©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

SETS, RELATIONS AND FUNCTIONS

Examples

1. Write the set of the letter of the word 'ALLAHABAD'. Also find the number of subsets of this set.

- Watch Video Solution

2. Let A, B and C be the sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$. show that $B=C$
3. Let A and B be sets. If $A \cap X=B \cap X=\phi$ and $A \cup X=B \cup X$ for some set X , show that $\mathrm{A}=\mathrm{B}$. (Hints $A=A \cap(A \cup X)$, $B=B \cap(B \cup X)$ and use Distributive law $)$

- Watch Video Solution

4. If A and B are any two sets, prove that $P(A)=P(B)$ implies $A=B$.

- Watch Video Solution

5. If A and B be two sets containing 6 and 3 elements respectively, what can be the minimum number of elements in $A \cup B$? Also, find the maximum number of elements in $A \cup B$.

- Watch Video Solution

6. Suppose $A_{1}, A_{2} \ldots . A_{30}$ are thirty sets each having 5 elements and $B_{1} B_{2} \ldots . B_{n}$ are n sets each having 3 elements ,Let $\bigcup_{i=1}^{30} A_{1}=\bigcup_{j=1}^{n} B_{j}=s$ and each element of S belongs to exactly 10 of the A_{1} and exactly 9 of the value of n.

- Watch Video Solution

7. In a group of 1000 people, there are 750 who can speak Hindi and 400 who can speak Bengali. How many can speak Hindi only? How many can speak Bengali only? How many can speak both Hindi and Bengali?

- Watch Video Solution

8. If $T_{2}+T_{5}=8$ of an A.P \& $T_{3}+T_{7}=14$ of that A.P then, find the 11th term?

- Watch Video Solution

9. A class has 175 students. The following table shows the number of students studying one or more of the following subjects in this case.

Subjects	Number of students
Mathematics	100
Physics	70
Chemistry	46
Mathematics and Physics	30
Mathematics and Chemistry	28
Physics and Chemistry	23
Mathematics, Physics and Chemistry	18

How many students are enrolled in Mathematics alone, Physics alone and Chemistry alone? Are there students who have not offered any one of these subjects?

(Watch Video Solution

10. In a pollution study of 1500 Indian rivers the following data were reported. 520 were polluted by sulphur compounds, 335 were polluted by phosphates, 425 were polluted by crude oil, 100 were polluted by both crude oil and sulphur compounds, 180 were polluted by both sulphur
compounds and phosphates, 150 were polluted by both phosphates and crude oil and 28 were polluted by sulphur compounds, phosphates and crude oil. How many of the rivers were polluted by atleast one of the three impurities?

How many of the rivers were polluted by exactly one of the three impurities?

- Watch Video Solution

11. If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{4,5\}$, find $A \times B, B \times A$ and show that $A \times B \neq B \times A$.

- Watch Video Solution

12. If A and B be two sets and $A \times B=\{(3,2),(3,4),(5,2),(5,4)\}$, find A and B.

- Watch Video Solution

13. If A and B are two sets given in such a way that $A \times B$ consists of 6 elements and if three elements of $A \times B$ are (1,5), (2,3) and (3,5), what are the remaining elements?

- Watch Video Solution

14. Find the sum: $\frac{2}{3}+0$

- Watch Video Solution

15. Let R be the relation defined in the set $A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$: both a and b are either odd or even\}. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1,3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.
16. Prove that the relation R defined on the set N of natural numbers by xRy $\Leftrightarrow 2 x^{2}-3 x y+y^{2}=0$ is not symmetric but it is reflexive.

- Watch Video Solution

17. Let R be a relation on the set N of natural numbers defined by $n R$ iff n divides m. Then, R is (a) Reflexive and symmetric (b) Transitive and symmetric (c) Equivalence (d) Reflexive, transitive but not symmetric

- Watch Video Solution

18. Statement-1: The relation R on the set $N \times N$ defined by (a, b) R (c, d) $\Leftrightarrow a+d=b+c$ for $a l l a, b, c, d \in N$ is an equivalence relation.

Statement-2: The intersection of two equivalence relations on a set A is an equivalence relation.

- Watch Video Solution

19. Find the Sum $\frac{2}{3}+\frac{5}{6}$

- Watch Video Solution

20. Let R be a relation such that $R=\{(1,4),(3,7),(4,5),(4,6),(7,6)\}$, check R is a function or not ?

- Watch Video Solution

21. Let $\mathrm{f}: \mathrm{N} \rightarrow N: f(x)=2 x$ for all $x \in N$

Show that f is one -one and into.

- Watch Video Solution

22. Let the function $f: R \rightarrow R$ be defined by $f(x)=\cos x, \forall x \in R$.

Show that f is neither one-one nor onto.
23. Let $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=\cos (5 \mathrm{x}+2)$. Is f invertible? Justify your answer.

- Watch Video Solution

24. If $f: R \rightarrow R, g: R \rightarrow R$ defined as $f(x)=\sin x$ and $g(x)=x^{2}$, then find the value of $(g \circ f)(x)$ and $(f o g)(x)$ and also prove that $g o f \neq f o g$.

- Watch Video Solution

25. If $f: R \rightarrow R$ and $g: R \rightarrow R$ be two mapping such that $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=x^{2}$, then
find the values of (fog) $\frac{\sqrt{\pi}}{2}$ and (gof) $\left(\frac{\pi}{3}\right)$.

- Watch Video Solution

26. If $f:(1,3,4\} \rightarrow\{1,2,5\}$ and $g:(1,2,5)\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g:\{(1,3),(2,3),(5,1)\}$, write down gof.

- Watch Video Solution

27. Let $A=\{x \in Z: 0 \leq x \leq 12\}$. Show that
$R=\{(a, b): a, b \in A,|a-b| i s \div i s i b \leq b y 4\} \quad$ is \quad an \quad equivalence relation. Find the set of all elements related to 1 . Also write the equivalence class [2]

- Watch Video Solution

28. Find congruent solutions of $155 \equiv 7(\bmod 4)$.

- Watch Video Solution

29. Find all congruent solutions of $8 x \equiv 6(\bmod 14)$.
30. Two finite sets have m and n elements. The total number of subsets of the first set is 48 more than the total number of subsets of the second set. The value of $m-n$ is

- Watch Video Solution

31. Let λ be the greatest integer for which $5 p^{2}-16,2 p \lambda, \lambda^{2}$ are jdistinct consecutive terms of an AP, where $p \in R$. If the common difference of the Ap is $\left(\frac{m}{n}\right), n \in N$ and m, n are relative prime, the value of $m+n$ is
A. $d=b c$
B. $c=b d$
C. $b=c d$
D. None of these
32. In a town of 10,000 families it was found that 40% families buy newspaper A, 20 \% buy newspaper B and 10 \% buy newspaper C also 5% families buy newspaper A and B 3% buy newspaper B and C and 4% buy newspaper A can C ,If 2% families buy all the three newspaper, then number of families which buy newspaper A only is
A. 3100
B. 3300
C. 2900
D. 1400

Answer: B

33. Let R be the relation on the set R of all real numbers defined by a $R b$ Iff $|a-b| \leq 1$. Then R is
A. reflexive and symmetric
B. symmetric only
C. transitive only
D. anti-symmetric only

Answer: A

- Watch Video Solution

34. The relation R defined in $A=\{1,2,3\}$ by $a R b$ if $\left|a^{2}-b^{2}\right| \leq 5$. Which of the following is faise
A. $R=\{(1,1),(2,2),(3,3),(2,1),(1,2),(2,3),(3,2)\}$
B. $R^{-1}=R$
C. Domain of $\mathrm{R}=\{1,2,3\}$
D. Range of $R=\{5\}$

Answer: A,C

(Watch Video Solution

35. If $f(x)=\frac{1}{(1-x)}, g(x)=f\{f(x)\}$ and $h(x)=f[f\{f(x)\}]$. Then the value of $f(x) \cdot g(x) \cdot h(x)$ is
A. 6
B. -1
C. 1
D. 2

Answer: B

O
 Watch Video Solution

36. If l is the set of integers and if the relation R is defined over I by $a R b$, iff $\mathrm{a}-\mathrm{b}$ is an even integer, $a, b \in l$, the relation R is: (a) reflexive (b) antisymmetric (c) symmetric (d) equivalence
A. reflexive
B. anti-symmetric
C. symmetric
D. equivalence

Answer: A::C::D

- Watch Video Solution

37. If $f(x)=\frac{a-x}{a+x}$, the domain of $f^{-1}(x)$ contains
A. $(-\infty, \infty)$
B. $(-\infty,-1)$
C. $(-1, \infty)$
D. $(0, \infty)$

Answer: B::C::D

- Watch Video Solution

38. If $f(x)=\frac{\sin ([x] \pi)}{x^{2}+x+1}$, where [.] denotes the greatest integer function, then
A. f is one-one
B. f is not one-one and non-constant
C. f is constant function
D. f is zero function

Answer: C::D

- Watch Video Solution

39. If $A=\{x:|x|<2\}, B=\{x:|x-5| \leq 2\}$,
$C=\{x:|x|>x\}$ and $D=\{x:|x|<x\}$
The number of integral values in $A \cup B$ is
A. 4
B. 6
C. 8
D. 10

Answer: C

- Watch Video Solution

40. If $A=\{x:|x|<2\}, B=\{x:|x-5| \leq 2\}$,
$C=\{x:|x|>x\}$ and $D=\{x:|x|<x\}$
The number of integral values in $A \cup C$ is
A. 1
B. 2
C. 3
D. 0

Answer: A

D Watch Video Solution

41. If $A=\{x:|x|<2\}, B=\{x:|x-5| \leq 2\}$,
$C=\{x:|x|>x\}$ and $D=\{x:|x|<x\}$
The number of integral values in $A \cap D$ is
A. 2
B. 4
C. 6
D. 0
42. If $A=\left\{x: x^{2}-2 x+2>0\right\}$ and $B=\left\{x: x^{2}-4 x+3 \leq 0\right\}$ $A \cap B$ equals
A. $[1, \infty]$
B. $[1,3]$
C. $(-\infty, 3]$
D. $(-\infty, 1) \cup(3, \infty)$

Answer: B

Watch Video Solution
43. If $A=\left\{x: x^{2}-2 x+2>0\right\}$ and $B=\left\{x: x^{2}-4 x+3 \leq 0\right\}$
$A-B$ equals
A. $(-\infty, \infty)$
B. $(1,3)$
C. $(3, \infty)$
D. $(-\infty, 1) \cup(3, \infty)$

Answer: D

- Watch Video Solution

44. If $A=\left\{x: x^{2}-2 x+2>0\right\}$ and $B=\left\{x: x^{2}-4 x+3 \leq 0\right\}$ $A \cup B$ equals
A. $(-\infty, 1)$
B. $(3, \infty)$
C. $(-\infty, \infty)$
D. $(1,3)$

Answer: C

45. If $f: R^{+} \rightarrow A$, where $A=\{x:-5<x<\infty\}$ is defined by $\mathrm{f}(\mathrm{x})=x^{2}$

- 5 and if
$f^{-1}(13)=\{-\lambda \sqrt{(\lambda-1)}, \lambda \sqrt{(\lambda-1)}\}$, the value of λ is

- Watch Video Solution

46.

If

$$
A=\{2,3\}, B=\{4,5\} \text { and } C=\{5,6\}
$$

$n\{(A \times B) \cup(B \times C)\}$ is

- Watch Video Solution

47. State is it reflexive $A=\{1,2,3\} R=\{(1,1),(2,2),(3,3)\}$

- Watch Video Solution

48. Statement-1 If $A \cup B=A \cup C$ and $A \cap B=A \cap C$, then $\mathrm{B}=\mathrm{C}$. Statement-2 $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Watch Video Solution

49. Statement-1 If U is universal set and $B=U-A$, then $n(B)=n(U)-n(A)$.

Statement-2 For any three arbitrary sets A, B and C, if $C=A-B$, then $n(C)=$ $n(A)-n(B)$.

- Watch Video Solution

50. If $A=A \cup B$, prove that $B=A \cap B$.

- Watch Video Solution

51. Find the smallest set A such that $A \cup\{1,2\}=\{1,2,3,5,9\}$.
52. If P, Q and R are the subsets of a set A, then prove that $R \times\left(P^{c} \cup Q^{c}\right)^{c}=(R \times P) \cap(R \times Q)$.

- Watch Video Solution

53. Check the relation ρ for reflexive, symmetry and transitivity: $\alpha \rho \beta$ iff α is perpendicular to β, where α and β are straight lines in a plane.

- Watch Video Solution

54. Check the relation ρ for reflexive, symmetry and transitivity: $\alpha \rho \beta$ iff α is perpendicular to β, where α and β are straight lines in a plane.
55. Let $f:[0,1] \rightarrow[0,1]$ be defined by $f(x)=\frac{1-x}{1+x}, 0 \leq x \leq 1$ \& $g:[0,1] \rightarrow[0,1]$ be defined by $g(x)=4 x(1-x), 0 \leq x \leq 1$ Determine the functions fog and $g o f$.

Note that $[0,1]$ stands for the set of all real members x that satisfy the condition $0 \leq x \leq 1$.

- Watch Video Solution

56. If A, B are two sets, prove that
$A \cup B=(A-B) \cup(B-A) \cup(A \cap B)$.
Hence or otherwise prove that
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
where, $n(A)$ denotes the number of elements in A.

- Watch Video Solution

57. If $A=\{1,2,3,5\}$, and $B=\{2,3,5,6,7\}$ then find $(A \cap B)$ is \qquad
58. An investigator interviewed 100 students to determine their preferences for the three drinks, milk (M), coffee (C) and tea (T). He reported the following: 10 students has all three drinks $\mathrm{M}, \mathrm{C}, \mathrm{T}, 20$ had M and $C, 30$ had C and $T, 25$ had M and $T, 12$ had M only, 5 had C only and 8 had T only. Using a Venn diagram, find how many did not take any of the three drinks?

- Watch Video Solution

59. In a certain city, only 2 newspapers A and B are published. It is known that 25% of the city population read A and 20% read B while 8% reads both A and B . It is also known that 30% of those who read A but not B look into advertisement and 40% of those who read B but not A look into advertisements while 50% of those who read both A and B look into advertisements. What is the percentage of the population who read an advertisement?
60. If $A=\{0,1,2,3, \ldots, 8\}, B=\{3,5,7,9,11\}$ and $C=\{0,5,10,20\}$, find
A. (i) $A \cup B$
B. (ii) $\mathrm{A} \cup \mathrm{C}$
C. (iii) $B \cup C$
D. (iv) $A \cap B$

Answer:

- Watch Video Solution

61. Let N denote the set of all natural numbers and R be the relation on $N x N$ defined by $(a, b) R(c, d) \ll>a d(b+c)=b c(a+d)$. Check whether R is an equivalence relation on $N \times N$.
62. The sets S and E are defined as given below:
$S=\{(x, y):|x-3|<1$ and $|y-3|<1\}$ and
$E=\left\{(x, y): 4 x^{2}+9 y^{2}-32 x-54 y+109 \leq 0\right\}$.
Show that $S \subset E$.

- Watch Video Solution

Exercise For Session 1

1. If $X=\left\{4^{n}-3 n-1: n \in N\right\}$ and $y=\{9(n-1): n \in N\}$, then
$X \cup Y$ equals
A. X
B. Y
C. N
D. None of these
2. If $N_{a}=\{a n: n \in N\}$, then $N_{5} \cap N_{7}$ equals
A. A. N
B. B. N_{5}
C. C. N_{7}
D. D. N_{35}

Answer: D

- Watch Video Solution

3. If X and Y are two sets, then $X \cap(Y \cap X)$ ' equals
A. A
B. B
C. ϕ
D. None of these

Answer: C

(Watch Video Solution

4. Let U be the universal set and $A \cup B \cup C=\cup$ then $\{(A-B) \cup(B-C) \cup(C-A)\}^{\prime}$ is equal to
A. $A \cup B \cup C$
B. $A \cap B \cap C$
C. $A \cup(B \cap C)$
D. $A \cap(B \cup C)$

Answer: B

- Watch Video Solution

5. If A and B are two sets ,then $(A-B) \cup(B-A) \cup(A \cap B)$ equals
A. $A \cup B$
B. $A \cap B$
C. A
D. B^{\prime}

Answer: A

- Watch Video Solution

6. If $A=\{x: x$ is a multiple of 4$\}$ and $B=\{x: x$ is a multiple of 6$\}$, then $A \cap B$ consists of all multiple of
A. 4
B. 8
C. 12
D. 16

Answer: C

- Watch Video Solution

7. The number of elements of the power set of a set containing n elements is
A. 2^{n-1}
B. 2^{n}
C. 2^{n+1}
D. $2^{2 n}$

Answer: D

- Watch Video Solution

8. Power set of the set $A=\{\phi,\{\phi\}\}$ is
A. 1) A
B. 2) $\{\phi,\{\phi\}, A\}$
C. 3) $\{\phi,\{\phi\},\{\{\phi\}\}, A\}$
D. 4) None of these

Answer: C

- Watch Video Solution

9. Given $\mathrm{n}(\mathrm{U})=20, \mathrm{n}(\mathrm{A})=12, \mathrm{n}(\mathrm{B})=9, n(A \cap B)=4$, where U is the universal set, A and B are subsets of U , then $n\left((A \cup B)^{\prime}\right)$ equals
A. 3
B. 9
C. 11
D. 17
10. A survey shows that 63% of the Americans like cheese whereas 76% like apples, If $x \%$ of the Americans like both cheese and apples, then find value of x.
A. 40
B. 65
C. 39
D. None of these

Answer: C

- Watch Video Solution

11. If the number N when divided by 6 leaves a remainder 3 , what might be the ones digit of N ?
A. 6
B. 3
C. 5
D. 4

Answer: D

- Watch Video Solution

Exercise For Session 2

1. If $\mathrm{A}=\{2,3,5\}, \mathrm{B}=\{2,5,6\}$, then $(A-B) \times(A \cap B)$ is
A. $\{(3,2),(3,3),(3,5)\}$
B. $\{(3,2),(3,5),(3,6)\}$
C. $\{(3,2),(3,5)\}$
D. None of these

Answer: C

- Watch Video Solution

2. If $n(A)=4, n(B)=3, n(A \times B \times C)=24$, then $\mathrm{n}(\mathrm{C})$ equals
A. 1
B. 2
C. 17
D. 288

Answer: B

3. The relation R defined on the set of natural numbers as $\{(a, b)$: a differs from b by 3$\}$ is given by
A. $\{(1,4),(2,5),(3,6), \ldots\}$
B. $\{(4,1),(5,2),(6,3), \ldots\}$
C. $\{(1,3),(2,6),(3,9), \ldots\}$
D. None of these

Answer: B

- Watch Video Solution

4. Let A be the set of the children in a family. The relation $\hat{A}^{\prime} x$ is a brother of y^{\prime} relation on A is
A. reflexive
B. anti-symmetric
C. transitive
D. equivalence

Answer: C

5. Let $n(A)=n$, then the number of all relations on A, is
A. 2^{n}
B. $2^{n!}$
C. $2^{n^{2}}$
D. None of these

Answer: C

- Watch Video Solution

6. If $S=\{1,2,3, . . ., 20\}, K=\{a, b, c, d\}, G=\{b, d, e, f\}$. The number of elements of $(S \times K) \cup(S \times G)$ is
A. 40
B. 100
C. 120
D. 140

Answer: C

- Watch Video Solution

7. The relation R is defined on the set of natural numbers as $\{(a, b): a=$ 2b\}. Then, R^{-1} is given by
A. $\{(2,1)(4,2)(6,3), \ldots\}$
B. $\{(1,2)(2,4)(3,6), \ldots\}$
C. R^{-1} is not defined
D. None of these

Answer: B

- Watch Video Solution

8. The relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$ on set $A=\{1,2,3\}$ is
A. reflexive, transitive but not symmetric
B. reflexive, symmetric but not transitive
C. symmetric and transitive but not reflexive
D. reflexive but neither symmetric nor transitive

Answer: A

- Watch Video Solution

9. The number of equivalence relations that can be defined on set $\{a, b, c\}$, is
A. 5
B. 3 !
C. 2^{3}
D. 3^{3}

Answer: A

- Watch Video Solution

10. If R be a relation from $A=\{1,2,3,4) \rightarrow B=(1,3,5)$ that is $(a, b) \in R \Leftrightarrow a<b$, then $R o R^{-1}$ is
A. a) $\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
B. b) $\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
C. c) $\{(3,3),(3,5),(5,3),(5,5)\}$
D. d) $\{(3,3),(3,4),(4,5)\}$

Answer: C

- Watch Video Solution

1. The values of bandc for which the identity of $f(x+1)-f(x)=8 x+3$ is satisfied, where $f(x)=b x^{2}+c x+d$, are
A. $b=2, c=1$
B. $b=4, c=-1$
C. $b=-1, c=4$
D. $b=-1, c=1$

Answer: B

- Watch Video Solution

2. If $f(x)=\frac{x-1}{x+1}$, then $f(f(a x))$ in terms of $f(x)$ is equal to
(a) $\frac{f(x)-1}{a(f(x)-1)}$
(b) $\frac{f(x)+1}{a(f(x)-1)} \frac{f(x)-1}{a(f(x)+1)}$
(d) $\frac{f(x)+1}{a(f(x)+1)}$
A. $\frac{f(x)+a}{1+a f(x)}$
B. $\frac{(a-1) f(x)+a+1}{(a+1) f(x)+a-1}$
C. $\frac{(a+1) f(x)+a-1}{(a-1) f(x)+a+1}$
D. None of these

Answer: C

- Watch Video Solution

3. Let f be a function satisfying $f(x+y)=f(x)+f(y)$ for all $x, y \in R$.

If $f(1)=k$ then $f(n), n \in N$ is equal to
A. k^{n}
B. nk
C. k
D. None of these

Answer: B

4. Is $g=\{(1,1),(2,3),(3,5),,(4,7)\}$ a function? If this is described by the formula, $g(x)=\alpha x+\beta$, then what values should be assigned to $\alpha a n d \beta$?
A. $\alpha=1, \beta=1$
B. $\alpha=2, \beta=-1$
C. $\alpha=1, \beta=-2$
D. $\alpha=-2, \beta=-1$

Answer: B

- Watch Video Solution

5. Find the value of parameter α for which the function $f(x)=1+\alpha x$, $\alpha \neq 0$ is the inverse of itself.
A. -2
B. -1
C. 1
D. 2

Answer: B

- Watch Video Solution

6. If $f(x)=\left(a-x^{n}\right)^{1 / n}$, where a >0 and $n \in N$, then fof (x) is equal to
A. a
B. x
C. x^{n}
D. a^{n}

Answer: B

Watch Video Solution

7. If $f(x)=\left(a x^{2}+b\right)^{3}$, then find the function g such that $f(g(x))=g(f(x))$.
A. $g(x)=\left(\frac{b-x^{1 / 3}}{a}\right)^{1 / 2}$
B. $g(x)=\frac{1}{\left(a x^{2}+b\right)^{3}}$
C. $g(x)=\left(a x^{2}+b\right)^{1 / 3}$
D. $g(x)=\left(\frac{x^{1 / 3}-b}{a}\right)^{1 / 2}$

Answer: D

- Watch Video Solution

8. Which of the following function from Z to itself are bijections?
A. $f(x)=x^{3}$
B. $f(x)=x+2$
C. $f(x)=2 x+1$
D. $f(x)=x^{2}+x$

Answer: B

- Watch Video Solution

9. Let $f: R-\{n\} \rightarrow R$ be a function defined by $f(x)=\frac{x-m}{x-n}$, where $m \neq n$. Then, f is one-one onto (b) f is one-one into (c) f is many one onto (d) f is many one into
A. f is one-one onto
B. f is one-one into
C. f is many-one onto
D. is many-one into

Answer: B

D Watch Video Solution

10. If $f(x+2 y, x-2 y)=x y$, then $f(x, y)$ equals
A. $\frac{x^{2}-y^{2}}{8}$
B. $\frac{x^{2}-y^{2}}{4}$
C. $\frac{x^{2}+y^{2}}{4}$
D. $\frac{x^{2}-y^{2}}{2}$

Answer: A

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. If A and B are two sets, then $A \cap(A \cup B)$ equals
A. A
B. B
C. ϕ
D. None of these

Answer: A

- Watch Video Solution

2. If R is a relation from a set A to a set B and S is a relation from B to a set C, then the relation $S o R$ a) is from A to C b) is from (to Ac) does not exist d) None of these
A. is from A to C
B. is from C to A
C. does not exist
D. None of these

Answer: A

D Watch Video Solution

3. Let $R=\{(1,3),(2,2),(3,2)\}$ and $S=\{(2,1),(3,2),(2,3)\}$ be two relations on set $A=\{(1,2,3)\}$. Then, SoR is equal
A. $\{(2,3),(3,2),(2,1)\}$
B. $\{(1,3),(2,2),(3,2),(2,1),(2,3)\}$
C. $\{(3,2),(1,3)\}$
D. $\{(2,3),(3,2)\}$

Answer: A

- Watch Video Solution

4. If X and Y are two sets, then $X \cap(Y \cap X)$ ' equals
A. X
B. Y
C. ϕ
D. None of these

Answer: D

D Watch Video Solution

5. For real numbers x and y, define $x R y$ iff $x-y+\sqrt{2}$ is an irrational number. Then the relation R is (a) reflexive (b) symmetric (c) transitive (d) none of these
A. reflexive
B. symmetric
C. transitive
D. None of these

Answer: A

6. Let $f(x)=(x+1)^{2}-1, x \geq-1$. Then the set
$\left\{x: f(x)=f^{-1}(x)\right\}$ is $\left\{0,1, \frac{-3+i \sqrt{3}}{2}, \frac{-3-i \sqrt{3}}{2}\right\}$ (b) $\{0,1,-1$
$\{0,1,1\}$ (d) empty
A. $\left\{0,-1, \frac{-3+i \sqrt{3}}{2}, \frac{-3-i \sqrt{3}}{2}\right\}, i=\sqrt{-1}$
B. $\{0,-1\}$
C. $\{0,-1\}$
D. empty

Answer: C

- Watch Video Solution

7. The number of elements of the power set of a set containing n elements is
A. 2^{n-1}
B. 2^{n}
C. $2^{n}-1$
D. 2^{n+1}

Answer: B

- Watch Video Solution

8. Which one of the following is not true?
A. $A-B \subseteq A$
B. $B^{\prime}-A^{\prime} \subseteq A$
C. $A \subseteq A-B$
D. $A \cap B^{\prime} \subseteq A$

Answer: C

9. If $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{3,8\}$, then $(A \cup B) \times(A \cap B)$ is
A. $\{(3,1),(3,2),(3,3),(3,8)\}$
B. $\{(1,3),(2,3),(3,3),(8,3)\}$
C. $\{(1,2),(2,2),(3,3),(8,8)\}$
D. $\{(8,3),(8,2),(8,1),(8,8)\}$

Answer: B

(Watch Video Solution

10. Let $A=\{p, q, r\}$. Which of the following is an equivalence relation on A ?
A. $R_{1}=\{(p, q),(q, r),(p, r),(p, p)\}$
B. $R_{2}=\{(r, q),(r, p),(r, r),(q, q)\}$
C. $R_{3}=\{(p, p),(q, q),(r, r),(p, q)\}$
D. None of the above

D Watch Video Solution

11. Let $A=\{x: x$ is a multiple of 3$\}$ and $B=\{x: x$ is a multiple of 5$)$, then $A \cap B$ is given by
A. $\{3,6,9\}$
B. $\{5,10,15,20, \ldots\}$
C. $\{15,30,45, \ldots\}$
D. None of these

Answer: C

- Watch Video Solution

12. Let $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4\}$ and $\mathrm{C}=\{4,5,6\}$, the $A \cup(B \cap C)$ is
A. $\{3\}$
B. $\{1,2,3,4\}$
C. $\{1,2,5,6\}$
D. $\{1,2,3,4,5,6\}$

Answer: B

- Watch Video Solution

13. Let $A=\{x, y, z), B=\{u, v, w\}$ and $f: A \rightarrow B$ be defined by $f(x)=u$, $f(y)=v, f(z)=w$. Then, f is
A. surjective but not injective
B. injective but not surjective
C. bijective
D. None of the above

Answer: C

14. If $\mathrm{A}=\{2,4)$ and $\mathrm{B}=\{3,4,5)$, then $(A \cap B) \times(A \cup B)$ is
A. $\{(2,2),(3,4),(4,2),(5,4)\}$
B. $\{(2,3),(4,3),(4,5)\}$
C. $\{(2,4),(3,4),(4,4),(4,5)\}$
D. $\{(4,2),(4,3),(4,4),(4,5)\}$

Answer: D

Watch Video Solution

15. In the set $X=\{a, b, c, d\}$, which of the following functions in X ?
A. $R_{1}=\{(b, a),(a, b),(c, d),(a, c)\}$
B. $R_{2}=\{(a, d),(d, c),(b, b),(c, c)\}$
C. $R_{3}=\{(a, b),(b, c),(c, d),(b, d)\}$
D. $R_{4}=\{(a, a),(b, b),(c, c),(a, d)\}$

Answer: B

- Watch Video Solution

16. The composite mapping fog of the maps
$f: R \rightarrow R, f(x)=\sin x$ and $g: R \rightarrow R, g(x)=x^{2}$, is
A. $x^{2} \sin \mathrm{x}$
B. $(\sin x)^{2}$
C. $\sin x^{2}$
D. $\sin x / x^{2}$

Answer: C

17. Which of the following is the empty set
A. $\left\{\mathrm{x}: \mathrm{x}\right.$ is a real number and $\left.x^{2}-1=0\right\}$
B. $\left\{\mathrm{x}: \mathrm{x}\right.$ is a real number and $\left.x^{2}+1=0\right\}$
C. $\left\{\mathrm{x}: \mathrm{x}\right.$ is a real number and $\left.x^{2}-9=0\right\}$
D. $\left\{\mathrm{x}: \mathrm{x}\right.$ is a real number and $\left.x^{2}=x+2\right\}$

Answer: B

- Watch Video Solution

18. In order that a relation R defined on a non-empty set A is an equivalence relation, it is sufficient, if R
A. is reflexive
B. is symmetric
C. is transitive
D. possesses all the above three properties

- Watch Video Solution

19. Let $A=\{p, q, r, s\}$ and $B=\{1,2,3\}$. Which of the following relations from A to B is not function?
(i) $R_{1}=\{(p, 1),(q, 2),(r, 1),(s, 2)\}$
(ii) $R_{2}=\{(p, 1),(q, 2),(r, 1),(s, 1)\}$
(iii) $R_{3}=\{(p, 1),(q, 2),(r, 2),(r, 2)\}$
(iv) $R_{4}=\{(p, 2),(q, 3),(r, 2),(s, 2)\}$
A. $R_{1}=\{(p, 1),(q, 2),(r, 1),(s, 2)\}$
B. $R_{2}=\{(p, 1),(q, 2),(r, 1),(s, 1)\}$
C. $R_{3}=\{(p, 1),(q, 2),(r, 2),(r, 2)\}$
D. $R_{4}=\{(p, 2),(q, 3),(r, 2),(s, 2)\}$

Answer: C

20. For $n, m \varepsilon N, n \mid m$ means that n is a factor of m then relation is
A. reflexive and symmetric
B. transitive and symmetric
C. reflexive, transitive and symmetric
D. reflexive, transitive and not symmetric

Answer: D

Watch Video Solution

21. Find all congruent solutions of $8 x \equiv 6(\bmod 14)$.
A. [8],[6]
B. [8],[14]
C. [6],[13]
D. [8],[14],[16]

- Watch Video Solution

22. Let A be a set containing 10 distinct elements. Then the total number of distinct functions from A to A is:
A. (a) 10 !
B. (b) 10^{10}
C. (c) 2^{10}
D. (d) $2^{10}-1$

Answer: B

- Watch Video Solution

23. write the value of $\cos ^{-1}\left(\frac{1}{2}\right)-\sin ^{-1}\left(-\frac{1}{2}\right)$
24. f and h are function from $\mathrm{A} \rightarrow \mathrm{B}$, where $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{B}=\{\mathrm{s}, \mathrm{t}, \mathrm{u}\}$ defined as follows
$f(a)=t, f(b)=s, f(c)=s$
$f(d)=u, h(a)=s, h(b)=t$
$\mathrm{h}(\mathrm{c})=\mathrm{s}, \mathrm{h}(\mathrm{a})=\mathrm{u}, \mathrm{h}(\mathrm{d})=\mathrm{u}$
Which one of the following statement is true?
A. A. f and h are functions
B. B. f is a function and h is not a function
C. C. f and h are not functions
D. D. None of the above

Answer: B

- Watch Video Solution

25. Let I be the set of integer and $\mathrm{f}: \mathrm{I} \rightarrow \mathrm{I}$ be defined as $\mathrm{f}(\mathrm{x})=x^{2}, x \in I$, the function is
A. bijection
B. injection
C. surjection
D. None of these

Answer: D

- Watch Video Solution

26. Which of the four statements given below is different from other?
A. $f: A \rightarrow B$
B. $f: x \rightarrow f(x)$
C. f is a mapping of A into B
D. f is a function of A into B

D Watch Video Solution

27. Let $A=\{1,2,, n\}$ and $B=\{a, b\}$. Then the number of subjections from A into B is ${ }^{n} P_{2}$ (b) $2^{n}-2$ (c) $2^{n}-1$ (d) ${ }^{n} C_{2}$
A. ${ }^{n} P_{2}$
B. $2^{n}-2$
C. $2^{n}-1$
D. None of these

Answer: B

- Watch Video Solution

28. If function $f: R \rightarrow R$ is defined by $f(x)=3 x-4$ then $f^{-1}(x)$ is given by
A. $\frac{1}{3}(x+4)$
B. $\frac{1}{3} x-4$
C. $3 x+4$
D. not defined

Answer: A

- Watch Video Solution

29. $f: R \rightarrow R$ is a function defined by $\mathrm{f}(\mathrm{x})=10 x-7, \quad$ if $g=f^{-1}$ then $g(x)=$
A. $\frac{1}{10 x-7}$
B. $\frac{1}{10 x+7}$
C. $\frac{x+7}{10}$
D. $\frac{x-7}{10}$

Answer: C

30. Let R be a relation defined by $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): a \geq b\}$, where a and b are real numbers, then R is
A. reflexive, symmetric and transitive
B. reflexive, transitive but not symmetric
C. symmetric, transitive but not reflexive
D. neither transitive, nor reflexive, not symmetric

Answer: B

- Watch Video Solution

31. If the sets A and B are defined are defined as $A=\left\{(x, y): y=e^{x}, x \in R\right\}, B=\{(x, y): y=x, x \in R\}$ then
a. $B \subset A$
b. $A \subset B$
c. $A \cap B=\phi$
d. $A \cup B$
A. $B \subset A$
B. $A \subset B$
C. $A \cap B=\phi$
D. $A \cup B$

Answer: B

- Watch Video Solution

32. If function $f: A \rightarrow B$ is a bijective, then $f^{-1} o f$ is
a. $f o f^{-1}$
b. f
c. f^{-1}
d. I_{A} (the identity map of the set A)
A. $f o f^{-1}$
B. f
C. f^{-1}
D. I_{A} (the identity map of the set A)

Answer: D

- Watch Video Solution

33. If $f(y)=\frac{y}{\sqrt{1-y^{2}}}, g(y)=\frac{y}{\sqrt{1+y^{2}}}$, then (fog) y is equal to
A. $\frac{y}{\sqrt{1-y^{2}}}$
B. $\frac{y}{\sqrt{1+y^{2}}}$
C. y
D. $\frac{\left(1-y^{2}\right)}{\sqrt{1-y^{2}}}$

Answer: C

34. $f: R \rightarrow R \quad$ is defined as $f(x)=2 x+|x|$ then $f(3 x)-f(-x)-4 x=$
A. a) $f(x)$
B. b) $-f(x)$
C. c) $f(-x)$
D. d) $2 f(x)$

Answer: D

- Watch Video Solution

35. Let R and S be two non-void relations on a set A. Which of the following statements is false?
A. R and S are transitive $\Rightarrow R \cup S$ is transitive
B. R and S are transitive implies $R \cap S$ is symmetric
C. R and S are symmetric implies $R \cup S$ is symmetric
D. R and S are reflexive implies $R \cap S$ is reflexive

Answer: A

- Watch Video Solution

36. Let $f: R \rightarrow R, g: R \rightarrow R$ be two functions given by
$f(x)=2 x-3, g(x)=x^{3}+5$. Then $(f o g)^{-1}$ is equal to
A. $\left(\frac{x+7}{2}\right)^{1 / 3}$
B. $\left(x-\frac{7}{2}\right)^{1 / 3}$
C. $\left(\frac{x-2}{7}\right)^{1 / 3}$
D. $\left(\frac{x-7}{2}\right)^{1 / 3}$

Answer: D

- Watch Video Solution

37. If $f(x)=a x+b$ and $g(x)=c x+d$, then $f(g(x))=g(f(x))$ is equivalent to (a) $f(a)=$ $g(c)(b) f(b)=g(b)(c) f(d)=g(b)(d) f(c)=g(a)$
A. $f(a)=g(c)$
B. $f(b)=g(b)$
C. $f(d)=g(b)$
D. $f(\mathrm{c})=\mathrm{g}(\mathrm{a})$

Answer: C

- Watch Video Solution

38. If $f: R \rightarrow R, g: R \rightarrow R$ be two given functions, then $f(x)=2 \min \{|f(x)-g(x)|, 0\}$ equals
A. $f(x)+g(x)-|g(x)-f(x)|$
B. $f(x)+g(x)+|g(x)-f(x)|$
C. $f(x)-g(x)+|g(x)-f(x)|$
D. $f(x)-g(x)-|g(x)-f(x)|$

Answer: D

- Watch Video Solution

39. Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be two given functions such that f is injective and g is surjective. Then which of the following is injective?
a. $g \circ f$
b. $f o g$
c. $g o g$
d. none of these
A. gof
B. fog
C. gog
D. none of these

Answer: D

Exercise More Than One Correct Option Type Questions

1. Let L be the set of all straight lines in the Euclidean plane. Two lines l_{1} and l_{2} are said to be related by the relation R if l_{1} is parallel to l_{2}. Then, relation R is not
A. reflexive
B. symmetric
C. transitive
D. none of the above

Answer: A::B::C::D

- Watch Video Solution

2. Let $X=\{1,2,3,4\}$ and $Y=\{1,3,5,7,9\}$. Which of the following is relations from X to Y
(i) $R_{1}=\{(x, y): y=2+x, x \in X, y \in Y\}$
(ii) $R_{2}=\{(1,1),(2,1),(3,3),(4,3),(5,5)\}$
(iii) $R_{3}=\{(1,1),(1,3),(3,5),(3,7),(5,7)\}$
(iv) $R_{4}=\{(1,3),(2,5),(2,4),(7,9)\}$
A. $R_{1}=\{(x, y): y=2+x, x \in X, y \in Y\}$
B. $R_{2}=\{(1,1),(2,1),(3,3),(4,3),(5,5)\}$
C. $R_{3}=\{(1,1),(1,3),(3,5),(3,7),(5,7)\}$
D. $R_{4}=\{(1,3),(2,5),(2,4),(7,9)\}$

Answer: A::B::C

- Watch Video Solution

3. Let the function $f: R-\{-b\} \rightarrow R-\{1\}$ be defined by $f(x)=\frac{x+a}{x+b}, a \neq b$, then f is one-one but not onto (b) f is onto but
not one-one (c) f is both one-one and onto (d) none of these
A. f is one-one but not onto
B. f is onto but not one-one
C. f is both one-one and onto
D. $f^{-1}(2)=a-2 b$

Answer: C::D

- Watch Video Solution

Exercise Passage Based Questions

1. Let f and g be real valued functions defined as
$f(x)=\left\{\begin{array}{ll}7 x^{2}+x-8, & x \leq 1 \\ 4 x+5, & 1<x \leq 7 \\ 8 x+3, & x>7\end{array} \quad g(x)= \begin{cases}|x|, & x<-3 \\ 0, & -3 \leq x<2 \\ x^{2}+4, & x \geq 2\end{cases}\right.$
The value of $g o f(0)+f o g(-3)$ is
a. -8
b. 0
c. 8
d. 16
A. a) -8
B. b) 0
C. c) 8
D. d) 16

Answer: B

- Watch Video Solution

2. Find fog if $f(x)=x-2$ and $g(x)=3 x$

- Watch Video Solution

3. Find gof if $f(x)=8 x-2$ and $g(x)=2 x$
4. If $A=\{1,2,3\}$ and $R=\{(1,1\},(2,2),(3,3)\}$ then R is reflexive, symmetric or transitive?
A. reflexive and symmetric
B. symmetric and transitive
C. reflexive and transitive
D. equivalence

Answer: A

- Watch Video Solution

5. R_{1} on Z defined by $(a, b) \in R_{1}$ iff $|a-b| \leq 7, R_{2}$ on Q defined by
$(a, b) \in R_{2}$ iff $a b=4$ and $R_{3} \quad$ on $\quad \mathrm{R} \quad$ defined by
$(a, b) \in R_{3}$ iff $a^{2}-4 a b+3 a b^{2}=0$
Relation R_{2} is
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: B

- Watch Video Solution

6. R_{1} on Z defined by $(a, b) \in R_{1}$ iff $|a-b| \leq 7, R_{2}$ on Q defined by
$(a, b) \in R_{2}$ iff $a b=4$ and $R_{3} \quad$ on $\quad \mathrm{R} \quad$ defined by
$(a, b) \in R_{3}$ iff $a^{2}-4 a b+3 a b^{2}=0$
Relation R_{2} is
A. reflexive
B. symmetric
C. transitive
D. equivalence

Answer: A

D Watch Video Solution

Exercise Single Integer Answer Type Questions

1. In a group of 45 students, 22 can speak Hindi only and 12 can speak English only. If $(2 \lambda+1)$ student can speak both Hindi and English, the value of λ is

- Watch Video Solution

2. If $A=\left\{x \left\lvert\, \cos x>-\frac{1}{2}\right.\right.$ and $\left.0 \leq x \leq \pi\right\} \quad$ and
$B=\left\{x \left\lvert\, \sin x>\frac{1}{2}\right.\right.$ and $\left.\frac{\pi}{3} \leq x \leq \pi\right\}$ and if $\pi \lambda \leq A \cap B<\pi \mu$, the value of $(\lambda+\mu)$ is

- View Text Solution

3. If $S=R, A=\{x:-3 \leq x<7\}$ and $B=\{x: 0<x<10\}$, the number of positive integers in $A \Delta B$ is

- Watch Video Solution

4. Two finite sets have m and n elements. The total number of subsets of the first set is 48 more than the total number of subsets of the second set. The value of $m-n$ is

- Watch Video Solution

5. If two sets A and B are having 99 elements in common, the number of elements common to each of the sets $A \times B$ and $B \times A$ are $121 \lambda^{2}$, the value of λ is

- Watch Video Solution

1. The functions defined have domain R

Column I		Column II	
(A)	$7 x+1$	(p)	onto $[-1,1]$ but not one-one $[0, \pi]$
(B)	$\cos x$	(q)	one-one on $[0, \pi]$ but not onto R
(C)	$\sin x$	(r)	one-one and onto R (D)
$1+\ln x$	(s)	one-one on $(0, \infty)$	

- Watch Video Solution

2. Find the power set of set $B=\{5,6,7\}$ and also find the number of element

- Watch Video Solution

Exercise Statement I And li Type Questions

1. Statement-1 If a set A has n elements, then the number of binary relations on $A=n^{n^{2}}$.

Statement-2 Number of possible relations from A to $A=2^{n^{2}}$.
Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 (b) Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1 (c) Statement-1 is true, Statement-2 is false (d) Statement-1 is false, Statement-2 is true
A. Statement- 1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is true, Statement-2 is false
D. Statement-1 is false, Statement-2 is true

Answer: B

- Watch Video Solution

2. Statement-1 If $\mathrm{A}=\{\mathrm{x} \mid \mathrm{g}(\mathrm{x})=0\}$ and $\mathrm{B}=\{\mathrm{x} \mid \mathrm{f}(\mathrm{x})=0\}$, then $A \cap B$ be a root of $\{f(x)\}^{2}+\{g(x)\}^{2}=0$

Statement-2 $x \in A \cap B \Rightarrow x \in A$ or $x \in B$.
A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is true, Statement-2 is false
D. Statement- 1 is false, Statement- 2 is true

Answer: C

- Watch Video Solution

3. Statement-1 $P(A) \cap P(B)=P(A \cap B)$, where $\mathrm{P}(\mathrm{A})$ is power set of set
A.

Statement-2 $P(A) \cup P(B)=P(A \cup B)$.
A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is true, Statement-2 is false
D. Statement-1 is false, Statement-2 is true

Answer: C

- Watch Video Solution

4. Statement-1 If Sets A and B have three and six elements respectively, then the minimum number of elements in $A \cup B$ is 6 .

Statement-2 $A \cap B=3$.
A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
C. Statement- 1 is true, Statement- 2 is false
D. Statement- 1 is false, Statement- 2 is true

Answer: A

D Watch Video Solution

Exercise Subjective Type Questions

1. If $A=\{x: x$ is a natural number $\}, B=\{x: x$ is an even natural number $\}, C=$ $\{x: x$ is an odd natural number $\}$ and $D=\{x: x$ is a prime number $\}$, Find $:$
(i) $A \cap B$
(ii) $A \cap C$
(iii) $A \cap D$
(iv) $B \cap C$
(v) $B \cap D$
(vi) $C \cap D$.
A. $A \cap B$
B. $A \cap C$
C. $B \cap D$
D. $C \cap D$

Answer: A::B::C::D

- Watch Video Solution

2. let $U=\{1,2,3,4,5,6,7,8\} A=\{1,2,3,4\}$ then find the A complement

- Watch Video Solution

3. If $A=\{x: x$ is a natural number $\}, B=\{x: x$ is an even natural number $\}=$ $\{x: x$ is an odd natural number $\}$ and $D=\{x: x$ is a prime number $\}$, find :$A \cap B$

- Watch Video Solution

4. In a group of children, 35 play football out of which 20 play football only, 22 play hockey, 25 play cricket out of which 11 play cricket only. Out of these 7 play cricket and football but not hockey, 3 play football and hockey but not cricket and 12 play football and cricket both.

How many play all the three games ? How many play cricket and hockey but not football, how many play hockey only? What is the total number of children in the group?

- Watch Video Solution

5. Of the members of three athletic teams in a certain school, 21 are in the basketball team, 26 in hockey team and 29 in the football team. 14 play
hockey and basket ball, 15 play hockey and football, 12 play football and basketball and 8 play all the three games bow many members are there in all?

- Watch Video Solution

6. In a survey of 200 students of a school, it was found that 120 study Mathematics, 90 study Physics and 70 study Chemistry , 40 study Mathematics and Physics, 30 study Physics and Chemistry, 50 study Chemistry and Mathematics and 20 none of these subjects. Find the number of students who study all the three subjects.

- Watch Video Solution

7. In a survey of population of 450 people, it is found that 205 can speak

English, 210 can speak Hindi and 120 people can speak Tamil. If 100 people can speak both Hindi and English, 80 people can speak both English and Tamil, 35 people can speak Hindi and Tamil and 20 people can speak all the three languages, find the number of people who can speak English
but not a Hindi or Tamil. Find also the number of people who can speak neither English nor Hindi nor Tamil.

- Watch Video Solution

8. A group of 123 workers went to a canteen for cold drinks, ice-cream and tea, 42 workers took ice-cream, 36 tea and 30 cold drinks. 15 workers purchased ice-cream and tea, 10 ice-cream and cold drinks, and 4 cold drinks and tea but not ice-cream, 11 took ice-cream and tea but not cold drinks. Determine how many workers did not purchase anything?

- Watch Video Solution

9. Let n be a fixed positive integer. Define a relation R on Z as follows:
$(a, b) \in R \Leftrightarrow a-b$ is divisible by n. Show that R is an equivalence relation on Z.

- Watch Video Solution

10. Show that if $A=\{1,2,3\}$ and $R=\{(1,1),(2,2),(3,3)(1,2),(2,1),(2,3),(1,3)$ is an equivalence relation.

D Watch Video Solution

11. The given relation is defined on the set of real numbers.
$a R b \Leftrightarrow|a|=|b|$
. Find whether these relations are reflexive, symmetric or transitive.

- Watch Video Solution

12. Let $A=\{x:-1 \leq x \leq 1\}=B$ for each of the following functions from A to B. Find whether it is surjective, injective or bijective
(i) $f(x)=\frac{x}{2}$
(ii) $g(x)=|x|$

- Watch Video Solution

13. If the functions f and g defined from the set of real number R to R such that $f(x)=e^{x}$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-2$, then find functions fog and gof.

- Watch Video Solution

14. If $f(x)=\frac{x^{2}-x}{x^{2}+2 x}$, then find the domain and range of f . Show that f is one-one. Also, find the function $\frac{d\left(f^{-1}(x)\right)}{d x}$ and its domain.

- Watch Video Solution

15. If the functions f, g and h are defined from the set of real numbers R to R such that

$$
\begin{aligned}
& f(x)=x^{2}-1, g(x)=\sqrt{\left(x^{2}+1\right)}, \\
& h(x)= \begin{cases}0, & \text { if } \quad x<0 \\
\mathrm{x}, & \text { if } \quad x \geq 0\end{cases}
\end{aligned}
$$

Then find the composite function ho(fog)(x).

- Watch Video Solution

1. Let $R=\{(3,3),(6,6),(9,9),(6,12),(3,9),(3,12),(12,12),(3,6)\}$ is a relation on set $A=\{3,6,9,12\}$ then R is a) an equivalence relation b) reflexive and symmetric only c) reflexive and transitive only d) reflexive only
A. an equivalence relation
B. reflexive and symmetric only
C. reflexive and transitive only
D. reflexive only

Answer: C

- Watch Video Solution

2. Let w denote the words in the english dictionary. Define the relation R by: $\mathrm{R}=\{(x, y) \in W \times W \mid$ words x and y have at least one letter in
common\}. Then R is: (1) reflexive, symmetric and not transitive (2) reflexive, symmetric and transitive (3) reflexive, not symmetric and transitive (4) not reflexive, symmetric and transitive
A. not reflexive, symmetric and transitive
B. reflexive, symmetric and not transitive
C. reflexive, symmetric and transitive
D. reflexive, not symmetric and transitive

Answer: B

- Watch Video Solution

3. N is the set of natural numbers. The relation R is defined on $N \times N$ as follows

$$
(a, b) R(c, d) \Leftrightarrow a+d=b+c
$$

Prove that R is an equivalence relation.
A. Both S and T are equivalence relations on R
B. S is an equivalence relation on R but T is not
C. T is an equivalence relation on R but S is not
D. Neither S nor T is an equivalence relations on R

Answer: C

- Watch Video Solution

4. If A, B and C are three sets such that $A \cap B=A \cap C$ and $A \cup B=A \cup C$, then (1) $A=B$ (2) $A=C$ (3) $B=C$ (4) $A \cap B=\varphi$
A. $A \cap B=\phi$
B. $A=B$
C. $A=C$
D. $B=C$

Answer: D

5. Two finite sets have m and n elements. The total number of subsets of the first set is 48 more than the total number of subsets of the second set. The value of $m-n$ is
A. 25
B. 41
C. 6
D. 9

Answer: D

- Watch Video Solution

6. Consider the following relations: $R=\{(x, y) \mid x, y$ are real numbers and x
$=$ wy for some rational number w $\} ;$
$S=\left\{\left(\frac{m}{n}, \frac{p}{q}\right) \mathrm{m}, \mathrm{n}, \mathrm{p}\right.$ and q are integers such that $\mathrm{n}, \mathrm{q} \neq 0$ and $\mathrm{q} \mathrm{m}=\mathrm{p}$
. Then (1) neither R nor S is an equivalence relation (2) S is an equivalence
relation but R is not an equivalence relation (3) R and S both are equivalence relations (4) R is an equivalence relation but S is not an equivalence relation
A. neither R nor S is an equivalence relation
B. S is an equivalence relation but R is not an equivalence relation
$C . R$ and S both are equivalence relations
D. R is an equivalence relation but S is not an equivalence relation

Answer: B

- Watch Video Solution

7.

Let
$P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then
A. $P \subset Q$ and $A-P \neq \phi$
B. $Q \subset P$
C. $P \varnothing Q$
D. $P=Q$

Answer: D

- View Text Solution

8. Find the value of x when $\tan x=1$.

- Watch Video Solution

9. Evaluate $\int \tan ^{2} x d x$

Watch Video Solution

10. If A and B two sets containing 2 elements and 4 elements, respectively.

Then, the number of subsets of $A \times B$ having 3 or more elements, is
A. 220
B. 219
C. 211
D. 256

Answer: B

- Watch Video Solution

11. If $X=\left\{4^{n}-3 n-1: n \in N\right\}$ and $y=\{9(n-1): n \in N\}$, then
$X \cup Y$ equals
a. X
b. Y
c. N
d. $Y-X$
A. X
B. Y
C. N
D. $Y-X$

Answer: B

- Watch Video Solution

12. Let A and B be too sets containing four and two elements respectively then the number of subsets of set $A \times B$ having atleast 3 elements is
A. 275
B. 510
C. 219
D. 256

Answer: C

