©゙doubtnut

MATHS

BOOKS - CENGAGE PUBLICATION

APPLICATIONS OF DERIVATIVES

Single Correct Answer Type

1. The equation of the normal to the curve parametrically represented by $x=t^{2}+3 t-8$ and $y=2 t^{2}-2 t-5$ at the point $P(2,-1)$ is
A. $2 x+3 y-1=0$
B. $6 x-7 y-11=0$
C. $7 x+6 y-8=0$
D. $3 x+y-1=0$

Answer: C

- View Text Solution

2. In the curve $y=x^{3}+a x$ and $y=b x^{2}+c$ pass through the point ($-1,0$) and have a common tangent line at this point then the value of $a+b+c$ is
A. 0
B. 1
C. -3
D. -1

Answer: D

3. If the function $f(x)=x^{4}+b x^{2}+8 x+1$ has a horizontal tangent and a point of inflection for the same value of x then the value of b is equal to -1 (b) 1 (c) 6 (d) -6
A. -2
B. -6
C. 6
D. 3

Answer: B

- View Text Solution

4. Let $f(x)=x^{3}+x+1$ and let $\mathrm{g}(\mathrm{x})$ be its inverse function then equation of the tangent to $y=g(x)$ at $\mathrm{x}=3$ is
A. $x-4 y+1=0$
B. $x+4 y-1=0$
C. $4 x-y+1=0$
D. $4 x+y-1=0$

Answer: A

- View Text Solution

5. A curve is represented parametrically by the equations $x=t+e^{a t}$ and $y=-t+e^{a t}$ when $t \in R$ and $a>0$. If the curve touches the axis of x at the point A, then the coordinates of the point A are
A. $(1,0)$
B. $(2 e, 0)$
C. $(e, 0)$
D. $(1 / e, 0)$

Answer: B

- View Text Solution

6. The equation of the straight lines which are both tangent and normal to the curve $27 x^{2}=4 y^{3}$ are
A. $x= \pm \sqrt{2}(y-2)$
B. $x= \pm \sqrt{3}(y-2)$
C. $x= \pm \sqrt{2}(y-3)$
D. $x= \pm \sqrt{3}(y-3)$

Answer: A

7. If the tangent at $(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at P, then find coordinates of P.
A. $(4,4)$
B. $(2,0)$
C. $(9 / 4,3 / 8)$
D. $\left(3,3^{1 / 2}\right)$

Answer: C

- View Text Solution

8. A curve with equation of the form $y=a x^{4}+b x^{3}+c x+d$ has zero gradient at the point $(0,1)$ and also touches the $x-$ axis at the point $(-1,0)$ then the value of x for which the curve has a negative gradient are: $x \geq-1$ b. $x<1$ c. $x<-1$ d. $-1 \leq x \leq 1$
A. $x>-1$
B. $x>1$
C. $x<-1$
D. $-1 \leq x \leq 1$

Answer: C

- View Text Solution

9. find all the lines that pass through the point $(1,1)$ and are tangent to the curve represent parametrically as $x=2 t-t^{2}$ and $y=t+t^{2}$
A. $\frac{2 \sqrt{43}}{9}$
B. 2
C. 3
D. $\frac{2 \sqrt{53}}{9}$

Answer: D

- View Text Solution

10. The value of parameter t so that the line $(4-t) x+t y+\left(a^{3}-1\right)=0$ is normal to the curve $\mathrm{xy}=1$ may lie in the interval
A. $(1,4)$
B. $(-\infty, 0) \cup(4, \infty)$
C. $(-4,4)$
D. $[3,4]$

Answer: B

11. The tangent at any point on the curve $x=a t^{3} . y=a t^{4}$ divides the abscissa of the point of contact in the ratio m:n, then $|n+m|$ is equal to (m and n are co-prime)
A. $1 / 4$
B. $3 / 4$
C. $3 / 2$
D. $2 / 5$

Answer: B

- View Text Solution

12. The length of the sub-tangent to the hyperbola $x^{2}-4 y^{2}=4$ corresponding to the normal having slope unity is $\frac{1}{\sqrt{k}}$, then the value of k is
A. 1
B. 2
C. 3
D. 4

Answer: C

- View Text Solution

13. Cosine of the acute angle between the curve $y=3^{x-1} \log _{e} x$ and $y=x^{x}-1$, at the point of intersection $(1,0)$ is
A. 0
B. 1
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{2}$

Answer: B

- View Text Solution

14. Acute angle between two curve $x^{2}+y^{2}=a^{2} \sqrt{2}$ and $x^{2}-y^{2}=a^{2}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. none of these

Answer: C

- View Text Solution

15. The minimum distance between a point on the curve $y=e^{x}$ and a point on the curve $y=\log _{e} x$ is
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 3
D. $2 \sqrt{2}$

Answer: B

- View Text Solution

16. Tangents are drawn from origin to the curve $y=\sin +\cos x$
$\hat{A} \cdot T h e n ~ t h e i r ~ p o i n t s ~ o f ~ c o n t a c t ~ l i e ~ o n ~ t h e ~ c u r v e ~$
A. $\frac{1}{x^{2}}+\frac{2}{y^{2}}=1$
B. $\frac{2}{x^{2}}-\frac{1}{y^{2}}=1$
C. $\frac{2}{x^{2}}+\frac{1}{y^{2}}=1$
D. $\frac{2}{y^{2}}-\frac{1}{x^{2}}=1$

Answer: D

- View Text Solution

17. If $3 x+2 y=1$ is a tangent to $y=f(x)$ at $x=1 / 2$, then
$\lim _{x \rightarrow 0} \frac{x(x-1)}{f\left(\frac{e^{2 x}}{2}\right)-f\left(\frac{e^{-2 x}}{2}\right)}$
A. $1 / 3$
B. $1 / 2$
C. $1 / 6$
D. $1 / 7$
18. Distance of point P on the curve $y=x^{3 / 2}$ which is nearest to the point $M(4,0)$ from origin is
A. $\sqrt{\frac{112}{27}}$
B. $\sqrt{\frac{100}{27}}$
C. $\sqrt{\frac{101}{9}}$
D. $\sqrt{\frac{112}{9}}$

Answer: A

- View Text Solution

19. If the equation of the normal to the curve $y=f(x) a t x=0$ is
$3 x-y+3=0$ then the value of
$\lim _{x \rightarrow 0} \frac{x^{2}}{\left\{f\left(x^{2}\right)-5 f\left(4 x^{2}\right)+4 f\left(7 x^{2}\right)\right\}}$ is
A. -3
B. $1 / 3$
C. 3
D. $-1 / 3$

Answer: D

- View Text Solution

20. The rate of change of $\sqrt{x^{2}+16}$ with respect to $\frac{x}{x-1}$ at $x=3$ is
A. 1
B. $\frac{11}{5}$
C. $-\frac{12}{5}$
D. -3

- View Text Solution

21. The eccentricity of the ellipse $3 x^{2}+4 y^{2}=12$ is decreasing at the rate of 0.1 per sec.The time at which it will coincide with auxiliary circle is:
A. 2 seconds
B. 3 seconds
C. 5 seconds
D. 6 seconds

Answer: C

- View Text Solution

22. A particle moves along the parabola $y=x^{2}$ in the first quadrant in such a way that its x-coordinate (measured in metres) increases at a rate of $10 \mathrm{~m} / \mathrm{sec}$. If the angle of inclination θ of the line joining the particle to the origin change, when $x=3 \mathrm{~m}$, at the rate of $\mathrm{krad} / \mathrm{sec}$., then the value of k is
A. 1
B. 2
C. $1 / 2$
D. $1 / 3$

Answer: A
23. The rate of change of volume of a sphere is equal to the rate of change of its radius, then its radius is equal to
A. 1
B. 2
C. 0.5
D. none of these

Answer: B

- View Text Solution

24. Water is dropped at the rate of $2 m^{2} / s$ into a cone of semivertical angel of 45°. The rate at which periphery of water surface changes when height of water in the cone is 2 m , is
A. $0.5 m / s$
B. $2 m / s$
C. $3 m / s$
D. $1 m / s$

Answer: D

- View Text Solution

25. Suppose that water is emptied from a spherical tank of radius 10 cm . If the depth of the water in the tank is 4 cm and is decreasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$, then the radius of the top surface of water is decreasing at the rate of
A. 1
B. $2 / 3$
C. $-3 / 2$
D. 2

- View Text Solution

26. The altitude of a cone is 20 cm and its semi-vertical angle is 30°. If the semi-vertical angle is increasing at the rate of 2^{0} per second, then the radius of the base is increasing at the rate of (a) 30
$\mathrm{cm} / \mathrm{sec}$
(b) $\frac{160}{3} \mathrm{~cm} / \mathrm{sec}$
(c) $10 \mathrm{~cm} / \mathrm{sec}$
(d) $160 \mathrm{~cm} / \mathrm{sec}$
A. $30 \mathrm{~cm} / \mathrm{sec}$
B. $\frac{160}{3} \mathrm{~cm} / \mathrm{sec}$
C. $10 \mathrm{~cm} / \mathrm{sec}$
D. $160 \mathrm{~cm} / \mathrm{sec}$

Answer: B

27. Let the equation of a curve be $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$. If θ changes at a constant rate k then the rate of change of the slope of the tangent to the curve at $\theta=\frac{\pi}{3}$ is (a) $\frac{2 k}{\sqrt{3}}$ (b) $\frac{k}{\sqrt{3}}$ (c) k (d) none of these
A. $2 k / \sqrt{3}$
B. $k / \sqrt{3}$
C. k
D. none of these

Answer: D

- View Text Solution

28.

Consider
$f(x)=|1-x|, 1 \leq x \leq 2$ and $g(x)=f(x)+b \sin . \frac{\pi}{2} x, 1 \leq x \leq 2$
then which of the following is correct?
A. Rolle's theorem is applicable to both f and g with $b=\frac{3}{2}$.
B. LMVT is not applicable to f and Rolle's theorem is applicable to g with $b=\frac{1}{2}$
C. LMVT is applicable to f and Rolle's theorem is applicable to g with $\mathrm{b}=1$.
D. Rolle's theorem is not applicable to both f and g for any real b.

Answer: C

- View Text Solution

29. If $c=\frac{1}{2}$ and $f(x)=2 x-x^{2}$, then interval of x in which LMVT is applicable, is
A. $(1,2)$
B. $(-1,1)$
C. $(0,1)$
D. $(2,1)$

Answer: C

- View Text Solution

30. If a twice differentiable function $\mathrm{f}(\mathrm{x})$ on (a, b) and continuous on [a, b] is such that $f^{\prime \prime}(x)<0$ for all $x \in(a, b)$ then for any
$c \in(a, b), \frac{f(c)-f(a)}{f(b)-f(c)}>$
A. $\frac{b-c}{c-a}$
B. $\frac{c-a}{b-c}$
C. $(b-c)(c-a)$
D. $\frac{1}{(b-c)(c-a)}$

Answer: B

- View Text Solution

31. Let $a, n \in N$ such that $a \geq n^{3}$. Then $\sqrt[3]{a+1}-\sqrt[3]{a}$ is always
A. less than $\frac{1}{3 n^{2}}$
B. less than $\frac{1}{2 n^{3}}$
C. more than $\frac{1}{n^{3}}$
D. more than $\frac{1}{4 n^{2}}$

Answer: A
32. Given $f^{\prime}(1)=1$ and $f(2 x)=f(x) \forall x>0$. Iff $^{\prime}(x)$ is differentiable, then there exists a number $c \in(2,4)$ such that $f^{\prime \prime}(c)$ equal
A. $1 / 4$
B. $-1 / 2$
C. $-1 / 4$
D. $-1 / 8$

Answer: D

D Watch Video Solution

Multiple Correct Answer Type

1. Equation of a line which is tangent to both the curve $y=x^{2}+1$ and $y=x^{2} \quad$ is $\quad y=\sqrt{2} x+\frac{1}{2}$
(b) $y=\sqrt{2} x-\frac{1}{2}$
$y=-\sqrt{2} x+\frac{1}{2}$ (d) $y=-\sqrt{2} x-\frac{1}{2}$
A. $y=\sqrt{2} x-\frac{1}{2}$
B. $y=\sqrt{2} x+\frac{1}{2}$
C. $y=-\sqrt{2} x+\frac{1}{2}$
D. $y=-\sqrt{2} x-\frac{1}{2}$

Answer: $\mathrm{B}:: \mathrm{C}:: \mathrm{D}$

D View Text Solution

2. For the functions defined parametrically by the equations

$$
\begin{aligned}
& f(t)=x=\left\{\begin{array}{ll}
2 t+t^{2} \sin . \frac{1}{t} & t \neq 0 \\
0 & t=0
\end{array}\right. \text { and } \\
& g(t)=y= \begin{cases}\frac{1}{t} \operatorname{sint}^{2} & t \neq 0 \\
0 & t=0\end{cases}
\end{aligned}
$$

A. equation of tangent at $\mathrm{t}=0$ is $x-2 y=0$
B. equation of normal at $\mathrm{t}=0$ is $2 x+y=0$
C. tangent does not exist at $\mathrm{t}=0$
D. normal does not exist at $t=0$

Answer: A::B

- View Text Solution

3. Prove that the segment of the normal to the curve $x=2 a \sin t+a \sin t \cos ^{2} t ; y=-a \cos ^{3} t$ contained between the co-ordinate axes is equal to $2 a$.
A. normal is inclined at an angle $\frac{\pi}{2}+t$ with x-axis.
B. normal is inclined at an angle t with x-axis.
C. portion of normal contained between the co-ordinate axes is
equal to 2 a .
D. portion of normal containned between the co-ordinate axes is equal to 4 a .

Answer: A::C

- View Text Solution

4. The curve $y=a x^{3}+b x^{2}+c x$ is inclined at 45° to x-axis at $(0,0)$ but it touches x-axis at $(1,0)$, then $a+b+c+10$ is
A. $f^{\prime}(1)=0$
B. $f^{\prime \prime}(1)=2$
C. $\mathrm{f}^{\prime \prime}(2)=12$
D. $f(2)=2$

- View Text Solution

5. Determine the value of p such that the subtsngent and subnormal are equal for the curve $y=e^{p x}+p x$ at the point $(0,1)$.
A. $\frac{L_{S T}}{2010}=\frac{2010}{L_{S N}}$
B. $\left|\frac{L_{T}}{L_{N}} \sqrt{\frac{L_{S N}}{L_{S T}}}\right|=\mathrm{constant}$
C. $1-L_{S T} L_{S N}=\frac{2000}{2010}$
D. $\left(\frac{L_{T}+L_{N}}{L_{T}-L_{N}}\right)^{2}=\frac{L_{S T}}{L_{S N}}$

Answer: A: B

6. Which of the following pair (s) is / are orthogonal ?
A. $16 x^{2}+y^{2}=c$ and $y^{16}=k x$
B. $y=x+c e^{-x}$ and $x+2=y+k e^{-y}$
C. $y=c x^{2}$ and $x^{2}+2 y^{2}=k$
D. $x^{2}-y^{2}=c$ and $x y=k$

Answer: A::B::C::D

- View Text Solution

7. Let $f(x)=\left|\begin{array}{ccc}1 & 1 & 1 \\ 3-x & 5-3 x^{2} & 3 x^{3}-1 \\ 2 x^{2}-1 & 3 x^{5}-1 & 7 x^{8}-1\end{array}\right|$ then the equation of
$f(x)=0$ has
A. $f(x)=0$ has at least two real roots
B. $f^{\prime}(x)=0$ has at least one real root.
C. $f(x)$ is many-one function
D. none of these

Answer: A::B::C

D Watch Video Solution

8. Which of the following is correct ?
A. $\frac{\tan ^{-1} x-\tan ^{-1} y}{x-y} \leq 1 \forall x, y \in R,(x \neq y)$
B. $\frac{\sin ^{-1} x-\sin ^{-1} y}{x-y}>1 \forall x, y \in[-1,1], x \neq y$
C. $\frac{\cos ^{-1} x-\cos ^{-1} y}{x-y}<1 \forall x, y \in[-1,1], x \neq y$
D. $\frac{\cot ^{-1} x-\cot ^{-1} y}{x-y}<1 \forall x, y \in R, x \neq y$

Answer: A::B

Comprehension Type

1. A lamp post of length 10 meter placed at the end A of a ladder $A B$ of length 13 meters, which is leaning against a vertical wall as shown in figure and its base slides away from the wall. At the instant base B is 12 m from the vertical wall, the base B is moving at the rate of $5 \mathrm{~m} / \mathrm{sec}$. A man (M) of height 1.5 meter standing at a distance of 15 m from the vertical wall.

Rate at which θ decreases, when the base B is 12 m from the vertical wall, is
A. $1 \mathrm{rad} / \mathrm{sec}$
B. $2 \mathrm{rad} / \mathrm{sec}$
C. $5 \mathrm{rad} / \mathrm{sec}$
D. $1 / 2 \mathrm{rad} / \mathrm{sec}$

Answer: A

D View Text Solution

2. A lamp post of length 10 meter placed at the end A of a ladder $A B$ of length 13 meters, which is leaning against a vertical wall as shown in figure and its base slides away from the wall. At the instant base B is 12 m from the vertical wall, the base B is moving at the rate of $5 \mathrm{~m} / \mathrm{sec}$. A man (M) of height 1.5 meter standing at a distance of 15 m from the vertical wall.

The rate at which the length of shadow of man increases, when the base B is 12 m from vertical wall, is
A. $15 \mathrm{~m} / \mathrm{sec}$
B. $40 / 27 \mathrm{~m} / \mathrm{sec}$
C. $15 / 2 \mathrm{~m} / \mathrm{sec}$
D. $5 \mathrm{~m} / \mathrm{sec}$

Answer: B

- View Text Solution

3. Let $f(x)$ be a function such that its derovative $f^{\prime}(x)$ is continuous in [a, b] and differentiable in (a, b). Consider a function $\phi(x)=f(b)-f(x)-(b-x) f^{\prime}(x)-(b-x)^{2}$ A. If Rolle's theorem is applicable to $\phi(x)$ on, [a,b], answer following questions. If there exists some unmber $c(a$ lt c it b) such that $\phi^{\prime}(c)=0$ and $f(b)=f(a)+(b-a) f^{\prime}(a)+\lambda(b-a)^{2} f^{\prime \prime}(c)$, then λ is
A. 1
B. 0
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer: C

- Watch Video Solution

4. Let $f(x)$ be a function such that its derovative $f^{\prime}(x)$ is continuous in $[\mathrm{a}, \mathrm{b}]$ and differentiable in (a, b). Consider a function $\phi(x)=f(b)-f(x)-(b-x) f^{\prime}(x)-(b-x)^{2}$ A. If Rolle's theorem is applicable to $\phi(x)$ on, [a,b], answer following questions. If there exists some unmber $c(a$ lt c it b) such that $\phi^{\prime}(c)=0$ and $f(b)=f(a)+(b-a) f^{\prime}(a)+\lambda(b-a)^{2} f^{\prime \prime}(c)$, then λ is
A. $1 / 2$
B. 2
C. 3
D. does not exist

Answer: C

- Watch Video Solution

5. Let $f(x)$ be a function such that its derovative $f^{\prime}(x)$ is continuous in [a, b] and differentiable in (a, b). Consider a function $\phi(x)=f(b)-f(x)-(b-x) f^{\prime}(x)-(b-x)^{2} \mathrm{~A} . \quad$ If \quad Rolle's theorem is applicable to $\phi(x)$ on, [a,b], answer following questions. If there exists some unmber $c(a$ lt c lt b) such that $\phi^{\prime}(c)=0$ and $f(b)=f(a)+(b-a) f^{\prime}(a)+\lambda(b-a)^{2} f^{\prime \prime}(c)$, then λ is
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. $\frac{1}{4}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

Subjective Type

1. Prove that for $\lambda>1$, the equation $x \log x+x=\lambda$ has least one solution in $[1, \lambda]$.

- View Text Solution

2. If $f(x)$ and $g(x)$ are continuous and differentiable functions, then prove that there exists $c \in[a, b]$ such that $\frac{f^{\prime}(c)}{f(a)-f(c)}+\frac{g^{\prime}(c)}{g(b)-g(c)}=1$.
