©゙" doubtnut

MATHS

BOOKS - CENGAGE PUBLICATION

APPLICATION OF DERIVATIVES

Illustration

1. Find the length of tangent to the curve
$y=4 x^{3}-2 x^{5}$ at $(-1,1)$

- Watch Video Solution

1. The equation of the line tangent to the curve x siny + $y \sin x=\pi$ at the point $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
A. $3 x+y=2 \pi$
B. $x-y=0$
C. $2 x-y=\pi / 2$
D. $x+y=\pi$

Answer: D
2. The x-intercept of the tangent at any arbitrary point of the curve $\frac{a}{x^{2}}+\frac{b}{y^{2}}=1$ is proportional to square of the abscissa of the point of tangency square root of
the abscissa of the point of tangency cube of the abscissa of the point of tangency cube root of the abscissa of the point of tangency
A. square of the abscissa of the point of tangency
B. square root of the absciss of the point of

tangency

C. cube of the abscissa of the point of tangency
D. cube root of the abscissa of the point of

Answer: C

- Watch Video Solution

3. At any point on the curve $2 x^{2} y^{2}-x^{4}=c$, the mean proportional between the abscissa and the difference between the abscissa and the sub-normal drawn to the curve at the same point is equal to (a)Ordinate (b)
radius vector (c)x-intercept of tangent (d) sub-tangent
A. ordinate
B. radius vector
C. x-intercect of tangent
D. sub-tangent

Answer: A

D Watch Video Solution

4. Given $\mathrm{g}(\mathrm{x}) \frac{x+2}{x-1}$ and the line $3 x+y-10=0$.

Then the line is
A. tangent to $\mathrm{g}(\mathrm{x})$
B. normal to $g(x)$
C. chord ofg (x)
D. none of these

Answer: A
5. If the length of sub-normal is equal to the length of sub-tangent at any point $(3,4)$ on the curve $y=f(x)$ and the tangent at $(3,4)$ to $y=f(x)$ meets the coordinate axes at $\operatorname{Aand} B$, then the maximum area of the triangle $O A B$, where O is origin, is $45 / 2$ (b) $49 / 2$ (c) $25 / 2$ (d) $81 / 2$
A. $45 / 2$
B. $49 / 2$
C. $25 / 2$
D. $81 / 2$
6. The number of point in the rectangle $\{(x, y)\}-12 \leq x \leq 12$ and $-3 \leq y \leq 3\}$ which lie on the curve $y=x+\sin x$ and at which in the tangent to the curve is parallel to the x -axis is 0 (b) 2
(c) 4 (d) 8
A. 0
B. 2
C. 4
D. 8

- Watch Video Solution

7. Tangent of acute angle between the curves
$y=\left|x^{2}-1\right|$ and $y=\sqrt{7-x^{2}}$ at their points of
intersection is $\frac{5 \sqrt{3}}{2}$ (b) $\frac{3 \sqrt{5}}{2} \frac{5 \sqrt{3}}{4}$ (d) $\frac{3 \sqrt{5}}{4}$
A. $\frac{5 \sqrt{3}}{2}$
B. $\frac{3 \sqrt{5}}{2}$
C. $\frac{5 \sqrt{3}}{4}$
D. $\frac{3 \sqrt{5}}{4}$

Answer: C

8. The line tangent to the curves
$y^{3}-x^{2} y+5 y-2 x=0$
$x^{2}-x^{3} y^{2}+5 x+2 y=0$ at the origin intersect at an
angle θ equal to (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

9. The two curves $x=y^{2}, x y=a^{3}$ cut orthogonally at
a point. Then a^{2} is equal to $\frac{1}{3}$ (b) 3 (c) 2 (d) $\frac{1}{2}$
A. $\frac{1}{3}$
B. 3
C. 2
D. $\frac{1}{2}$

Answer: D

D Watch Video Solution

10. The tangent to the curve $y=e^{k x}$ at a point (0,1) meets the x -axis at $(\mathrm{a}, 0$) where $a \in[-2,-1]$, then k
$\in:$
A. $[-1 / 2,0]$
B. $[-1,-1 / 2]$
C. $[0,1]$
D. $[1 / 2,1]$

Answer: D

D Watch Video Solution

11. The curves $4 x^{2}+9 y^{2}=72$ and $x^{2}-y^{2}=5 a t(3,2)$

Then (a) touch each other (b) cut orthogonally intersect at 45° (d) intersect at 60^{0}
A. touch each other
B. cut orthogonally
C. intersect at 45°
D. intersect at 60°

Answer: B

- Watch Video Solution

12. The coordinates of a point on the parabola $y^{2}=8 x$ whose distance from the circle $x^{2}+(y+6)^{2}=1$ is minimum is $(2,4)$ (b) $(2,-4)(18,-12)(d)(8,8)$
A. $(2,4)$
B. $(2,-4)$
C. $(18,-12)$
D. $(8,8)$

Answer: B

D Watch Video Solution

13. At the point $P\left(a, a^{n}\right)$ on the graph of $y=x^{n}(n \in N)$ in the first quadrant at normal is drawn. The normal intersects the Y-axis at the point (0 ,
b). If $\lim _{a \rightarrow 0} b=\frac{1}{2}$, then n equals
A. 1
B. 3
C. 2
D. 4

Answer: C

D Watch Video Solution

14. Let f be a continuous, differentiable, and bijective function. If the tangent to $y=f(x) a t x=a$ is also the normal to $y=f(x) a t x=b$, then there exists at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$ (b) $f^{\prime}(c)>0$ $f^{\prime}(c)<0$ (d) none of these
A. $f^{\prime}(c)=0$
B. $f^{\prime}(c)>0$
C. $f^{\prime}(c)<0$
D. none of these

Answer: A

- Watch Video Solution

15. A point on the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is
(a) $(2,6)(b)(2,-6)\left(\frac{9}{8},-\frac{9}{2}\right)$ (d) $\left(\frac{9}{8}, \frac{9}{2}\right)$
A. $(2,6)$
B. $(2,-6)$
C. $\left(\frac{9}{8}, \frac{9}{2}\right)$
D. $\left(\frac{9}{8}, \frac{9}{2}\right)$

Answer: D

D Watch Video Solution

16. Find the rate of change of volume of a sphere with respect to its surface area when the radius is 2 cm .
A. 1
B. 2
C. 3
D. 4

Answer: A

(D) Watch Video Solution

17. If there is an error of $k \%$ in measuring the edge of a cube, then the percent error in estimating its volume is k (b) $3 k \frac{k}{3}$ (d) none of these
A. k
B. 3 k
C. $\frac{k}{3}$
D. none of these

- Watch Video Solution

18. A lamp of negligible height is placed on the ground
l_{1} away from a wall. A man $l_{2} m$ tall is walking at a speed of $\frac{l_{1}}{10} m / s$ from the lamp to the nearest point on the wall. When he is midway between the lamp and the wall, the rate of change in the length of this shadow on the wall is $-\frac{5 l_{2}}{2} m / s$ (b) $-\frac{2 l_{2}}{5} m / s$ $-\frac{l_{2}}{2} m / s(\mathrm{~d})-\frac{l_{2}}{5} m / s$
A. $-\frac{5 l_{2}}{2} m / s$
B. $-\frac{2 l_{2}}{5} m / s$
C. $-\frac{l_{2}}{2} m / s$
D. $-\frac{l_{2}}{5} m / s$

Answer: B

- Watch Video Solution

19. The function $f(x)=x(x+3) e^{-\left(\frac{1}{2}\right) x}$ satisfies the conditions of Rolle's theorem in $(-3,0)$. The value of c, is
A. -2
B. -1
C. 0
D. 3

Answer: A

- Watch Video Solution

20. The radius of a right circular cylinder increases at the rate of $0.1 \mathrm{~cm} / \mathrm{min}$, and the height decreases at the rate of $0.2 \mathrm{~cm} / \mathrm{min}$. The rate of change of the volume of the cylinder, in $\mathrm{cm}^{2} / \mathrm{m} \in$, when the radius is 2 cm and the height is 3 cm is (a) $-2 p$ (b) $-\frac{8 \pi}{5}-\frac{3 \pi}{5}$
$\frac{2 \pi}{5}$
A. -2π
B. $-\frac{8 \pi}{5}$
C. $16 / 6$
D. $-8 / 15$

Answer: D

- Watch Video Solution

21. A cube of ice melts without changing its shape at the uniform rate of $4 \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}$. The rate of change of the surface area of the cube, in $\frac{\mathrm{cm}^{2}}{\mathrm{~min}}$, when the volume of the cube is $125 \mathrm{~cm}^{3}$, is (a) -4 (b) $-\frac{16}{5}$ (c) $-\frac{16}{6}$ (d) $-\frac{8}{15}$
A. -4
B. $-16 / 5$
C. $-16 / 6$
D. $-8 / 15$

Answer: B

- Watch Video Solution

22. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the altitude is decreasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. The rate of change of lateral surface when the radius is 7 cm and altitude is 24 cm is (a)
$108 \pi \mathrm{~cm}^{2} / \mathrm{min}$
(b) $7 \pi \mathrm{~cm}^{2} / \mathrm{min}$
(c) $27 \pi \mathrm{~cm}^{2} / \mathrm{min}$
(d) none of these
A. $108 \pi \mathrm{~cm}^{2} / \mathrm{min}$
B. $7 \pi \mathrm{~cm}^{2} / \mathrm{min}$
C. $27 \pi \mathrm{~cm}^{2} / \mathrm{min}$
D. none of these

Answer: A

D Watch Video Solution

23. If $f(x)=x^{3}+7 x-1$, then $f(x)$ has a zero between $x=0 a n d x=1$. The theorem that best describes this is (a) mean value theorem (b) maximumminimum value theorem (c) intermediate value theorem (d) none of these
A. mena value theorem
B. maximum-minimum value theorem
C. intermediate value theorem
D. none of these

Answer: C

- Watch Video Solution

24.

Consider the
function
$f(x)= \begin{cases}x \frac{\sin (\pi)}{x} & \text { for } x>0 \\ 0 & \text { for } x=0\end{cases}$
Then, the number of points in $(0,1)$ where the derivative $f^{\prime}(x)$ vanishes is
A. 0
B. 1
C. 2
D. infinite

Answer: D

- Watch Video Solution

25. Let $f(x) \operatorname{andg}(x)$ be differentiable for $0 \leq x \leq 1$, such that $f(0)=0, g(0)=0, f(1)=6$. Let there exists real number c in $(0,1)$ such that $f^{\prime}(c)=2 g^{\prime}(c)$.

Then the value of $g(1)$ must be (a) 1 (b) 3 (c) -2 (d) -1
A. 1
B. 3
C. -2
D. 1 -

Answer: B

- Watch Video Solution

26. If $3(a+2 c)=4(b+3 d)$, then the equation $a x^{3}+b x^{2}+c x+d=0$ will have (a) no real solution
(b) at least one real root in $(-1,0)$ (c) at least one real root in $(0,1)$ (d) none of these
A. no real solution
B. at least one real root in $(-1,0)$
C. at least one real root in $(0,1)$
D. none of these

Answer: B

- Watch Video Solution

27. A value of c for which the conclusion of Mean value theorem holds for the function $f(x)=\log _{e} x$ on the interval [1, 3] is

$$
\text { A. } \frac{1}{2} \log _{e} 3
$$

B. $\log _{3} e$
C. $\log _{e} 3$
D. $2 \log _{3} e$

Answer: D

D Watch Video Solution

28. For $f(x)=4 x^{3}+3 x^{2}-x-1$, the range of vaues

$$
\text { of } \frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}} i s
$$

A. $\left(-\infty,-\frac{5}{4}\right)$
B. $\left(-\infty,-\frac{7}{4}\right)$
C. $\left[-\frac{7}{4}, \infty\right)$

$$
\text { D. }\left[-\frac{5}{4}, \infty\right)
$$

Answer: C

- Watch Video Solution

29. Let $f(x)$ be a twice differentiable function for all real values of x and satisfies
$f(1)=1, f(2)=4, f(3)=9$. Then which of the following is definitely true? (a) $f^{\prime \prime}=2 \forall x \in(1,3)$

$$
\begin{align*}
& f^{\prime \prime}=f(x)=5 f \text { or somex } \in(2,3) \tag{c}\\
& f^{\prime \prime}=3 \forall x \in(2,3) \text { (d) } f^{\prime \prime}=2 f \text { or somex } \in(1,3)
\end{align*}
$$

$$
\text { A. } f^{\prime \prime}(x)=2 \forall x \in(1,3)
$$

$$
\text { B. } f^{\prime \prime}(x)=f(x) 5 \text { for some } x \in(2,3)
$$

C. $f^{\prime \prime}(x)=3 \forall x \in(2,3)$
D. $f^{\prime \prime}(x)=2$ for some $x \in(1,3)$

Answer: D

- Watch Video Solution

30. The value of c in Largrange's theorem for the function $f(x)=\log _{e} \sin x$ in the interval $[\pi / 6,5 \pi / 6]$ is
A. $\pi / 4$
B. $\pi / 2$
C. $2 \pi / 3$
D. none of these

Answer: B

- Watch Video Solution

31. In which of the following function Rolle's theorem is applicable?
A. $f(x)=\left\{\begin{array}{ll}x & 0 \leq x<1 \\ 0 & x=1\end{array}\right.$ on $[0,1]$
B. $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & -\pi \leq x<0 \\ 0 & x=0\end{array}\right.$ on $[-\pi, 0]$
C. $f(x) \frac{x^{2}-x-6}{x-1} o n[-2,3]$
D. $f(x)=\left\{\begin{array}{ll}\frac{x^{3}-2 x^{3}-5 x+6}{x-1} & \text { if } x \neq 1 \\ -6 & \text { if } x=1\end{array}\right.$ on $[-2,3]$

Answer: D

- Watch Video Solution

32. Let $f^{\prime}(x)=e^{x \wedge} 2$ and $f(0)=10$. If $A<\mathrm{f}(1)<\mathrm{B}$ can be concluded from mean value theorem then the value of $A-B$ will be
A. e
B. $1-e$
C. $e-1$
D. $1+e$

- Watch Video Solution

33. If $f(x) \operatorname{andg}(x)$ are differentiable functions for
$0 \leq x \leq 1$ such that
$f(0)=10, g(0)=2, f(1)=2, g(1)=4$, then in the interval $\quad(0,1)$. (a) $\quad f^{\prime}(x)=0 f$ or all
$f^{\prime}(x)+4 g^{\prime}(x)=0 \quad$ for at least one x
$f(x)=2 g^{\prime}(x)$ for at most one x (d) none of these
A. $f(x)=0$ for all x
B. $f(x)+4 g^{\prime}(x)=0$ for at least one x
C. $f(x)=2 g^{\prime}(x)$ for at most one x
D. none of these

- Watch Video Solution

34. A continuous and differentiable function $y=f(x)$
is such that its graph cuts line $y=m x+c$ at n distinct points. Then the minimum number of points at which $f^{\prime \prime}(x)=0$ is/are $n-1$ (b) $n-3$ (c) $n-2$ (d)
cannot say
A. $n-1$
B. $n-3$
C. $n-2$
D. cannot say

Answer: C

- Watch Video Solution

35. A man 2 m tall, walks at the rate of $1 \frac{2}{3} \mathrm{~m} / \mathrm{sec}$ towards a street light which is $5 \frac{1}{3} \mathrm{~m}$ above the ground. At what rate is tip of his shadow moving? At what rate is the length of the shadow changing when he is $3 \frac{1}{13} m$ from the base of the light?
A. $\frac{1}{4}$
B. $\frac{-1}{2}$
C. $-1 \frac{1}{4}$
D. $-\frac{1}{8}$

Answer: D

- Watch Video Solution

36. A man 2 m tall, walks at the rate of $1 \frac{2}{3} \mathrm{~m} / \mathrm{sec}$ towards a street light which is $5 \frac{1}{3} \mathrm{~m}$ above the ground. At what rate is tip of his shadow moving? At what rate is the length of the shadow changing when he is $3 \frac{1}{13} m$ from the base of the light?
A. c^{2}
B. $2 c^{2}$
C. $-3 c^{2}$
D. $12 c^{2}$

Answer: D

- Watch Video Solution

Multiple Correct Answer Type

1. Points on the curve $f(x)=\frac{x}{1-x^{2}}$ where the tangent is inclined at an angle of $\frac{\pi}{4}$ to the x-axis are
(a) $(0,0) \quad$ (b) $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right) \quad$ (c) $\left(-2, \frac{2}{3}\right)$
$\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$
A. $(0,0)$
B. $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)$
C. $\left(-2, \frac{2}{3}\right)$
D. $\left(\sqrt{3},-\frac{\sqrt{3}}{2}\right)$

Answer: A::B::D

- Watch Video Solution

2. For the curve $y=c e^{x / a}$, which one of the following is incorrect?
A. sub-tangent is constant
B. sub-normal varies as the square of the ordinate
C. tangent at $\left(x_{1}, y_{1}\right)$ on the curve intersects the x axis at a distance of $\left(x_{1}-a\right)$ from the origin

D. equaltion of the normal at the point where the

 curve cuts y - axis is cyl $+a x=c^{2}$
Answer: A::B::C::D

- Watch Video Solution

3. Let the parabolas $y=x(c-x) a n d y=x^{2}+a x+b$ touch each other at the point $(1,0)$. Then

$$
\begin{array}{ll}
a+b+c=0 & \text { (b) } \quad a+b=2 \quad \text { (c) } \quad b-c=1 \\
a+c=-2 \tag{a}
\end{array}
$$

A. $a+b+c=0$
B. $a+b=2$
C. $b-c=1$
D. $a+c=-2$

Answer: A::C::D

- Watch Video Solution

4. The angle formed by the positive $y-a \xi s$ and the tangent to $y=x^{2}+4 x-17 a t\left(\frac{5}{2},-\frac{3}{4}\right) \quad$ is $\tan ^{-1}(9)$ (b) $\frac{\pi}{2}-\tan ^{-1}(9) \frac{\pi}{2}+\tan ^{-1}(9)$ (d) none of these
A. $\tan ^{-1}(9)$
B. $\frac{\pi}{2}-\tan ^{-1}(9)$
C. $\frac{\pi}{2}+\tan ^{-1}(9)$
D. none of these

Answer: B::C

- Watch Video Solution

5. Which of the following pair(s) of curves is/are ortogonal?

$$
\begin{equation*}
\text { (a) } \quad y^{2}=4 a x, y=e^{-x / 2 a} \tag{b}
\end{equation*}
$$

$y^{2}=4 a x, x^{2}=4 \operatorname{ayat}(0,0)$ (c) $x y=a^{2}, x^{2}-y^{2}=b^{2}$
(d) $y=a x, x^{2}+y^{2}=c^{2}$
A. $y^{2}=4 a x, y=e^{-x / 2 a}$
B. $y^{2}=4 a x, x^{2}=4 a y a t(0,0)$
C. $x y=a^{2}, x^{2}-y^{2}=b^{2}$
D. $y=a x, x^{2}+y^{2}=c^{2}$

Answer: A::B::C::D

- Watch Video Solution

6. The coordinates of the point(s) on the graph of the function $f(x)=\frac{x^{3}}{x}-\frac{5 x^{2}}{2}+7 x-4$, where the tangent drawn cuts off intercepts from the coordinate axes which are equal in magnitude but opposite in sign, are (a) $\left(2, \frac{8}{3}\right)$ (b) $\left(3, \frac{7}{2}\right)$ (c) $\left(1, \frac{5}{6}\right)$ (d) none of these
A. $(2,8 / 3)$
B. $(3,7 / 2)$
C. $(1,5 / 6)$
D. none of these

Answer: A::B

- Watch Video Solution

7. The abscissa of a point on the curve $x y=(a+x)^{2}$, the normal which cuts off numerically equal intercepts from the coordinate axes, is $-\frac{1}{\sqrt{2}}$ (b) $\sqrt{2} a$ (c) $\frac{a}{\sqrt{2}}$
$-\sqrt{2} a$
A. $-\frac{a}{\sqrt{2}}$
B. $\sqrt{2} a$
C. $\frac{a}{\sqrt{2}}$
D. $-\sqrt{2} a$

Answer: A::C

- Watch Video Solution

8. The angle between the tangents at any point P and the line joining P to the orgin, where P is a point on the curve $\ln \left(x^{2}+y^{2}\right)=k \tan ^{1-} \frac{y}{x}, c$ is a constant, is
A. independent of x
B. independent of y
C. independent of x but dependent on y
D. independent of y but dependent on x

Answer: A::B

D Watch Video Solution

9. If OT and ON are perpendiculars dropped from the origin to the tangent and normal to the curve $x=a \sin ^{3} t, y=a \cos ^{3} t$ at an arbitrary point, then
A. $4 O T^{2}+O N^{2}=a^{2}$
B. $\left|\frac{y}{\cos t}\right|$
C. the length of the normal is $\left|\frac{y}{\sin t}\right|$
D. none of these

Answer: A::B::C

- Watch Video Solution

10.

$C_{1}: y=x^{2} \sin 3 x, C_{2}: y=x^{2}$ and $C_{3}: y=-y^{2}$,
then
A. C_{1} touches C_{2} at infinite points
B. C_{1} touches C_{3} at infinite points
C. C_{1} and C_{2} and C_{1} and C_{3} meet at alternate points

D. none of these

Answer: A::B

D Watch Video Solution

11. If the line $\mathrm{x} \cos \theta+y \sin \theta=P$ is the normal to the
curve $(x+a) y=1$, then θ may lie in
A. I quadrant
B. Il quadrant
C. III quadrant
D. IV quadrant

Answer: B::D

- Watch Video Solution

12. Common tagent (s) to $y=x^{3}$ and $x=y^{3}$ is/are

> A. $x-y=\frac{1}{\sqrt{3}}$
> B. $x-y=-\frac{1}{\sqrt{3}}$
> C. $x-y=\frac{2}{3 \sqrt{3}}$
> D. $x-y=\frac{-2}{3 \sqrt{3}}$

Answer: C::D

$f(x)=4-\left(\frac{1}{2}-x\right)^{\frac{2}{3}}, g(x)=\left\{\frac{\tan [x]}{x}, x \neq 01, x=0\right.$
$h(x)=\{x\}, k(x)=5^{(\log)_{2}(x+3)} \quad$ Then in $\quad[0,1]$,
lagranges mean value theorem is not applicable to
(where [.] and \{.\} represents the greatest integer
functions and fractional part functions, respectively). f
(b) g (c) k (d) h
A. f
B. g
C. k
D. h

Answer: A::B::D

- Watch Video Solution

14. Let $f(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x$, where a_{i} 's are real and $f(x)=0$ has a positive root α_{0}. Then $f^{\prime}(x)=0$ has a positive root α_{1} such that ${ }^{\circ} 0$
A. $\mathrm{f}^{\prime}(\mathrm{x})=0$ has a root α_{1} such that $<\alpha_{1}<\alpha_{0}$
B. $f^{\prime}(x)=0$ has at least one real root
C. $f^{\prime \prime}(x)=0$ has at least one real root
D. none of these
(-) Watch Video Solution
