

MATHS

BOOKS - ARIHANT MATHS

VECTOR ALGEBRA

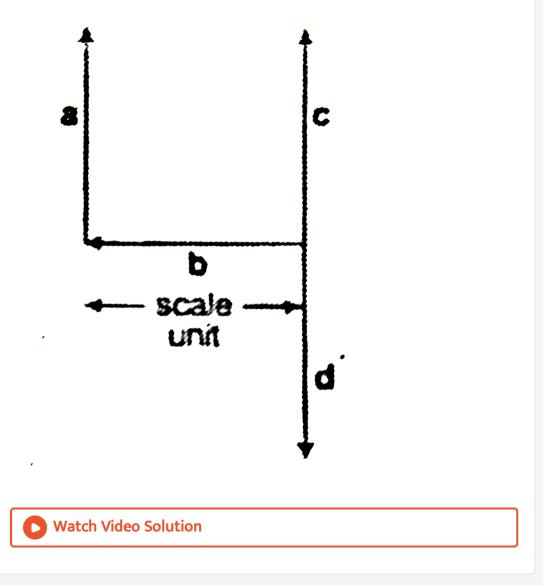
Example

- 1. Classify the following measures as scalars and vectors
- (i) 20 m north-west
- (ii) 10 newton
- (iii) 30 km/h
- (iv) 50m/s towards north
- (v) 10^{-19} coloumb

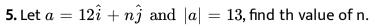
- 2. Represent graphically
- (i) a displacement of 60 km, $40^{\,\circ}\,$ east of north
- (ii) A displacement of 50 km south-east.

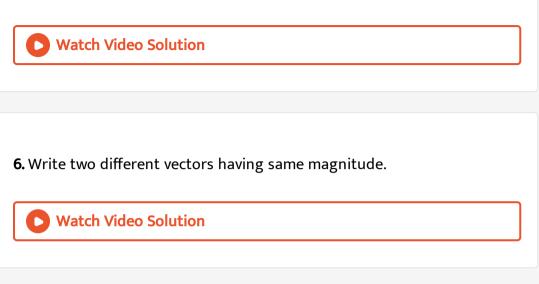
- 3. In the following figure, which of the vectors are:
- (i) Collinear
- (ii) Equal
- (iii) Co-initial

(iv) collinear but not equal .



4. Find a unit vector parallel to the vector $-3\hat{i}+4\hat{j}.$





7. If one side of a squre be represented by the vectors $3\hat{i}+4\hat{j}+5\hat{k}$, then the area of the square is

- A. 12
- B. 13
- C. 25
- D. 50

Answer: D

8. The direction cosines of the vector $3\hat{i}-4\hat{j}+5\hat{k}$ are

A.
$$\frac{3}{5}, \frac{-4}{5}, \frac{1}{5}$$

B. $\frac{3}{5\sqrt{2}}, \frac{-4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$
C. $\frac{3}{\sqrt{2}}, \frac{-4}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
D. $\frac{3}{5\sqrt{2}}, \frac{4}{5\sqrt{2}}, \frac{1}{\sqrt{2}}$

Answer: B

9. Show that the vector $\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ is equally inclined to the axes OX,

OY and OZ.

10. Let AB be a vector in two dimensional plane with the magnitude 4 units and making an angle of 30° with X-axis and lying in the first quadrant. Find the components of AB along the two axes off coordinates. Hence, represent AB in terms of unit vectors \hat{i} and \hat{j} .

Watch Video Solution

11. Find the unit vector parallel to the resultant vector of $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$.

Watch Video Solution

12. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be the vectors represented by theside sof a triangle, taken in order, then prove that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$.

13. If S is the mid-point of side QR of a ΔPQR , then prove that PQ + PR = 2PS.

14. If ABCDEF is a regular hexagon and AB+AC+AD+AE+AF= λAD , then λ is

equal to

Watch Video Solution

15. If
$$A=(0,1)B=(1,0), C=(1,2), D=(2,1)$$
 , prove that $\overrightarrow{A}B=\overrightarrow{C}D$.

Watch Video Solution

16. If the position vectors of A and B respectively $\hat{i} + 3\hat{j} - 7\hat{k}$ and $5\hat{i} - 2\hat{j} + 4\hat{k}$, then find AB

17. Vectors drawn the origin O to the points A, B and C are respectively $\overrightarrow{a}, \overrightarrow{b}$ and $\overrightarrow{4}a - \overrightarrow{3}b$ find $\overrightarrow{A}C$ and $\overrightarrow{B}C$.

Watch Video Solution

18. Find the direction cosines of the vector joining the points A(1, 2, 3)

and B(1, 2, 1), directed from A to B.

19. Let α , β , γ be distinct real numbers. The points with position vectors $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, \beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}, \gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$

A. are collinear

B. form an equilateral triangle

C. form a scalene triangle

D. form a right angled triangle

Answer:

20. If the position vectors of the vertices of a triangle be $2\hat{i} + 4\hat{j} - \hat{k}$, $4\hat{i} + 5\hat{j} + \hat{k}$ and $3\hat{i} + 6\hat{j} - 3\hat{k}$, then the triangle is a. right angled b. isosceles

c. equilateral

d. none of these

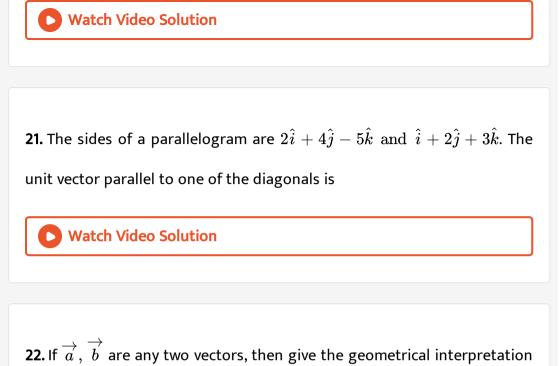
A. right angled

B. isosceles

C. equilateral

D. none of these

Answer: A::B



of relation $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$

Watch Video Solution

23. Can the magnitude of the resultant vector of te two given vectors is

less than the magnitude of any of the given vectors?

24. If \overrightarrow{a} is a non-zero vector of modulus a and m is a non-zero scalar, then $m\overrightarrow{a}$ is a unit vector if

A. $m=\pm 1$ B. m=|a|C. $m=rac{1}{|a|}$ D. $m=\pm 2$

Answer: C

Watch Video Solution

25. For a non-zero vector a, the set of real number, satisfying |(5-x)a| < |2a| consists of all x such that

A. 0 < x < 3

 ${\tt B.3} < x < 7$

 $\mathsf{C}.-7 < x < \ -3$

 ${\sf D.}-7 < x < 3$

Answer: B

26. Find a vector of magnitude (5/2) units which is parallel to the vector

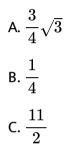
 $3\hat{i}+4\hat{j}.$

> Watch Video Solution

27. Find the power set of set A = { 1,2,3 }

28. Find the number of Element of power set of set A have 2n number of element .

29. The position vectors of the vertices A,B and C of a triangle are $\hat{i} - \hat{j} - 3\hat{k}, 2\hat{i} + \hat{j} - 2\hat{k}$ and $-5\hat{i} + 2\hat{j} - 6\hat{k}$, respectively. The length of the bisector AD of the $\angle BAC$, where D is on the segment BC, is



D. None of these

Answer: A

Watch Video Solution

30. Which of the following is prime number

A. 144

B. 137

 $C.\,125$

 $\mathsf{D}.\,15$

Answer: B

Watch Video Solution

31. The sum of the magnitudes of two forces acting at a point is 16 N. The resultant of these forces is perpendicular to the smaller force has a magnitude of 8 N. If the smaller force is magnitude x, then the value of x is

A. 13,5

B. 12,6

C. 10,6

D. 11,7

Answer: A

32. The length of longer diagonal of the parallelogram constructed on 5a + 2b and a - 3b. If it is given that $|a| = 2\sqrt{2}$, |b| = 3 and angle between a and b is $\frac{\pi}{4}$ is

A. 15

B. $\sqrt{113}$

C. $\sqrt{593}$

D. $\sqrt{369}$

Answer: C

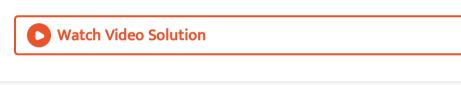
Watch Video Solution

33. The vector \overrightarrow{c} , directed along the internal bisector of the angle between the vectors $\overrightarrow{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\overrightarrow{c}| = 5\sqrt{6}$, is

A. (a)
$$\frac{5}{3} \left(\hat{i} - 7\hat{j} + 2\hat{k} \right)$$

B. (b) $\frac{5}{3} \left(5\hat{i} + 5\hat{j} + 2\hat{k} \right)$
C. (c) $\frac{5}{3} \left(\hat{i} + 7\hat{j} + 2\hat{k} \right)$
D. (d) $\frac{5}{3} \left(-5\hat{i} + 5\hat{j} + 2\hat{k} \right)$

Answer: A



34. Show that the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and $-4\hat{i}+6\hat{j}-8\hat{k}$ are collinear.

Watch Video Solution

35. Prove that the ponts A(1, 2, 3), B(3, 4, 7), C(-3, -2, -5) are collinear and find the ratio in which B divides AC.

36. If the position vectors of A,B,C and D are

 $2\hat{i}+\hat{j},\,\hat{i}-3\hat{j},\,3\hat{i}+2\hat{j}\, ext{ and }\,\hat{i}+\lambda\hat{j}$ respectively and |AB||CD. Then λ will be

A. - 8

 $\mathsf{B.}-6$

- C. 8
- D. 6

Answer: B

Watch Video Solution

37. The points with position vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}, a\hat{i} - 52\hat{j}$ are collinear if a is :

 $\mathsf{a.}-40$

b. 40

c. 20

d. none of these

A. - 40

 $\mathsf{B.}\,40$

C. 20

D. none of these

Answer: A

Watch Video Solution

38. If a,b and c are three non-zero vectors such that no two of these are collinear. If the vector a+2b is collinear with c and b+3c is collinear with a(λ being some non-zero scalar), then a+2b+6c is equal to

A. A. 0

B. B. λb

 $\mathsf{C}.\,\mathsf{C}.\,\lambda c$

D. D. λa

Answer: A

39. Check whether the given three vectors are coplnar or non- coplanar :

$$-2\hat{i}-2\hat{j}+4\hat{k},\ -2\hat{i}+4\hat{j}-2\hat{k},4\hat{i}-2\hat{j}-2\hat{k}.$$

Watch Video Solution

40. If the vectors $4\hat{i} + 11\hat{j} + m\hat{k}$, $7\hat{i} + 2\hat{j} + 6\hat{k}$ and $\hat{i} + 5\hat{j} + 4\hat{k}$ are coplanar, then *m* is equal to a. 38 b. 0 c. 10 d. -10 A. 38

B. 0

C. 10

 $\mathsf{D.}-10$

Answer: C

Watch Video Solution

41. If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and

a+b+2c are coplanar.

Watch Video Solution

42. The value of λ for which the four points $2\hat{i} + 3\hat{j} - \hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $3\hat{i} + 4\hat{j} - 2\hat{k}$ and $\hat{i} - \lambda\hat{j} + 6\hat{k}$ are coplanar. a. 8 b. 0 c. -2 d. 6

A.	8

B. 0

 $\mathsf{C}.-2$

D. 6

Answer: C

Watch Video Solution

43. If A = {0, 1, 2, 3, 5,6}, B = {1,3, 5, 7, 9} and C = {0, 5, 10, 20,40}, find

A. 1) A U B

B. 2) A U C

C. 3) B U C

D. 4) A ∩ B

Answer:

44. Show that the vectors

 $\hat{i}-3\hat{j}+2\hat{k},2\hat{i}-4\hat{j}-\hat{k}\, ext{ and }\,3\hat{i}+2\hat{j}-\hat{k}$ and linearly independent.

45. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$ are linearly dependent vectors and $\left|\overrightarrow{c}\right| = \sqrt{3}$ then:

A. (a)
$$lpha=1, eta=-1$$

B. (b)
$$lpha=1, eta=\pm 1$$

C. (c)
$$lpha=\pm 1, eta=\pm 1$$

D. (d)
$$lpha=\pm 1, eta=1$$

Answer: D

46. If |a| + |b| = |c| and a + b = c, then find angle between a and b.

A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. π

D. 0

Answer: C

Watch Video Solution

47. A unit vector \hat{a} makes an angle $\frac{\pi}{4}$ with z-axis, if $\hat{a} + \hat{i} + \hat{j}$ is a unit

vector then \widehat{a} is equal to

$$\begin{aligned} &(\mathsf{A}) \quad \hat{i} + \hat{j} + \frac{\hat{k}}{2} \quad (\mathsf{B}) \quad \frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}} \quad (\mathsf{C}) \quad -\frac{\hat{i}}{2} - \frac{\hat{j}}{2} + \frac{\hat{k}}{\sqrt{2}} \quad (\mathsf{D}) \\ &\frac{\hat{i}}{2} - \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}} \\ &\mathsf{A}. \,\mathsf{A}. \, \frac{\hat{i}}{2} + \frac{\hat{j}}{2} + \frac{\hat{k}}{\sqrt{2}} \\ &\mathsf{B}. \, \mathsf{B}. \, \frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}} \end{aligned}$$

C. C.
$$-rac{\hat{i}}{2}-rac{\hat{j}}{2}+rac{\hat{k}}{\sqrt{2}}$$

D. D. none of these

Answer: C

Watch Video Solution

48. If the resultannt of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7}Q$, then P/Q is

A. 1

- $\mathsf{B}.\,\frac{3}{2}$
- C. 2

D. 4

Answer: C

49. The vector \overrightarrow{a} has the components 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \overrightarrow{a} has components (p+1)and1, then p is equal to

A. p=0

B. p=1 or $p=-rac{1}{3}$ C. p=-1 or $p=rac{1}{3}$ D. p=1 or p=-1

Answer: B

Watch Video Solution

50. ABC is an isosceles triangle right angled at A. forces of magnitude $2\sqrt{2}$, 5 and 6 act along BC, CA and AB respectively. The magnitude of their resultant force is

B. 5

 $\mathsf{C.}\,11+2\sqrt{2}$

D. 30

Answer: B

Watch Video Solution

51. A line segment has length 63 and direction ratios

are 3, -2, 6. The components of the line vector are

A. - 27, 18, 54

B. 27, -18, 54

C. 27, -18, -54

D. - 27, -18, -54

Answer: B

52. If the vectors $6\hat{i} - 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} - 6\hat{k}$ and $3\hat{i} + 6\hat{j} - 2\hat{k}$ form a triangle, then it is

A. right angled

B. obtuse angled

C. equilateral

D. isosceles

Answer: B

Watch Video Solution

53. The position vectors of the points A, B, C are $2\hat{i} + \hat{j} - \hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$ and $\hat{i} + 4\hat{j} - 3\hat{k}$ respectively. These points

A. form an isosceles triangle

B. form a right angled triangle

C. are collinear

D. form a scalene triangle

Answer: C

Watch Video Solution

54. The position vector of a point C with respect to B is $\hat{i} + \hat{j}$ and that of B with respect to A is $\hat{i} - \hat{j}$. The position vector of C with respect to A is

A. $2\hat{i}$

 $\mathrm{B.}\, 2\hat{j}$

- $\mathsf{C.}-2\hat{j}$
- $\mathsf{D.}-2\hat{i}$

Answer: A

55. Find the number of element of power set of set A have 4 element

Watch Video Solution

56. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} are the position vector of point A, B, C and D, respectively referred to the same origin O such that no three of these point are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, than prove that quadrilateral ABCD is a parallelogram.

A. square

B. rhombus

C. rectangle

D. parallelogram

Answer: D

57. P is a point on the side BC of ΔABC and Q is a point such that PQ is

the resultant of AP,PB and PC. Then, ABQC is a

A. square

B. rectangle

C. parallelogram

D. trapezium

Answer: C

Watch Video Solution

58. Find the number of element of power set of set B have 3 element

Watch Video Solution

59. ABCD is a parallelogram whose diagonals meet at P. If O is a fixed point, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ equals :

A. (a) \overrightarrow{OP} B. (b) $2\overrightarrow{OP}$ C. (c) $3\overrightarrow{OP}$ D. (d) $4\overrightarrow{OP}$

Answer: D

Watch Video Solution

60. If C is the middle point of AB and P is any point outside AB, then

A. PA+PB=PC

B. PA+PB=2PC

C. PA+PB+PC=0

D. PA+PB+2PC=0

Answer: B

61. Which of the following is not prime number

A. 17 B. 19 C. 27

D. 29

Answer: B

Watch Video Solution

62. Five points given by A,B,C,D and E are in a plane. Three forces AC,AD and AE act at A annd three forces CB,DB and EB act B. then, their resultant

is

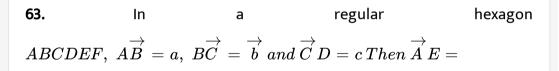
A. 2AC

B. 3AB

C. 3DB

D. 2BC

Answer: B



64. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$, then angle between \overrightarrow{a} and \overrightarrow{b} is : a. $\frac{\pi}{2}$ b. $\frac{\pi}{3}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{6}$

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$

D.
$$\frac{\pi}{6}$$

Answer: B

Watch Video Solution

65. If $\overrightarrow{a} & \overrightarrow{b}$ are the position vectors of A & B respectively and C is a point on AB produced such that AC = 3AB then the position vector of C is:

A. (a) $3\overrightarrow{a} - \overrightarrow{b}$ B. (b) $3\overrightarrow{b} - \overrightarrow{a}$ C. (c) $3\overrightarrow{a} - 2\overrightarrow{b}$ D. (d) $3\overrightarrow{b} - 2\overrightarrow{a}$

Answer: D

66. Let *A* and *B* be points with position vectors \overrightarrow{a} and \overrightarrow{b} with respect to origin *O*. If the point *C* on *OA* is such that $2\overrightarrow{AC} = \overrightarrow{CO}, \overrightarrow{CD}$ is parallel to \overrightarrow{OB} and $|\overrightarrow{CD}| = 3|\overrightarrow{OB}|$ then \overrightarrow{AD} is (A) $\overrightarrow{b} - \frac{\overrightarrow{a}}{9}$ (B) $3\overrightarrow{b} - \frac{\overrightarrow{a}}{3}$ (C) $\overrightarrow{b} - \frac{\overrightarrow{a}}{3}$ (D) $\overrightarrow{b} + \frac{\overrightarrow{a}}{3}$ A. $3b - \frac{a}{2}$ B. $3b + \frac{a}{2}$ C. $3b - \frac{a}{3}$ D. $3b + \frac{a}{3}$

Answer: C

Watch Video Solution

67. If the position vector of a point A is $\overrightarrow{a} + 2\overrightarrow{b}$ and \overrightarrow{a} divides AB in the ratio 2: 3, then the position vector of B, is

A. 2a - b

$$B. b - 2a$$

C. a - 3b

 $\mathsf{D}.\,b$

Answer:

Watch Video Solution

68. If D, E and F are respectively, the mid-points of AB, AC and BC in

 ΔABC , then BE + AF is equal to

A. DC

B.
$$\frac{1}{2}BF$$

 $\mathsf{C.}\,2BF$

D.
$$\frac{3}{2}BF$$

Answer: A

69. In a quadrilateral PQRS, $\overrightarrow{P}Q = \overrightarrow{a}$, $\overrightarrow{Q}R = \overrightarrow{b}$, $\overrightarrow{S}P = \overrightarrow{a} - \overrightarrow{b}$, M is the midpoint of $\overrightarrow{Q}RandX$ is a point on SM such that $SX = \frac{4}{5}SM$. Prove that P, XandR are collinear.

A.
$$PX = \frac{1}{5}PR$$

B. $PX = \frac{3}{5}PR$
C. $PX = \frac{2}{5}PR$

D. none of these

Answer: B

Watch Video Solution

70. Orthocenter of an equilateral triangle ABC is the origin O. If $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}$, then $\overrightarrow{AB} + 2\overrightarrow{BC} + 3\overrightarrow{CA} =$ B. 3a

C. 0

D. 3b

Answer: B

Watch Video Solution

71. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are position vectors of A,B, and C respectively of ΔABC and if $\left|\overrightarrow{a} - \overrightarrow{b}\right|$, $\left|\overrightarrow{b} - \overrightarrow{c}\right| = 2$, $\left|\overrightarrow{c} - \overrightarrow{a}\right| = 3$, then the distance between the centroid and incenter of $\triangle ABC$ is

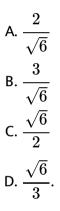
A. 1

B.
$$\frac{1}{2}$$

C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

72. Let position vectors of point A,B and C of triangle ABC represents be $\hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$. Let l_1 , l_2 and l_3 be the length of perpendicular drawn from the orthocenter 'O' on the sides AB, BC and CA, then $(l_1 + l_2 + l_3)$ equals



Answer: C

73. ABCDEF is a regular hexagon in the x-y plance with vertices in the anticlockwise direction. If $\overrightarrow{A}B = 2\hat{i}$, then $\overrightarrow{C}D$ is

A. $\hat{i}+3\hat{j}$

B. $\hat{i}9+2\hat{j}$

 $\mathsf{C}.-\hat{i}+\sqrt{3}\hat{j}$

D. none of these

Answer:

Watch Video Solution

74. The vertices of a triangle are A(1,1,2), B (4,3,1) and C (2,3,5). The vector representing internal bisector of the angle A is

A. $\hat{i}+\hat{j}+2\hat{k}$

B. $2\hat{i}-2\hat{j}j+\hat{k}$

C. $2\hat{i}+2\hat{j}+\hat{k}$

D. none of these

Answer: C

75. Let
$$\overrightarrow{a} = (1, 1, -1), \ \overrightarrow{b} = (5, -3, -3) \text{ and } \overrightarrow{c} = (3, -1, 2).$$
 If \overrightarrow{r} is collinear with \overrightarrow{c} and has length $\frac{\left|\overrightarrow{a} + \overrightarrow{b}\right|}{2}$, then \overrightarrow{r} equals

A.
$$\pm 3c$$

- $\mathsf{B.}\pm\frac{3}{2}c$
- $\mathsf{C}.\pm c$

D.
$$\pm rac{2}{3}c$$

Answer: C

Watch Video Solution

76. In a trapezium ABCD the vector $\overrightarrow{BC} = \lambda \overrightarrow{AD}$. If $\overrightarrow{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is coillinear with \overrightarrow{AD} such that $\overrightarrow{p} = \mu \overrightarrow{AD}$, then

A. $\mu=\lambda+1$

B. $\lambda=\mu+1$ C. $\lambda+\mu=1$ D. $\mu=2+\lambda$

Answer: A

Watch Video Solution

77. If the position vectors of the points A,B and C be $\hat{i}+\hat{j},\,\hat{i}-\hat{j}$ and $a\hat{i}+b\hat{j}+c\hat{k}$ respectively, then the points A,B and C are collinear, if

A. a=b=c=1

B. a=1,b and c are arbitrary scalars

C. ab=c=0

D. c=0,a=1 and b is arbitrary scalars

Answer: D

78. Let a,b and c be distinct non-negative numbers and the vectors $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}, c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then the quadratic equation $ax^2 + 2cx + b = 0$ has

A. real annd equal roots

B. real and unequal roots

C. unreal roots

D. both roots real and positive

Answer: A

Watch Video Solution

79. Which one is an irrational number?

A. (a)
$$rac{22}{7}$$

B. (b) π

C. (c) 2

D. (d) $\sqrt{36}$

Answer: A

80. The points
$$A(2-x, 2, 2), B(2, 2-y, 2), C(2, 2, 2-z)$$
 and $D(1, 1, 1)$ are coplanar, then locus of $P(x, y, z)$ is

A.
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$

B. $x + y + z = 1$
C. $\frac{1}{1 - x} + \frac{1}{1 - y} + \frac{1}{1 - z} = 1$

D. none of these

Answer: A

81. Which one is an rational number?

A. (a) $\sqrt{36}$ B. (b) $\sqrt{2}$

C. (c) $\sqrt{6}$

D. (d) π

Answer: B

Watch Video Solution

82. If a_1 and a_2 are two values of a for which the unit vector $\overrightarrow{ai} + \overrightarrow{bj} + \frac{1}{2}\overrightarrow{k}$ is linearly dependent with $\overrightarrow{i} + 2\overrightarrow{j}$ and $\overrightarrow{j} - 2\overrightarrow{k}$, then $\frac{1}{a_1} + \frac{1}{a_2}$ is equal to

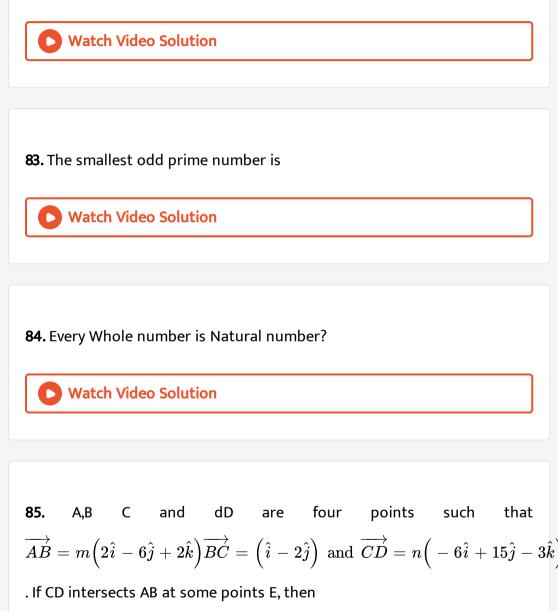
A. (a)1

B. (b)
$$\frac{1}{8}$$

C. (c) $\frac{-16}{11}$

$$\mathsf{D.}\,(\mathsf{d})\frac{-11}{16}$$

Answer: C



A.
$$m \geq rac{1}{2}$$

B. $n \geq rac{1}{3}$
C. $m = n$
D. $m < n$

Answer: A::B

86. Given three vectors a,b and c are non-zero and non-coplanar vectors. Then which of the following are coplanar.

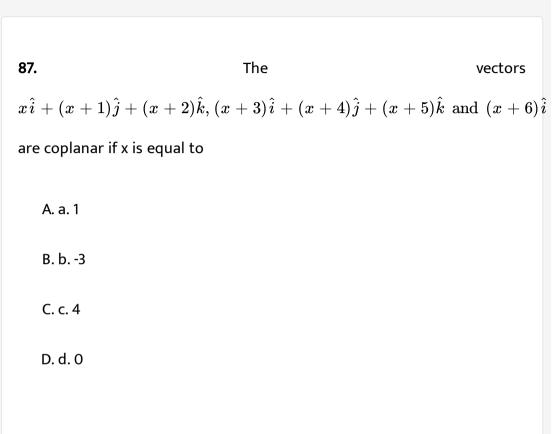
A.
$$\frac{|a|}{|a| = 2|b|}a + \frac{|b|}{|a| + |b|}b$$

B.
$$\frac{|b|}{|a| + |b|}a + \frac{|a|}{|a| + |b|}b$$

C.
$$\frac{|a|}{|a| + |b|}a + \frac{|b|}{|a| + 2|b|}b$$

D.
$$\frac{|b|}{2|a| + |b|}a + \frac{|a|}{2|a| + |b|}b$$

Answer: B::D



Answer: A::B::C::D

88. Given three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-zero and non-coplanar vectors. Then which of the following are coplanar.

A.
$$a+b,b+c,c+a$$

B. $a-b,b+c,c+a$

C. a + b, b - c, c + a

 $\mathsf{D}. a + b, b + c, c - a$

Answer: B::C::D

Watch Video Solution

89. In a four-dimensional space where unit vectors along the axes are $\hat{i}, \hat{j}, \hat{k}$ and \hat{l} , and a_1, a_2, a_3, a_4 are four non-zero vectors such that no vector can be expressed as a linear combination of other $(\lambda - 1)(a_1 - a_2) + \mu(a_2 + a_3) + \gamma(a_3 + a_4 - 2a_2) + a_3 + \delta a_4 = 0$, then

A. (a)
$$\lambda=1$$

B. (b) $\mu=-rac{2}{3}$
C. (c) $\gamma=rac{2}{3}$

D. (d)
$$\delta=rac{1}{3}$$

Answer: A::B::D

90.

Statement

1:

 $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 4and\left|\overrightarrow{a} + \overrightarrow{b}\right| = 5, then\left|\overrightarrow{a} - \overrightarrow{b}\right| = 5.$ Statement 2:

The length of the diagonals of a rectangle is the same.

A. (a) Statement-I and statement II are correct and Statement II is the

correct explanation of statement I

B. (b) Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. (c) Statement I is correct but statement II is incorrect
- D. (d) Statement II is correct but statement I is incorrect

Answer: A

91. Statement 1: If $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|$, then \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.

- A. Statement-II and statement II ar correct and Statement III is the correct explanation of statement I
- B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: A

Watch Video Solution

92. Find the slop of line . The Equation of line is 2x - 3y = 2

93. Find the slop of line . The Equation of line is 2x - 5y = 4

94. Statement I: If $a = 2\hat{i} + \hat{k}$, $b = 3\hat{j} + 4\hat{k}$ and $c = \lambda a + \mu b$ are coplanar, then c = 4a - b. Statement II: A set vector $a_1, a_2, a_3, \ldots, a_n$ is said to be linearly independent, if every relation of the form $l_1a_1 + l_2a_2 + l_3a_3 + \ldots + l_na_n = 0$ implies that $l_1 = l_2 = l_3 = \ldots = l_n = 0$ (scalar).

A. Statement-I and statement II ar correct and Statement II is the correct explanation of statement I

B. Both statement I and statement II are correct but statement II is not the correct explanation of statement I C. Statement I is correct but statement II is incorrect

D. Statement II is correct but statement I is incorrect

Answer: B

Watch Video Solution

95. Find the Equation of line having slop 2 and point (2,3)

Watch Video Solution

96. Statement 1: Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} be the position vectors of four points A, B, CandD and $3\overrightarrow{a} - 2\overrightarrow{b} + 5\overrightarrow{c} - 6\overrightarrow{d} = 0$. Then points A, B, C, andD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector $\left(\overrightarrow{P}Q, \overrightarrow{P}Rand\overrightarrow{P}S\right)$ are coplanar. Then $\overrightarrow{P}Q = \lambda \overrightarrow{P}R + \mu \overrightarrow{P}S$, where $\lambda and \mu$ are scalars. A. Statement-II and statement II ar correct and Statement III is the

correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

C. Statement I is correct but statement II is incorrect

D. Statement II is correct but statement I is incorrect

Answer: A

> Watch Video Solution

97. Given that p(3,2,-4), Q (5,4, -6) and R (9,8,-10) are collinear find the ratio

in which Q divides PR

A. 1:2

B.1:3

C.3:1

 $\mathsf{D}.\,2\!:\!1$

Answer: C

98. Given that p(3,2,-4), Q (5,4, -6) and R (9,8,-10) are collinear find the ratio

in which Q divides PR

A. 1:2

B. 1:3

C.3:1

 $\mathsf{D}.\,2\!:\!1$

Answer: B

99. ABCD is a parallelogram. L is a point on BC which divides BC in the ratio 1:2. AL intersects BD at P.M is a point on DC which divides DC in the ratio 1:2 and AM intersects BD in Q.

PQ:DB is equal to

A. $\frac{2}{3}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{3}{4}$

Answer: B

Watch Video Solution

100. Let A,B,C,D,E represent vertices of a regular pentangon ABCDE. Given

the position vector of these vertices be a,a+b,b, λa and λb respectively.

Q. AD divides EC in the ratio

A.
$$1 - \cos \frac{3\pi}{5} : \cos \frac{3\pi}{5}$$

B. $1 + 2\cos \frac{2\pi}{5} : \cos \frac{\pi}{5}$
C. $1 + 2\cos \frac{\pi}{5} : 2\cos \frac{\pi}{5}$

D. none of these

Answer: C

101. Let A,B,C,D,E represent vertices of a regular pentangon ABCDE. Given the position vector of these vertices be a,a+b,b, λa and λb respectively.

Q. AD divides EC in the ratio

A.
$$\cos \frac{2\pi}{5} : 1$$

B. $\cos \frac{3\pi}{5} : 1$
C. $1 : 2\cos \frac{\pi}{5}$
D. $1 : 2$

Answer: C

Watch Video Solution

102. In a parallelogram OABC, vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are respectively the positions of vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divide the line 2:1 internally. Also the line segment AE intersect the line bisecting the angle O internally in point P. If CP, when extended meets AB in point F. Then The position vector of point P, is

103. In a parallelogram OABC vectors a,b,c respectively, THE POSITION VECTORS OF VERTICES A,B,C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio of 2:1 also, the line segment AE intersects the line bisecting the angle $\angle AOC$ internally at

point P. if CP when extended meets AB in points F, then

Q. The position vector of point P is

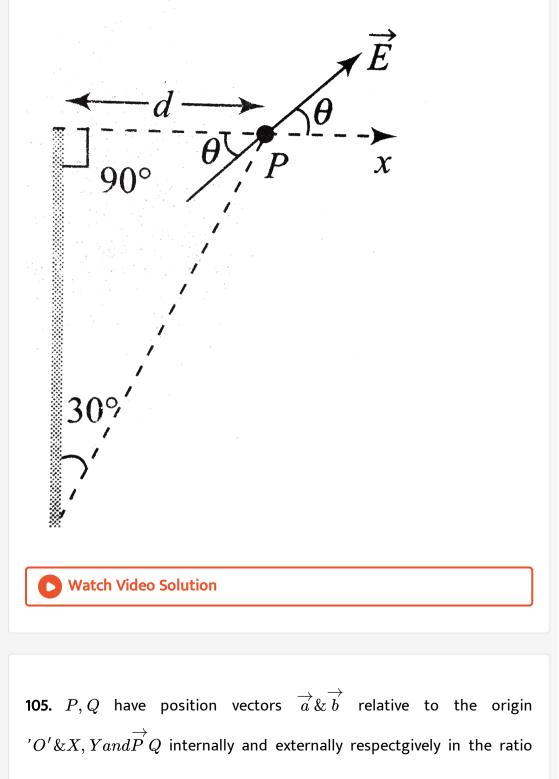
A.
$$\frac{2|a|}{||a| - 3|c||}$$
B.
$$\frac{|a|}{||a| - 3|c||}$$
C.
$$\frac{3|a|}{||a| - 3|c||}$$
D.
$$\frac{3|c|}{3||c| - |a||}$$

Answer: B

Watch Video Solution

104. The direction (θ) of $\stackrel{\longrightarrow}{E}$ at point P due to uniformly charged finite rod

will be



$$\begin{array}{lll} 2:1 \ \text{Vector} \ \overrightarrow{X}Y = & \frac{3}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right) \ \text{b.} \ \frac{4}{3} \left(\overrightarrow{a} - \overrightarrow{b} \right) \ \text{c.} \ \frac{5}{6} \left(\overrightarrow{b} - \overrightarrow{a} \right) \ \text{d.} \\ & \frac{4}{3} \left(\overrightarrow{b} - \overrightarrow{a} \right) \end{array}$$

Watch Video Solution

106. A(1, -1, -3), B(2, 1, -2)&C(-5, 2, -6) are the position vectors of the vertices of a triangle ABC. The length of the bisector of its internal angle at A is :

Watch Video Solution

107. Let ABC be a triangle whose centroid is G, orthocentre is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that no three of O,A,C and D are collinear satisfying the relation. AD+BD+CH+3HG= λHD , then what is the value of the scalar λ .

108. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be unit vectors such that $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} = 0$. If the area of triangle formed by vectors \overrightarrow{a} and \overrightarrow{b} is A, then what is the value of $4A^2$?

Watch Video Solution

109. The values of x for which the angle between the vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ is acute, and the angle, between the vector \vec{b} and the axis of ordinates is obtuse, are

Watch Video Solution

110. If the points

$$a(\cos \alpha + \hat{i} \sin \gamma), b(\cos \beta + \hat{i} \sin \beta)$$
 and $c(\cos \gamma + \hat{i} \sin \gamma)$ are
collinear, then the value of $|z|$ is _____ where
 $z = bc \sin(\beta - \gamma) + ca \sin(\gamma - \alpha) + ab \sin(\alpha + \beta) + 3\hat{i}$

111. A particle, in equilibrium, is subjected to four forces $\vec{F}_1, \vec{F}_2, \vec{F}_3$ and \vec{F}_4 ,

$$\stackrel{
ightarrow}{F}_1 = \ -\ 10 \hat{k}, \stackrel{
ightarrow}{F}_2 = u igg(rac{4}{13} \hat{i} - rac{12}{13} \hat{j} + rac{3}{13} \hat{k} igg), \stackrel{
ightarrow}{F}_3 = v igg(- rac{4}{13} \hat{i} - rac{12}{13} \hat{j} + rac{3}{13} \hat{k} igg),$$

then find the values of u,v and w

Watch Video Solution

112. Find the all the values of lamda such that (x,y,z)
eq (0,0,0) and

$$x\Big(\hat{i}+\hat{j}+3\hat{k}\Big)+y\Big(3\hat{i}-3\hat{j}+\hat{k}\Big)+z\Big(-4\hat{i}+5\hat{j}\Big)=\lambda\Big(x\hat{i}+y\hat{j}+z\hat{k}\Big)$$

Watch Video Solution

113. If G is the centroid of ΔABC and G' is the centroid of $\Delta A'B'C'$ then $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} =$

114. If D,E and F are the mid-points of the sides BC,CA and AB, respectively

of a ΔABC and O is any point, show that

(i) AD+BE+CF=0

115. If $\overrightarrow{A} n d\overrightarrow{B}$ are two vectors and k any scalar quantity greater than zero, then prove that $\left|\overrightarrow{A} + \overrightarrow{B}\right|^2 \leq (1+k)\left|\overrightarrow{A}\right|^2 + \left(1 + \frac{1}{k}\right)\left|\overrightarrow{B}\right|^2$.

View Text Solution

116. If O is the circumcentre, G is the centroid and O' the orthocenter of

 ΔABC prove that

(i) SA+SB+SC=3SG, where S is any point in the plane of ΔABC .

(ii) OA+OB+OC=OO'

Where, AP is diameter of the circumcircle.

117. If $A = \{2, 4, 6, 8, 10\}$ and $B = \{3, 4, 6, 7, 9\}$ then $A - B = \ ?$

Watch Video Solution

118. Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then $\frac{OL}{OA} + \frac{OM}{OB} = \frac{ON}{OC}$ Statement -2 : Three points with position vectors \vec{a} , \vec{b} , \vec{c} are collinear iff there exist scalars x, y, z not all zero such that $x\vec{a} + y\vec{b} + z\vec{c} = \vec{0}$, where x + y + z = 0.

119. If D, E and F are three points on the sides BC, CA and AB, respectively, of a triangle ABC such that the lines AD, BE and CF are concurrent, then show that

$$rac{BD}{CD} \cdot rac{CE}{AE} \cdot rac{AF}{BF} = 1$$

120.

$$\overrightarrow{A}(t) = f_1(t)\hat{i} + f_2(t)\hat{j} \text{ and } \overrightarrow{B}(t) = g(t)\hat{i} + g_2(t)\hat{j}, t \in [0, 1], f_1, f_2, g_1g_2$$
are continuous functions. If $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are non-zero vectors for all
 t and $\overrightarrow{A}(0) = 2\hat{i} + 3\hat{j}, \overrightarrow{A}(1) = 6\hat{i} + 2\hat{j}, \overrightarrow{B}(0) = 3\hat{i} + 2\hat{i}$ and $\overrightarrow{B}(1) = 2\hat{i}$
Then, show that $\overrightarrow{A}(t)$ and $\overrightarrow{B}(t)$ are parallel for some t .

1 ...+

Watch Video Solution

121. Prove that if $\cos \alpha \neq 1$, $\cos \beta \neq 1$ and $\cos \gamma \neq 1$, then the vectors $a = \hat{i} \cos \alpha + \hat{j} + \hat{k}, b = \hat{i} + \hat{j} \cos \beta + \hat{k}$ and $c = \hat{i} + \hat{j} + \hat{k} \cos \gamma$ can

never be coplanar.

Watch Video Solution

122. If the vectors $x\hat{i}+\hat{j}+\hat{k},\,\hat{i}+y\hat{j}+\hat{k}\,\, ext{and}\,\,\hat{i}+\hat{j}+z\hat{k}$ are coplanar

where, $x
eq 1, y
eq 1 \, ext{ and } \, z
eq 1$, then prove that

$$rac{1}{1-x} + rac{1}{1-y} + rac{1}{1-z} = 1$$

Watch Video Solution

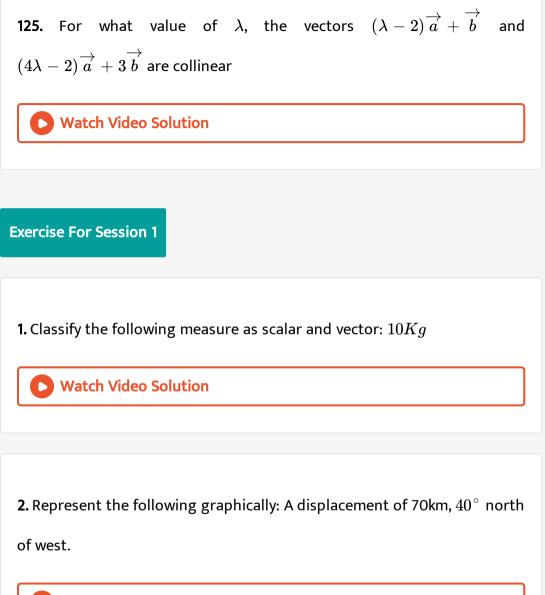
123. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are any three non-coplanar vectors, then prove that

points

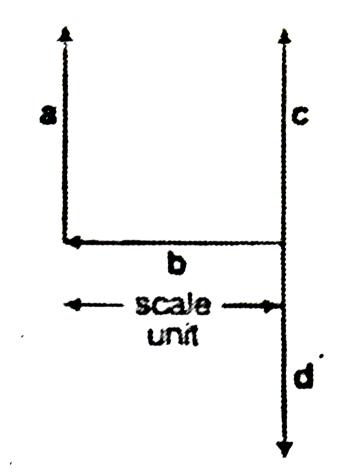
$$\begin{array}{c} l_{1}\overrightarrow{a} + m_{1}\overrightarrow{b} + n_{1}\overrightarrow{c}, l_{2}\overrightarrow{a} + m_{2}\overrightarrow{b} + n_{2}\overrightarrow{c}, l_{3}\overrightarrow{a} + m_{3}\overrightarrow{b} + n_{3}\overrightarrow{c}, l_{4}\overrightarrow{a} + m_{4} \\ \\ \text{are coplanar if} \begin{vmatrix} l_{1} & l_{2} & l_{3} & l_{4} \\ m_{1} & m_{2} & m_{3} & m_{4} \\ n_{1} & n_{2} & n_{3} & n_{4} \\ 1 & 1 & 1 & 1 \end{vmatrix} = 0$$

Watch Video Solution

124. Let $r_1, r_2, r_3, \ldots, r_n$ be the position vectors of points $P_1, P_2, P_3, \ldots, P_n$ relative to an origin O. show that if then a similar equation will also hold good with respect to any other origin O'. If $a_1 + a_2 + a_3 + \ldots + a_n = 0$.



- 3. In the following figure, which of the vectors are:
- (i) Collinear
- (ii) Equal
- (iii) Co-initial
- (iv) collinear but not equal .



4. Answer the following as true or false.

- (i) \overrightarrow{a} and $-\overrightarrow{a}$ are collinear.
- (ii) Two collinear vectors are always equal in magnitude.
- (iii) Two vectors having same magnitude are collinear.
- (iv) Two collinear vectors having the same magnitude

Watch Video Solution

5. Find the perimeter of a triangle with sides $3\hat{i} + 4\hat{j} + 5\hat{k}, 4\hat{i} - 3\hat{j} - 5\hat{k}$ and $7\hat{i} + \hat{j}$.

Watch Video Solution

6. Find the angle of vector $\overrightarrow{a} = 6\hat{i} + 2\hat{j} - 3\hat{k}$ with x-axis.

7. Write the direction ratios of the vector $r=\hat{i}-\hat{j}+2\hat{k}$ and hence

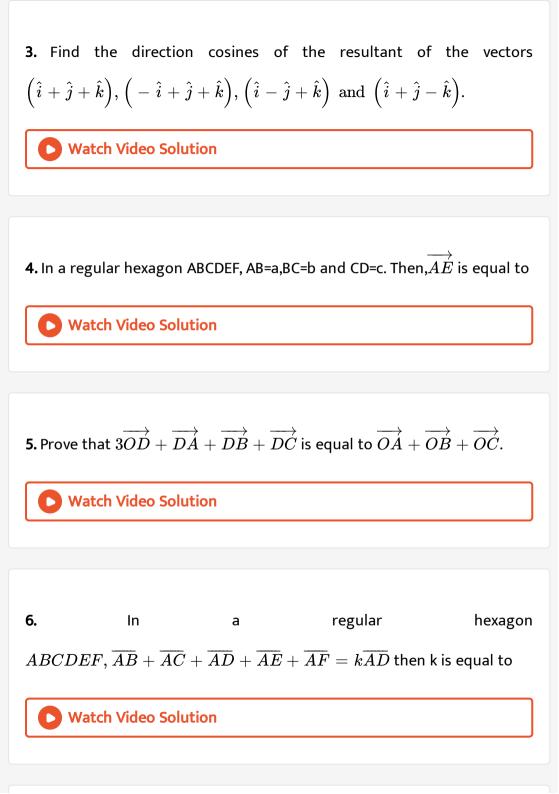
calculate its direction cosines.

Exercise For Session 2

1. If $a = 2\hat{i} - \hat{j} + 2\hat{k}$ and $b = -\hat{i} + \hat{j} - \hat{k}$, then find a+b. Also, find a unit vector along a+b.

Watch Video Solution

2. Find a unit vector in the direction of the resultant of the vectors $(\hat{i} + 2\hat{j} + 3\hat{k}), (-\hat{i} + 2\hat{j} + \hat{k})$ and $(3\hat{i} + \hat{j}).$



7. ABCDE is a pentagon. Prove that the resultant of forces $\overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{BC}, \overrightarrow{DC}, \overrightarrow{ED}$ and \overrightarrow{AC} is $3\overrightarrow{AC}$.

Watch Video Solution

8. find the area of square whose side is 25 cm.

Watch Video Solution

9. If P(-1, 2) and Q(3, -7) are two points, express the vector PQ in terms of unit vectors \hat{i} and \hat{j} also, find distance between point P and Q. What is the unit vector in the direction of PQ?

Watch Video Solution

10. If $\overrightarrow{OP} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{OQ} = 3\hat{i} - 4\hat{j} + 2\hat{k}$ find the modulus and direction cosines of \overrightarrow{PQ} .

11. Show that the points :
$$A\left(2\hat{i}-\hat{j}+\hat{k}\right), B\left(\hat{i}-3\hat{j}-\hat{k}\right), C\left(3\hat{i}-4\hat{j}-4\hat{k}\right)$$
 are the vertices of aright-angled triangle.**12.** If $a = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\left|x\overrightarrow{a}\right| = 1$, then find x.

13. If $p=7\hat{i}-2\hat{j}+3\hat{k}$ and $q=3\hat{i}+\hat{j}+5\hat{k}$, then find the magnitude

of p-2q.

14. Find a vector in the direction of $5\hat{i}-\hat{j}+2\hat{k}$, which has magnitude 8

units.

15. If $a=\hat{i}+2\hat{j}+2\hat{k}$ and $b=3\hat{i}+6\hat{j}+2\hat{k}$, then find a vector in the

direction of a and having magnitude as |b|.

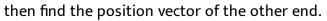
Watch Video Solution

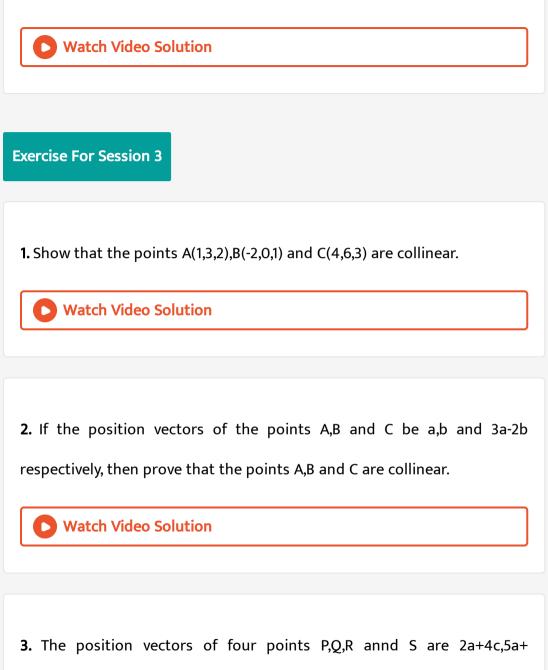
16. Find the position vector of a point R which divides the line joining the

points $Pig(\hat{i}+2\hat{j}-\hat{k})$ and $Qig(\hat{i}+2\hat{j}+2\hat{k}ig)$ internally in the ratio 2:1.

Watch Video Solution

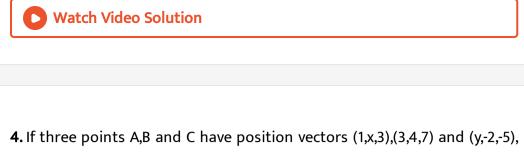
17. If the position vector of one end of the line segment AB be $2\hat{i}+3\hat{j}-\hat{k}$ and the position vector of its middle point be $3\Big(\hat{i}+\hat{j}+\hat{k}\Big)$,





 $3\sqrt{3}b + 4c, -2\sqrt{3}b + c$ and 2a + c respectively, prove that PQ is

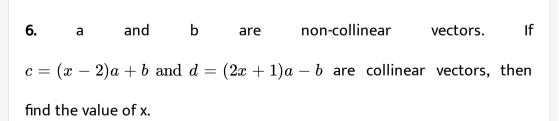
parallel to RS.



respectively and if they are collinear, then find (x,y).

Watch Video Solution

5. Show that the three points with position vectors $-2\hat{i}+3\hat{j}+5\hat{k}$, $\hat{i}+2\hat{j}+3\hat{k}$ and $7\hat{i}-\hat{k}$ are collinear.



7. Let a,b,c are three vectors of which every pair is non-collinear, if the vectors a+b and b+c are collinear with c annd a respectively, then find a+b+c.

Watch Video Solution

8. Show that the vectors $\hat{i}-\hat{j}-\hat{k}, 2\hat{i}+3\hat{j}+\hat{k}$ and $7\hat{i}+3\hat{j}-4\hat{k}$ are

coplanar.

Watch Video Solution

9. If the vectors $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}+2\hat{j}-3\hat{k}\,\, ext{and}\,\,3\hat{i}+a\hat{j}+5\hat{k}$ are coplanar,

the prove that a=-4.

Watch Video Solution

10. Show that the vectors a - 2b + 4c, -2a + 3b - 6c and -b + 2c

are coplanar vector, where a,b,c are non-coplanar vectors.

11. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar vectors, prove that the four points $2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c}$, $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$, $3\overrightarrow{a} + 4\overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{a} - 6\overrightarrow{b} + 6\overrightarrow{c}$

are coplanar.

Watch Video Solution

Exercise Single Option Correct Type Questions

1. If $a=3\hat{i}-2\hat{j}+\hat{k}, b=2\hat{i}-4\hat{j}-3\hat{k}$ and $c=-\hat{i}+2\hat{j}+2\hat{k}$, then a+b+c is

A. $3\hat{i} - 4\hat{j}$ B. $3\hat{i} + 4\hat{j}$ C. $4\hat{i} - 4\hat{j}$ D. $4\hat{i} + 4\hat{j}$

Answer: C

2. What should be added in vector $a=3\hat{i}+4\hat{j}-2\hat{k}$ to get its resultant a unit vector \hat{i} ?

- A. $-2\hat{i}-4\hat{j}+2\hat{k}$
- $\mathsf{B}.-2\hat{i}+4\hat{j}-2\hat{k}$
- C. $2\hat{i}+4\hat{j}-2\hat{k}$

D. none of these

Answer: A

3. If $a=2\hat{i}+2\hat{j}-8\hat{k}\,\, ext{and}\,\,b=\hat{i}+3\hat{j}-4\hat{k}$, then the magnitude of a+b

is equal to

A. 13

B.
$$\frac{13}{5}$$

C. $\frac{3}{13}$
D. $\frac{4}{13}$

Answer: A

Watch Video Solution

4. If
$$a = 2\hat{i} + 5\hat{j}$$
 and $b = 2\hat{i} - \hat{j}$, then the unit vector along a+b will be
A. $\frac{\hat{i} - \hat{j}}{\sqrt{2}}$
B. $\hat{i} + \hat{j}$
C. $\sqrt{2}(\hat{i} + \hat{j})$
D. $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$

Answer: D

5. Find the unit vector parallel to the resultant vector of $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$.

A.
$$\frac{1}{7} \left(3\hat{i} + \hat{j} + \hat{k} \right)$$

B. $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$
C. $\frac{\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{6}}$
D. $\frac{1}{\sqrt{69}} \left(-\hat{i} - \hat{j} + 8\hat{k} \right)$

Answer: A

Watch Video Solution

6. If
$$a=\hat{i}+2\hat{j}+3\hat{k}, b=-\hat{i}+2\hat{j}+\hat{k}$$
 and $c=3\hat{i}+\hat{j}$, then the unit

vector along its resultant is

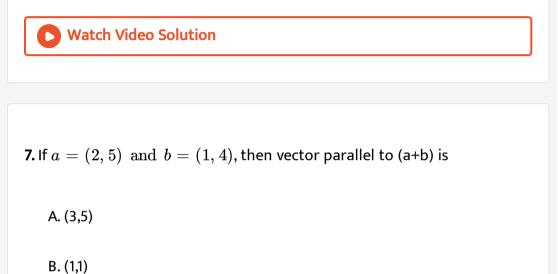
A.
$$3\hat{i}+5\hat{j}+4\hat{k}$$

B. $rac{3\hat{i}+5\hat{j}+4\hat{k}}{50}$

C.
$$rac{3\hat{i}+5\hat{j}+4\hat{k}}{5\sqrt{2}}$$

D. none of these

Answer: C



D. (1,1)

C. (1,3)

D. (8,5)

Answer: C

8. In the ΔABC , AB = a, AC = c and BC = b, then

A. a+b+c=0

B. a+b-c=0

C. a-b+c=0

 $\mathsf{D}.-a+b+c=0$

Answer: B

Watch Video Solution

9. If O is origin annd the position vector fo A is $4\hat{i} + 5\hat{j}$, then unit vector

parallel to OA is

A.
$$\frac{4}{\sqrt{41}}\hat{i}$$

B.
$$\frac{5}{\sqrt{41}}\hat{i}$$

C.
$$\frac{1}{\sqrt{41}}\left(4\hat{i}+5\hat{j}\right)$$

D.
$$\frac{1}{\sqrt{41}}\left(4\hat{i}-5\hat{j}\right)$$

Answer: C

10. The position vectors of the points A,B and C are $\hat{i} + 2\hat{j} - \hat{k}, \hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} + 2\hat{k}$, respectively. If A is chosen as the origin, then the position vectors of B and C are

A.
$$\hat{i} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$$

B. $\hat{j} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$
C. $-\hat{j} + 2\hat{k}, \, \hat{i} - -\hat{j} + 3\hat{k}$
D. $-\hat{j} + 2\hat{k}, \, \hat{i} + \hat{j} + 3\hat{k}$

Answer: D

11. The position vectors of P and Q are $5\hat{i} + 4\hat{j} + a\hat{k}$ and $-\hat{i} + 2\hat{j} - 2\hat{k}$, respectively. If the distance between them is 7, then find the value of a.

A. -5, 1 B. 5, 1 C. 0, 5 D. 1,0

Answer: A

Watch Video Solution

12. If position vector of points A,B and C are respectively $\hat{i}, \hat{j}, \text{ and } \hat{k}$ and AB = CX, then position vector of point X is

A.
$$-\hat{i}+\hat{j}+\hat{k}$$

B. $\hat{i} - \hat{j} + \hat{k}$

C. $\hat{i}+\hat{j}-\hat{k}$ D. $\hat{i}+\hat{j}+\hat{k}$

Answer: A

Watch Video Solution

13. The position vectors of A and B are $2\hat{i} - 9\hat{j} - 4\hat{k}$ and $6\hat{i} - 3\hat{j} + 8\hat{k}$ respectively, then the magnitude of AB is

A. 11

B. 12

C. 13

D. 14

Answer: D

14.	lf	the	position	vectors	of	Ρ	and	Q	are
$\left(\hat{i}+3\hat{j}-7\hat{k} ight) ext{and}\left(5\hat{i}-2\hat{j}+4\hat{k} ight)$, then PQ is									
	150								
A.	$\sqrt{158}$								
В.	$\sqrt{160}$								
C.	$\sqrt{161}$								
D.	$\sqrt{162}$								
Answer: D									
Watch Video Solution									

15. If the position vectors of P and Q are $\hat{i} + 2\hat{j} - 7\hat{k}$ and $5\hat{i} - 2\hat{j} + 4\hat{k}$ respectively, the cosine of the angle between PQ and Z-axis is

A.
$$\frac{4}{\sqrt{162}}$$

B. $\frac{11}{\sqrt{162}}$
C. $\frac{5}{\sqrt{162}}$

D.
$$\frac{-5}{\sqrt{162}}$$

Answer: B

16. If the position vectors of A and B are $\hat{i} + 3\hat{j} - 7\hat{k}$ and $5\hat{i} - 2\hat{j} + 4\hat{k}$, then the direction cosine of AB along Y-axis is

A.
$$\frac{4}{\sqrt{162}}$$

B. $-\frac{5}{\sqrt{162}}$
C. -5

D. 11

Answer: B

17. The direction cosines of vector $a=3\hat{i}+4\hat{j}+5\hat{k}$ in the direction of

positive axis of X, is

A. A.
$$\pm \frac{3}{\sqrt{50}}$$

B. B. $\frac{4}{\sqrt{50}}$
C. C. $\frac{3}{\sqrt{50}}$
D. D. $-\frac{4}{\sqrt{50}}$

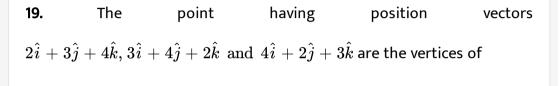
Answer: C

Watch Video Solution

18. The direction cosines of the vector $3\hat{i}-4\hat{j}+5\hat{k}$ are

A. A.
$$\frac{3}{5}$$
, $-\frac{4}{5}$, $\frac{1}{5}$
B. B. $\frac{3}{5\sqrt{2}}$, $\frac{-4}{5\sqrt{2}}$, $\frac{1}{\sqrt{2}}$
C. C. $\frac{3}{\sqrt{2}}$, $\frac{-4}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$
D. D. $\frac{3}{5\sqrt{2}}$, $\frac{4}{5\sqrt{2}}$, $\frac{1}{\sqrt{2}}$

Answer: B



- A. A. right angled triangle
- B. B. isosceles triangle
- C. C. equilateral triangle
- D. D. collinear

Answer: C

20. If the position vectors of the vertices A,B and C of a $\triangle ABC$ are $7\hat{j} + 10k$, $-\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$, respectively, the

triangle is

A. A. equilateral

B. B. isosceles

C. C. scalene

D. D. right angled and isosceles also

Answer: D

Watch Video Solution

21. If a,b and c are the position vectors of the vertices A,B and C of the ΔABC , then the centroid of ΔABC is

A. A.
$$\frac{a+b+c}{3}$$

B. B. $\frac{1}{2}\left(a+\frac{b+c}{2}\right)$
C. C. $a+\frac{b+c}{2}$
D. D. $\frac{a+b+c}{2}$

Answer: A

22. If a and b are position vector of two points A,B and C divides AB in ratio 2:1, then position vector of C is

A.
$$\frac{a+2b}{3}$$

B.
$$\frac{2a+b}{3}$$

C.
$$\frac{a+2}{3}$$

D.
$$\frac{a+b}{2}$$

Answer: A

23. Find the position vector of the point which divides the join of the points $\left(2\overrightarrow{a} - 3\overrightarrow{b}\right)$ and $\left(3\overrightarrow{a} - 2\overrightarrow{b}\right)$ (i) internally and (ii) externally in

24. If O is origin and C is the mid - point of A (2, -1) and B (-4, 3). Then value of OC is

- A. $\hat{i}+\hat{j}$ B. $\hat{i}-\hat{j}$
- $\mathsf{C}.-\hat{i}+\hat{j}$
- D. $-\hat{i}-\hat{j}$

Answer: C

25. If the position vectors of the points A and B are $\hat{i} + 3\hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} - 3\hat{k}$, then what will be the position vector of the

mid-point of AB

A. $\hat{i} + 2\hat{j} - \hat{k}$ B. $2\hat{i} + \hat{j} - 2\hat{k}$ C. $2\hat{i} + \hat{j} - \hat{k}$ D. $\hat{i} + \hat{j} - 2\hat{k}$

Answer: B

Watch Video Solution

26. The position vectors of A and B are $\hat{i} - \hat{j} + 2\hat{k}$ and $3\hat{i} - \hat{j} + 3\hat{k}$. The position vector of the middle points of the line AB is

A.
$$rac{1}{2}\hat{i} - rac{1}{2}\hat{j} + \hat{k}$$

B. $2\hat{i} - \hat{j} + rac{5}{2}\hat{k}$
C. $rac{3}{2}\hat{i} - rac{1}{2}\hat{j} + rac{3}{2}\hat{k}$

D. none of these

Answer: B

27. If the vector $\stackrel{
ightarrow}{b}$ is collinear with the vector $\stackrel{
ightarrow}{a}ig(2\sqrt{2},\ -1,4ig)$ and $\left| \overrightarrow{b} \right| = 10$, then

A. $a \pm b = 0$

B. $a \pm 2b = 0$

 $\mathsf{C.}\,2a\pm b=0$

D. none of these

Answer: C

28. If $\overrightarrow{a}, \overrightarrow{b}$ are the position vectors of the points (1, -1), (-2, m),

find the value of m for which \overrightarrow{a} and \overrightarrow{b} are collinear.

A. 4		
B. 3		
C. 2		
D. 0		

Answer: C

Watch Video Solution

29. The points with position vectors $10\hat{i} + 3\hat{j}$, $12\hat{i} - 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear, if a is equal to

A.-8

B. 4

C. 8

D. 12

Answer: C

30.	The	vectors	$\hat{i} + 2\hat{j} + 3\hat{k}, \lambda\hat{i} + 4\hat{j} + 7\hat{k}, \ -3\hat{i} - 2\hat{j} - 5\hat{k}$	are			
collinear, of λ is equal to							
(A)3							
(B)4							
(C)5							
(D)6							
^							
Ч	. 3						
В	. 4						
C	. 5						
D	0.6						

Answer: A

31. If the points a + b, a - b and a + kb be collinear, then k is equal to

A. A. 0

B. B. 2

 $\mathsf{C.}\,\mathsf{C.}-2$

D. D. any real number

Answer: D

Watch Video Solution

32. If the position vectors off A,B,C and D are $2\hat{i} + \hat{j}, \hat{i} - 3\hat{j}, 3\hat{i} + 2\hat{j}$ and $\hat{i} + \lambda\hat{j}$, respectively and $AB \mid \mid CD$, then λ will be

A. - 8

 $\mathsf{B.}-6$

Answer: B

Watch Video Solution

33. If the vectors $3\hat{i}+2\hat{j}-\hat{k}$ and $6\hat{i}-4x\hat{j}+y\hat{k}$ are parallel, then the value of x and y will be

A. -1, -2

B. 1, -2

C. -1, 2

 $D.\,1,\,2$

Answer: A

34. If a and b are two non collinear vectors; then every vector r coplanar with a and b can be expressed in one and only one way as a linear combination: xa+yb=0.

A. (a)x=0, but y is not necessarily zero

B. (b)y=0, but x is not necessarily zero

C. (c)x=0,y=0

D. (d)none of these

Answer: C

Watch Video Solution

35. Four non-zero vectors will always be

A. linearly dependent

B. linearly independent

C. either (a) or (b)

D. none of these

Answer: A

36. The vectors a,b and a+b are

A. collinear

B. coplanar

C. non-coplanar

D. none of these

Answer: B

37. Find the all the values of lamda such that
$$(x, y, z) \neq (0, 0, 0)$$
 and $x(\hat{i} + \hat{j} + 3\hat{k}) + y(3\hat{i} - 3\hat{j} + \hat{k}) + z(-4\hat{i} + 5\hat{j}) = \lambda(x\hat{i} + y\hat{j} + z\hat{k})$
A. A. -2, 0
B. B 0, -2
C. C. -1, 0
D. D. 0, -1

Answer: D

Watch Video Solution

38. The number of integral values of p for which $(p+1)\hat{i} - 3\hat{j} + p\hat{k}, p\hat{i} + (p+1)\hat{j} - 3\hat{k}$ and $-3\hat{i} + p\hat{j} + (p+1)\hat{k}$ are linearly dependent vectors is q

A. 0

B. 1

C. 2

D. 3

Answer: B

39. If the vectors $AB=3\hat{i}+4\hat{k}$ and $AC=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides

of a ΔABC , then the length of the median through A is

 $\mathsf{B.}\,\sqrt{72}$

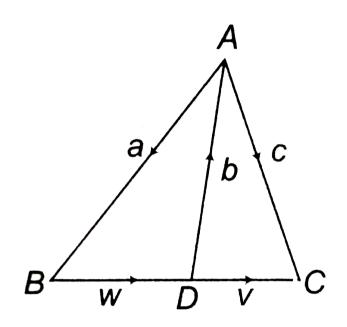
C. $\sqrt{33}$

D. $\sqrt{288}$

Answer: C

40. In the figure, a vectors x satisfies the equation x-w=v. then, x is equal

to



A. 2a + b + c

 $\mathsf{B}.\,a+2b+c$

C.a + b + 2c

 $\mathsf{D}. a + b + c$

Answer: B

41. Vectors $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 4\hat{k}$ are so placed that the end point of one vector is the starting point of the next vector. Then the vectors are

A. not coplanar

B. coplanar but cannot form a triangle

C. coplanar and form a triangle

D. coplanar and can form a right angled triangle.

Answer: B

Watch Video Solution

42. If OP=8 and OP makes angles 45° and 60° with OX-axis and OY-axis respectively, then OP is equal to

A.
$$8 \Big(\sqrt{2} \hat{i} + \hat{j} \pm \hat{k} \Big)$$

$$\begin{array}{l} \mathsf{B.}\,4\Big(\sqrt{2}\hat{i}+\hat{j}\pm\hat{k}\Big)\\ \mathsf{C.}\,\frac{1}{4}\Big(\sqrt{2}\hat{i}+\hat{j}\pm\hat{k}\Big)\\ \mathsf{D.}\,\frac{1}{8}\Big(\sqrt{2}\hat{i}+\hat{j}\pm\hat{k}\Big)\end{array}$$

Answer: B

Watch Video Solution

43. Let a,b and c be three unit vectors such that 3a + 4b + 5c = 0. Then

which of the following statements is true?

A. a is parallel to b

B. a is perpendicular to b

C. a is neither parallel nor perpendicular to b

D. none of these

Answer: D

44. if A,B,C,D and E are five coplanar points, then $\overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} + \overrightarrow{AE} + \overrightarrow{BE} + \overrightarrow{CE}$ is equal to :

A. DE

B. 3DE

C. 2DE

D. 4ED

Answer: B

Watch Video Solution

45. If the vectors \overrightarrow{a} and \overrightarrow{b} are linearly independent satisfying $(\sqrt{3}\tan\theta + 1)\overrightarrow{a} + (\sqrt{3}\sec\theta - 2)\overrightarrow{b} = 0$, then the most general values of θ are

A.
$$n\pi-rac{\pi}{6}, n\in Z$$

$$egin{aligned} extsf{B.} & 2n\pi\pmrac{11\pi}{6}n\in Z\ extsf{C.} & n\pi\pmrac{\pi}{6}, n\in Z\ extsf{D.} & 2n\pi+rac{11\pi}{6}, n\in Z \end{aligned}$$

Answer: D

Watch Video Solution

46. Find the slope of the normal having point (3,2) and (4,1)

Watch Video Solution

47. A line passes through the points whose position vectors are $\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + \hat{k}$. The position vector of a point on it at unit distance from the first point is $(A)\frac{1}{5}\left(5\hat{i} + \hat{j} - 7\hat{k}\right)$ (B) $\frac{1}{5}\left(5\hat{i} + 9\hat{j} - 13\hat{k}\right)$ (C) $\left(\hat{i} - 4\hat{j} + 3\hat{k}\right)$ (D) $\frac{1}{5}\left(\hat{i} - 4\hat{j} + 3\hat{k}\right)$ A. A. $\frac{1}{5}\left(5\hat{i} + \hat{j} - 7\hat{k}\right)$

$$\begin{array}{l} \mathsf{B.} \; \frac{1}{5} \Bigl(4 \hat{i} + 9 \hat{j} - 15 \hat{k} \Bigr) \\ \mathsf{C.} \; \Bigl(\hat{i} - 4 \hat{j} + 3 \hat{k} \Bigr) \\ \mathsf{D.} \; \frac{1}{5} \Bigl(\hat{i} - 4 \hat{j} + 3 \hat{k} \Bigr) \end{array}$$

Answer: A

Watch Video Solution

48. Find the slop of line . The Equation of line is 2x - 3y = 2

Watch Video Solution

49. If P and Q are the middle points of the sides BC and CD of the parallelogram ABCD, then AP+AQ is equal to

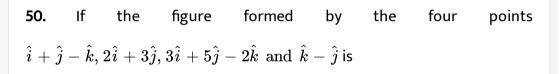
A. AC

-

$$B. \frac{1}{2}AC$$
$$C. \frac{2}{3}AC$$

$$\mathsf{D}.\,\frac{3}{2}AC$$

Answer: D



A. rectangle

B. parallelogram

C. trapezium

D. none of these

Answer: C

51. A and B are two points. The position vector of A is 6b-2a. A point P divides the line AB in the ratio 1:2. if a-b is the position vector of P, then the position vector of B is given by

A. A. 7a-15b

B. B. 7a+15b

C. C. 15a-7b

D. D. 15a+7b

Answer: A

Watch Video Solution

52. If three points A,B and C are collinear, whose position vectors are $\hat{i} - 2\hat{j} - 8\hat{k}$, $5\hat{i} - 2\hat{k}$ and $11\hat{i} + 3\hat{j} + 7\hat{k}$ respectively, then the ratio in which B divides AC is

A. A. 1:2

B. B. 2:3

C. C. 2:1

D. D. 1:1

Answer: B

Watch Video Solution

53. If in a triangle AB=a,AC=b and D,E are the mid-points of AB and AC

respectively, then DE is equal to

A.
$$\frac{a}{4} - \frac{b}{4}$$

B. $\frac{a}{2} - \frac{b}{2}$
C. $\frac{b}{4} - \frac{a}{4}$
D. $\frac{b}{2} - \frac{a}{2}$

Answer: D

54. The two adjacent sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. Find the unit vectors along the diagonals of the parallelogram.

A.
$$rac{1}{\sqrt{69}}ig(\hat{i}+2\hat{j}-8\hat{k}ig)$$

B. $rac{1}{69}ig(\hat{i}+2\hat{j}-8\hat{k}ig)$
C. $rac{1}{\sqrt{69}}ig(-\hat{i}-2\hat{j}+8\hat{k}ig)$
D. $rac{1}{69}ig(-\hat{i}-2\hat{j}+8\hat{k}ig)$

Answer: C

Watch Video Solution

55. If A,B and C are the vertices of a triangle with position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} respectively and G is the centroid of ΔABC , then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ is equal to A. 0

B.
$$A + B + C$$

C. $\frac{a+b+c}{3}$
D. $\frac{a+b-c}{3}$

Answer: A

Watch Video Solution

56. If ABCDEF is a regular hexagon then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ equals :

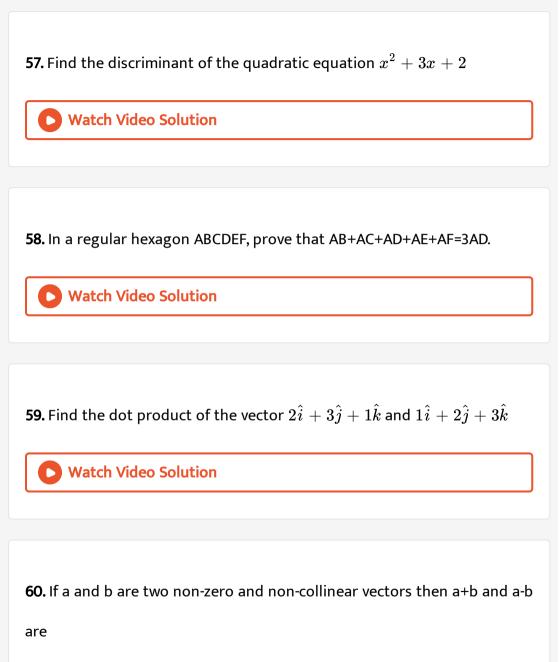
A. 0

B. 2AB

C. 3AB

D. 4AB

Answer: D



A. linearly dependent vectors

B. linearly independent vectors

C. linearly dependent annd independent vectors

D. none of these

Answer: B

Watch Video Solution

61. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| < \left| \overrightarrow{a} - \overrightarrow{b} \right|$$
, then the angle between \overrightarrow{a} and \overrightarrow{b} can lie in the interval

the interval

A. $(\pi/2, \pi/2)$ B. $(0, \pi)$ C. $(\pi/2, 3\pi/2)$

D. $(0, 2\pi)$

Answer: C

62. The magnitudes of mutually perpendicular forces a,b and c are 2,10 and 11 respectively. Then the magnitude of its resultant is

A. 12

B. 15

C. 9

D. none of these

Answer: B

Watch Video Solution

63. If $\hat{i} - 3\hat{j} + 5\hat{k}$ bisects the angle between \hat{a} and $-\hat{i} + 2\hat{j} + 2\hat{k}$, where \hat{a} is a unit vector, then

$$egin{aligned} \mathsf{A.} & a &= rac{1}{105} \Big(41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big) \ & \mathsf{B.} & a &= rac{1}{105} \Big(41 \hat{i} + 88 \hat{j} + 40 \hat{k} \Big) \end{aligned}$$

$$ext{C. } a = rac{1}{105} \Big(-41 \hat{i} + 88 \hat{j} - 40 \hat{k} \Big)$$
 $ext{D. } a = rac{1}{105} \Big(41 \hat{i} - 88 \hat{j} - 40 \hat{k} \Big)$

Answer: D

Watch Video Solution

64. Find the discriminant of the quadratic equation $x^2 + 5x + 4 = 0$ and also find the nature of its roots.

Watch Video Solution

65. Given three vectors $\overrightarrow{a} = 6\hat{i} - 3\hat{j}, \ \overrightarrow{b} = 2\hat{i} - 6\hat{j}and \ \overrightarrow{c} = -2\hat{i} + 21\hat{j}$ such that $\overrightarrow{\alpha} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{\cdot}$ Then the resolution of the vector $\overrightarrow{\alpha}$ into components with respect to $\overrightarrow{a} and \overrightarrow{b}$ is given by a. $3\overrightarrow{a} - 2\overrightarrow{b}$ b. $3\overrightarrow{b} - 2\overrightarrow{a} c. 2\overrightarrow{a} - 3\overrightarrow{b} d. \ \overrightarrow{a} - 2\overrightarrow{b}$

A. 3a-2b

B. 3b-2a

C. 2a-3b

D. a-2b

Answer: C

Watch Video Solution

66. 'I' is the incentre of triangle ABC whose corresponding sides are a, b, c, rspectively. $\overrightarrow{aI}A + \overrightarrow{bI}B + \overrightarrow{cI}C$ is always equal to $a. \overrightarrow{0}b.$ $(a+b+c)\overrightarrow{B}Cc.(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})\overrightarrow{A}Cd.(a+b+c)\overrightarrow{A}B$

A. 0

B. (a+b+c)BC

C. (a+b+c)AC

D. (a+b+c)AB

Answer: A

67. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and ABC is a triangle with side lengths a, b and c satisfying $(20a - 15b)\overrightarrow{x} + (15b - 12c)\overrightarrow{y} + (12c - 20a)(\overrightarrow{x} \times \overrightarrow{y}) = \overrightarrow{0}$, then triangle ABC is

A. an acute angled triangle

B. an obtuse angled triangle

C. a right angled triangle

D. a scalane triangle

Answer: C

68. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and a, b, and c represent the

sides

 $(a-b)\overrightarrow{x} + (b-c)\overrightarrow{y} + (c-a)\left(\overrightarrow{x}\times\overrightarrow{y}\right) = 0$, then ABC is (where $\overrightarrow{x}\overrightarrow{y}$ is perpendicular to the plane of xandy)

A. an acute angled triangle

B. ann obtuse angled triangle

C. a right angled triangle

D. a scalene triangle

Answer: A

Watch Video Solution

69. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.

A. $P\sqrt{2}$

B. P

C. $P\sqrt{3}$

D. none of these

Answer: A

Watch Video Solution

70. If \overrightarrow{b} is a vector whose initial point divides the join of $5\hat{i}$ and $5\hat{j}$ in the ratio k:1 and whose terminal point is the origin and $\left|\overrightarrow{b}\right| \leq \sqrt{37}$, then, k lies in the interval

a. $[-6, \ -1/6]$ b. $(-\infty, \ -6] \cup [-1/6, \infty)$ c. [0, 6]

d. none of these

71. find the term independent of x in the expansion of $\left(2x - \frac{1}{x}\right)^2$?

72. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then the unit vector along the angular bisector of \overrightarrow{a} and \overrightarrow{b} will be given by

A.
$$rac{a-b}{2\cos(heta/2)}$$

B. $rac{a+b}{2\cos(heta/2)}$
C. $rac{a-b}{\cos(heta/2)}$

D. none of these

Answer: B

Watch Video Solution

73. A, B, C and D have position vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and \overrightarrow{d} , repectively, such that $\overrightarrow{a} - \overrightarrow{b} = 2\left(\overrightarrow{d} - \overrightarrow{c}\right)$. Then

A. AB and CD bisect each other

- B. BD and AC bisect each other
- C. AB and CD trisect each other
- D. BD and AC trisect each other

Answer: D

Watch Video Solution

74. if lpha and eta are the root of the quadratic polynomial $f(x)=x^2-5x+6$, find the value of $\left(lpha^2eta+eta^2lpha
ight)$

A. 20

B. 30

C. 50

D. none of these

Answer: B

75. If a+b+c=lpha d, b+c+d=eta a and a,b,c are non-coplanar, then the sum of a+b+c+d=

A. 0

 $\mathsf{B.}\,\alpha a$

 $\mathsf{C}.\,\beta b$

D. $(\alpha + \beta)c$

Answer: A

Watch Video Solution

76. The position vectors of the points P and Q with respect to the origin O are $\vec{a} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} - 2\hat{k}$, respectively. If M is a point on PQ, such that OM is the bisector of POQ, then \overrightarrow{OM} is

A.
$$2 \Big(\hat{i} - \hat{j} + \hat{k} \Big)$$

B.
$$2\hat{i}+\hat{j}-2\hat{k}$$

C. $2\Big(-\hat{i}+\hat{j}-\hat{k}\Big)$
D. $2\Big(\hat{i}+\hat{j}+\hat{k}\Big)$

Answer: B

Watch Video Solution

77. *ABCD* is a quadrilateral. *E* is the point of intersection of the line joining the midpoints of the opposite sides. If *O* is any point and $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = x\overrightarrow{O}E$, then *x* is equal to a. 3 b. 9 c. 7 d. 4

A. 3

B. 9

C. 7

D. 4

Answer: D

78. In the $\triangle OAB$, M is the midpoint of AB, C is a point on OM, such that 2OC = CM. X is a point on the side OB such that OX = 2XB. The line XC is produced to meet OA in Y. Then $\frac{OY}{YA}$ =

A.
$$\frac{1}{3}$$

B. $\frac{2}{7}$
C. $\frac{3}{2}$
D. $\frac{2}{5}$

Answer: B

Watch Video Solution

79. Evaluate
$$\int \left(\frac{\ln x}{x}\right) dx$$

A. $\ln x + c$

B.
$$rac{1}{2} \ln^2 x + c$$

C. $\ln^2 x + c$

D. none of these

Answer: A

Watch Video Solution

80. Find the value of λ so that the points P, Q, R and S on the sides OA, OB, OC and AB, respectively, of a regular tetrahedron OABC are coplanar. It is given that $\frac{OP}{OA} = \frac{1}{3}$, $\frac{OQ}{OB} = \frac{1}{2}$, $\frac{OR}{OC} = \frac{1}{3}$ and $\frac{OS}{AB} = \lambda$. A. $\lambda = \frac{1}{2}$ B. $\lambda = -1$ C. $\lambda = 0$

D. fo no value of λ

Answer: B

81. OABCDE is a regular hexagon of side 2 units in the XY-plane in the first quadrant. O being the origin and OA taken along the x-axis. A point P is taken on a line parallel to the z-axis through the centre of the hexagon at a distance of 3 units from O in the positive Z direction. Then find vector \overrightarrow{AP} .

A. $-\hat{i} + 3\hat{j} + \sqrt{5}\hat{k}$ B. $\hat{i} - \sqrt{3}\hat{j} + 5\hat{k}$ C. $-\hat{i} + \sqrt{3}\hat{j} + \sqrt{5}\hat{k}$ D. $\hat{i} + \sqrt{3}\hat{j} + \sqrt{5}\hat{k}$

Answer: C

Watch Video Solution

Vector Algebra Exercises 1 Single Option Correct Type Questions

1. Find
$$rac{dy}{dx}$$
 if $y=rac{1}{2}-x^4$

Watch Video Solution

Exercise More Than One Correct Option Type Questions

1. If the vectors $\hat{i} - \hat{j}, \hat{j} + \hat{k} \, ext{ and } \stackrel{
ightarrow}{a}$ form a triangle then $\stackrel{
ightarrow}{a}$ may be

- A. $-\,\hat{i}\,-\,\hat{k}$
- B. $\hat{i}-2\hat{j}-\hat{k}$
- C. $2\hat{j}+\hat{j}+\hat{k}$
- D. $\hat{i}+\hat{k}$

Answer: A::B::D

2. If the resultant of three forces $\overrightarrow{F}_1 = p\hat{i} + 3\hat{j} - \hat{k}, \overrightarrow{F}_2 = 6\hat{i} - \hat{k}$ and $\overrightarrow{F}_3 = -5\hat{i} + \hat{j} + 2\hat{k}$ acting on

a particle has a magnitude equal to 5 units, then the value of p is

A. -6 B. -4 C. 2 D. 4

Answer: B::C

Watch Video Solution

3. Let ABC be a triangle, the position vectors of whose vertices are $7\hat{j} + 10\hat{k}, -\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$. Then ΔABC is

A. isosceles

B. equilateral

C. right angled

D. none of these

Answer: A::C

Watch Video Solution

4. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. The unit vector parallel to one of the diagonals is

A.
$$rac{1}{7} \Big(3 \hat{i} + 6 \hat{j} - 2 \hat{k} \Big)$$

B. $rac{1}{7} \Big(3 \hat{i} - 6 \hat{j} - 2 \hat{k} \Big)$
C. $rac{1}{\sqrt{69}} \Big(\hat{i} + 2 \hat{j} + 8 \hat{k} \Big)$
D. $rac{1}{\sqrt{69}} \Big(- \hat{i} - 2 \hat{j} + 8 \hat{k} \Big)$

Answer: A::D

5. If A(-4, 0, 3) and B(14, 2, -5), then which one of the following points lie on the bisector of the angle between \overrightarrow{OA} and \overrightarrow{OB} (O is the origin of reference) ? (A) (2,2,4) (B) (2,11,5) (C) (2,11,5) (D) (1,1,2)

A. (2,2,4)

B. (2,11,5)

C. (-3,-3,-6)

D. (1,1,2)

Answer: A::C::D

Watch Video Solution

6. If points
$$\hat{i}+\hat{j},\,\hat{i}-\hat{j}\,\, ext{and}\,\,p\hat{i}+q\hat{j}+r\hat{k}$$
 are collinear, then

A. p=1

B. r=0

 $\mathsf{C}.\,q\in R$

D. q
eq 1

Answer: A::B::D

Watch Video Solution

7. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar vectors and λ is a real number, then the vectors $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda\overrightarrow{b} + \mu\overrightarrow{c}$ and $(2\lambda - 1)\overrightarrow{c}$ are coplanar when

A. $\mu \in R$

- $\mathsf{B}.\,\lambda=\frac{1}{2}$
- $\mathsf{C}.\,\lambda=0$

D. no value of λ

Answer: A::B::C::D

1. Statement 1 : In $\triangle ABC$, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$ Statement 2 : If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$, then $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$

A. Both Statement I and Statement II are correct and statement II is

the correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

C. Statement I is correct but statement II is incorrect

D. Statement II is correct but statement I is incorrect

Answer: C

2. Statement I:
$$a = \hat{i} + p\hat{j} + 2\hat{k}$$
 and $b = 2\hat{i} + 3\hat{j} + q\hat{k}$ are parallel vectors, iff $p = \frac{3}{2}$ and $q = 4$.

Statement II: $a = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $b = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ are parallel $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}.$

A. Both Statement I and Statement II are correct and statement II is the correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

- C. Statement I is correct but statement II is incorrect
- D. Statement II is correct but statement I is incorrect

Answer: A

Watch Video Solution

3. Statement 1: if three points P, QandR have position vectors \overrightarrow{a} , \overrightarrow{b} , $and\overrightarrow{c}$, respectively, and $2\overrightarrow{a} + 3\overrightarrow{b} - 5\overrightarrow{c} = 0$, then the points P, Q, andR must be collinear. Statement 2: If for three points A, B, andC, $\overrightarrow{A}B = \lambda \overrightarrow{A}C$, then points A, B, andC must be collinear.

A. Both Statement I and Statement II are correct and statement II is

the correct explanation of statement I

B. Both statement I and statement II are correct but statement II is

not the correct explanation of statement I

C. Statement I is correct but statement II is incorrect

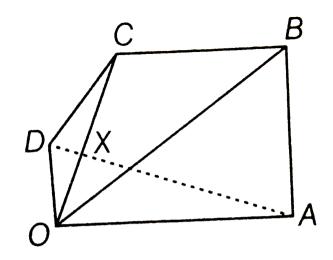
D. Statement II is correct but statement I is incorrect

Answer: A

> Watch Video Solution

Exercise Passage Based Questions

1. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and AB are parallel. Also, OA:CB=2:1 and OD:AB=1:3.



Q. The ratio $\frac{AX}{XD}$ is

A. 3/4

B.1/3

C.2/5

 $\mathsf{D}.\,1/2$

Answer: C

2. If
$$x=\cos(2t)$$
 and $y=\sin^2 t$ then what is $rac{d^2y}{dx^2}$

3. If ABCDEF is regular hexagon, then AD+EB+FC is

A. (a)2AB

B. (b)3AB

C. (c)4AB

D. (d)none of these

Answer: C

Watch Video Solution

4. Consider the regular hexagon ABCDEF with centre at O (origin).

Q. Five forces AB,AC,AD,AE,AF act at the vertex A of a regular hexagon

ABCDEF. Then, their resultant is

B. 2AO

C. 4AO

D. 6AO

Answer: D

Watch Video Solution

5. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an

origin O. Answer the following questions?

Which of the following is true?

A. AC=2AB

B. AC=-3AB

C. AC=3AB

D. none of these

Answer: C

6. Three points A,B and C have position vectors -2a + 3b + 5c, a + 2b + 3c and 7a - c with reference to an origin O. answer the following questions.

Q. Which of the following is true?

A. 20A-30B+0C=0

B. 20A+70B+90C=0

C. OA+OB+OC=0

D. none of these

Answer: A

7. Three points A,B, and C have position vectors $-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}, \overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an

origin O. Answer the following questions?

B divided AC in ratio

A. 2:1

B. 2:3

C. 2: -3

 $\mathsf{D}.\,1\!:\!2$

Answer: D

Watch Video Solution

8. If two vectors OA and OB are there, then their resultant OA+OB can be found by completing the parallelogram OACB and OC=OA+OB. Also, if |OA|=|OB|, then the resultant will bisect the angle between them.
Q. A vector C directed along internal bisector of angle between vectors

$$A = 7\hat{i} - 4\hat{j} - 4\hat{k} \text{ and } B = -2\hat{i} - \hat{j} + 2\hat{k} \text{ with } |C| = 5\sqrt{6} \text{ is}$$
a. $\frac{5}{3}(\hat{i} - \hat{j} + \hat{k})$
b. $\frac{5}{3}(\hat{i} - 7\hat{j} + 2\hat{k})$
c. $\frac{5}{3}(\hat{i} + 5\hat{j} + 2\hat{k})$
d. $\frac{5}{3}(-5\hat{i} + 5\hat{j} + 3\hat{k})$
A. $\frac{5}{3}(\hat{i} - \hat{j} + \hat{k})$
B. $\frac{5}{3}(\hat{i} - 7\hat{j} + 2\hat{k})$
C. $\frac{5}{3}(\hat{5}\hat{i} + 5\hat{j} + 2\hat{k})$
D. $\frac{5}{3}(-5\hat{i} + 5\hat{j} + 3\hat{k})$

Answer: B

Watch Video Solution

9. Find
$$rac{dy}{dx}$$
 if $2x-3y=\sin x$

10. Solve
$$\int \frac{2x}{1+x^2} dx$$

Watch Video Solution

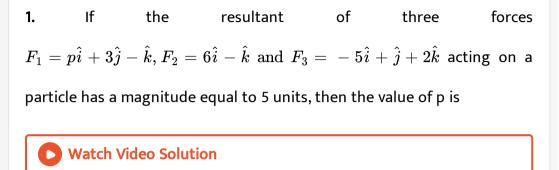
11. If z = 10, find the value of $z^3 - 3(z - 10)$.

Watch Video Solution

Exercise Matching Type Questions

1. a and b form the consecutive sides of a regular hexagon ABCDEF.

Column I		Column II	
a.	If $\mathbf{C}\mathbf{D} = x\mathbf{a} + y\mathbf{b}$, then	p.	<i>x</i> = -2
	If $\mathbf{CE} = x\mathbf{a} + y\mathbf{b}$, then	q.	x = -1
	If $\mathbf{AE} = x\mathbf{a} + y\mathbf{b}$, then	r.	<i>y</i> = 1
d.	If $\mathbf{A}\mathbf{D} = -x\mathbf{b}$, then		<i>y</i> = 2



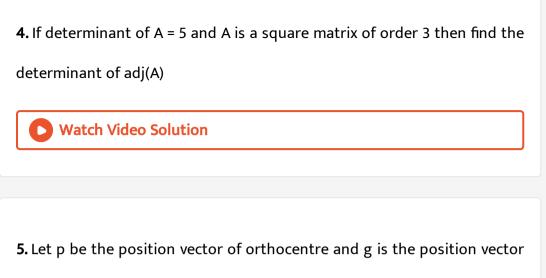
2. If ABCD is parallelogram, $AB=2\hat{i}+4\hat{j}-5\hat{k}~~{
m and}~~AD=\hat{i}+2\hat{j}+3\hat{k}$

, then the unit vectors in the direction of BD is

Watch Video Solution

3. If vectors $\overrightarrow{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} + \hat{j} + 2\hat{k}$

are coplanar, then find the value of $(\lambda-4)$.



of the centroid of ΔABC , where circumcentre is the origin. If p=kg,

then the value of k is

Watch Video Solution

6. In a ΔABC , a line is drawn passing through centroid dividing AB internaly in ratio 2:1 and AC in λ : 1 (internally). The value of λ is

7. The vector \overrightarrow{a} has the components 2p and 1 w.r.t. a rectangular Cartesian system. This system is rotated through a certain angel about the origin in the counterclockwise sense. If, with respect to a new system, \overrightarrow{a} has components (p+1)and1, then p is equal to

Watch Video Solution

Exercise Subjective Type Questions

1. A vector a has components a_1, a_2, a_3 in a right handed rectangular cartesian coordinate system OXYZ the coordinate axis is rotated about z axis through an angle $\frac{\pi}{2}$. The components of a in the new system

Watch Video Solution

2. Find the magnitude and direction of $r_1 - r_2$ when $|r_1| = 5$ and points North-East while $|r_2| = 5$ but points North-West. **3.** Let OACB be a parallelogram with O at the origin and OC a diagonal. Let D be the midpoint of OA using vector methods prove that BDandCO intersect in the same ratio. Determine this ratio.

Watch Video Solution

4. ΔABC is a triangle with the point P on side BC such that 3BP=2PC, the point Q is on the line CA such that 4CQ=QA. Find the ratio in which the line joining the common point R of AP and BQ and the point S divides AB.

Watch Video Solution

5. In $\triangle ABC$ internal angle bisector AI,BI and CI are produced to meet opposite sides in A', B', C' respectively. Prove that the maximum value of $\frac{AI \times BI \times CI}{AA' \times BB' \times CC'}$ is $\frac{8}{27}$ Watch Video Solution 6. IF $a_1, a_2, a_3, ..., a_{10}$ be in AP and $h_1, h_2, h_3, ..., h_{10}$ be in HP. If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, then find value of a_4h_7 .

7. Let OABCD be a pentagon in which the sides OA and CB are parallel and the sides OD and AB are parallel as shown in figure. Also, OA:CB=2:1 and OD:AB=1:3. if the diagonals OC and AD meet at x, find OX:XC.

Watch Video Solution

8. P and Q have position vectors a and b relative to the origin O and X,Y divide PQ internally and externally respectively in the ratio 2:1, vector XY is $\lambda a + \mu b$, then the value of $|\lambda + \mu|$ is

1. If vectors $\overrightarrow{AB}=\ -3\hat{i}+4\hat{k}\,\, {
m and}\,\, \overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides of

a ΔABC , then the length of the median throught A is

A. $\sqrt{18}$

B. $\sqrt{72}$

C. $\sqrt{33}$

D. $\sqrt{45}$

Answer: C

Watch Video Solution

2. Let a,b and c be three non-zero vectors which are pairwise noncollinear. If a+3b is collinear with c and b+2c is collinear with a, then a+3b+6c is

A. a+c

В	•	а
	٠	C

C. *c*

D. 0

Answer: D

Watch Video Solution

3. The non-zero vectors a,b and c are related by a=8b and c=-7b angle

between a and c is

A. π

B. 0

C.
$$\frac{\pi}{4}$$

 $\mathsf{D}.\,\frac{1}{2}$

Answer: A

4. If C is the middle point of AB and P is any point outside AB, then

A. PA+PB+PC=0

B. PA+PB+2PC=0

C. PA+PB=PC

D. PA+PB=2PC

Answer: D

Watch Video Solution

5. Let a,b and c be three non-zero vectors such that no two of these are collinear. I the vector a+2b is collinear with c and b+3c is collinear with a (λ being some non-zero scalar), then a + 2b + 6c is equal to

A. λa

 $\mathsf{B.}\,\lambda b$

 $\mathsf{C}.\,\lambda c$

 $\mathsf{D}.\,0$

Answer: D

Watch Video Solution

6. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-coplanar vectors and λ is a real number, then the vectors $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda\overrightarrow{b} + \mu\overrightarrow{c}$ and $(2\lambda - 1)\overrightarrow{c}$ are coplanar when

A. all value of λ

B. all except one value of λ

C. all except two value of λ

D. no value of λ

Answer: C

7. Area of a rectangle having vertices A, B, C and D with position vectors :

$$-\hat{i} + \left(rac{1}{2}
ight)\hat{j} + 4\hat{k}, \, \hat{i} + \left(rac{1}{2}
ight)\hat{j} + 4\hat{k}, \, \hat{i} - \left(rac{1}{2}
ight)\hat{j} + 4\hat{k}$$
 and $-\hat{i} - \left(rac{1}{2}
ight)\hat{j} + 4\hat{k}$, respectively is:

A. square

B. rhombus

C. rectangle

D. none of these

Answer: D

Watch Video Solution

8. If a,b, and c are all different and if

$$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix}$$
=0 Prove that abc =-1.

$$B. -1$$

C. 1

D. 0

Answer: B

Watch Video Solution

9. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle heta and doubled in

magnitude, then it becomes $4\hat{i} + (4x-2)\dot{\hat{j}} + 2\hat{k}$. Then value of x are $-\frac{2}{3}$ (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) 2

A.
$$\left\{ -\frac{2}{3}, 2 \right\}$$

B. $\left(\frac{1}{3}, 2 \right)$
C. $\left\{ \frac{2}{3}, 0 \right\}$
D. $\{2, 7\}$

Answer: A

