat{a} \cdot \hat{b})^{\frac{1}{2}}$

Answer: A

- Watch Video Solution

15. Let the vectors $\mathrm{PQ}, \mathrm{OR}, \mathrm{RS}, \mathrm{ST}, \mathrm{TU}$ and UP represent the sides of a regular hexagon.

Statement I: $P Q \times(R S+S T) \neq 0$
Statement II: $P Q \times R S=0$ and $P Q \times S T \neq 0$
A. Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I
B. Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I
C. Statement-I is correct but Statement-II is incorrect
D. Statement-II is correct but Statement-I is incorrect

Answer: C

- Watch Video Solution

16. The number of distinct real values of λ, for which the vectors $-\lambda^{2} \hat{i}+\hat{j}+k, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is
A. 0
B. 1
C. $\pm \sqrt{2}$
D. 3

Answer: C

- Watch Video Solution

17. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$
A. $a \times b=b \times c=c \times a=0$
B. $a \times b=b \times c=c \times a \neq 0$
C. $a \times b=b \times c=a \times c=0$
D. $a \times b, b \times c, c \times a$ are mutually perpendicular

Answer: B

- Watch Video Solution

18. Let A be vector parallel to line of intersection of planes P_{1} and P_{2}. Plane P_{1} is parallel to the vectors $2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 \hat{k}$ and that P_{2} is parallel to $\hat{j}-\hat{k}$ and $3 \hat{i}+3 \hat{j}$, then the angle between vector A and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{3 \pi}{4}$

Answer: B::D

- Watch Video Solution

19. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projectionof c is $1 / \sqrt{3}$ is $4 \hat{i}-\hat{j}+4 \hat{k} \mathrm{~b}$.
$3 \hat{i}+\hat{j}+3 \hat{k} \mathrm{c} .2 \hat{i}+\hat{j}-2 \hat{k} \mathrm{~d} .4 \hat{i}+\hat{j}-4 \hat{k}$
A. $4 \hat{i}-\hat{j}+4 \hat{k}$
B. $4 \hat{i}+\hat{j}-4 \hat{k}$
C. $2 \hat{i}+\hat{j}+2 \hat{k}$
D. None of these

Answer: A

- Watch Video Solution

20. Find the 7 th term of GP if the first term is 7 and common ratio is 2 .

- Watch Video Solution

21. The unit vector which is orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is (a) $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$

$$
\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}} \text { (c) } \frac{3 \hat{j}-\hat{k}}{\sqrt{10}} \text { (d) } \frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}
$$

A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$.

Answer: C

- Watch Video Solution

22. The value of a so that the volume of parallelepiped formed by $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ is minimum is a. -3 b. 3 c. $1 / \sqrt{3}$ d. $\sqrt{3}$
A. -3
B. 3
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: C

23. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \vec{b}=\operatorname{1and} \vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \hat{b} is a. $\hat{i}-\hat{j}+\hat{k}$ b. $2 \hat{j}-\hat{k}$ c. \hat{i} d. $2 \hat{i}$
A. $\hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{j}-\hat{k}$
C. \hat{i}
D. $2 \hat{i}$

Answer: C

- Watch Video Solution

24. Let $v=2 \hat{i}+\hat{j}-\hat{k}$ and $w=\hat{i}+3 \hat{k}$. If \widehat{u} is unit vector and the maximum value of $[u v w]=\sqrt{\lambda}$, then the value of $(\lambda-51)$ is
A. -1
B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: C

- Watch Video Solution

25. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicualar to each other, then the angle between \vec{a} and \vec{b} is
A. 45°
B. 60°
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{2}{7}\right)$

Answer: B

- Watch Video Solution

26. Let $a=2 \hat{i}+\hat{j}-2 \hat{k}, b=\hat{i}+\hat{j}$ and c be a vectors such that $|c-a|=3,|(a \times b) \times c|=3$ and the angle between c and $a \times b$ is 30°. Then a. c is equal to
A. $\frac{25}{8}$
B. 2
C. 5
D. $\frac{1}{8}$

Answer: B

- Watch Video Solution

27. If $[a \times b b \times c c \times a]=\lambda[a b c]^{2}$, then λ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

28. If a and b_{1} are two unit vectors such that $a+2 b$ and $5 a-4 b$ are perpendicular to each other, then the angle between a and b is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

29. Let $A B C D$ be a parallelogram such that $\vec{A} B=\vec{q}, \vec{A} D=\vec{p}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} is given by
(1) $\vec{r}=3 \vec{q}-\frac{3(\vec{p} \dot{\vec{q}})}{(\vec{p} \dot{\vec{p}})} \vec{p}$

$$
\begin{equation*}
\vec{r}=\vec{q}+\left(\frac{\vec{p} \dot{q}}{\vec{p} \dot{\vec{p}}}\right) \vec{p} \tag{3}
\end{equation*}
$$

$\vec{r}=-3 \vec{q}+\frac{3(\vec{p} \dot{\vec{q}})}{(\vec{p} \dot{\vec{p}})} \vec{p}$
A. $r=3 p+\frac{3(q \cdot p)}{p \cdot p} p$
B. $r=-p+\frac{(q \cdot p)}{p \cdot p} p$
C. $r=p-\frac{(q \cdot p)}{p \cdot p} p$
D. $r=-3 p+\frac{3(q \cdot p)}{p \cdot p} p$

Answer: B

30. $\vec{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\vec{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})]$ is:
A. -3
B. 5
C. 3
D. -5

Answer: D

- Watch Video Solution

31. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying : $\vec{b} X \vec{c}=\vec{b} X \vec{d}=$ and $\vec{a} \vec{d}=0$. Then the vector

$$
\begin{align*}
& \vec{d} \text { is equal to : (1) } \vec{b}-\binom{\frac{\vec{b} \dot{c}}{\vec{c}}}{\vec{a} \vec{d}} \vec{c} \text { (2) } \vec{c}+\binom{\left.\frac{\vec{a} \dot{c}}{\vec{c}}\right) \vec{b}}{\vec{a} \vec{b}} \vec{b}+\left(\begin{array}{l}
\frac{\vec{b} \vec{c}}{\vec{a} \vec{b}}
\end{array}\right) \vec{c} \text { (4) } \vec{c}-\left(\begin{array}{l}
\frac{\vec{a} \vec{c}}{\vec{a} \vec{b}}
\end{array}\right) \vec{b} \tag{3}
\end{align*}
$$

A. $c+\left(\frac{a \cdot c}{a \cdot b}\right) b$
B. $b+\left(\frac{b \cdot c}{a \cdot b}\right) c$
C. $c-\left(\frac{a \cdot c}{a \cdot b}\right) b$
D. $b-\left(\frac{b \cdot c}{a \cdot b}\right) c$

Answer: C

- Watch Video Solution

32. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are coplanar, then $a+b+c-a b c=$
A. -2
B. 2
C. 0
D. -1
33. Let $\vec{a}=\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$. Then the vector b satisfying $\vec{a} \times \vec{b}+\vec{c}=0$ and $\vec{a} \cdot \vec{b}=3$, is
A. $-\hat{i}+\hat{j}-2 \hat{k}$
B. $2 \hat{i}-\hat{j}+2 \hat{k}$
C. $\hat{i}-\hat{j}-2 \hat{k}$
D. $\hat{i}+\hat{j}-2 \hat{k}$

Answer: D

- Watch Video Solution

34.

If
the
vectors
$\vec{a}=\hat{i}-\hat{j}+2 \hat{k} . \vec{b}=2 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{c}=\lambda \hat{i}+\hat{j}+\mu \hat{k}$
are
mutually orthogonal, then (λ, μ)
A. $(-3,2)$
B. $(2,-3)$
C. $(-2,3)$
D. $(3,-2)$

Answer: A

- Watch Video Solution

35. If $\vec{u}, \vec{v}, \vec{w}$ are non -coplanar vectors and p, q, are real numbers then the equality

$$
[3 \vec{u} p \vec{v} p \vec{w}]-[p \vec{v} \vec{w} q \vec{u}]-[2 \vec{w} q \vec{v} q \vec{u}]=0 \text { holds for }
$$

A. exactly two values of (p, q)
B. more than two but not all values of (p, q)
C. all values of (p, q)
D. exactly one value of (p, q)

D Watch Video Solution

36. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{\mathrm{i}}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}. Then which one of the following gives possible values of α and β ? (1) $\alpha=2, \beta=2$ (2) $\alpha=1, \beta=2$ (3) $\alpha=2, \beta=1$ (4) $\alpha=1, \beta=1$
A. $\alpha=1, \beta=1$
B. $\alpha=2, \beta=2$
C. $\alpha=1, \beta=2$
D. $\alpha=2, \beta=1$

Answer: D

- Watch Video Solution

37. If \vec{u} and \vec{v} are unit vectors and θ is the acute angle between them, then $2 \vec{u} \times 3 \vec{v}$ is a unit vector for
A. exactly two values of θ
B. more than two but not all values of θ
C. no value of θ
D. exactly one value of θ

Answer: D

- Watch Video Solution

38. Let $\bar{a}=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}-\hat{j}+2 \hat{k}$ and $\bar{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector c lies in the plane of a and b , then x equals
A. 0
B. 1
C. -4
D. -2

Answer: D

- Watch Video Solution

39. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, Where \vec{a}, \vec{b} and \vec{c} and any three vectors such that $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$, then \vec{a} and \vec{c} are
A. inclined at an angle of $\frac{\pi}{6}$ between them
B. perpendicular
C. parallel
D. inclined at an angle $\frac{\pi}{3}$ between them

Answer: C

- Watch Video Solution

40. Show that the points with position vectors $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ respectively form the vertices of a right angled triangle.
A. -2 and -1
B. -2 and 1
C. 2 and -1
D. 2 and 1

Answer: D

- Watch Video Solution

41. The distance between the line $r=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $r \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$, is
A. $\frac{10}{3}$
B. $\frac{3}{10}$
C. $\frac{10}{3 \sqrt{3}}$
D. $\frac{10}{9}$

Answer: C

- Watch Video Solution

42. If a is any vector, then
$(a \times \hat{i})^{2}+(a \times \hat{j})^{2}+(a \times \hat{k})^{2}$ is equal to
A. $4 a^{2}$
B. $2 a^{2}$
C. a^{2}
D. $3 a^{2}$

Answer: B

43. If a, b and c are non-coplanar vectors and λ is a real number, then $\left[\lambda(a+b)\left|\lambda^{2} b\right| \lambda c \mid \lambda c\right]=\left[\begin{array}{lll}a & a+c & b\end{array}\right]$ fforr
A. (a)exactly two values of λ
B. (b)exactly three values λ
C. (c)no value of λ
D. (d)exactly one value of λ

Answer: C

- Watch Video Solution

44. If $\vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$

$$
\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}
$$

then $\vec{a} \cdot(\vec{b} \times \vec{c})$ depends on
A. neither x nor y
B. both x and y
C. only x
D. only y

Answer: A

- Watch Video Solution

45. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2 a n d|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals a 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d. 14
A. 2
B. $\sqrt{7}$
C. $\sqrt{14}$
D. 14

Answer: C

46. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that no two of them are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c}, then the value of $\sin \theta$ is:
A. $\frac{1}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{2 \sqrt{2}}{3}$

Answer: D

- Watch Video Solution

47. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{9} j-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$. find the total work done by the forces in units.
A. 40 units
B. 30units
C. 25 units
D. 15 units

Answer: A

- Watch Video Solution

48. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that $(\vec{u}+\vec{v}-\vec{w}) \cdot[(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})]=\vec{u} \cdot(\vec{v} \times \vec{w})$
A. 0
B. $u \cdot v \times w$
C. $u \cdot w \times v$
D. $3 u \cdot v \times w$
49. $a, b, \quad c$ are three vectors, such that $a+b+c=0,|a|=1,|b|=2,|c|=3, \quad$ then $a \cdot b+b \cdot c+c \cdot a$ is equal to
A. 0
B. -7
C. 7
D. 1

Answer: B

Watch Video Solution

50.

A tetrahedron
has
vertices
of
$O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$. Then, the angle between the faces $O A B$ and $A B C$ will be
A. $\cos ^{-1}\left(\frac{19}{35}\right)$
B. $\cos ^{-1}\left(\frac{17}{31}\right)$
C. 30°
D. 90°

Answer: A

- Watch Video Solution

51. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$.If \widehat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0$ then $|\vec{w} \cdot \widehat{n}|$ is equal to
A. 0
B. 1
C. 2
D. 3
52. Given, two vectors are $\hat{i}-\hat{j}$ and $\hat{i}+2 \hat{j}$, the unit vector coplanar with the two vectors and perpendicular to first is
A. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
B. $\frac{1}{\sqrt{5}}(2 \hat{i}+\hat{j})$
C. $\pm \frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
D. None of these

Answer: (a)

- Watch Video Solution

