©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - ARIHANT MATHS

THE STRAIGHT LINES

Examples

1. Find the inclination of the line whose slope is $-\frac{1}{\sqrt{3}}$

- Watch Video Solution

2. Find the slope of the line through the points $(4,-6)(-2,-5)$

- Watch Video Solution

3. Determine x so that 2 is the slope of the line through $(2,5)$ and $(x, 3)$.

- Watch Video Solution

4. Show that the line joining $(2,-3)$ and $(-5,1)$ is parallel to the line joining (7,-1) and (0,3).

- Watch Video Solution

$\begin{array}{lccr}\text { 5. Find } & \text { whether } & \text { the } & \text { points } \\ (-a,-b),[-(s+1) a,-(s+1) b] & \text { and }[(t-1) a,(t-1) b] & \text { are }\end{array}$ collinear?

Watch Video Solution

6. For what value of k are the points
$(k, 2-2 k)(-k+1,2 k) \operatorname{and}(-4-k, 6,6-2 k)$ are collinear?
7. Find the angle between the lines joining the point $(0,0),(2,3)$ and the points $(2,-2),(3,5)$.

- Watch Video Solution

8. If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.

- Watch Video Solution

9. Show that the points $(3,4),(8,-6)$ and $(13,9)$ are the vertices of a right angled triangle.

- Watch Video Solution

10. A line passes through the points $A(2,-3)$ and $B(6,3)$. Find the slopes of the lines which are,
(i) parallel to $A B$ (ii) perpendicular to $A B$

- Watch Video Solution

11. Show that the triangle which has one of the angles as 60° can not have all vertices with integral coordinates.

- Watch Video Solution

12. Find the equation of the straight line parallel to Y - axis and at a distance (i) 3 units to the right (ii) 2 units to the left
13. Write down the equation of a line parallel to the x-axis
(i) at a distance of 5 units above the x-axis.
(ii) at a distance of 4 units below the x -axis.

- Watch Video Solution

14. Find the equation of the straight line which passes through the point
$(2,-3)$ and is
(i) parallel to the X -axis,
perpendicular to the X - axis

- Watch Video Solution

15. Find the equation of a line which is equidistant from the lines
$x=-\frac{7}{2}$ and $x=\frac{15}{2}$

- Watch Video Solution

16. If the straight line $y=m x+c$ passes through the points $(2,4)$ and $(-3,6)$, then the value of m and c are
(i) $m=-\frac{2}{5}, c=\frac{24}{5}$
(ii) $m=\frac{2}{5}, c=\frac{24}{5}$
(iii) $m=-\frac{2}{5}, c=-\frac{24}{5}$
(iv) $m=\frac{2}{5}, c=-\frac{24}{5}$

- Watch Video Solution

17. What are the inclination to the X - axis and intercept on Y - axis of the line
$3 y=\sqrt{3} x+6 ?$

- Watch Video Solution

18. A line cutting off intercept -3 from y axis and tangent of angle to the axis is $\frac{3}{5}$ is
19. Find the equation to the straight line cutting off an intercept of 5 units on negative direction of Y - axis and being equally inclined to the axes.

- Watch Video Solution

20. Find the equation of the bisectors of the angles between the coordinate axes.

- Watch Video Solution

21. Find the equation of a line which makes an angle of 135° with the x axis and passes through the point $(3,5)$.
22. Find the equation of the straight line bisecting the segment joining the points $(5,3)$ and $(4,4)$ and making an angle of 45° with the positive direction of X -axis.

- Watch Video Solution

23. Find the equation of the right bisector of the line segment joining the points (3,4) and ($-1,2$).

- Watch Video Solution

24. Find the equation of the straight lines passing through the following pair of point: $\left(a t_{1}, a / t_{1}\right)$ and $\left(a t_{2}, a / t_{2}\right)$

- Watch Video Solution

25. If the coordinates of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be $(-1,5),(0,0)$ and $(2,2)$ respectively, and D be the middle point of $B C$, then the equation of the perpendicular drawn from B to the line $A D$ is

- Watch Video Solution

26. The vertices of a triangle are $A(10,4), B(-4,9)$ and $C(-2,-1)$. Find the equation of the altitude through A.

- Watch Video Solution

27. If $\mathrm{A}(-1,6), \mathrm{B}(-3,-9)$ and $\mathrm{C}(5,-8)$ are the vertices of a $\triangle A B C$, find the equations of its medians.

- Watch Video Solution

28. In what ratio is the line joining the pints $(2,3)$ and $(4,-5)$ divided by the line passing through the points $(6,8)$ and $(-3,-2)$.

- Watch Video Solution

29. Find the equation of the line through $(2,3)$ so that the segment of the line intercepted between the axes is bisected at this point.

- Watch Video Solution

30. Find the equation of the circle passing through $(0,0)$ and making intercepts 'a' and 'b' on the coordinate axes.

- Watch Video Solution

31. Find the equation of the straight line through the point $P(a, b)$ parallel to the line $\frac{x}{a}+\frac{y}{b}=1$ also find the intercepts made by it on the axes.
32. The length of perpendicular from the origin to a line is 9 and the line makes an angle of 120° witth the positive direction of Y - axes. Find the equation of the line.

- Watch Video Solution

33. Find the equation of the straight line on which the perpendicular from origin makes an angle 30° with positive x-axis and which foms a triangle of area $\frac{50}{\sqrt{3}}$ sq, units with the co-ordinates axis.

- Watch Video Solution

34. Reduce $x+\sqrt{3} y+4=0$ to the : Slope intercepts form and find its slope and y -intercept.
35. Reduce $x+\sqrt{3 y}+4=0$ to the :
(i) slope - intercept form and find its slope and y - intercept

- Watch Video Solution

36. Reduce $x+\sqrt{3 y}-4=0$ to the :
(iii) Normal form and find the values of p and α

- Watch Video Solution

37. Find the measure of the angle of intersection of the lines whose equations are $3 x+4 y+7=0$ and $4 x-3 y+5=0$

- Watch Video Solution

38. Find the angle between the lines, $\left(a^{2}-a b\right) y=\left(a b+b^{2}\right) x+b^{3}$, and $\left(a b+b^{2}\right) y=\left(a b-a^{2}\right) x+a^{3}$ where $a<b<0$
39. Find the derivative of $y=\sin x \cos x$.

- Watch Video Solution

40. The slope of a straight line through $A(3,2) i s 3 / 4$ Find the coordinates of the points on the line that are 5units away from A.

- Watch Video Solution

41. Find the direction in which a straight line must be drawn through the point $(1,2)$ so that its point of intersection with the line $x+y=4$ may be at a distance $\frac{1}{3} \sqrt{6}$ from this point

- Watch Video Solution

42. A line $(2,3)$ makes an angle $\frac{3 \pi}{4}$ with the negative direction of X - axis . Find the length of the line segment cut off between $(2,3)$ and the line $x+y-7=0$

- Watch Video Solution

43. Find the distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along the line $2 x-2 y+5=0$

- Watch Video Solution

44. If the line $y-\sqrt{3} x+3=0$ cuts the parabola $y^{2}=x+2$ at P and Q then $A P . A Q$ is equal to

(D) Watch Video Solution

45. Find the derivative of $\log (\sin x)$.
46. The center of a square is at the origin and its one vertex is $A(2,1)$.

Find the coordinates of the other vertices of the square.

- Watch Video Solution

47. The experimities of the diagonal of a square are $(1,1),(-2,-1)$.Obtain the other two vertices and the equation of the other diagonal .

- Watch Video Solution

48. Are the points $(2,1)$ and $(-3,5)$ on the same or opposite side of the line $3 x-2 y+1=0$?

- Watch Video Solution

49. Is the point $(2,-7)$ lies on origin side of the line $2 x+y+2=0$?

- Watch Video Solution

50. A canal is $4 \frac{1}{2} \mathrm{kms}$ from a place and the shortest route from this place to the canal is exactly north-east. A village is 3 kms north and 4 kms east from the place. Does it lie on canal?

- Watch Video Solution

51. The point $P(\alpha, \alpha+1)$ will lie inside the triangle whose vertices are $A(0,3), B(-2,0)$ and $C(6,1)$ if

- Watch Video Solution

52. Find λ if $(\lambda, 2)$ is an interior point of $\triangle A B C$ formed by $x+y=4,3 x-7 y=8$ and $4 x-y=31$
53. If $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines $2 x+3 y-1=0, x+2 y-3=0,5 x-6 y-1=0$, then
A. (a) $2 \alpha+3 \alpha^{2}-1>0$
B. (b) $\alpha+2 \alpha^{2}-3>0$
C. (c) $\alpha+2 \alpha^{2}-3<0$
D. (c) $6 \alpha+5 \alpha^{2}+1>0$

Answer:

- Watch Video Solution

54. Find the general equation of the line which is parallel to $3 x-4 y+5=0$. And such that line passes through the point $(-1,2)$
55. Find the general equation of the line which is perpendicular to $x+y+4=0$. Also find such line through the point $(1,2)$

- Watch Video Solution

56. The equation to the straight line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a$ is

- Watch Video Solution

57. The absolute value of the sum of the abscissas of all the points on the line $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=0$ is \qquad
58. If p and q are respectively the perpendiculars from the origin upon the striaght lines, whose equations are $x \sec \theta+y \operatorname{cosec} \theta=a$ and $x \cos \theta-y \sin \theta=a \cos 2 \theta$, then $4 p^{2}+q^{2}$ is equal to

- Watch Video Solution

59. If p is the length of the perpendicular from the origin to the line $\frac{x}{a}+\frac{y}{b}=1$, then prove that $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

- Watch Video Solution

60. Number of lines that can be drawn through the point $(4,-5)$ so that its distance from $(-2,3)$ will be equal to 12 is equal to

- Watch Video Solution

61. The distance between two parallel lines $5 x-12 y+2=0$ and $5 x-12 y-3=0$ is given by

- Watch Video Solution

62. The equation $n s$ of the lines parallel to $5 x-12 y+26=0$ and at a distance of 4 units from it are:

- Watch Video Solution

63. Show that the area of the parallelogram formed by the lines
$2 x-3 y+a=0,3 x-2 y-a=0,2 x-3 y+3 a=0 \quad$ and
$3 x-2 y-2 a=0 i s \frac{2 a^{2}}{5}$ sq units

- Watch Video Solution

64. Prove that the area of the parallelogram formed by the lines
$x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y \sin \alpha=q$,
$x \cos \beta+y \sin \beta=r$ and $x \cos \beta+y \sin \beta=s$ is
$\pm(p-q)(r-s) \cos e c(\alpha-\beta)$.

- Watch Video Solution

65. Prove that the parallelogram formed by the lines $\frac{x}{a}+\frac{y}{b}=1, \frac{x}{b}+\frac{y}{a}=1, \frac{x}{a}+\frac{y}{b}=2$ and $\frac{x}{b}+\frac{y}{a}=2$ is a rhombus.

- Watch Video Solution

66. Area of the rhombus bounded by the four lines, $a x \pm b y \pm c=0$ is

- Watch Video Solution

67. Show that the lines
$2 x+3 y-8=0, x-5 y+9=0$ and $3 x+4 y-11=0$ concurrent.

- Watch Video Solution

68. If the lines $a x+y+1=0, x+b y+1=0$ and $x+y+c=0$ (a, b and c being distinct and different from 1) are concurrent the value of $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}$ is

- Watch Video Solution

69. Show that the three straight lines
$2 x-3 y+5=0,3 x+4 y-7=0$ and $9 x-5 y+8=0$ meet in a point
70. Find the equation of the straight line passing through the point $(2,3)$ and through the point of intersection of the lines $2 x-3 y+7=0$ and $7 x+4 y+2=0$

- Watch Video Solution

71. The fix point through which the line $x(a+2 b)+y(a+3 b)=a+b$ always passes for all values of a and b, is-

- Watch Video Solution

72. If $3 a+2 b+6 c=0$ the family of straight lines $a x+b y=c=0$ passes through a fixed point. Find the coordinates of fixed point .

- Watch Video Solution

73. If $4 a^{2}+9 b^{2}-c^{2}+12 a b=0$ then the family of straight lines $a x+b y+c=0$ is concurrent at :
(A) $(-3,2)$ or $(2,3)$
(B) $(-2,3)$ or $(2,-3)$
(C) $(3,2)$ or $(-3,-2)$
(D) $(2,3)$ or $(-2,-3)$

- Watch Video Solution

74. Find the equation of the line passing through the point of intersection of the lines $x+5 y+7=0$ and $3 x+2 y-5=0$
(a) parallel to the line $7 x+2 y-5=0$

- Watch Video Solution

75. Find the equation of the line passing through the point of intersection of the lines $x+5 y+7=0$ and $3 x+2 y-5=0$
(b) perpendicular to the line $7 x+2 y-5=0$

- Watch Video Solution

76. Find the equation of the line passing through the intersection of the lines $3 x-4 y+1=0$ and $5 x+y-1=0$ which cuts off equal intercepts on the axes.

- Watch Video Solution

77. If $t_{1} a n d t_{2}$ are roots of eth equation $t^{2}+\lambda t+1=0$, where λ is an arbitrary constant. Then prove that the line joining the points $\left(a t 1^{2}, 2 a t_{1}\right) a d n\left(a t 2^{2}, 2 a t_{2}\right)$ always passes through a fixed point. Also, find the point.

- Watch Video Solution

78. A variable straight line is drawn through the point of intersection of the straight lines
$\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ and meets the coordinate axes at A and B.

Show that the locus of the midpoint of $A B$ is the curve $2 x y(a+b)=a b(x+y)$

- Watch Video Solution

79. Find the coordinates of the circumcenter of the triangle whose vertices are $(A(5,-1), B(-1,5)$, and $C(6,6)$. Find its radius also.

- Watch Video Solution

80. The orthocenter of the triangle formed by the lines $x y=0$ and $x+y=1$ is

- Watch Video Solution

81. Find the centroid and incentre of the triangle whose vertices are (1,2), $(2,3)$ and $(3,4)$.
82. The equations of two sides of a triangle are $3 x-2 y+6=0$ and $4 x+5 y-20$ and the orthocentre is $(1,1)$. Find the equation of the third side.

- Watch Video Solution

83. If the otrhocentre of the triangle formed by the lines $2 x+3 y-1=0, x+2 y-1=0, a x+b y-1=0$ is at the origin then (a, b) is given by.

- Watch Video Solution

84. Find $e q^{n s}$ of lines passing through the point $(2,3)$ and inclined at an angle $\frac{\pi}{4}$ to the line $2 x+3 y=5$

- Watch Video Solution

85. A vertex of an equilateral triangle is $(2,3)$ and the opposite side is $x+y=2$. Find the equations of other sides.

- Watch Video Solution

86. Find the derivative of $\sin x+2 \cos 2 y=1$.

- Watch Video Solution

87. Find the equation of a straight line passing through the point $(4,5)$ and equally inclined to the lines $3 x=4 y+7$ and $5 y=12 x+6$.

- Watch Video Solution

88. Find the derivative of $y=3 \sin 4 x$.

- Watch Video Solution

89. Find the equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.

- Watch Video Solution

90. Find the equations of angular bisector bisecting the angle containing the origin and not containing the origin of the lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$

- Watch Video Solution

91. The equations of the bisector of the agle between the line $2 x+y-6=0$ and $2 x-4 y+7=0$ which contains the point $(1,2)$ is.

- Watch Video Solution

92. Find the equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.

Watch Video Solution

93. Find the bisector of acute angle between the lines $x+y-3=0$ and $7 x-y+5=0$

- Watch Video Solution

94. The vertices of $\triangle A B C$ are $A(0,6), B(8,12)$ and $C(8,0)$. The cordinates of the incentre are:

- Watch Video Solution

95. Find the coordinates of the foot of the perpendicular drawn from the point $(2,3)$ to the line $y=3 x+4$

- Watch Video Solution

96. The reflection of the point (4,-13) about the line $5 x+y+6=0$ is
A. a $(-1,-14)$
B. b. $(3,4)$
C. c. $(0,-0)$
D. d. (1, 2)

Answer:

Watch Video Solution
97. Find the image of the $(-2,-7)$ under the transformations (x, y) to
$(x-2 y,-3 x+y)$.

- Watch Video Solution

98. The image of the point $A(1,2)$ by the line mirror $y=x$ is the point B and the image of B by the line mirror $\mathrm{y}=0$ is the point (α, β), then
A. a. $\alpha=1, \beta=-2$
B. b. $\alpha=0, \beta=0$
C. c. $\alpha=2, \beta=-1$
D. d. none of these

Answer:

- Watch Video Solution

99. If $f(x)=\prod_{n=1}^{100}(x-n)^{n(101-n)}$ then find $\frac{f(101)}{f,(101)}$
100. Find the equations of the sides of the triangle having $(3,-1)$ as a vertex,
$x-4 y+10=0$ and $6 x+10 y-59=0$ being the equations of an angle bisector and a median respectively drawn from different vertices.

(D) Watch Video Solution

101. If $P=(1,1), Q=(3,2)$ and R is a point on x-axis then the value of $P R+R Q$ will be minimum at

- Watch Video Solution

102. Find a point P on the line $3 x+2 y+10=0$ such that $|P A-P B|$ is minimum where A is $(4,2)$ and B is $(2,4)$
103. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y+7=0$, the ray is reflected from it.

Find the equation of the line containing the reflected ray.

- Watch Video Solution

104. A light beam, emanating from the point $A(3,10)$ reflects from the straight line $2 x+y-6=0$ and then passes through the point $B(4,3)$. Find the equations of the reflected beams.

- Watch Video Solution

105. A ray of light is sent along the line $2 x-3 y=5$. After refracting across the line $x+y=1$ it enters the opposite side after torning by 15^{0} away from the line $x+y=1$. Find the equation of the line along which the refracted ray travels.
106. If the points, $\left(\frac{a^{3}}{a-1}, \frac{a^{2}-3}{a-1}\right),\left(\frac{b^{3}}{b-1}, \frac{b^{2}-3}{b-1}\right)$ and $\left(\frac{c^{3}}{c-1} \frac{c^{2}-3}{c-1}\right)$ are collinear for three distinct values a, b, c and $a \neq 1, b \neq 1 \quad$ and $\quad c \neq 1, \quad$ then show that $a b c-(b c+c a+a b)+3(a+b+c)=0$

- Watch Video Solution

107. A rectangle $A B C D$ has its side $A B$ parallel to line $y=x$, and vertices $A, \operatorname{Band} D$ lie on $y=1, x=2$, and $x=-2$, respectively. The locus of vertex C is $x=5$ (b) $x-y=5 y=5$ (d) $x+y=5$
A. $x=5$
B. $x-y=5$
C. $y=5$
D. $x+y=5$

Answer:

108. The line $(k+1) x+k y-2 k^{2}-2=0$ passes through a point regardless of the value k. Which of the following is the line with slope 2 passing through the point? (a) $y=2 x-8$ (b) $y=2 x-5$ (c) $y=2 x-4(\mathrm{~d}) y=2 x+8$
A. $y=2 x-8$
B. $y=2 x-5$
C. $y=2 x-4$
D. $y=2 x+8$

Answer:

- Watch Video Solution

109. A man starts from the point $P(-3,4)$ and reaches at point $Q(0,1)$ touches x -axis at point R such that $P R+R Q$ is least then position of
point R is
(a) $\left(\frac{3}{5}, 0\right)$
(b) $\left(-\frac{3}{5}, 0\right)$
(c) $\left(-\frac{2}{5}, 0\right)$
(d) $(-2,0)$
A. $\left(\frac{3}{5}, 0\right)$
B. $\left(-\frac{3}{5}, 0\right)$
C. $\left(-\frac{2}{5}, 0\right)$
D. $(-2,0)$

Answer:

- Watch Video Solution

110. If $\left(\alpha, \alpha^{2}\right)$ lies inside the triangle formed by the lines $2 x+3 y-1=0, x+2 y-3=0,5 x-6 y-1=0$, then
B. $(1, \sqrt{2})$
C. $(\sqrt{2}-1,1)$
D. $(\sqrt{2}-1,2)$

Answer:

- Watch Video Solution

111. If $5 a+5 b+20 c=t$, then find the value of t for which the line $a x+b y+c-1=0$ always passes through a fixed point.
A. ,0
B. 20
C. 30
D. None of these

Answer:

112. If the straight lines. $a x+a m y+1=0, b x+(m+1) b y+1=0$ and $c x+(m+2) c y+1=0, m \neq 0$ are concurrent then a,b.c are in:
(A) A. P. onlyf or $m=1$
(B) A.P.f or allm
(C) G. P.f or allm (D) H.P.f or allm
A. AP only for $m=1$
B. AP for all m
C. GP for all m
D. HP for all m

Answer:

- Watch Video Solution

113. If a ray travelling the line $\mathrm{x}=1$ gets reflected the line $x+y=1$ then the equation of the line along which the reflected ray travels is
A. $y=0$
B. $x-y=1$
C. $x=0$
D. None of these

Answer:

D Watch Video Solution

114. Through the point $P(\alpha, \beta)$, where $\alpha \beta>0$, the straight line $\frac{x}{a}+\frac{y}{b}=1$ is drawn so as to form a triangle of area S with the axes. If $a b>0$, then the least value of S is
A. $\alpha \beta$
B. $2 \alpha \beta$
C. $4 \alpha \beta$
D. $8 \alpha \beta$

D Watch Video Solution

115. The coordinates of the point P on the line $2 x+3 y+1=0$ such that $|P A-P B|$ is maximum where A is $(2,0)$ and B is $(0,2)$ is
A. $(5,-3)$
B. $(7,-5)$
C. $(9,-7)$
D. $(11,-9)$

Answer:

- Watch Video Solution

116. Equation of the straight line which belongs to the system of straight lines $a(2 x+y-3)+b(3 x+2 y-5)=0$ and is farthest from the pint
$(4,-3)$ is
A. $4 x+11 y-15=0$
B. $3 x-4 y+1=0$
C. $7 x+y-8=0$
D. None of these

Answer:

- Watch Video Solution

117. Find the coordinates of the vertices of a square inscribed in the triangle with vertices $A(0,0), B(3,0)$ and $C(2,1)$; given that two of its vertices are on the side $A B$.
A. $\left(\frac{3}{2}, 0\right)$
B. $\left(\frac{3}{2}, \frac{3}{4}\right)$
C. $\left(\frac{9}{4}, \frac{3}{4}\right)$
D. $\left(\frac{9}{4}, 0\right)$

Answer:

D Watch Video Solution

118. Line $\frac{x}{a}+\frac{y}{b}=1$ cuts the coordinate axes at $A(a, 0) \operatorname{and} B(0, b)$ and the line $\frac{x}{a^{\prime}}+\frac{y}{b^{\prime}}=-1$ at $A(-a$,$) and B^{\prime}\left(0,-b^{\prime}\right)$. If the points $A, B, A^{\prime}, B^{\prime}$ are concyclic, then the orthocentre of triangle $A B A^{\prime}$ is $(0,0)$ (b) $\left(0, b^{\prime}\right)\left(0, \frac{a a^{\prime}}{b}\right)$ (d) $\left(0, \frac{b b^{\prime}}{a}\right)$
A. $(0,0)$
B. $(0, b)$
C. $\left(0, \frac{-a a}{b}\right)$
D. $\left(0, \frac{\mathrm{bb}^{\prime}}{a}\right)$

Answer:

119. Two straight line $u=0$ and $v=0$ pass through the origin and the angle between them is $\tan ^{-1}(7 / 9)$. If the ratio of the slope of $v=0$ and $u=0$ is $9 / 2$, then their equations are
A. $y=3 x$ and $3 y=2 x$
B. $2 y=3 x$ and $3 y=x$
C. $y+3 x=0$ and $3 y+2 x=0$
D. $2 y+3 x=0$ and $3 y+x=0$

Answer:

- Watch Video Solution

120. A and B are two fixed points whose coordinates $(3,2)$ and $(5,4)$ respectively. The coordinates of a poin if $A B P$ is an equilateral triangle, are

$$
\text { A. }(4-\sqrt{3}, 3+\sqrt{3})
$$

B. $(4+\sqrt{3}, 3-\sqrt{3})$
C. $(3-\sqrt{3}, 4+\sqrt{3})$
D. $(3+\sqrt{3}, 4-\sqrt{3})$

Answer:

- Watch Video Solution

121. $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is called a natural point if $\mathrm{x}, y \in N$. The total number of points lying inside the quadrilateral formed by the lines
$2 x+y=2, x=0, y=0$ and $x+y=5$ is

- Watch Video Solution

122. The distance of the point (x, y) from the origin is defined as $d=\max$.
$\{|x|,|y|\}$. Then the distance of the common point for the family of lines $x(1+\lambda)+\lambda y+2+\lambda=0(\lambda$ being parameter) from the origin is
123. statement 1: incentre of the triangle formed by the lines whose $3 x+4 y=0,5 x-12 y=0$ and $y-15=0$ is the point P whose coordinates are $(1,8)$.

Statement-2: Point P is equidistant from the 3 lines forming the triangle.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer:

124. If x coordinates of two points B and C are the roots of equation $x^{2}+4 x+3=0$ and their y coordinates are the roots of equation $x^{2}-x-6=0$. If x coordinate of B is less than x coordinate of C and y coordinate of B is greater than the y coordinate of C and coordinates of a third point A be ($3,-5$), find the length of the bisector of the interior angle at A .

- Watch Video Solution

125. The vertices BandC of a triangle $A B C$ lie on the lines $3 y=4 x a n d y=0$, respectively, and the side $B C$ passes through the point $\left(\frac{2}{3}, \frac{2}{3}\right)$. If $A B O C$ is a rhombus lying in the first quadrant, O being the origin, find the equation of the line $B C$.

- Watch Video Solution

126. If $f(x)=\prod_{n=1}^{100}(x-n)^{n(101-n)}$ then find $\frac{f(101)}{f,(101)}$
127. One side of a square makes an angle α with x axis and one vertex of the square is at origin. Prove that the equations of its diagonals are
$x(\sin \alpha+\cos \alpha)=y(\cos \alpha-\sin \alpha)$ or
$x(\cos \alpha-\sin \alpha)+y(\sin \alpha+\cos \alpha)=a$, where a is the length of the side of the square.

- Watch Video Solution

128. In a $A B C, A \equiv(\alpha, \beta), B \equiv(1,2), C \equiv(2,3)$, point A lies on the line $y=2 x+3$, where α, β are integers, and the area of the triangle is S such that $[S]=2$ where [.] denotes the greatest integer function. Then the possible coordinates of A can be $(-7,-11)(-6,-9)$ $(2,7)(3,9)$

- Watch Video Solution

129. Find the values of non-negative real number $h_{1}, h_{2}, h_{3}, k_{1}, k_{2}, k_{3}$ such that the algebraic sum of the perpendiculars drawn from the points $\left.\left(2, k_{1}\right),\left(3, k_{2}\right), \cdot 7, k_{3}\right),\left(h_{1}, 4\right),\left(h_{2}, 5\right),\left(h_{3},-3\right)$ on a variable line passing through $(2,1)$ is zero.

- Watch Video Solution

130. Let (h, k) be a fixed point, where $h>0, k>0$. A straight line passing through this point cuts the positive direction of the coordinate axes at the point $\operatorname{Pand} Q$. Find the minimum area of triangle $O P Q, O$ being the origin.

- Watch Video Solution

131. The distance between the two parallel lines is 1 unit.

A point ' A ' is chosen to lie between the lines at a distance ' d ' from one of them.

Triangle $A B C$ is equilateral with B on one line and C on the other parallel
line.
The length of the side of the equilateral triangle is

- Watch Video Solution

132. Solve the following system of inequalities graphically : $5 x+10 y \geq 10,3 x+2 y \leq 6$

- Watch Video Solution

133. A rectangle $P Q R S$ has its side $P Q$ parallel to the line $y=m x$ and vertices P, Q, and S on the lines $y=a, x=b$, and $x=-b$, respectively. Find the locus of the vertex R.

- Watch Video Solution

134. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q \equiv\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $d(P, Q)=\left|x_{1}-x_{1}\right|+\left|y_{1}-y_{2}\right|$. Let $O=(0,0)$ and
$A=(3,2)$.
Prove that the set of points in the first quadrant
which are equidistant (with respect to the new distance) from O and A consists of
the union of a line segment of finite length and an infinite ray.
Sketch this set in a labelled diagram.

- Watch Video Solution

135. A line through the variable point $A(k+1,2 k)$ meets the lines $7 x+y-16=0,5 x-y-8=0, x-5 y+8=0 \quad$ at $\quad B, C, D$, respectively. Prove that $A C, A B, A D$ are in HP.

- Watch Video Solution

Example

1. If the equations of the sides of a triangle are $a_{r} x+b_{r} y=1, r=1,2,3$ and the orthocentre is the origin then prove that
$a_{1} a_{2}+b_{1} b_{2}=a_{2} a_{3}+b_{2} b_{3}=a_{3} a_{1}+b_{3} b_{1}$

Watch Video Solution

2. The point $p(3,4)$ undergoes a reflection in the X -axis followed by a reflection in the y-axis. Show that their combined effect is the same as the single reflection of $p(3,4)$ in the orign.

- Watch Video Solution

3. The base of a triangle passes through a fixed point (f, g) and its sides are respectively bisected at right angles by the lines $y+x=0$ and $y-9 x=0$

Determine the locus of its vertex.

Jee Tyep Solved Examples Paragraph Based Questions

1. Two sides of a rhombus OABC (lying entirely in first quadrant or fourth quadrant) of area equal to 2 sq. units, are $y=\frac{x}{\sqrt{3}}, y=\sqrt{3} x$ Then possible coordinates of B is/are (O being the origin).
A. $(1+\sqrt{3}, 1 \sqrt{3})$
B. $(-1,-\sqrt{3},-1 \sqrt{3})$
C. $(3+\sqrt{3}, 3+\sqrt{3})$
D. $(\sqrt{3}-1, \sqrt{3}-1)$

Answer:

2. Calculate the length of the perpendicular from $(5,1)$ to the straight line $5 x+12 y-9=0$.

- Watch Video Solution

3. If one root of the equation $6 x^{2}-2 x+(\lambda-5)=0$ be the reciprocal of the other, then $\lambda=$
A. $4-\sqrt{2}$
B. $4+\sqrt{2}$
C. $4+2 \sqrt{2}$
D. 10

Answer:

4. Let Δ denote the area of the $\triangle \mathrm{ABC}$ then what is the area of triangle PQR whose sides are half of it.
A. 2
B. 4
C. 6
D. 8

Answer:

- Watch Video Solution

5. A point P is taken on ' L ' such that $\frac{1}{(O P)^{2}}=\frac{1}{(O A)^{2}}+\frac{1}{(O B)^{2}}$ then locus of P is
A. $3 x+3 y-40=0$
B. $3 x+3 y+40=0$
C. $3 x-3 y-40=0$
D. $3 x-3 y+40=0$

Answer:

- Watch Video Solution

6. A variable line L drawn through $O(0,0)$ to meet line $I 1: y-x-10=0$ and $L 2: y-$ $x-20=0$ at the point A and B respectively then locus of point p is ' such that $(O P)^{2}=O A . O B$,
A. $(y-x)^{2}=25$
B. $(y-x)^{2}=50$
C. $(y-x)^{2}=100$
D. $(y-x)^{2}=200$

Answer:

7. A point P is taken on ' L ' such that $\frac{2}{O P}=\frac{1}{O A}+\frac{1}{O B}$, then the locus of P is
A. $(y-x)^{2}=32$
B. $(y-x)^{2}=64$
C. $(y-x)^{2}=80$
D. $(y-x)^{2}=100$

Answer:

- Watch Video Solution

8. Solve the given inequality $-5<\frac{x-2}{5} \leq 0$

Watch Video Solution

9. The equation of the sides of a triangle are $x+2 y+1=0,2 x+y+2=0$ and $p x+q y+1=0$ and area of
triangle is Δ.

- Watch Video Solution

10.

Consider
the
lines
$L_{1}: \frac{x}{3}+\frac{y}{4}=1, L_{2}: \frac{x}{4}+\frac{y}{3}=1, L_{3}: \frac{x}{3}+\frac{y}{4}=2$ and $L_{4}: \frac{x}{4}+\frac{y}{3}=2$
.Find the relation between these lines.

- Watch Video Solution

11. Let the sides of a parallelogram be $\mathrm{U}=\mathrm{a}, \mathrm{U}=\mathrm{b}, \mathrm{V}=\mathrm{a}$ ' and $\mathrm{V}=\mathrm{b}$ ', where $\mathrm{U}=\mathrm{I} \mathrm{x}+\mathrm{my}+\mathrm{n}, \mathrm{V}=1 \mathrm{x} x+\mathrm{m} \mathrm{y}+\mathrm{n}$ '. Show that the equation of the diagonal through the point of intersection of
$U=a, V=a^{\prime}$ and $U=b, V=b^{\prime}$ is given by $\left|\begin{array}{lll}U & V & 1 \\ a & a^{\prime} & 1 \\ b & b^{\prime} & 1\end{array}\right|=0$.

- Watch Video Solution

12. The three sides of a triangle are $L_{r}+x \cos \theta_{r}+y \sin \theta_{r}-p_{r}=0$ where $r=1,2,3$. Show that the orthocentre is given by

$$
L_{1} \cos \left(\theta_{2}-\theta_{3}\right)=L_{2} \cos \left(\theta_{3}-\theta_{1}\right)=L_{3} \cos \left(\theta_{1}-\theta_{2}\right) .
$$

- Watch Video Solution

13. Solve the given inequality $-7 \leq \frac{-7 x}{2} \leq 14$

- Watch Video Solution

Exercise For Session 1

1. Find the solution of the given inequality $14 \leq(3 x+11) \leq 22$

- Watch Video Solution

2. The lines $x \cos \alpha+y \sin \alpha=P_{1}$ and $x \cos \beta+y \sin \beta=P_{2}$ will be perpendicular, if :
A. $\alpha=\beta$
B. $|\alpha-\beta|=\pi / 2$
C. $\alpha=\pi / 2$
D. $\alpha \pm \beta=\pi / 2$

Answer: B

- Watch Video Solution

3. If each of the points $\left(x_{1}, 4\right),\left(-2, y_{1}\right)$ lies on the line joining the points $(2,-1) \operatorname{and}(5,-3)$, then the point $P\left(x_{1}, y_{1}\right)$ lies on the line.
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x+3 y-6=0$
D. $6(x+y)+25=0$

Answer: B

- Watch Video Solution

4. The equation of the straight line passing through the point (4.3) and making intercepts on the co ordinate axes whose sum is -1 , is
A. $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
B. $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
C. $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
D. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$

Answer: D

- Watch Video Solution

5. If the straight lines $a x+b y+c=0$ and $x \cos \alpha+y \sin \alpha=c$ enclose an angle $\pi / 4$ between them and meet the straight line $x \sin \alpha-y \cos \alpha=0$ in the same point , then
A. $a^{2}+b^{2}=c^{2}$
B. $a^{2}+b^{2}=2$
C. $a^{2}+b^{2}=2 c^{2}$
D. $a^{2}+b^{2}=4$

Answer: B

- Watch Video Solution

6. The angle between the straight lines
$2 x-y+3=0$ and $x+2 y+3=0$ is-
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

- Watch Video Solution

7. Find the gradient of a straight line which is passes through the point
(-3.6) and the mid point of ($4,-5$) and ($-2,9$)
A. $\pi / 4$
B. $\pi / 2$
C. $3 \pi / 4$
D. π

Answer: C

- Watch Video Solution

8. A square of side a lies above the X - axis and has one vertex at the origin. The side passing through the origin makes an angle $\pi / 6$ with the positive direction of X -axis .The equation of its diagonal not passing through the origin is
$y(\sqrt{3}-1)-x(1-\sqrt{3})=2 a$
$y(\sqrt{3}+1)+x(1-\sqrt{3})=2 a$
$y(\sqrt{3}+1)+x(1+\sqrt{3})=2 a$
$y(\sqrt{3}+1)+x(\sqrt{3}-1)=2 a$
A. $y(\sqrt{3}-1)-x(1-\sqrt{3})=2 a$
B. $y(\sqrt{3}+1)+x(1-\sqrt{3})=2 a$
C. $y(\sqrt{3}+1)+x(1+\sqrt{3})=2 a$
D. $y(\sqrt{3}+1)+x(\sqrt{3}-1)=2 a$

Answer: D

- Watch Video Solution

9. $A(1,3)$ and $C(7,5)$ are two opposite vertices of square The equation of a side through A is
A. $x+2 y-7=0$
B. $x-2 y+5=0$
C. $2 x+y-5=0$
D. $2 x-y+1=0$

Answer: A::D

- Watch Video Solution

10. Find the equation of a straight line passing through the point $(-5,4)$ and which cuts off an intercept fo $\sqrt{2}$ units between the lines $x+y+1=0$ and $x+y-1=0$
A. $x-2 y+13=0$
B. $2 x-y+14=0$
C. $x-y+9=0$
D. $x-y+10=0$

Answer: C

- Watch Video Solution

11. Equation to the straight line cutting off an intercept 2 from negative direction of the axis of y and inclined at 30° to the positive direction of axis of x is:
A. $y+x-\sqrt{3}=0$
B. $y-x+2=0$
C. $y-x \sqrt{3}-2=0$
D. $y \sqrt{3}-x+2 \sqrt{3}=0$

Answer: D

12. What is the value of y so that the line through $(3, y) \operatorname{and}(2,7)$ is parallel to the line through $(-1,4) \operatorname{and}(0,6)$?

- Watch Video Solution

13. A straight line drawn through the point $P(2,3)$ and is incline at an angle of 30° with the x-axis. Find the coordinates of two points on it a distance 4 from P on either side of P.

- Watch Video Solution

14. Find the solution of the given inequality $7 \geq 5 x-8 \geq 2$

- Watch Video Solution

15. Find the distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along a line $x-y+1=0$.

- Watch Video Solution

16. A line is such that its segment between the lines $5 x-y+4=0$ and $3 x+4 y-4=0$ is bisected at the point (1,5). Obtain its equation.

- Watch Video Solution

17. The sides $A B a n d A C$ of a triangle $A B C$ are respectively $2 x+3 y=29 a n d x+2 y=16$ respectively. If the mid-point of $B C i s(5,6)$ then find the equation of $B C$.

- Watch Video Solution

18. A straight line through $A(-15-10)$ meets the lines $x-y-1=0$, $x+2 y=5$ and $x+3 y=7$ respectively at A, B and C. If $\frac{12}{A B}+\frac{40}{A C}=\frac{52}{A D}$ prove that the line passes through the origin.

- Watch Video Solution

1. The number of lines that are parallel to $2 x+6 y-7=0$ and have an intercept 10 between the coordinate axes is
A. 1
B. 2
C. 4
D. infinitely many

Answer: B

- Watch Video Solution

2. The distance between the lines $4 x+3 y=11$ and $8 x+6 y=15$ is
A. $\frac{7}{2}$
B. $\frac{7}{5}$
C. $\frac{7}{10}$
D. $\frac{9}{10}$

Answer: C

D Watch Video Solution

3. Let the algebraic sum of the perpendicular distance from the points (2, $0)$, $(0,2)$, and $(1,1)$ to a variable straight line be zero. Then the line passes through a fixed point whose coordinates are \qquad
A. $(1,1)$
B. $(-1,1)$
C. $(-1,-1)$
D. $(1,-1)$
4. If the quadrilateral formed by the lines $a x+b y+c=0 . a^{\prime} x+b b^{\prime} y+c=0$, $a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=0$ has perpendicular diagonal, then
A. $b^{2}+c^{2}=b^{2}+c^{2}$
B. $c^{2}+a^{2}=c^{2}+a^{2}$
C. $a^{2}+b^{2}=a^{2}+b^{2}$
D. None of these

Answer: C

- Watch Video Solution

5. Prove that the area of the parallelogram formed by the lines $3 x-4 y+a=0,3 x-4 y+3 a=0,4 x-3 y-a=0$ and
$4 x-3 y-2 a=0$ is $\frac{2 a^{2}}{7}$ sq. units
A. $\frac{1}{7}$ squints
B. $\frac{2}{7}$ sq units
C. $\frac{3}{7}$ sq units
D. $\frac{4}{7}$ sq units

Answer: B

D Watch Video Solution

6. The area of the parallelogram formed by the lines $y=m x, y=x m+1, y=n x, a n d y=n x+1$ equals.
A. $\frac{|m+n|}{(m+n)^{2}}$
B. $\frac{2}{|m+n|}$
C. $\frac{1}{|m+n|}$
D. $\frac{1}{|m-n|}$

Watch Video Solution

7. The co-ordinates of a point on the line $y=x$ where perpendicular distance from the line $3 x+4 y=12$ is 4 units, are :
A. $\left(\frac{3}{7}, \frac{5}{7}\right)$
B. $\left(\frac{3}{2}, \frac{3}{2}\right)$
C. $\left(-\frac{8}{7},-\frac{8}{7}\right)$
D. $\left(\frac{32}{7},-\frac{32}{7}\right)$

Answer: C::D

- Watch Video Solution

8. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y-intercept is
A. $-\frac{2}{3}$
B. $\frac{2}{3}$
C. $-\frac{4}{3}$
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

9. If the point $(1,2)$ and (34) were to be on the same side of the line $3 x-5 y+a=0$ then
A. $7<a<11$
B. $a=7$
C. $a=11$
D. $a<7$ or $a>11$

Answer: D

10. The lines $\mathrm{y}=\mathrm{mx}, y+2 x=0, y=2 x+k$ and $y+m x=k$ form a rhombus if m equals
A. -1
B. $\frac{1}{2}$
C. 1
D. 2

Answer: D

- Watch Video Solution

11. What are the points on X -axis whose perpendicular distance from the straight line $\frac{x}{a}+\frac{y}{b}=1$.
A. $\frac{b}{a}\left(a \pm \sqrt{\left(a^{2}+b^{2}\right)}, 0\right)$
B. $\frac{a}{b}\left(b \pm \sqrt{\left(a^{2}+b^{2}\right)}, 0\right)$
C. $\frac{b}{a}(a+b, 0)$
D. $\frac{a}{b}\left(a \pm \sqrt{\left(a^{2}+b^{2}\right)}, 0\right)$

Answer: B

D Watch Video Solution

12. The combined equation of three sides of a triangle is $\left(x^{2}-y^{2}\right)(2 x+3 y-6)=0$. If $(-2, a)$ is an interior point and $(b, 1)$ is an exterior point of the triangle, then
A. $a \in\left(2, \frac{10}{3}\right), b \in(-1,1)$
B. $a \in\left(-2, \frac{10}{3}\right), b \in\left(-1, \frac{9}{2}\right)$
C. $a \in\left(1, \frac{10}{3}\right), b \in(-3,5)$
D. None of these

Answer: D

13. Are the points $(3,4)$ and $(2,-6)$ on the same or opposite sides of the line $3 x-4 y=8$?

- Watch Video Solution

14. If the point as $(4,7)$ and $(\cos \theta, \sin \theta)$, where $0<\theta<\pi$, lie on the same side of the line $x+y-1=0$, then prove that θ lies in the first quadrant.

- Watch Video Solution

15. Find the equations of lines parallel to $3 x-4 y-5=0$ at a unit distance from it.

- Watch Video Solution

16. If the area of the parallelogram formed by the lines $2 x-3 y+a=0,3 x-$ $2 y-a=0,2 x-3 y+3 a=0$ and $3 x-2 y-2 a=0$ is 10 square units, then $a=$

- Watch Video Solution

17. A line L is a drawn from $P(4,3)$ to meet the lines L_{1} and L_{2} given by $3 x+4 y+5=0$ and $3 x+4 y+15=0$ at points A and B , respectively. From A, a line perpendicular to L is drawn meeting the line L_{2} at A_{1} Similarly, from point B, a line perpendicular to L is drawn meeting the line L_{1} at B_{1} Thus, a parallelogram $A A_{1} B B_{1}$ is formed. Then the equation of L so that the area of the parallelogram $A A_{1} B B_{1}$ is formed. Then the equation of L so that the area of the parallelogram AA 1 BB 1 is least is
A. (a) $x-7 y+17=0$
B. (b) $7 x+y+31=0$
C. (c) $x-7 y-17=0$
D. (d) $x+7 y-31=0$

Answer: $7 x+y-31=0$
18. The vertices of a $\triangle O B C$ are $O(0,0), B(-3,-1), C(-1,-3)$.

Find the equation of the line parallel to $B C$ and intersecting the sides $O B$ and OC and whose perpendicular distance from the origin is $\frac{1}{2}$.

- Watch Video Solution

Exercise For Session 3

1. Locus of the point of intersection of lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b(\alpha \in R)$ is
A. $2\left(x^{2}+y^{2}\right)=a^{2}+b^{2}$
B. $x^{2}-y^{2}=a^{2-b^{2}}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. $x^{2}-y^{2}=a^{2}+b^{2}$

Answer: C

Watch Video Solution

2. If a, b, c are in A.P., then the line $a x+b y+c=0$ passes through a fixed point. write the coordinates of that point.

- Watch Video Solution

3. If the lines $a x+12 y+1=0, b x+13 y+1=0 \quad$ and $c x+14 y+1=0$ are concurrent, then a, b, c are in a. H.P. b. G.P. c. A.P. d. none of these
A. AP
B. GP
C. HP
D. AGP

Answer: B

4. The lines $a x+b y+c=0$, where $3 a+2 b+4 c=0$, are concurrent at the point
A. $\left(\frac{3}{4}, \frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{3}{4}\right)$
C. $\left(-\frac{3}{4},-\frac{1}{2}\right)$
D. $\left(-\frac{1}{2},-\frac{3}{4}\right)$

Answer: B

- Watch Video Solution

5. If the lines $a x+y+1=0, x+b y+1=0$ and $x+y+c=0$ (a, b and c being distinct and different from 1) are concurrent the value of $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}$ is
A. -2
B. -1
C. 1
D. 2

Answer: C

- Watch Video Solution

6. If $u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is the same straight line u different straight line not a straight line none of these
A. $u=0$
B. a family of concurrent lines
C. a family of parallel lines
D. None of these
7. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point $(a, b)(b)(b, a)(-a,-b)$ (d) none of these
A. (a, b)
B. (b, a)
C. $(a,-b)$
D. $(-a, b)$

Answer: C

- Watch Video Solution

8. If the straight lines $x+y-2=0,2 x-y+1=0$ and $a x+b y-c=0$ are concurrent, then the family of lines
$2 a x+3 b y+c=0(a, b, c$ are nonzero $)$ is concurrent at (a) $(2,3)$
$\left(\frac{1}{2}, \frac{1}{3}\right)$
(c) $\left(-\frac{1}{6},-\frac{5}{9}\right)$
(d) $\left(\frac{2}{3},-\frac{7}{5}\right)$
A. $\left(-\frac{1}{6},-\frac{5}{9}\right)$
B. $\left(\frac{1}{2}, \frac{1}{3}\right)$
C. $\left(-\frac{1}{6},-\frac{5}{9}\right)$
D. $\left(\frac{2}{3},-\frac{7}{5}\right)$

Answer: A

- Watch Video Solution

9. The straight line through the point of intersection of $a x+b y+c=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime}=0$ are parallel to the y -axis has the equation
A. $x\left(a b^{\prime}-a^{\prime} b\right)+\left(c b^{\prime}-c^{\prime} b\right)=0$
B. $x\left(a b^{\prime}+a^{\prime} b\right)+\left(c b^{\prime}+c^{\prime} b\right)=0$
C. $y\left(a b^{\prime}-a^{\prime} b\right)+\left(c^{\prime} a-c a^{\prime}\right)=0$
D. $y\left(b^{\prime}+a^{\prime} b\right)+\left(c^{\prime} a+c a^{\prime}\right)=0$

Answer: A

- Watch Video Solution

10. If the equations of three sides of a triangle are $x+y=1,3 x+5 y=2$ and $x-y=0$ then the orthocentre of the triangle lies on the line/lines
A. $5 x-3 y=1$
B. $5 y-3 x=1$
C. $2 x-3 y=1$
D. $5 x-3 y=2$

Answer: A: B

11. Find the equations of the line through the intersection of $2 x-3 y+4=0$ and $3 x+4 y-5=0$ and perpendicular to $6 x-7 y+c=0$
A. $119 y+20 x=125$
B. $199 y-120 x=125$
C. $119 x+102 y=125$
D. $119 x-102 y=125$

Answer: C

- Watch Video Solution

12. The locus of point of intersection of the lines $\frac{x}{a}-\frac{y}{b}=m$ and $\frac{x}{a}+\frac{y}{b}=\frac{1}{m}$ (i) a circle (ii) an ellipse (iii) a hyperbola (iv) a parabola
A. a circle
B. an ellipse
C. a hyperbola
D. a parabola

Answer: C

- Watch Video Solution

13. The condition on a and b, such that the portion of the line $a x+b y-1=0$ intercepted between the lines $a x+y=0$ and $x+b y=0$ subtends a right angle at the origin, is $a=b$ (b) $a+b=0$ $a=2 b$ (d) $2 a=b$

- Watch Video Solution

14. If the lines $(a-b-c) x+2 a y+2 a=0$,
$2 b x+(b-c-a) y+2 b=0$ and
$(2 c+1) x+2 c y+c-a-b=0$ are concurrent , then
prove that either $a+b+c=0$ or $(a+b+c)^{2}+2 a=0$
15. If
the
lines
$a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0(a, b, c \quad$ being distinct) are concurrent, then

- Watch Video Solution

16. Find the equation of the straight line which passes through the intersection of the lines $x-y-1=0$ and $2 x-3 y+1=0$ and parallel (i) x-axis (ii) y-axis (iii) $3 \mathrm{x}+4 \mathrm{y}=14$.

- Watch Video Solution

17. Let a, b, c be parameters. Then the equation $a x+b y+c=0$ will represent a family of straight lines passing through a fixed point iff there exists a linear relation between a, b, and c.
18. Prove that the family of lines represented by $x(1+\lambda)+y(2-\lambda)+5=0, \lambda$ being arbitrary, pass through a fixed point. Also find the fixed point.

- Watch Video Solution

19. Prove that $\left(-a,-\frac{a}{2}\right)$ is the orthocentre of the triangle formed by the lines $y=m_{i} x+\frac{a}{m_{i}}, I=1,2,3, m_{1} m_{2} m_{3}$ being the roots of the equation $x^{3}-3 x^{2}+2=0$

- Watch Video Solution

Exercise For Session 4

1.

Three
straight
$2 x+11 y-5=0,24 x+7 y-20=0$ and $4 x-3 y-2=0$
A. form a triangle
B. are only concurrent
C. are concurrent with one line bisecting the angle between the other two
D. None of the above

Answer: C

- Watch Video Solution

2. the line $x+3 y-2=0$ bisects the angle between a pair of straight lines of which one has equation $x-7 y+5=0$. The equation of the other line is :
A. $3 x+3 y-1=0$
B. $x-3 y+2=0$
C. $5 x+5 y+3=0$
D. $5 x+5 y-3=0$

Answer: D

- Watch Video Solution

3. P is a point on either of the two lines $y-\sqrt{3}|x|=2$ at a distance 5 units from their point of intersection The coordinates of the foot of the perpendicular from P on the bisector of the angle between them are
A. $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$ or $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$ depending on which the point P is taken
B. $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$
c. $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$
D. $\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$

Answer: B

4. Solve $-4 x<20$, when x is a natural number .

- Watch Video Solution

5. In $A B C$, the coordinates of the vertex A are $(4,-1)$, and lines $x-y-1=0$ and $2 x-y=3$ are the internal bisectors of angles $B a n d C$. Then, the radius of the encircle of triangle $A B C$ is $\frac{4}{\sqrt{5}}$ (b) $\frac{3}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{5}}$ (d) $\frac{7}{\sqrt{5}}$
A. $\frac{5}{\sqrt{5}}$
B. $\frac{3}{\sqrt{5}}$
C. $\frac{6}{\sqrt{5}}$
D. $\frac{7}{\sqrt{5}}$

Answer: C

6. The equation of the straight line which bisects the intercepts between the axes of the lines $x+y=2$ and $2 x+3 y=6$ is
A. $2 x=3$
B. $y=1$
C. $2 y=3$
D. $x=1$

Answer: B

- Watch Video Solution

7. The equation of the bisector of the acute angle between the lines
$2 x-y+4=0$ and $x-2 y=1$ is $x-y+5=0 \quad x-y+1=0$
$x-y=5$ (d) none of these
A. $x+y+5=0$
B. $x-y+1=0$
C. $x-y=5$
D. $x-y+5=0$

Answer: C

- Watch Video Solution

8. The equation of the bisector of that angle between the lines $x+y=3$ and $2 \mathrm{x}-\mathrm{y}=2$ which contains the point $(1,1)$ is
A. $(\sqrt{5}-2 \sqrt{2}) x+(\sqrt{5}+\sqrt{2}) y=3 \sqrt{5}-2 \sqrt{2}$
B. $(\sqrt{5}+2 \sqrt{2}) x+(\sqrt{5}-\sqrt{2}) y=3 \sqrt{5}+2 \sqrt{2}$
C. $3 x=10$
D. $3 x-5 y+2=0$

Answer: A

- Watch Video Solution

9. Find the equations of the two straight lines through $(7,9)$ and making and angle of 60^{0} with the line $x-\sqrt{3} y-2 \sqrt{3}=0$.

- Watch Video Solution

10. Equation of the base of an equilateral triangle is $3 x+4 y=9$ and its vertex is at point (1,2). Find the equations of the other sides and the length of each side of the triangle .

- Watch Video Solution

11. Find the coordinates of the those point on the line $3 x+2 y=5$ which are equisdistant from the lines $4 x+3 y-7=0$ and $2 y-5=0$

- Watch Video Solution

12. Two sides of a rhombus ABCD are parallel to the lines $y=x+2$ and $y=$ $7 x+3$ If the diagonals of the rhombus intersect at the point $(1,2)$ and the
vertex A is on the y-axis, then vertex A can be $a .(0,3) b .(0,5 / 2) c .(0,0) d$. $(0,6)$

(Watch Video Solution

13. Solve the given inequality graphically in two dimensional plane
$12 x+24 y>36$

- Watch Video Solution

14. The equation of the bisector of that angle between the lines $x+2 y-11=0,3 x-6 y-5=0$ which contains the point $(1,-3)$ is $(3 x=19$ (b) $3 y=73 x=19 a n d 3 y=7$ (d) None of these

- Watch Video Solution

15. Find the equation of thebisector of the angle between the lines $2 x-3 y-5=0$ and $6 x-4 y+7=0$ which is the supplement of the
angle containing the point $(2,-1)$

- Watch Video Solution

Exercise For Session 5

1. The coordinates of the foot of the perpendicular from $(2,3)$ to the line
$3 x+4 y-6=0$ are
A. $\left(-\frac{14}{25},-\frac{27}{25}\right)$
B. $\left(\frac{14}{15},-\frac{17}{25}\right)$
C. $\left(-\frac{14}{25}, \frac{17}{25}\right)$
D. $\left(\frac{14}{25}, \frac{27}{25}\right)$

Answer: D

- Watch Video Solution

2. If the foot of the perpendicular from the origin to a straight line is at $(3,-4)$, then find the equation of the line.
A. $3 x-4 y=25$
B. $3 x-4 y+25=0$
C. $4 x+3 y-25=0$
D. $4 x-3 y+25=0$

Answer: A

- Watch Video Solution

3. The coordinates of the foot of the perpendicular from $(a, 0)$ on the line $y=m x+\frac{a}{m}$ are
A. $\left(0,-\frac{1}{a}\right)$
B. $\left(0, \frac{a}{m}\right)$
C. $\left(0,-\frac{a}{m}\right)$
D. $\left(0, \frac{1}{a}\right)$

Answer: B

- Watch Video Solution

4. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of $c \quad$ is $\quad a a 2-a 22+b 12-b 22 \quad \sqrt{a 12+b 12-a 22-b 22}$ $\frac{1}{2}(a 12+a 22+b 12+b 22) \frac{1}{2}(a 22+b 22-a 12-b 12)$
A. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
B. $\sqrt{\left(a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}\right)}$
C. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
D. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$

Answer: D

5. Write the coordinates of the image of the point $(3,8)$ in the lines $x+3 y-7=0$.
A. $(1,4)$
B. $(3,4)$
C. $(-1,4)$
D. $(-4,-1)$

Answer: C

- Watch Video Solution

6. The image of the point $(4,-3)$ with respect to the line $x-y=0$ is,
A. $(-4,-3)$
B. $(3,4)$
C. $(-4,3)$
D. $(-3,4)$

Answer: D

D Watch Video Solution

7. The coordinates of the image of the origin O with respect to the line $x+y+1=0$ are
A. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
B. $(-2,-2)$
C. $(1,1)$
D. $(-1,-1)$

Answer: D

Watch Video Solution
8. If $(-2,6)$ is the image of the point $(4,2)$ with respect to line $L=0$, then find the equation of line L.
A. $6 x-4 y-7=0$
B. $2 x-3 y-5=0$
C. $3 x-2 y+5=0$
D. $3 x-2 y+10=0$

Answer: C

- Watch Video Solution

9. The image of $P(a, b)$ on the line $y=-x$ is Q and the image of Q on the line $y=x$ is R . then the midpoint of PR is
A. $(a+b, a+b)$
B. $\left(\frac{a+b}{2}, \frac{b+2}{2}\right)$
C. $(a-b, b-a)$
D. $(0,0)$

Answer: D

- Watch Video Solution

10. The nearest point on the line $3 x-4 y=25$ from the origin is
A. $(3,4)$
B. $(3,-4)$
C. $(3,5)$
D. $(-3,5)$

Answer: B
11. Consider the points $A(0,1) \operatorname{and} B(2,0)$, andP be a point on the line $4 x+3 y+9=0$. The coordinates of P such that $|P A-P B|$ is maximum are
A. $\left(-\frac{12}{5}, \frac{17}{5}\right)$
B. $\left(-\frac{84}{5}, \frac{13}{5}\right)$
C. $\left(-\frac{6}{5}, \frac{17}{5}\right)$
D. $(0,-3)$

Answer: B

- Watch Video Solution

12. Solve $5 \mathrm{x}<30$ when x is a natural number

- Watch Video Solution

13. the image of the point $A(2,3)$ by the line mirror $\mathrm{y}=\mathrm{x}$ is the point B and the image of B by the line mirror $\mathrm{y}=0$ is the point (α, β), find α and β

- Watch Video Solution

14. Solve $12 x<80$, when x is a natural number.

- Watch Video Solution

15. In a triangle, $A B C$, the equation of the perpendicular bisector of $A C$ is $3 x-2 y+8=0$. If the coordinates of the points A and B are $(1,-1) \&(3,1)$ respectively, then the equation of the line $B C$ will be

- Watch Video Solution

16. Is there a real value of λ for which the image of the point $(\lambda, \lambda-1)$ by the line mirror $3 x+y=6 \lambda$ is the point $\left(\lambda^{2}+1, \lambda\right)$ If so find λ.,

- Watch Video Solution

Exercise For Session 6

1. A ray of light passes through the point $(1,2)$ reflects on the x-axis at a point A and the reflected ray passes through the point (5, 3). Find the coordinates of A .
A. 3
B. $\frac{13}{3}$
C. $\frac{13}{5}$
D. $\frac{13}{4}$

Answer: C

2. The equation of the line AB is $y=x$. If A and B lie on the same side of the line mirror $2 x-y=1$, then the equation of the image of $A B$ is
A. $x+y=2$
B. $8 x+y=9$
C. $7 x-y=6$
D. None of these

Answer: C

- Watch Video Solution

3. A ray of light travelling along the line $x+y=1$ is incident on the X axis and after refraction the other side of the X - axis by turning $\pi / 6$ by turning away from the X-axis. The equation of the line along which the refracted ray travels is
A. $x+(2-\sqrt{3}) y=1$
B. $x(2+\sqrt{3})+y=2+\sqrt{3}$
C. $(2-\sqrt{3}) x+y=1$
D. $x+(2+\sqrt{3}) y=(2+\sqrt{3})$

Answer: A: B

- Watch Video Solution

4. All of the points lying inside the triangle formed by the points $(0,4)$
$(2,5)$ and (6,2) satisfy
A. $3 x+2 y+8 \geq 0$
B. $2 x+y-10 \geq 0$
C. $2 x-3 y-11 \geq 0$
D. $-2 x+y-3 \geq 0$

- Watch Video Solution

5. Let O be the origin. If $A(1,0)$ and $B(0,1)$ and $P(x, y)$ are points such that $x y>0$ and $x+y<1$, then
P lies either inside the triangle $O A B$ or in the third quadrant.
P cannot lie inside the triangle $O A B$
P lies inside the triangle $O A B$
P lies in the first quadrant only
A. P lies either inside in $\triangle O A B$ or in third quadrant
B. P cannot be inside in $\triangle O A B$
C. P lies inside the $\triangle O A B$
D. None of these

Answer: A

6. A light ray coming along the line $3 x+4 y=5$ gets reflected from the line $a x+b y=1$ and goes along the line $5 x-12 y=10$. Then, $a=\frac{64}{115}, b=\frac{112}{15} \quad a=\frac{14}{15}, b=-\frac{8}{115} \quad a=\frac{64}{115}, b=-\frac{8}{115}$ $a=\frac{64}{15}, b=\frac{14}{15}$
A. $a=\frac{64}{115}, b=\frac{112}{15}$
B. $a=-\frac{64}{115}, b=\frac{8}{115}$
C. $a=\frac{64}{115}, b=\frac{8}{115}$
D. $a=-\frac{64}{115}, b=\frac{-8}{115}$

Answer: C

- Watch Video Solution

7. The sides of a triangle have the combined equation $x^{2}-3 y^{2}-2 x y+8 y-4=0$. The third side, which is variable, always passes through the point $(-5,-1)$. Find the range of values of the
slope of the third line such that the origin is an interior point of the triangle.

- Watch Video Solution

8. Determine the range of values of $0 \in[0,2 \pi]$ for which $(\cos \theta, \sin \theta)$ lies inside the triangle formed by the lines $x+y-2=0, x-y-1=0$ and $6 x+2 y-\sqrt{10}=0$

- Watch Video Solution

9. Let $\mathrm{P}(\sin \theta, \cos \theta),(0 \leq \theta \leq 2 \pi)$, be a point in a triangle with vertices $(0,0),\left(\sqrt{\frac{3}{2}}, 0\right)$ and $\left(0, \sqrt{\frac{3}{2}}\right)$.Then ,

- Watch Video Solution

10. Find all the values of θ for which the point $\left(\sin ^{2} \theta, \sin \theta\right)$ lies inside the square formed by the line $x y=0$ and $4 x y-2 x-2 y+1=0$.

- Watch Video Solution

11. Solve the following system of inequalities graphically :
$2 x+y \geq 4,3 x+2 y \leq 6$

- Watch Video Solution

12. A ray of light is sent along the line $x-2 y-3=0$ upon reaching the line $3 x-2 y+7=0$, the ray is reflected from it.

Find the equation of the line containing the reflected ray.

- Watch Video Solution

Exercise Single Option Correct Type Questions

1. The straight line $y=x-2$ rotates about a point where it cuts the x axis and becomes perpendicular to the straight line $a x+b y+c=0$.

Then its equation is
A. $a x+b y+2 a=0$
B. $a y-b x+2 b=0$
C. $a x+b y+2 b=0$
D. None of these

Answer: B

(D) Watch Video Solution

2. If $\frac{2}{1!3!}+\frac{2}{3!7!}+\frac{1}{3!5!}=\frac{2^{m}}{n!}$, then orthocentre of the triangle having sides $x-y+1=0, x+y+3=0$ and $2 x+5 y-2=0$ is
A. $(2 m-2 n, m-n)$
B. $(2 m-2 n, n-m)$
C. $(2 m-n, m+n)$
D. $(2 m-n, m-n)$

- Watch Video Solution

3. If $f(x+y)=f(x) . f(y)$ for all x and $y . f(1)=2$, then area enclosed by $3|x|+2|y| \leq 8$ is
A. $f(4)$ sq units
B. $\frac{1}{2} f(6)$ sq units
C. $\frac{1}{3} f(6)$ sq units
D. $\frac{1}{3} f(5)$ sq units

Answer: C

- Watch Video Solution

4. The graph of the function, $\cos x \cos (x+2)-\cos ^{2}(x+1)$ is
A. a straight line passing through $\left(0-\sin ^{2} 1\right)$ with slope 2
B. a straight line passing through (0,0)
C. a parabola with vertex $\left(1-\sin ^{2} 1\right)$
D.a straight line passing through the point $\left(\frac{\pi}{2},-\sin ^{2} 1\right)$ are parallel to the X -axis

Answer: D

- Watch Video Solution

5. A straight line passing through the point $(2,2)$ and the axes enclose an area λ. The intercepts on the axes made by the line are given by the two roots of:
A. $x^{2}-2|\lambda| x+|\lambda|=0$
B. $x^{2}+|\lambda| x+2|\lambda|=0$
C. $x^{2}-|\lambda| x+2|\lambda|=0$
D. None of these

Answer: C

- Watch Video Solution

6. The set of values of b for which the origin and the point $(1,1)$ lie on the same side of the straight line, $a^{2} x+a b y+1=0 \forall a \in R, b>0$ are(A) $b \in(2,4)$ (B) $b \in(0,2)$ (C) $b \in[0,2]$ (D) $(2, \infty)$
A. $b \in(2,4)$
B. $b \in(0,2)$
C. $b \in[0,2]$
D. None of these

Answer: B

7. Line L has intercepts a and b on the coordinate axes. When the axes are rotated through a given angle keeping the origin fixed, the same line L has intercepts p and q. Then
A. $a^{2}+b^{2}=p^{2}+q^{2}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
C. $a^{2}+p^{2}=b^{2}+q^{2}$
D. $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

Answer: B

- Watch Video Solution

8. If the distance of any point (x, y) from origin is defined as $d(x, y)=\max \{|x|,|y|\}$, then the locus of the point (x, y) where $d(x, y)=1$ is

A. a circle

B. a straight line
C. a square
D. a triangle

Answer: B

- Watch Video Solution

9. If p_{1}, p_{2}, p_{3} be the length of perpendiculars from the points $\left(m^{2}, 2 m\right),\left(m m^{\prime}, m+m^{\prime}\right)$ and ($\left.m^{\prime 2}, 2 m^{\prime}\right)$ respectively on the line $x \cos \alpha+y \sin \alpha+\frac{\sin ^{2} \alpha}{\cos \alpha}=0$ then p_{1}, p_{2}, p_{3} are in:

- Watch Video Solution

10. $A B C D$ is a square whose vertices are $A(0,0), B(2,0), C(2,2)$, and $D(0,2)$. The square is rotated in the $X Y$ - plane through an angle 30^{0} in the anticlockwise sense about an axis passing though A perpendicular to the $X Y$ - plane. Find the equation of the diagonal $B D$ of this rotated square.
A. $\sqrt{3} x+(1-\sqrt{3})=y=\sqrt{3}, x^{2}+y^{2}=4$
B. $(1+\sqrt{3}) x-(1-\sqrt{2}) y=2, x^{2}+y^{2}=9$
C. $(2-\sqrt{3}) x+y=2(\sqrt{3}-1), x^{2}+y^{2}-x \sqrt{3}-y=0$
D. None of the above

Answer: C

- Watch Video Solution

11. The point $(4,1)$ undergoes the following three successive transformations,
reflection about the line $y=x-1$
translation through a distance 1 unit along the positive direction rotation thrpough an angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction

Then the coordinates of the final point are,
A. $(4,3)$
B. $\left(\frac{7}{2}, \frac{7}{2}\right)$
C. $(0,3 \sqrt{2})$
D. $(3,4)$

Answer: C

- Watch Video Solution

12. f is a function defined by $f(x)=|x-1|+3$. Find $f(-9)$.

- Watch Video Solution

13. The line $x+y=p$ meets the x - and y -axes at $\operatorname{Aand} B$, respectively. A triangle $A P Q$ is inscribed in triangle $O A B, O$ being the origin, with right angle at $Q \dot{P}$ and Q lie, respectively, on $O B a n d A B$. If the area of triangle $A P Q$ is $\frac{3}{8} t h$ of the are of triangle $O A B$, the $\frac{A Q}{B Q}$ is equal to 2 (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 3
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

14. If $P(1,0), Q(-1,0)$ and $R(2,0)$ are three given points ,then the locus of point S satisfying the relation $(S Q)^{2}+(S R)^{2}=2(S P)^{2}$ is
A. a straight line parallel to X-axis
B. a circle through the origin
C. a circle with centre at the origin
D. a straight line parallel to Y-axis

(D) Watch Video Solution

15. If $A\left(\frac{\sin \alpha}{3}-1, \frac{\cos \alpha}{2}-1\right)$ and $\mathrm{B}(1,1) \alpha \in[-\pi, \pi]$ are two points on the same side of the line $3 x-2 y+1=0$ then α belongs to the interval
A. $\left(-\pi,-\frac{3 \pi}{4}\right) \cup\left(\frac{\pi}{4}, \pi\right)$
B. $[-\pi, \pi]$
C. ϕ
D. None of these

Answer: A

- Watch Video Solution

16. The line $x+y=1$ meets X - axis at A and Y - axis at B, P is the mid point of $\mathrm{AB} P_{1}$ is the foot of the perpendicular from p to OA, M_{1} is that of P_{1} is that of $M_{!}$from OA , M_{2} is that of P_{2} from OP , P_{3} is that of M_{2}
from OA and so on. IF P_{n} denotes the nth foot of the perpendicular on OA form M_{n-1}, then $O P_{n}$ is equal to
A. $\frac{1}{2 n}$
B. $\frac{1}{2^{n}}$
C. $2^{n}-1$
D. $2^{n}+3$

Answer: B

- Watch Video Solution

17. Solve the following system of inequalities graphically : $4 x+6 y \leq 24, x \geq 1, y \geq 2$

- Watch Video Solution

$x+2 y-9=0,3 x+5 y-5=0$ and $a x+b y-1=0$ are concurrent , then the family of lines $2 a x+3 b y+c=0(\mathrm{a}, \mathrm{b}, \mathrm{c}$ are non zero $)$ is concurrent at
A. $(a,-b)$
B. $(-a, b)$
C. (a, b)
D. $(-a,-b)$

Answer: C

- Watch Video Solution

19. If the ends of the base of an isosceles triangle are at $(2,0)$ and $(0,1)$, and the equation of one side is $x=2$, then the orthocenter of the triangle is
A. $\left(\frac{3}{4}, \frac{3}{2}\right)$
B. $\left(\frac{5}{4}, 1\right)$
C. $\left(\frac{3}{4}, 1\right)$
D. $\left(\frac{4}{3}, \frac{7}{12}\right)$

Answer: B

- Watch Video Solution

20. Consider a point $A(m, n)$, where m and n are positve intergers. B is the reflection of A in the line $y=x, \mathrm{C}$ is the reflaction of B in the y axis, D is the reflection of C in the x axis and E is the reflection of D is the y axis. The area of the pentagon ABCDE is
A. $2 m(m+n)$
B. $m(m+3 n)$
C. $m(2 m+3 n)$
D. $2 m(m+3 n)$

D Watch Video Solution

21. A straight line L with negative slope passes through the point $(8,2)$ and cuts the positive coordinates axes at points $(8,2)$ and cuts the positive coordinates axes at points P and Q.As L varies the absolute minimum value of $O P+O Q$ is (O is origin)
A. 10
B. 18
C. 16
D. 12

Answer: B

22. If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2 x+3 y=6$, then area of the triangle so formed is
A. (a) $\frac{36}{13}$
B. (b) $\frac{12}{17}$
C. (c) $\frac{13}{5}$
D. (d) $\frac{17}{14}$

Answer: C

- Watch Video Solution

23. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is (a) 2 (b) 0 (c) 4 (d) 1
B. 0
C. 4
D. 1

Answer: A

- Watch Video Solution

24. A ray of light passes through the point $(1,2)$ reflects on the x-axis at a point A and the reflected ray passes through the point (5, 3). Find the coordinates of A .
A. $\left(\frac{13}{5}, 0\right)$
B. $\left(\frac{5}{13}, 0\right)$
C. $(-7,0)$
D. None of these

> 25. Consider the $5 x+3 y-2+\lambda_{1}(3 x-y-4)=0$ $5 x+1$ and $x-y+1+\lambda_{2}(2 x-y-2)=0$
. Find the equation of a straight line that belongs to both the families.

- Watch Video Solution

26. In triangle $A B C$, the equation of the right bisectors of the sides $A B$ and $A C$ are $x+y=0$ and $y-x=0$. respectively.

If $A \equiv(5,7)$ the find the equation of side BC .
A. $7 y=5 x$
B. $5 x=y$
C. $5 y=7 x$
D. $5 y=x$
27. Two particles start from the point ($2,-1$), one moves 2 units along the line $x+y=1$ and the other moves 5 units along the line $x-2 y=4$. If the particles move upward w.r.t coordinates axes, then find their new positions.
A. $(2-\sqrt{2}, \sqrt{2}-1),(2 \sqrt{5}+2, \sqrt{5}-1)$
B. $(2 \sqrt{2}+2, \sqrt{5}-1),(2 \sqrt{2}, \sqrt{2}+1)$
C. $(2+\sqrt{2}, \sqrt{2}+1),(2 \sqrt{2}+2, \sqrt{5}+1)$
D. $(2-\sqrt{2} \sqrt{5}-1),(\sqrt{2}-1,2 \sqrt{2}+2)$

Answer: A

- Watch Video Solution

28. Let P be $(5,3)$ and a point R on $y=x$ and Q on the x-axis be such that $P Q+Q R+R P$ is minimum. Then the coordinates of Q are
A. $\left(\frac{17}{8}, 0\right)$
B. $\left(\frac{17}{4}, 0\right)$
C. $\left(\frac{17}{2}, 0\right)$
D. $(17,0)$

Answer: B

- Watch Video Solution

The Straight Lines Exercise 1 Single Option Correct Type Questions

1. Suppose that a ray of light leaves the point $(3,4)$ reflects off the Y-axis towards the x-axis reflects fro m the X-axis and finally arrives at the point $(8,2)$. The value of x is
A. $4 \frac{1}{2}$
B. $4 \frac{1}{3}$
C. $4 \frac{2}{3}$
D. $5 \frac{1}{3}$

Answer: B

- Watch Video Solution

The Straight Lines Exercise 2 More Than One Correct Option Correct Type Questions

1. Find the derivative of $(a x+b)^{m}(c x+d)^{n}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are constants and m, n are integers .

- Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. The point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ lies on
A. $x-y=0$
B. $(x+y)(a+b)=2 a b$
C. $(l x+m y)(a+b)=2 a b$
D. $(l x-m y)(a+b)=(l-m) a b$

Answer: A::B::D

- Watch Video Solution

2. The area of a triangle is 5 units. Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. Find the coordinates of the third vertex of the triangle.

- Watch Video Solution

3. The area of a triangle is 5 units. Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lies on $y=x+3$. Find the coordinates of the third vertex of the triangle.
A. $\left(\frac{-3}{2}, \frac{3}{2}\right)$
B. $\left(\frac{3}{4}, \frac{-3}{2}\right)$
C. $\left(\frac{7}{2}, \frac{13}{2}\right)$
D. $\left(\frac{-1}{4}, \frac{11}{4}\right)$

Answer: A::C

- Watch Video Solution

4. If the lines $x-2 y-6=0,3 x+y-4$ and $\lambda x+4 y+\lambda^{2}=0$ are concurrent, then
A. $\lambda=2$
B. $\lambda=2$
C. $\lambda=4$
D. $\lambda=-4$

Answer: A:D

- Watch Video Solution

5. Equation of a straight line passing through the point of intersection of $x-y+1=0$ and $3 x+y-5=0$ are perpendicular to one of them is
A. $x+y+3=0$
B. $x+y-3=0$
C. $x-3 y-5=0$
D. $x-3 y+5=0$

Answer: B::D

- Watch Video Solution

6. If one vertex of an equilateral triangle of side 'a' lie at the origin and the other lies on the line $x-\sqrt{3} y=0$, the co-ordinates of the third vertex are:
A. $(0, a)$
B. $\left(\frac{\sqrt{3 a}}{2}, \frac{-a}{2}\right)$
C. $(0,-a)$
D. $\left(\frac{-\sqrt{3} a}{2}, \frac{a}{2}\right)$

Answer:

- Watch Video Solution

7.

$a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0(a, b, c$ being distinct) are concurrent, then

$$
\text { A. } a^{3}+b^{3}+c^{3}-3 a b c=0
$$

B. $a=b$
C. $a=b=c$
D. $a^{2}+b^{2}+c^{2}-b c-c a-a b=0$

Answer: A::C::D

- Watch Video Solution

8. $A(1,3)$ and $C(7,5)$ are two opposite vertices of a square. The equation of a side through A is
A. $x+2 y-7=0$
B. $x-2 y+5=0$
C. $2 x+y-5=0$
D. $2 x-y+1=0$

Answer: A::D

9. If $6 a^{2}-3 b^{2}-c^{2}+7 a b-a c+4 b c=0$ then the family of lines $a x+b y+c=0,|a|+|b| \neq 0$ can be concurrent at
A. $(-2,-3)$
B. $(3,-1)$
C. $(2,3)$
D. $(-3,1)$

Answer: A: B

- Watch Video Solution

10. Consider the straight lines $x+2 y+4=0$ and $4 x+2 y-1=0$. The line $6 x+6 y+7=0$ is
A. bisector of the angle including origin
B. bisector of acute angle
C. bisector of obtuse angle
D. None of these

Answer: A: B

- Watch Video Solution

11. Two roads are represented by the equations $y-x=6$ and $x+y=8$ An inspection bungalow has to be so constructed that it is at a distance of 100 from each of the roads . Possible location of the bungalow is given by
A. $(100 \sqrt{2}+1,7)$
B. $(1-100 \sqrt{2}, 7)$
C. $(1,7+100 \sqrt{2})$
D. $(1,7-100 \sqrt{2})$
12. If (a, b) be an end of a diagonal of a square and the other diagonal has the equation $x-y=a$, then another vertex of the square can be
A. $(a-b, a)$
B. $(a, 0)$
C. $(0,-a)$
D. $(a+b, b)$

Answer: B::D

- Watch Video Solution

13. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If $m a n d x_{1}$ are fixed and different lines are drawn for different values of y_{1}, then
A. the lines will pass through a fixed point
B. there will be a set of parallel lines
C. all the lines intersect the lines $x=x_{1}$
D. all the lines will be parallel to the line $y=x_{1}$

Answer: A::B::C::D

- Watch Video Solution

14. Let $L_{1} \equiv a x+b y+a \sqrt[3]{b}=0$ and $L_{2} \equiv b x-a y+b \sqrt[3]{a}=0$ be two straight lines. The equations of the bisectors of the angle formed by the foci whose equations are $\lambda_{1} L_{1}-\lambda_{2} L_{2}=0$ and $\lambda_{1} l_{1}+\lambda_{2}=0, \lambda_{1}$ and λ_{2} being non - zero real numbers ,are given by
A. $L_{1}=0$
B. $L_{2}=0$
C. $\lambda_{1} L_{1}+\lambda_{2} L_{2}=0$
D. $\lambda_{2} L_{1}-\lambda_{1} L_{2}=0$

- Watch Video Solution

15. The equation of the bisectors of the angles between the two intersecting lines $\frac{x-3}{\cos \theta}=\frac{y+5}{\sin \theta}$ and $\frac{x-3}{\cos \theta}=\frac{y+5}{\sin \theta} \quad$ are $\frac{x-3}{\cos \alpha}=\frac{y+5}{\sin \alpha}$ and $\frac{x-3}{\beta}=\frac{y+5}{\gamma}$, then
A. $\alpha=\frac{\theta+\phi}{2}$
B. $\beta=-\sin \alpha$
C. $\gamma=\cos \alpha$
D. $\beta=\sin \alpha$

Answer: A::B::C::D

- Watch Video Solution

1. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ is defined by $\mathrm{d}(\mathrm{P}, \mathrm{Q})=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$ Let $O \equiv(0,0), A \equiv(1,2), B \equiv(2,3)$ and $C \equiv(4,3)$ are four fixed points on x - y plane

Let $R(x, y)$ such that R is equidistant from the point O and A with respect to new distance and if $0 \leq x<1$ and $0 \leq y<2$, then R lie on a line segment whose equation is
A. (a) $x+y=3$
B. (b) $x+2 y=3$
C. (c) $2 x+y=3$
D. (d) $2 x+2 y=3$

Answer: D

- Watch Video Solution

2. For points $P \equiv\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ of the coordinate plane, a new distance $\mathrm{d}(\mathrm{P}, \mathrm{Q})$ is defined by $\mathrm{d}(\mathrm{P}, \mathrm{Q})=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$. Let $O \equiv(0,0), A \equiv(1,2), B \equiv(2,3)$ and $C \equiv(4,3)$ are four fixed points on x - y plane

Let $S(x, y)$ such that S is equidistant from points O and B with respect to new distance and if $x \geq 2$ and $0 \leq y<3$ then locus of S is
A. (a) a line segment of infinite length
B. (b) a line of infinite length
C. (c) a ray of finite length
D. (d) a ray of infinite length

Answer: D

- Watch Video Solution

3. Solve the following system of inequalities graphically : $x \geq 5, y \geq 4$
4. In a triangle $A B C$, if the equation of sides $A B, B C$ and $C A$ are $2 x-y+4=0, x-2 y-1=0$ and $x+3 y-3=0 \quad$ respectively ,Tangent of internal angle A is equal to
A. (a) -7
B. (b) -3
C. (c) $\frac{1}{2}$
D. (d) 7

Answer: A

- Watch Video Solution

5. In a triangle $A B C$, if the equation of sides $A B, B C$ and $C A$ are $2 x-y+4=0, x-2 y-1=0$ and $x+3 y-3=0 \quad$ respectively
,Tangent of internal angle A
is equal to
A. $x-y-1=0$
B. $x-y+1=0$
C. $x+y-5=0$
D. $x+y+5=0$

Answer: D

- Watch Video Solution

6. In a triangle $A B C$, if the equation of sides $A B, B C$ and $C A$ are
$2 x-y+4=0, x-2 y-1=0$ and $x+3 y-3=0 \quad$ respectively
,Tangent of internal angle A
is equal to

> А. $\left(-\frac{3}{5}, \frac{26}{5}\right)$
> В. $\left(-\frac{3}{5},-\frac{26}{5}\right)$
C. $\left(\frac{3}{5},-\frac{26}{5}\right)$
D. $\left(\frac{3}{5}, \frac{26}{5}\right)$

Answer: A

- Watch Video Solution

7. $A(1,3)$ and $C(-2,5,-2 / 5)$ are the vertices of a triangle $A B C$ and the equation of the internal angle bisector of $\angle A B C$ is $x+y=2$.

The equation of side $B C$ is
A. $7 x+3 y-4=0$
B. $7 x+3 y+4=0$
C. $7 x-3 y+4=0$
D. $7 x-3 y-4=0$

Answer: B

8. $A(1,3)$ and $C\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a triangle ABC and the equation of the internal angle bisector of $\angle A B C$ is $x+y=2$. The coordinates of vertex B are
A. $\left(\frac{3}{10}, \frac{17}{10}\right)$
B. $\left(\frac{17}{10}, \frac{3}{10}\right)$
C. $\left(-\frac{5}{2}, \frac{9}{2}\right)$
D. $\left(\frac{9}{2},-\frac{5}{2}\right)$

Answer: C

- Watch Video Solution

9. $A(1,3)$ and $C\left(-\frac{2}{5},-\frac{2}{5}\right)$ are the vertices of a triangle ABC and the equation of the internal angle bisector of $\angle A B C$ is $x+y=2$.

The coordinates of vertex B are
10. In a $\triangle A B C$ the equation of the side BC is $2 x-y=3$ and its circumcentre and orthocentre are $(2,4)$ and $(1,2)$ respectively. Circumradius of $\triangle A B C$ is
A. (a) $\sqrt{\frac{61}{5}}$
B. (b) $\sqrt{\frac{51}{5}}$
C. (c) $\sqrt{\frac{41}{5}}$
D. (d) $\sqrt{\frac{43}{5}}$

Answer: A

- Watch Video Solution

11. In a $\triangle A B C$ the equation of the side BC is $2 x-y=3$ and its circumcentre and orthocentre are $(2,4)$ and $(1,2)$ respetively.
$\sin B \cdot \sin C=$
A. $\frac{9}{2 \sqrt{61}}$
B. $\frac{9}{4 \sqrt{61}}$
C. $\frac{9}{\sqrt{61}}$
D. $\frac{9}{5 \sqrt{61}}$

Answer: A

- Watch Video Solution

12. In a $\triangle A B C$ the equation of the side BC is $2 x-y=3$ and its circumcentre and orthocentre are $(2,4)$ and $(1,2)$ respetively .

The distance of orthocentre from vertex A is
A. $\frac{1}{\sqrt{5}}$
B. $\frac{6}{\sqrt{5}}$
C. $\frac{3}{\sqrt{5}}$
D. $\frac{2}{\sqrt{5}}$

Answer: B

- Watch Video Solution

The Straight Lines Exercise 3 Paragraph Based Questions

1. Solve the following system of inequalities graphically $4 x+4 y \geq 16,4 x-4 y>0$

- Watch Video Solution

2. Solve the given inequality graphically in two - dimensional plane $2 x+5 y>10$

- Watch Video Solution

3. Solve the given inequality graphically in two - dimensional plane $6 x+9 y \geq 18$

Exercise Single Integer Answer Type Questions

1. The number of possible straight lines passing through $(2,3)$ and forming a triangle with the coordinate axes, whose area is 12 sq . units, is
A. one
B. two
C. three
D. four

Answer: 3

- Watch Video Solution

2. The condition on a and b, such that the portion of the line $a x+b y-1=0$ intercepted between the lines $a x+y=0$ and
$x+b y=0$ subtends a right angle at the origin, is $a=b$ (b) $a+b=0$ $a=2 b$ (d) $2 a=b$
A. $a=b$
B. $a+b=0$
C. $a=2 b$
D. $2 a=b$

Answer: 6

- Watch Video Solution

3. Let ABC be a triangle and $A \equiv(1,2), y=x$ be the perpendicular bisector of $A B$ and $x-2 y+1=0$ be the perpendicular bisector of $\angle C$.

If the equation of $B C$ is given by $a x+b y-5=0$ then the value of $a-2 b$ is
4. Determine graphically the coordinates of the vertices of the triangle, the equations of whose sides are $\mathrm{x}+\mathrm{y}-1=0, \mathrm{x}-\mathrm{y}-1=0$ and $\mathrm{x}=0$.

- Watch Video Solution

5. The number of triangles that the four lines $y=x+3, y=2 x+3, y=3 x+2$ and $y+x=3$ form is

Watch Video Solution

6. Solve the given inequality graphically in two dimensional plane $2 y+6>3 x$

Watch Video Solution

7. Given $\mathrm{A}(0,0)$ and $\mathrm{B}(x, y)$ with x in $(0,1)$ and $y>0$ Let the slope of line AB be m_{1}. Point C lies on line $x=1$ such that the slope of BC is equal to
m_{2} where $0<m_{2}<m_{1}$. If the area of triangle $A B C$ can be expressed as $\left(m_{1}-m_{2}\right) f(x)$ then the largest possible value of x is

- Watch Video Solution

8. Find λ if $(\lambda, \lambda+1)$ is an interior point of $\triangle A B C$ where, $A \equiv(0,3), B \equiv(-2,0)$ and $C \equiv(5,1)$.

- Watch Video Solution

9. For all real values of a and b, lines $(2 a+b) x+(a+3 b) y+(b-3 a)=0 \quad$ and $\quad m x+2 y+6=0 \quad$ are concurrent. Then $|m|$ is equal to \qquad

- Watch Video Solution

10. Find the derivative of function $(-x)^{-1}$ from first principle .

The Straight Lines Exercise 5 Matching Type Questions

1. Let L_{1}, L_{2}, L_{3} be three straight lines a plane and n be the number of circles touching all the lines. Find the value of n.

Watch Video Solution

2. Solve the given inequality graphically in two dimensional plane
$4 x-8 y>16$

- Watch Video Solution

3. Solve the given inequality graphically in two dimensional plane
$5 x+15 y \leq 30$
4. Solve the given inequality graphically in two dimensional plane $x>-3$

Watch Video Solution

5. Evaluate the given limit : $\lim _{x \rightarrow 1} \frac{2 x+3}{2 x-1}$

(D) Watch Video Solution

Exercise Statement I And li Type Questions

1. Statement I: The lines $x(a+2 b)+y(a+3 b)=a+b$ are concurrent at the point $(2,-1)$

Statement II: The lines $x+y-1=0$ and $2 x+3 y-1=0$ intersect at the point $(2,-1)$
A. Statement I is true ,statement II is true, statement II is a correct
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: A

D Watch Video Solution

2. Statement I The points $(3,2)$ and $(1,4)$ lie on opposite side of the line $3 x-2 y-1=0$

Statement II The algebraic perpendicular distance from the given the point to the line have opposite sign
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: A

- Watch Video Solution

3. Statement I If sum of algebraic distances from points $A(1,2), B(2,3), C(6,1)$ is zero on the line $a x+b y+c=0$ then $2 a+3 b+c=0$, Statement II The centroid of the triangle is $(3,2)$
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true, statement II is false
D. Statement I is false, statement II is true

Answer: D

D Watch Video Solution

4. Statement I Let $A \equiv(0,1)$ and $B \equiv(2,0)$ and P be a point on the line $4 x+3 y+9=0$ then the co- ordinates of P such that $|P A-P B|$ is maximum is $\left(-\frac{12}{5}, \frac{17}{5}\right)$

Statement II $|P A-P B| \leq|A B|$
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: D

5. Statement 1: The incenter of a triangle formed by the lines $x \cos \left(\frac{\pi}{9}\right)+y \sin \left(\frac{\pi}{9}\right)=\pi, x \cos \left(\frac{8 \pi}{9}\right)+y \sin \left(\frac{8 \pi}{9}\right)=\pi \quad$ and $x \cos \left(\frac{13 \pi}{9}\right)+y \sin \left(\frac{13 \pi}{9}\right)=\pi$ is $(0,0)$
Statement 2: Any point equidistant from the given three non-concurrent straight lines in the plane is the incenter of the triangle formed by these lines.
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: C

6. Statement I Reflection of the point $(5,1)$ in the line $x+y=0$ is $(-1,-5)$

Statement II Reflection of a point $P(\alpha, \beta)$ in the line $a x+b y+c=0$ is $Q\left(\alpha^{\prime}, \beta^{\prime}\right)$ if $\left(\frac{\alpha+\alpha^{\prime}}{2}, \frac{\beta+\beta^{\prime}}{2}\right)$ lies on the line.
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true, statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: B

- Watch Video Solution

7. Statement 1: The internal angle bisector of angle C of a triangle $A B C$ with sides $A B, A C, \quad$ and $\quad B C \quad$ as $\quad y=0,3 x+2 y=0, \quad$ and $2 x+3 y+6=0$, respectively, is $5 x+5 y+6=0$ Statement 2: The image of point A with respect to $5 \mathrm{x}+5 \mathrm{y}+6=0$ lies on the side $B C$ of the triangle.
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: B

- Watch Video Solution

8. Statement1:If the point $\left(2 a-5, a^{2}\right)$ is on the same side of the line $x+y-3=0$ as that of the origin, then $a \in(2,4)$

Statement2: The points $\left(x_{1}, y_{1}\right) \operatorname{and}\left(x_{2}, y_{2}\right)$ lie on the same or opposite sides of the line $a x+b y+c=0$, as $a x_{1}+b y_{1}+c$ and $a x_{2}+b y_{2}+c$ have the same or opposite signs.
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true, statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false, statement II is true

Answer: D

- Watch Video Solution

1. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ are the vertices of the triangle then find area of triangle

- Watch Video Solution

2. Find the coordinates of the point at unit distance from the lines
$3 x-4 y+1=0,8 x+6 y+1=0$

- Watch Video Solution

3. A variable line makes intercepts on the coordinate axes the sum of whose squares is constant and is equal to a^{2}. Find the locus of the foot of the perpendicular from the origin to this line.

- Watch Video Solution

4. A variable line cuts n given concurrent straight lines at $A_{1}, A_{2} \ldots A_{n}$ such that $\sum_{i=1}^{n} \frac{1}{O A_{i}}$ is a constant.
Show that it always passes through a fixed point, O being the point of intersection of the lines

- Watch Video Solution

5. P is any point on the $x-a=0$. If $A=(a, 0)$ and PQ , the bisector of $\angle O P A$ meets the x-axis in Q prove that the locus of the foot of prependicular from Q on OP is $(x-a)^{2}\left(x^{2}+y^{2}\right)=a^{2} y^{2}$

- Watch Video Solution

6. Having given the bases and the sum of the areas of a number of triangles which have a common vertex, show that the locus of the vertex is a straight line.
7. Let $L_{1}=0 a n d L_{2}=0$ be two fixed lines. A variable line is drawn through the origin to cut the two lines at R and $S P$. is a point on the line $A B$ such that $\frac{(m+n)}{O P}=\frac{m}{O R}+\frac{n}{O S}$. Show that the locus of P is a straight line passing through the point of intersection of the given lines R, S, R are on the same side of O).

- Watch Video Solution

8. A line through $A(-5,-4)$ meets the lines $x+3 y+2=0,2 x+y+4=0$ and $x-y-5=0 \quad$ at the points $B, C a n d D$ rspectively, if $\left(\frac{15}{A B}\right)^{2}+\left(\frac{10}{A C}\right)^{2}=\left(\frac{6}{A D}\right)^{2}$ find the equation of the line.

- Watch Video Solution

9. Two fixed straight lines X - axis and $y=m x$ are cut by a variable line in the points $A(a, 0)$ and $B(b, m b)$ respectively .P and Q are the feet of the
perpendiculars drawn from A and B upon the lines $y=m x$ and X - axis ,Show that ,if AB passes through a fixed point (h, k) then PQ will also pass through a fixed point .

- Watch Video Solution

10. Find the equation of straight lines passing through point $(2,3)$ and having intersept of length 2 units between the straight lines $2 x+y=3,2 x+y=5$

- Watch Video Solution

11. Let $\mathrm{O}(0,0)$ and $B\left(1, \frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $\triangle O A B$ satisfying. $d(P, O A) l r \min \{d(P, O B), d(P, A B)\}$, where d denotes the distance from the point P to the corresponding line. Let M be peak of region R. The perimeter of region R is equal to

The Straight Lines Exercise 7 Subjective Type Questions

1. Given n sraight lines and a fixed point O.A straight line is drawn through O meeting these lines in the points $R_{1}, R_{2}, R_{3}, \ldots \ldots R_{n}$ and a point R is taken on it such that

$$
\frac{n}{O R}=\sum_{r=1}^{n} \frac{1}{O R_{r}},
$$

Prove that the locus of R is a straight line.

- Watch Video Solution

2. Prove that all lines represented by the equation $(2 \cos \theta+3 \sin \theta) x+(3 \cos \theta-5 \sin \theta) y=5 \cos \theta-2 \sin \theta \quad$ pass through a fixed point for all θ What are the coordinates of this fixed point ?
3. $\mathrm{A}(3,0)$ and $\mathrm{B}(6,0)$ are two fixed points and $\mathrm{U}\left(x_{1}, y_{1}\right)$ is a variable point on the plane,
$A U$ and $B U$ meet the y-axis at C and D respectively and AD meets $O U$ at V. Prove that CV passes through $(2,0)$ for any position of U in the plane .

- Watch Video Solution

4. Two triangles $A B C$ and $P Q R$ are such that the perpendiculars from A to QR ,B to RP and C to PQ are concurrent .Show that the perpendicular from P to $B C, Q$ to $C A$ and R to $A B$ are also concurrent .

- Watch Video Solution

Exercise Questions Asked In Previous 13 Years Exam

1. The line parallel to the x-axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $\quad b x-2 y-3 a=0 \quad$, where $(a, b) \neq(0,0)$, is
A. below the X - axis at a distance of $\frac{3}{2}$ from it
B. below the X -axis at a distance of $\frac{2}{3}$ from it
C. above the X-axis at a distance of $\frac{3}{2}$ from it
D. above the X -axis at a distance of $\frac{2}{3}$ from it

Answer: A

- Watch Video Solution

2. A straight line through the point $A(3,4)$ is such that its intercept between the axis is bisected at A . Find its equation.
A. $x+y=7$
B. $3 x-4 y+7=0$
C. $4 x+3 y=24$
D. $3 x+4 y=25$

Answer: C

Watch Video Solution

3. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines $y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to the interval
A. $\left(0, \frac{1}{2}\right)$
B. $(2, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$

Answer: C

- Watch Video Solution

4. The line $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R. Statement-1 : The ratio $P R: R Q$
equals $2 \sqrt{2}: \sqrt{5}$ Statement- 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles.
A. Statement I is true ,statement II is true, statement II is a correct explanation for statement I
B. Statement I is true ,statement II is true statement II is not a correct explanation for statement I
C. Statement I is true ,statement II is false
D. Statement I is false ,statement II is true

Answer: C

- Watch Video Solution

5. Let $P \equiv(-1,0), Q \equiv(0,0)$, and $R \equiv(3,3 \sqrt{3})$ be three points.

Then the equation of the bisector of $\angle P Q R$ is
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

- Watch Video Solution

6. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(k$,
3) has yintercept -4 . Then a possible value of k is (1) 1 (2) 2 (3) -2 (4)
-4
A. 1
B. 2
C. -2
D. -4
7. The lines $p\left(p^{2}+1\right) x-y+q=0 \quad$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for
A. exactly one values of p
B. exactly two values of p
C. more than two values of p
D. no values of p

Answer: A

- Watch Video Solution

8. The Line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point $(13,32)$. The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$. Then the distance between L and K is
A. $\sqrt{17}$
B. $\frac{17}{\sqrt{15}}$
C. $\frac{23}{\sqrt{17}}$
D. $\frac{23}{\sqrt{15}}$

Answer: C

- Watch Video Solution

9. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the x -axis then the equation of L is
A. (a) $y+\sqrt{3} x+2-3 \sqrt{3}=0$
B. $y=\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer: B

- Watch Video Solution

10. The line $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisector of the acute angle between L_{1} and L_{2} intersects L_{3} at R. Statement-1 : The ratio $P R: R Q$ equals $2 \sqrt{2}: \sqrt{5}$ Statement- 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles. Statement-1 is true, Statement-2 is true ; Statement-2 is correct explanation for Statement-1 Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for Statement-1 Statement-1 is true, Statement-2 is false Statement-1 is false, Statement-2 is true
A. Statement I is true ,statement II is true, statement II is a not correct explanation for statement I
B. Statement I is true , statement II is false .
C. Statement I is false ,statement II is true
D. Statement I is true ,statement II is true, statement II is a correct explanation for statement I

Answer: B

D Watch Video Solution

11. If the line $2 x+y=k$ passes through the point which divides the line segment joining the points $(1,1)$ and $(2,4)$ in the ratio $3: 2$ then k-equals.
A. $\frac{29}{5}$
B. 5
C. 6
D. $\frac{11}{5}$

Answer: C

12. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x axis, the equation of the reflected ray is:
A. $y=x+\sqrt{5}$
B. $(\sqrt{3} y=x-\sqrt{3}$
C. $y=\sqrt{3} x-\sqrt{3}$
D. $\sqrt{3} y=x-1$

Answer: B

- Watch Video Solution

13. For $a>b>c>0$, the distance between (1, 1) and the point of intersection of the lines $a x+b y+c=0$ and $b x+a y+c=0$ is les than $2 \sqrt{2}$. Then
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c>0$
D. $a+b-c<0$

Answer: A

D Watch Video Solution

14. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1) \operatorname{and} R(7,3)$ Then equation of the line passing through $(1,-1)$ and parallel to $P S$ is $2 x-9 y-7=0$ $2 x-9 y-11=02 x+9 y-11=02 x+9 y+7=0$
A. $4 x+7 y+3=0$
B. $2 x-9 y-11=0$
C. $4 x-7 y-11=0$
D. $2 x+9 y+7=0$

Answer: D

15. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be non-zero numbers. If the point of intersection of the line $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant and is equidistant from the two axes, then
A. $3 b c-2 a d=0$
B. $3 b c+2 a d=0$
C. $2 b c-3 a d=0$
D. $2 b c+3 a d=0$

Answer: A

- Watch Video Solution

16. For a point P in the plane, let $d_{1}(P)$ and $d_{2}(P)$ be the distance of the point P from the lines $x-y=0$ and $x+y=0$, respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is \qquad .
17. The number of points, having both co-ordinates as integers, that lie in the interior of the triangle with vertices $(0,0),(0,41)$ and $(41,0)$ is
A. 820
B. 780
C. 901
D. 861

Answer: B

- Watch Video Solution

18. Two sides of a rhombus are along the lines $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus?
A. $\left(\frac{1}{3}-\frac{8}{3}\right)$
B. $\left(-\frac{10}{3},-\frac{7}{3}\right)$
C. $(-3,-9)$
D. $(-3,-8)$

Answer: A

- Watch Video Solution

The Straight Lines Exercise 8 Questions Asked In Previous 13 Years Exams

1. Solve the following system of inequalities graphically

$$
x+5 y \leq 25,2 x+2 y \geq 2,2 x-2 y \leq 0, x \geq 0, y \geq 0
$$

Watch Video Solution

