© 'doubtnut

MATHS

BOOKS - CENGAGE PUBLICATION

COMPLEX NUMBERS

Single Correct Answer

100

1. The value of $\sum_{n=0} i^{n}$ equals (where $i=\sqrt{-1}$)
A. -1
B. i
C. 1
D. $-i$

Answer: C

- Watch Video Solution

2. Suppose n is a natural number such that $\left|i+2 i^{2}+3 i^{3}+\ldots \ldots+n i^{n}\right|=18 \sqrt{2}$ where i is the square root of -1 . Then n is
A. 9
B. 18
C. 36
D. 72

Answer: C

- Watch Video Solution

3. Let $i=\sqrt{-1}$ Define a sequence of complex number by
$z_{1}=0, z_{n+1}=\left(z_{n}\right)^{2}+i$ for $n \geq 1$. In the complex plane, how far from the origin is z_{111} ?
A. 1
B. 2
C. 3
D. 4

Answer: B
4. The complex number, $z=$

$$
(-\sqrt{3}+3 i)(1-i)
$$

$$
(3+\sqrt{3} i)(i)(\sqrt{3}+\sqrt{3} i)
$$

A. lies on real axis
B. lies on imaginary axis
C. lies in first quadrant
D. lies in second quadrant

Answer: B

5. a, b, c are positive real numbers forming a G.P. If $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root, then prove that $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in A.P.
A. A. P.
B. G. P.
C. H. P.
D. None of these

Answer: A

6. Prove that the equation $Z^{3}+i Z-1=0$ has no real roots.
A. three real roots
B. one real roots
C. no real roots
D. no real or complex roots

Answer: C

D Watch Video Solution

7. If a, b are complex numbers and one of the roots of the equation $x^{2}+a x+b=0$ is purely real, whereas the other
is purely imaginary, prove that $a^{2}-(\bar{a})^{2}=4 b$.
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

8. If Z is a non-real complex number, then find the minimum value of $\left|\frac{I m z^{5}}{\operatorname{Im}^{5} Z}\right|$
A. -1
B. -2
C. -4
D. -5

Answer: C

- Watch Video Solution

9. If z_{1}, z_{2}, z_{3} are three complex number then prove that
$z_{1} \operatorname{Im}\left(\bar{z}_{2} \cdot z_{3}\right)+z_{2} \operatorname{Im}\left(\bar{z}_{3} \cdot z_{1}\right)+z_{3} \operatorname{Im}\left(\bar{z}_{1} \cdot z_{2}\right)=0$
A. 0
B. $z_{1}+z_{2}+z_{3}$
C. $z_{1} z_{2} z_{3}$
D. $\left(\frac{z_{1}+z_{2}+z_{3}}{z_{1} z_{2} z_{3}}\right)$

Answer: A

- Watch Video Solution

10. The modulus of $\frac{1+2 i}{1-(1-i)^{2}}$ are
A. $\sqrt{2}$
B. 1
C. 0
D. 2
11. If the argument of $(z-a)(\bar{z}-b)$ is equal to that $\left((\sqrt{3}+i) \frac{1+\sqrt{3} i}{1+i}\right)$ where a,b,c are two real number and z is the complex conjugate o the complex number z find the locus of z in the rgand diagram. Find the value of a and b so that locus becomes a circle having its centre at $\frac{1}{2}(3+i)$
A. A. $(3,2)$
B. B. $(2,1)$
C. C. $(2,3)$
D. D. $(2,4)$

Answer: B

- Watch Video Solution

12. If a complex number Z satisfies
$|z|^{2}+\frac{4}{(|z|)^{2}}-2\left(\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\right)-16=0$, then the maximum value of $|z|$ is
A. $\sqrt{6}+1$
B. 4
C. $2+\sqrt{6}$
D. 6

(Watch Video Solution

13. If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$, then $\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma$
$\sin (\alpha+\beta+\gamma)$ is equal to
A. 1
B. -1
C. 3
D. -3

Answer: C

- Watch Video Solution

14. The least value of $|z-3-4 i|^{2}+|z+2-7 i|^{2}+|z-5+2 i|^{2}$ occurs when $z=$
A. A. $1+3 i$
B. B. $3+3 i$
C. C. $3+4 i$
D. D. None of these

Answer: D

- Watch Video Solution

15. The roots of the equation $x^{4}-2 x^{2}+4=0$ are the vertices of a :
A. square inscribed in a circle of radius 2
B. rectangle inscribed in a circle of radius 2
C. square inscribed in a circle of radius $\sqrt{2}$
D. rectangle inscribed in a circle of radius $\sqrt{2}$

Answer: D

- Watch Video Solution

16. If z_{1}, z_{2} are complex numbers such that $\operatorname{Re}\left(z_{1}\right)=\left|z_{1}-2\right|, \operatorname{Re}\left(z_{2}\right)=\left|z_{2}-2\right|$ and $\arg \left(z_{1}-z_{2}\right)=\pi / 3$, then $\operatorname{Im}\left(z_{1}+z_{2}\right)=$
A. $2 / \sqrt{3}$
B. $4 / \sqrt{3}$
C. $2 / \sqrt{3}$
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

17.

If

$$
z=e^{\frac{2 \pi i}{5}},
$$

$1+z+z^{2}+z^{3}+5 z^{4}+4 z^{5}+4 z^{6}+4 z^{7}+4 z^{8}+5 z^{9}=$
A. 0
B. $4 z^{3}$
C. $5 z^{4}$
D. $-4 z^{2}$

Answer: C

- Watch Video Solution

18. If $z=(3+7 i)(a+i b)$, where $a, b \in Z-\{0\}$, is purely imaginery, then minimum value of $|z|$ is
A. 74
B. 45
C. 65
D. 58
19. Let z be a complex number satisfying $|z+16|=4|z+1|$. Then
A. $|z|=4$
B. $|z|=5$
C. $|z|=6$
D. $3<|z|<68$

Answer: A

- Watch Video Solution

20. If $|z|=1$ and $z^{\prime}=\frac{1+z^{2}}{z}$, then
A. z^{\prime} lie on a line not passing through origin
B. $\left|z^{\prime}\right|=\sqrt{2}$
C. $\operatorname{Re}\left(z^{\prime}\right)=0$
D. $\operatorname{Im}\left(z^{\prime}\right)=0$

Answer: D

D Watch Video Solution

21. a, b, c are three complex numbers on the unit circle
$|z|=1$, such that $a b c=a+b+c$ Then find the value of

$$
|a b+b c+c a|
$$

A. 3
B. 6
C. 1
D. 2

Answer: C

- Watch Video Solution

22. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ then value of
$\left|z_{1}-z_{3}\right|^{2}+\left|z_{3}-z_{1}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}$ cannot exceed
A. 6
B. 9
C. 12
D. none of these

Answer: B

- Watch Video Solution

23. Number of ordered pairs $(s),(a, b)$ of real numbers such that $(a+i b)^{2008}=a-i b$ holds good is
A. A. 2008
B. B. 2009
C. C. 2010
D. D. 1

Answer: C

- Watch Video Solution

24. The region represented by the inequality
$|2 z-3 i|<|3 z-2 i|$ is
A. A. the unit disc with its centre at $z=0$
B. B. the exterior of the unit circle with its centre at

$$
z=0
$$

C. C. the inerior of a square of side 2 units with its
centre at $z=0$
D. D. none of these

Answer: B

- Watch Video Solution

25. If ω is any complex number such that $z \omega=|z|^{2}$ and $|z-\bar{z}|+|\omega+\bar{\omega}|=4$, then as ω varies, then the area bounded by the locus of z is
A. 4 sq. units
B. 8 sq. units
C. 16 sq. units
D. 12 sq. units

Answer: B
26. Show that the equation $a z^{3}+b z^{2}+\bar{b} z+\bar{a}=0$ has a root α such that $|\alpha|=1, a, b, z$ and α belong to the set of complex numbers.
A. $1 / 4$
B. $1 / 2$
C. $5 / 4$
D. $3 / 4$

Answer: D

27. Let p and q are complex numbers such that $|p|+|q|<1$
. If z_{1} and z_{2} are the roots of the $z^{2}+p z+q=0$, then which one of the following is correct?
A. $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$
B. $\left|z_{1}\right|>1$ and $\left|z_{2}\right|>1$
C. If $\left|z_{1}\right|<1$, then $\left|z_{2}\right|>1$ and vice versa
D. Nothing definite can be said

Answer: A

D Watch Video Solution

28. If z and w are two complex numbers simultaneously satisfying the equations, $z^{3}+w^{5}=0$ and $z^{2} . \bar{w}^{4}=1$, then
A. z and w both are purely real
B. z is purely real and w is purely imaginery
C. w is purely real and z is purely imaginery
D. z and w both are imaginery

Answer: A

- Watch Video Solution

29. All complex numbers 'z' which satisfy the relation
$|z-|z+1||=|z+|z-1||$ on the complex plane lie on the
A. A. $y=x$
B. B. $y=-x$
C. C. circle $x^{2}+y^{2}=1$
D. D. line $x=0$ or on a line segment joining ($-1,0$) to
$(1,0)$

Answer: D

- Watch Video Solution

30. If z_{1}, z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$ and $i z_{1}=K z_{2}$, where $K \in R$, then the angle between $z_{1}-z_{2}$ and $z_{1}+z_{2}$ is
A. $\tan ^{-1}\left(\frac{2 K}{K^{2}+1}\right)$
B. $\tan ^{-1}\left(\frac{2 K}{1-K^{2}}\right)$
C. $-2 \tan ^{-1} K$
D. $2 \tan ^{-1} K$

Answer: D

- Watch Video Solution

31. If $z+\frac{1}{z}=2 \cos 6^{\circ}$, then $z^{1000}+\frac{1}{z^{1000}}+1$ is equal to
A. 0
B. 1
C. -1
D. 2

Answer: A

- Watch Video Solution

32. Let z_{1} and z_{2}, be two complex numbers with α and β as their principal arguments such that $\alpha+\beta>\pi$ then principal $\arg \left(z_{1} z_{2}\right)$ is given by:
A. $\alpha+\beta+\pi$
B. $\alpha+\beta-\pi$
C. $\alpha+\beta-2 \pi$
D. $\alpha+\beta$

Answer: C

- Watch Video Solution

33. Let $\arg \left(z_{k}\right)=\frac{(2 k+1) \pi}{n}$ where $k=1,2, \ldots \ldots \ldots$. If $\arg \left(z_{1}, z_{2}, z_{3}, \ldots \ldots \ldots \ldots z_{n}\right)=\pi$, then n must be of form $(m \in z)$
A. $4 m$
B. $2 m-1$
C. $2 m$
D. None of these

Answer: B
34. Suppose two complex numbers $z=a+i b, w=c+i d$ satisfy the equation $\frac{z+w}{z}=\frac{w}{z+w}$. Then
A. both a and c are zeros
B. both b and d are zeros
C. both b and d must be non zeros
D. at least one of b and d is non zero

Answer: D

35. If $|z|=1$ and $z \neq \pm 1$, then one of the possible value of $\arg (z)-\arg (z+1)-\arg (z-1)$, is
A. $-\pi / 6$
B. $\pi / 3$
C. $-\pi / 2$
D. $\pi / 4$

Answer: C

- Watch Video Solution

36. If $\arg \left(z^{3 / 8}\right)=\frac{1}{2} \arg \left(z^{2}+\bar{z}^{1 / 2}\right)$, then which of the following is not possible ?
A. $|z|=1$
B. $Z=\bar{Z}$
C. $\arg (z)=0$
D. None of these

Answer: D

- Watch Video Solution

37. Let z_{1} and z_{2} be any two non-zero complex numbers
such that $3\left|z_{1}\right|=2\left|z_{2}\right|$. If $z=\frac{3 z_{1}}{2 z_{2}}+\frac{2 z_{2}}{3 z_{1}}$, then
A. $-1 \leq R e z \leq 1$
B. $-2 \leq \operatorname{Rez} \leq 2$
C. $-3 \leq R e z \leq 3$
D. None of these

Answer: B

- Watch Video Solution

38. If $\alpha, \beta, \gamma \in\left\{1, \omega, \omega^{2}\right\}$ (where ω and ω^{2} are imaginery cube roots of unity), then number of triplets (α, β, γ) such
that $\left|\frac{a \alpha+b \beta+c \gamma}{a \beta+b \gamma+c \alpha}\right|=1$ is
A. 3
B. 6
C. 9
D. 12

Answer: C

- Watch Video Solution

39. The value of $\left(\sqrt{3}^{\frac{1}{3}}+\left(3^{5 / 6}\right) i\right)^{3}$ is (where $i=\sqrt{-1}$)
A. 24
B. -24
C. -22
D. -21

- Watch Video Solution

40. If $\omega \neq 1$ is a cube root of unity and $a+b=21$, $a^{3}+b^{3}=105$, then the value of $\left(a \omega^{2}+b \omega\right)\left(a \omega+b \omega^{2}\right)$ is be equal to
A. 3
B. 5
C. 7
D. 35

Answer: B

41. If $z=\frac{1}{2}(\sqrt{3}-i)$, then the least possible integral value of m such that $\left(z^{101}+i^{109}\right)^{106}=z^{m+1}$ is
A. 11
B. 7
C. 8
D. 9

Answer: D

- Watch Video Solution

42. If $y_{1}=\max \| z-\omega\left|-\left|z-\omega^{2}\right|\right|$, where $|z|=2$ and
$y_{2}=\max | | z-\omega\left|-\left|z-\omega^{2}\right|\right|$, where $|z|=\frac{1}{2}$ and ω and ω^{2}
are complex cube roots of unity, then
A. $y_{1}=\sqrt{3}, y_{2}=\sqrt{3}$
B. $y_{1}<\sqrt{3}, y_{2}=\sqrt{3}$
C. $y_{1}=\sqrt{3}, y_{2}<\sqrt{3}$
D. $y_{1}>3, y_{2}<\sqrt{3}$

Answer: C

D Watch Video Solution

43. Let I, ω and ω^{2} be the cube roots of unity. The least possible degree of a polynomial, with real coefficients having $2 \omega^{2}, 3+4 \omega, 3+4 \omega^{2}$ and $5-\omega-\omega^{2}$ as roots is -
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

44. Number of imaginary complex numbers satisfying the
equation, $z^{2}=\bar{z} 2^{1-|z|}$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

45. For the real parameter t,the locus of the complex number $z=\left(1-t^{2}\right)+i \sqrt{1+t^{2}}$ in the complex plane is
A. $\pi / 6$
B. $5 \pi / 12$
C. $7 \pi / 12$
D. $11 \pi / 12$

Answer: B

- Watch Video Solution

46. A root of unity is a complex number that is a solution
to the equation, $z^{n}=1$ for some positive integer nNumber of roots of unity that are also the roots of the equation $z^{2}+a z+b=0$, for some integer a and b is
A. 6
B. 8
C. 9
D. 10

Answer: B

- Watch Video Solution

47. If z is a complex number satisfying the equation
$z^{6}+z^{3}+1=0$. If this equation has a root $r e^{i \theta}$ with $90^{\circ}<0<180^{\circ}$ then the value of θ is
A. 100°
B. 110°
C. 160°
D. 170°

Answer: C
48. Suppose A is a complex number and $n \in N$, such that $A^{n}=(A+1)^{n}=1$, then the least value of n is 3 b .6 c .9 d. 12
A. 3
B. 6
C. 9
D. 12

Answer: B

49. If $1, z_{1}, z_{2}, z_{3}, \ldots, z_{n-1}$ are nth roots of unity, then show that $\left(1-z_{1}\right)\left(1-z_{2}\right) \ldots\left(1-z_{n-1}\right)=n$

- Watch Video Solution

50. If $|z-1-i|=1$, then the locus of a point represented by the complex number $5(z-i)-6$ is
A. circle with centre $(1,0)$ and radius 3
B. circle with centre ($-1,0$) and radius 5
C. line passing through origin
D. line passing through ($-1,0$)

Answer: B
51. Let $z \in C$ and if $A=\left\{z: \arg (z)=\frac{\pi}{4}\right\}$ and $B=\left\{z: \arg (z-3-3 i)=\frac{2 \pi}{3}\right\}$. Then $n\left(\begin{array}{ll}A & B\end{array}\right)=$
A. 1
B. 2
C. 3
D. 0

Answer: D

- Watch Video Solution

52. $\theta \in[0,2 \pi]$ and z_{1}, z_{2}, z_{3} are three complex numbers such that they are collinear and $(1+|\sin \theta|) z_{1}+(|\cos \theta|-1) z_{2}-\sqrt{2} z_{3}=0$. If at least one of the complex numbers z_{1}, z_{2}, z_{3} is nonzero, then number of possible values of θ is
A. Infinite
B. 4
C. 2
D. 8

Answer: B

53. Let ' z ' be a comlex number and ' a ' be a real parameter such that $z^{2}+a z+a^{2}=0$, then which is of the following is not true?
A. locus of z is a pair of straight lines
B. $|z|=|a|$
C. $\arg (z)= \pm \frac{2 \pi}{3}$
D. None of these

Answer: D

- Watch Video Solution

54. Let $z=x+i y$ Then find the locus of $P(z)$ such that $\frac{1+z}{z} \in R$
A. union of lines with equations $x=0$ and $y=-1 / 2$ but excluding origin.
B. union of lines with equations $x=0$ and $y=1$ /2but excluding origin.
C. union of lines with equations $x=-1 / 2$ and $y=0$ but excluding origin.
D. union of lines with equations $x=1 / 2$ and $y=0$ but excluding origin.

- Watch Video Solution

55. Let $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ are two distinct non-real complex numbers in the argand plane such that $\frac{z_{1}}{z_{2}}+\frac{\bar{z}_{1}}{z_{2}}=2$. The value of $|\angle A B O|$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. None of these

Answer: C

56. It is given that complex numbers z_{1} and z_{2} satisfy $\left|z_{1}\right|=2$ and $\left|z_{2}\right|=3$. If the included angled of their corresponding vectors is 60°, then find the value of $19\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|^{2}$.
A. 5
B. 6
C. 7
D. 8

Answer: C
57. If the points $A(z), B(-z), C(1-z)$ are the vertices of an equilateral triangle $A B C$ then $\operatorname{Re}(z)$ is
A. $\tan ^{-1}\left(\frac{\sqrt{15}}{5}\right)$
B. $\tan ^{-1}(\sqrt{15})$
C. $\tan ^{-1}\left(\frac{5}{\sqrt{15}}\right)$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

58. If $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are vertices of a triangle such that $\quad z_{3}=\frac{z_{2}-i z_{1}}{1-i}$ and $\quad\left|z_{1}\right|=3, \quad\left|z_{2}\right|=4 \quad$ and $\left|z_{2}+i z_{1}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then area of triangle $A B C$ is 5
A. $\frac{-}{2}$
B. 0
C. $\frac{25}{2}$
D. $\frac{25}{4}$

Answer: D

- Watch Video Solution

59. Let O, A, B be three collinear points such that
$O A . O B=1$. If O and B represent the complex numbers O
and z, then A represents
A. $\begin{array}{r}\frac{1}{\bar{Z}} \\ \text { B. } \frac{1}{Z}\end{array}$
C. \bar{z}
D. z^{2}

Answer: A

(D) Watch Video Solution
60. If the tangents at z_{1}, z_{2} on the circle $\left|z-z_{0}\right|=r$ intersect at z_{3}, then $\frac{\left(z_{3}-z_{1}\right)\left(z_{0}-z_{2}\right)}{\left(z_{0}-z_{1}\right)\left(z_{3}-z_{2}\right)}$ equals
A. 1
B. -1
C. i
D. $-i$

Answer: B

- Watch Video Solution

61. If z_{1}, z_{2} and z_{3} are the vertices of $\triangle A B C$, which is not right angled triangle taken in anti-clock wise direction
and z_{0} is the circumcentre, then
$\left(\frac{z_{0}-z_{1}}{z_{0}-z_{2}}\right) \frac{\sin 2 A}{\sin 2 B}+\left(\frac{z_{0}-z_{3}}{z_{0}-z_{2}}\right) \frac{\sin 2 C}{\sin 2 B}$ is equal to
A. 0
B. 1
C. -1
D. 2

Answer: C

D Watch Video Solution

62. Let P denotes a complex number $z=r(\cos \theta+i \sin \theta)$ on the Argand's plane, and Q denotes a complex number $\sqrt{2|z|^{2}}\left(\cos \left(\theta+\frac{\pi}{4}\right)+i \sin \left(\theta+\frac{\pi}{4}\right)\right)$. If ' O^{\prime} is the origin, then $\triangle O P Q$ is
A. isosceles but not right angled
B. right angled but not isosceles
C. right isosceles
D. equilateral

Answer: C

(D) Watch Video Solution

1. Complex numbers whose real and imaginary parts x and y are integers and satisfy the equation $3 x^{2}-|x y|-2 y^{2}+7=0$, Find the value of x and y.

- Watch Video Solution

2. If $a, b, c, d \in R$ and all the three roots of $a z^{3}+b z^{2}+c z+d=0$ have negative real parts, then
A. $a b>0$
B. $b c>0$
C. $a d>0$
D. $b c-a d>0$

Answer: A: B::C

- Watch Video Solution

3. Suppose three real numbers a, b, c are in G.P. Let
$z=\frac{a+i b}{c-i b}$. Then
A. $z=\frac{i b}{c}$
B. $z=\frac{i a}{b}$
C. $z=\frac{i a}{c}$
D. $z=0$

Answer: A::B
4. w_{1}, w_{2} be roots of $(a+\bar{c}) z^{2}+(b+\bar{b}) z+(\bar{a}+c)=0$. If $\left|z_{1}\right|<1,\left|z_{2}\right|<1$, then
A. $\left|w_{1}\right|<1$
B. $\left|w_{1}\right|=1$
C. $\left|w_{2}\right|<1$
D. $\left|w_{2}\right|=1$

Answer: B::D

- Watch Video Solution

5. A complex number z satisfies the equation $\left|Z^{2}-9\right|+\left|Z^{2}\right|=41$, then the true statements among the following are
A. $|Z+3|+|Z-3|=10$
B. $|Z+3|+|Z-3|=8$
C. Maximum value of $|Z|$ is 5
D. Maximum value of $|Z|$ is 6

Answer: A::C
6. Let a, b, c be distinct complex numbers with $|a|=|b|=|c|=1$ and z_{1}, z_{2} be the roots of the equation $a z^{2}+b z+c=0$ with $\left|z_{1}\right|=1$. Let P and Q represent the complex numbers z_{1} and z_{2} in the Argand plane with $\angle P O Q=\theta, o^{\circ}<180^{\circ}$ (where O being the origin).Then
A. $b^{2}=a c, \theta=\frac{2 \pi}{3}$
B. $\theta=\frac{2 \pi}{3}, P Q=\sqrt{3}$
C. $P Q=2 \sqrt{3}, b^{2}=a c$
D. $\theta=\frac{\pi}{3}, b^{2}=a c$

Answer: A::B

7. Let Z_{1} and Z_{2} be two complex numbers satisfying $\left|Z_{1}\right|=9$ and $\left|Z_{2}-3-4 i\right|=4$. Then the minimum value of $\left|Z_{1}-Z_{2}\right|$ is
A. $\left|Z_{4}\right|=1$
B. $\arg \left(Z_{1} Z_{4}\right)=-\pi / 2$
C. $\frac{Z_{5}}{\cos \left(\arg Z_{1}\right)}+\frac{Z_{6}}{\sin \left(\arg Z_{1}\right)}$ is purely real
D. $Z_{5}^{2}+\left(\bar{Z}_{6}\right)^{2}$ is purely imaginergy

Answer: A::B::C::D

- Watch Video Solution

8. If $\operatorname{Im}\left(\frac{z-1}{e^{\theta i}}+\frac{e^{\theta i}}{z-1}\right)=0$, then find the locus of z
A. a circle with unit radius
B. a circle with radius 3 units
C. a straight line through the point $(3,0)$
D. a parabola with the vertex $(3,0)$

Answer: A::C

D Watch Video Solution

9. If α Is the fifth root of unity, then, prove that :
$\log _{2}\left|1+\alpha+\alpha^{2}+\alpha^{3}-\left(\frac{1}{\alpha}\right)\right|=1$
10. If z_{1}, z_{2}, z_{3} are any three roots of the equation
$z^{6}=(z+1)^{6}$, then $\arg \left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)$ can be equal to
A. 0
B. π
C. $\frac{\pi}{4}$
D. $-\frac{\pi}{4}$

Answer: A::B

- Watch Video Solution

11. Let z_{1}, z_{2}, z_{3} are the vertices of $\triangle A B C$, respectively, such
that $\frac{z_{3}-z_{2}}{z_{1}-z_{2}}$ is purely imaginery number. A square on side $z_{1}-z_{2}$
$A C$ is drawn outwardly. $P\left(z_{4}\right)$ is the centre of square, then
A. $\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{4}\right|$
B. $\arg \left(\frac{z_{1}-z_{2}}{z_{4}-z_{2}}\right)+\arg \left(\frac{z_{3}-z_{2}}{z_{4}-z_{2}}\right)=+\frac{\pi}{2}$
C. $\arg \left(\frac{z_{1}-z_{2}}{z_{4}-z_{2}}\right)+\arg \left(\frac{z_{3}-z_{2}}{z_{4}-z_{2}}\right)=0$
D. z_{1}, z_{2}, z_{3} and z_{4} lie on a circle

Answer: C::D

Matching Column

1. Evaluate :
i^{-47}

D Watch Video Solution

Comprehension

1. Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities

$$
\begin{aligned}
& |Z-2| \leq|Z-4|, \quad|Z-3| \leq|Z+3|, \quad|Z-i| \leq|Z-3 i|, \\
& |Z+i| \leq|Z+3 i|
\end{aligned}
$$

Answer the followin questions:

Maximum of $\left|Z_{1}-Z_{2}\right|$ given that Z_{1}, Z_{2} are any two complex numbers lying in the region R is
A. 5
B. 3
C. 1
D. $\sqrt{13}$

Answer: D

D Watch Video Solution

2. Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities

$$
|Z-2| \leq|Z-4|, \quad|Z-3| \leq|Z+3|, \quad|Z-i| \leq|Z-3 i|,
$$

$|Z+i| \leq|Z+3 i|$

Answer the followin questions:

The maximum value of $|Z|$ for any Z in R is
A. 5
B. 14
C. $\sqrt{13}$
D. 12

Answer: A

D Watch Video Solution

3. Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities
$|Z-2| \leq|Z-4|$,
$|Z+i| \leq|Z+3 i|$
Answer the followin questions :
Minimum of $\left|Z_{1}-Z_{2}\right|$ given that Z_{1}, Z_{2} are any two complex numbers lying in the region R is
A. 0
B. 5
C. $\sqrt{13}$
D. 3

Answer: A
4. Let z_{1} and z_{2} be complex numbers such that $z_{1}^{2}-4 z_{2}=16+20 i$ and the roots α and β of $x^{2}+z_{1} x+z_{2}+m=0$ for some complex number m satisfies $|\alpha-\beta|=2 \sqrt{7}$.

The locus of the complex number m is a curve
A. A. straight line
B. B. circle
C. C. ellipse
D. D. hyperbola

Answer: B

5. Let z_{1} and z_{2} be complex numbers such that $z_{1}^{2}-4 z_{2}=16+20 i$ and the roots α and β of $x^{2}+z_{1} x+z_{2}+m=0$ for some complex number m satisfies $|\alpha-\beta|=2 \sqrt{7}$. The value of $|m|$,
A. 14
B. $2 \sqrt{7}$
C. $7+\sqrt{41}$
D. $2 \sqrt{6}-4$

Answer: C
6. Let z_{1} and z_{2} be complex numbers such that $z_{1}^{2}-4 z_{2}=16+20 i$ and the roots α and β of $x^{2}+z_{1} x+z_{2}+m=0$ for some complex number m satisfies $|\alpha-\beta|=2 \sqrt{7}$.

The maximum value of $|m|$ is
A. $7+\sqrt{41}$
B. $28-\sqrt{41}$
C. $\sqrt{41}$
D. $2 \sqrt{6}-4$

Answer: D

7. The locus of any point $P(z)$ on argand plane is
$\arg \left(\frac{z-5 i}{z+5 i}\right)=\frac{\pi}{4}$.
Then the length of the arc described by the locus of $P(z)$ is
A. $10 \sqrt{2} \pi$
B. $\frac{15 \pi}{\sqrt{2}}$
C. $\frac{5 \pi}{\sqrt{2}}$
D. $5 \sqrt{2} \pi$

Answer: B

- Watch Video Solution

8. The locus of any point $P(z)$ on argand plane is
$\arg \left(\frac{z-5 i}{z+5 i}\right)=\frac{\pi}{4}$.
Then the length of the arc described by the locus of $P(z)$ is
A. 62
B. 74
C. 136
D. 138

Answer: C

- Watch Video Solution

9. The locus of any point $P(z)$ on argand plane is
$\arg \left(\frac{z-5 i}{z+5 i}\right)=\frac{\pi}{4}$.
Then the length of the arc described by the locus of $P(z)$ is
A. $75 \pi+50$
B. 75π
C. $\frac{75 \pi}{2}+25$
D. $\frac{75 \pi}{2}$

Answer: A
10. A person walks $2 \sqrt{2}$ units away from origin in south west direction $\left(S 45^{\circ} W\right)$ to reach A, then walks $\sqrt{2}$ units in south east direction $\left(S 45^{\circ} E\right)$ to reach B. From B he travel is 4 units horizontally towards east to reach C.

Then he travels along a circular path with centre at origin through an angle of $2 \pi / 3$ in anti-clockwise direction to reach his destination D.

Position of D in argand plane is (w is an imaginary cube root of unity)
A. $-\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $-\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: C

- Watch Video Solution

11. A person walks $2 \sqrt{2}$ units away from origin in south west direction $\left(S 45^{\circ} \mathrm{W}\right)$ to reach A, then walks $\sqrt{2}$ units in south east direction $\left(S 45^{\circ} E\right)$ to reach B. From B he travel is 4 units horizontally towards east to reach C.

Then he travels along a circular path with centre at origin through an angle of $2 \pi / 3$ in anti-clockwise direction to reach his destination D.

Position of D in argand plane is (w is an imaginary cube root of unity)
A. $(3+i) \omega$
B. $-(1+i) \omega^{2}$
C. $3(1-i) \omega$
D. $(1-3 i) \omega$

Answer: C

- View Text Solution

Illustration

1. Evaluate :
(i) i^{135}
(ii) i^{-47}
(iii) $(-\sqrt{-1})^{4 n+3}, n \in N$
(iv) $\sqrt{-25}+3 \sqrt{-4}+2 \sqrt{-9}$

- View Text Solution

2. Find the value of $i^{n}+i^{n-1}+i^{n-2}+i^{n-3}$ for all $n \in N$

- Watch Video Solution

3. Find the value of $1+i^{2}+i^{4}+i^{6}+i^{8}$

- Watch Video Solution

4. Evaluate :

i^{124}

D Watch Video Solution

5. Evaluate :
i^{-34}
(D) Watch Video Solution
6. Evaluate :
i^{75}
7. Evaluate : i^{103}

- Watch Video Solution

8. Express each of the following in the standerd from
$a+i b$
$\frac{2+3 i}{3+2 i}$

D Watch Video Solution
9. Find the value of $(1+i)^{6}+(1-i)^{6}$
A. $16 i$
B. 0
C. $-16 i$
D. 1

Answer: B

D Watch Video Solution

10. If $\left(\frac{1+i}{1-i}\right)^{m}=1$, then find the least positive integral
value of m

- Watch Video Solution

11. Prove that the triangle formed by the points $1, \frac{1+i}{\sqrt{2}}$,and i as vertices in the Argand diagram is isosceles.

- Watch Video Solution

12. Find real q such that $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ is purely real.

- Watch Video Solution

13. If the imaginary part of $(2 z+1) /(i z+1)$ is -2 , then find the locus of the point representing in the complex plane.

- Watch Video Solution

14. If z is a complex number such that $|z-\bar{z}|+|z+\bar{z}|=4$ then find the area bounded by the locus of z.

- Watch Video Solution

15. If $(x+i y)^{5}=p+i q$, then prove that $(y+i x)^{5}=q+i p$

- Watch Video Solution

16. If $z=x+$ iy lies in the third quadrant, then prove that $\frac{\bar{z}}{z}$ also lies in the third quadrant when $y<x<0$
17. Let $\mathrm{z}=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$. If $\mathrm{R}(\mathrm{z})$ and $\mathrm{I}(\mathrm{z})$, respectively, denote the real and imaginary parts of z, then

- Watch Video Solution

18. Find the relation if $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of the vertices of a parallelogram taken in order.

D Watch Video Solution

19. Let z_{1}, z_{2}, z_{3} be three complex numbers and a, b, c be real numbers not all zero, such that
$a+b+c=0 a n d a z_{1}+b z_{2}+c z_{3}=0$. Show that z_{1}, z_{2}, z_{3} are collinear.

- Watch Video Solution

20. Find real values of x and y for which the complex numbers $-3+i x^{2} y$ and $x^{2}+y+4 i$ are conjugate of each other.

D Watch Video Solution

21. about to only mathematics
22. If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$.

D Watch Video Solution

23. Let z be a complex number satisfying the equation
$z^{2}-(3+i) z+m+2 i=0$, wherem $\in R \quad$ Suppose the equation has a real root. Then find non-real root.

- Watch Video Solution

24. Show that the equation $Z^{4}+2 Z^{3}+3 Z^{2}+4 Z+5=0$ has no root which is either purely real or purely imaginary.
25. Find the square root of the following: $5+12 i$

D Watch Video Solution

26. Evaluate :
i^{135}

D Watch Video Solution
27. Solve for $z: z^{2}-(3-2 i) z=(5 i-5)$

(D)
Watch Video Solution
28. Solve the equation $(x-1)^{3}+8=0$ in the set C of all complex numbers.

D Watch Video Solution

29. If n is n odd integer that is greater than or equal to 3 but not a multiple of 3 , then prove that $(x+1)^{n}-x^{n}-1$ is divisible by $x^{3}+x^{2}+x$

- Watch Video Solution

30. ω is an imaginary root of unity.

Prove that

If
$\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}=27 a b c$.

- Watch Video Solution

31. Find the complex number ω satisfying the equation $z^{3}-8 i$ and lying in the second quadrant on the complex plane.

D Watch Video Solution

32. $\frac{1}{a+\omega}+\frac{1}{b+\omega}+\frac{1}{c+\omega}+\frac{1}{d+\omega}=\frac{1}{\omega}$ where, $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$,
$\in \mathrm{R}$ and ω is a complex cube root of unity then find the
value of $\sum \frac{1}{a^{2}-a+1}$
33. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then (a)
$p^{2}=q(q-2)$ (b) $p^{2}=q(q+2)$ (c) $p^{2} q^{2}=2 q$ (d) none of these

- Watch Video Solution

34.

$z_{1}=\cos 12^{\circ}+I \sin 12^{\circ}$ and $z_{2}=\cos 48^{\circ}+i \cdot \sin 48^{\circ}$. Write
complex number $\left(z_{1}+z_{2}\right)$ in polar form. Find its modulus and argument.
35.
$z=1+\frac{\cos (8 \pi)}{5}+i . \frac{\sin (8 \pi)}{5}$ in polar form. Find its modulus and argument.

- Watch Video Solution

36. Let z and w be two nonzero complex numbers such that $|z|=|w|$ and $\arg (z)+\arg (w)=\pi$ Then prove that $z=-\bar{w}$

- Watch Video Solution

37. Find nonzero integral solutions of $|1-i|^{x}=2^{x}$
38. Let z be a complex number satisfying $|z|=3|z-1|$. Then
prove that $\left|z-\frac{9}{8}\right|=\frac{3}{8}$

- Watch Video Solution

39. If complex number $z=x$ +iy satisfies the equation $\operatorname{Re}(z+1)=|z-1|$, then prove that z lies on $y^{2}=4 x$.

- Watch Video Solution

40. Solve the equation $|z|=z+1+2 i$
41. Find the range of real number α for which the equation $z+\alpha|z-1|+2 i=0$ has a solution.

D Watch Video Solution

42. Find the Area bounded by complex numbers
$\arg |z| \leq \frac{\pi}{4}$ and $|z-1|<|z-3|$

- Watch Video Solution

43. Prove that traingle by complex numbers z_{1}, z_{2} and z_{3} is equilateral if $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ and $z_{1}+z_{2}+z_{3}=0$

- Watch Video Solution

44. Show that $e^{2 m i \theta}\left(\frac{i \cot \theta+1}{i \cot \theta-1}\right)^{m}=1$.

- Watch Video Solution

45. $Z_{1} \neq Z_{2}$ are two points in an Argand plane. If $a\left|Z_{1}\right|=b\left|Z_{2}\right|$, then prove that $\frac{a Z_{1}-b Z_{2}}{a Z_{1}+b Z_{2}}$ is purely imaginary.

- Watch Video Solution

46. Find the real part of $(1-i)^{-i}$

D Watch Video Solution

47. If $(\sqrt{8}+i)^{50}=3^{49}(a+i b)$, then find the value of $a^{2}+b^{2}$

- Watch Video Solution

48.

Show
$\left(x^{2}+y^{2}\right)^{4}=\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)^{2}+\left(4 x^{3} y-4 x y^{3}\right)^{2}$

- Watch Video Solution

49. If $\arg \left(z_{1}\right)=170^{0} \operatorname{andarg}\left(z_{2}\right) 70^{0}$, then find the principal argument of $z_{1} z_{2}$

- Watch Video Solution

50. Find the value of expression
$\left(\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right)\left(\cos \left(\frac{\pi}{2^{2}}\right)+i \sin \left(\frac{\pi}{2^{2}}\right)\right) \ldots \ldots \infty$

- Watch Video Solution

51. Find the principal argument of the complex number $(1+i)^{5}(1+\sqrt{3 i})^{2}$

$$
-1 i(-\sqrt{3}+i)
$$

- Watch Video Solution

52. If $z=\frac{(\sqrt{3}+i)^{17}}{(1-i)^{50}}$, then find $\operatorname{amp}(z)$.

- Watch Video Solution

53. If $z=x+i y$ and $w=\frac{1-i z}{z-i}$, show that $|w|=1 z$ is purely real.

- Watch Video Solution

54. It is given the complex numbers z_{1} and $z_{2},\left|z_{1}\right|=2$ and $\left|z_{2}\right|=3$. If the included angle of their corresponding
vectors is 60°, then find value of $\left|\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right|$

- Watch Video Solution

55. Solve the equation $z^{3}=\bar{z}(z \neq 0)$

- Watch Video Solution

56. If $2 z_{1} / 3 z_{2}$ is a purely imaginary number, then find the
value of $\left|\left(z_{1}-z_{2}\right) /\left(z_{1}+z_{2}\right)\right|$.

- Watch Video Solution

57. Find the complex number satisfying the system of equations $z^{3}+\omega^{7}=0 a n d z^{5} \omega^{11}=1$.

- Watch Video Solution

58. Express the following in $a+i b$ form:
(i) $\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{4}$
(ii) $\frac{(\cos 2 \theta-i \sin 2 \theta)^{4}(\cos 4 \theta+i \sin 4 \theta)^{-5}}{(\cos 3 \theta+i \sin 3 \theta)^{-2}(\cos 3 \theta-i \sin 3 \theta)^{-9}}$
(iii) $\frac{(\sin \pi / 8+i \cos \pi / 8)^{8}}{(\sin \pi / 8-i \cos \pi / 8)^{8}}$

D Watch Video Solution

59. Let $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$. If $R(z)$ and $\mathrm{I}(\mathrm{z})$,
respectively, denote the real and imaginary parts of z, then

- Watch Video Solution

60. Prove that the roots of the equation $x^{4}-2 x^{2}+4=0$ forms a rectangle.

- Watch Video Solution

61. If $z+1 / z=2 \cos \theta$, prove that
$\left|\left(z^{2 n}-1\right) /\left(z^{2 n}+1\right)\right|=|\tan n \theta|$

- Watch Video Solution

62. If $z=x+i y$ is a complex number with
$x, y \in \operatorname{Qand}|z|=1$, then show that $\left|z^{2 n}-1\right|$ is a rational number for every $n \in N$

D Watch Video Solution

63. If $z=\cos \theta+i \sin \theta$ is a root of the equation $a_{0} z^{n}+a_{2} z^{n-2}+\ldots . .+a_{n-1} z+a_{n}=0$, then prove that $a_{0}+a_{1} \cos \theta+a_{2}^{\cos 2} \theta++a_{n} \cos n \theta=0$
$a_{1} \sin \theta+a_{2}^{\sin 2} \theta++a_{n} \sin n \theta=0$
64.

$\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$, and $\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=12$,
then find the value of $\left|z_{1}+z_{2}+z_{3}\right|$

- Watch Video Solution

65. If α and β are different complex numbers with
$|\beta|=1, f \in d\left|\frac{\beta-\alpha}{1-\alpha \beta}\right|$

- Watch Video Solution

66. Given that $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$, prove that $\frac{z_{1}}{z_{2}}$ is purely imaginary.

(D) Watch Video Solution

67. Let $\left|\left(z_{1}-2 z_{2}\right) /\left(2-z_{1} z_{2}\right)\right|=1$ and $\left|z_{2}\right| \neq 1$, where z_{1} and z_{2} are complex numbers. shown that $\left|z_{1}\right|=2$

- Watch Video Solution

68. If z_{1} and z_{2} are two complex numbers and $c>0$, then prove that $\left|z_{1}+z_{2}\right|^{2} \leq(1+c)\left|z_{1}\right|^{2}+\left(1+c^{-1}\right)\left|z_{2}\right|^{2}$
69. If $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of four point in the Argand plane, z is the affix of a point such that $\left|z-z_{1}\right|=\left|z-z_{2}\right|=\left|z-z_{3}\right|=\left|z-z_{4}\right|$, then prove that $z_{1}, z_{2}, z_{3}, z_{4}$ are concyclic.

D Watch Video Solution

70. if $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then prove that $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$ if $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then prove that $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)=\pi$

D Watch Video Solution

71. Show that the area of the triangle on the Argand diagram formed by the complex number z, izandz $+i z$ is $\frac{1}{2}|z|^{2}$

- Watch Video Solution

72. Find the minimum value of $|z-1|$ if $||z-3|-|z+1| \quad|=2$.

- Watch Video Solution

73. Find the greatest and the least value of $\left|z_{1}+z_{2}\right|$ if
$z_{1}=24+$ 7iand $\left|z_{2}\right|=6$.
74. If z is a complex number, then find the minimum value of $|z|+|z-1|+|2 z-3|$

- Watch Video Solution

75. If $\left|z_{1}-1\right| \leq,\left|z_{2}-2\right| \leq 2,\left|z_{33}\right| \leq 3$, then find the greatest value of $\left|z_{1}+z_{2}+z_{3}\right|$

- Watch Video Solution

76. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then (a)

$$
p^{2}=q(q-2) \quad \text { (b) } p^{2}=q(q+2)(\text { c }) p^{2} q^{2}=2 q \text { (d) none of }
$$

- Watch Video Solution

77. Identify the locus of z if $z=a+\frac{r^{2}}{z-a},>0$.

- Watch Video Solution

78. If z is any complex number such that $|3 z-2|+|3 z+2|=4$, then identify the locus of z
79. If $|z|=1$ and let $\omega=\frac{(1-z)^{2}}{1-z^{2}}$, then prove that the locus of ω is equivalent to $|z-2|=\mid z+2$

- Watch Video Solution

80. Let z be a complex number having the argument $\theta, 0<$
$\theta<\frac{\pi}{2}$, and satisfying the equation $|z-3 i|=3$. Then find
the value of $\cot \theta-\frac{6}{Z}$

D Watch Video Solution

81. How many solutions the system of equations

$$
||z+4|-|z-3 i| \quad|=5 \text { and }|z|=4 \text { `has? }
$$

82. Prove that $\left|Z-Z_{1}\right|^{2}+\left|Z-Z_{2}\right|^{2}=a$ will represent a real circle [with center $\left(\left|Z_{1}+Z_{2}\right|^{\prime} 2+\right)$] on the Argand plane if $2 a \geq\left|Z_{1}-Z_{1}\right|^{2}$

- Watch Video Solution

83. If $|z-2-3 i|^{2}+|z-5-7 i|^{2}=\lambda$ respresents the equation of circle with least radius, then find the value of λ.

- Watch Video Solution

84. If $\frac{|2 z-3|}{|z-i|}=k$ is the equation of circle with complex number 'I' lying inside the circle, find the values of K.

D Watch Video Solution

85. Find the point of intersection of the curves
$\arg (z-3 i)=\frac{3 \pi}{4} \operatorname{andarg}(2 z+1-2 i)=\pi / 4$.

D Watch Video Solution

86. If complex numbers $z_{1} z_{2}$ and z_{3} are such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|, \quad$ then prove that $\arg \left(\frac{z_{2}}{z_{1}}\right)=\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)^{2}$.

- Watch Video Solution

87. If the triangle fromed by complex numbers z_{1}, z_{2} and
z_{3} is equilateral then prove that $\frac{z_{2}+z_{3}-2 z_{1}}{z_{3}-z_{2}}$ is purely imaginary number

- Watch Video Solution

88. Show that the equation of a circle passings through the origin and having intercepts a and b on real and imaginary axis, respectively, on the argand plane is $\operatorname{Re}\left(\frac{z-a}{z-i b}\right)=0$
89. The triangle formed by $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ has its circumcentre at origin .If the perpendicular form A to BC intersect the circumference at z_{4} then the value of $z_{1} z_{4}+z_{2} z_{3}$ is

D Watch Video Solution

90. Let vertices of an acute-angled triangle are $A\left(z_{1}\right), B\left(z_{2}\right)$, and $C\left(z_{3}\right)$ If the origin O is he orthocentre of the triangle, then prove that $z_{1}(z)_{2}+(z)_{1} z_{2}={ }_{2}(z)_{3}+(z)_{2} z_{3}=z_{3}(z)_{1}+(z)_{3} z_{1}$
91. If z_{1}, z_{2}, z_{3} are three complex numbers such that
$5 z_{1}-13 z_{2}+8 z_{3}=0$ then prove that
$\left|z_{1}(z)_{1} 1 z_{2}(z)_{2} 1 z_{3}(z)_{3} 1\right|=0$

D Watch Video Solution

92. If $z=z_{0}+A\left(z-(z)_{0}\right)$, whereA is a constant, then prove that locus of z is a straight line.

D Watch Video Solution

93. $z_{1} a n d z_{2}$ are the roots of $3 z^{2}+3 z+b=0$. if $O(0),\left(z_{1}\right),\left(z_{2}\right)$ form an equilateral triangle, then find the value of b

(D) Watch Video Solution

94. Let z_{1}, z_{2} and z_{3} be three complex number such that

$$
\left|z_{1}-1\right|=\left|z_{2}-1\right|=\left|z_{3}-1\right| \text { and } \arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)=\frac{\pi}{6}
$$

then prove that $z_{2}^{3}+z_{3}^{3}+1=z_{2}+z_{3}+z_{2} z_{3}$.

D Watch Video Solution

95. Let the complex numbers z_{1}, z_{2} and z_{3} be the vertices
of an equailateral triangle. If z_{0} is the circumcentre of the triangle , then prove that $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=3 z_{0}^{2}$.

- Watch Video Solution

96. In the Argands plane what is the locus of $z(\neq 1)$ such
that $\arg \left\{\frac{3}{2}\left(\frac{2 z^{2}-5 z+3}{2 z^{2}-z-2}\right)\right\}=\frac{2 \pi}{3}$.

- Watch Video Solution

97. If $\left(\frac{3-z_{1}}{2-z_{1}}\right)\left(\frac{2-z_{2}}{3-z_{2}}\right)=k(k>0)$, then prove that points
$A\left(z_{1}\right), B\left(z_{2}\right), C(3), \operatorname{andD(2)}$ (taken in clockwise sense) are concyclic.

Watch Video Solution

98. If z_{1}, z_{2}, z_{3} are complex numbers such that $\left(2 / z_{1}\right)=\left(1 / z_{2}\right)+\left(1 / z_{3}\right)$, then show that the points represented by z_{1}, z_{2}, z_{3} lie one a circle passing through the origin.

- Watch Video Solution

99. $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of he triangle $A B C$ (in anticlockwise). If $\angle A B C=\pi / 4$ and $A B=\sqrt{2}(B C)$,
then prove that $z_{2}=z_{3}+i\left(z_{1}-z_{3}\right)$

- Watch Video Solution

100. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then
(a) $p^{2}=q(q-2)$
(b) $p^{2}=q(q+2)(\mathrm{c}) p^{2} q^{2}=2 q$ (d) none of
these

- Watch Video Solution

101. Let $z_{1}=10+6 i$ and $z_{2}=4+6 i$ If z is any complex number such that the argument of $\frac{\left(z-z_{1}\right)}{\left(z-z_{2}\right)}$ is $\frac{\pi}{4}$, then prove that $|z-7-9 i|=3 \sqrt{2}$.
102. Complex numbers z_{1}, z_{2} and z_{3} are the vertices A, B, C respectivelt of an isosceles right angled triangle with right angle at C. show that $\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$.

D Watch Video Solution

103. Let $z_{1}, z_{2} a n d z_{3}$ represent the vertices A, B, andC of the triangle $A B C$, respectively, in the Argand plane, such that

$$
\left|z_{1}\right|=\left|z_{2}\right|=5 .
$$

$z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C=0$.

- Watch Video Solution

104. $\mathrm{F} a=\cos (2 \pi / 7)+i \sin (2 \pi / 7)$, then find the quadratic equation whose roots are
$\alpha=a+a^{2}+a^{4} a n d \beta=a^{3}+a^{5}+a^{7}$.

D Watch Video Solution

105. If ω is an imaginary fifth root of unity, then find the
value of $\operatorname{loe}_{2}\left|1+\omega+\omega^{2}+\omega^{3}-1 / \omega\right|$

- Watch Video Solution

106. If $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{s}$ are ninth roots of unity
(taken in counter -clockwise sequence in the Argard
plane).
Then
$\left|\left(2-\alpha_{1}\right)\left(2-\alpha_{3}\right),\left(2-\alpha_{5}\right)\left(2-\alpha_{7}\right)\right|$.

- Watch Video Solution

107. find the sum of squares of all roots of the equation.
$x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1=0$

- Watch Video Solution

108. Find roots of the equation $(z+1)^{5}=(z-1)^{5}$.
109. If the roots of $(z-1)^{n}=i(z+1)^{n}$ are plotted in ten

Arg and plane, then prove that they are collinear.

- View Text Solution

110. Let $1, z_{1}, z_{2}, z_{3}, \ldots, z_{n-1}$ be the nth roots of unity.

Then prove that $\left(1-z_{1}\right)\left(1-z_{2}\right) \cdots\left(1-z_{n-1}\right)=n$.
Also,deduce that $\sin . \frac{\pi}{n} \sin . \frac{2 \pi}{\pi} \sin . \frac{3 \pi}{n} \ldots \sin . \frac{(n-1) \pi}{n}=\frac{\pi}{2^{n-1}}$

- Watch Video Solution

1. if $\omega a n d \omega^{2}$ are the nonreal cube roots of unity and

$$
\begin{array}{ll}
{[1 /(a+\omega)]+[1 /(b+\omega)]+[1 /(c+\omega)]=2 \omega^{2}} & \text { and } \\
{\left[1 /(a+\omega)^{2}\right]+\left[1 /(b+\omega)^{2}\right]+\left[1 /(c+\omega)^{2}\right]=2 \omega} & \text { then }
\end{array}
$$ find the value of $[1 /(a+1)]+[1 /(b+1)]+[1 /(c+1)]$

- Watch Video Solution

2. If $z_{1} a n d z_{2}$ are complex numbers and $u=\sqrt{z_{1} z_{2}}$, then
prove that $\left|z_{1}\right|+\left|z_{2}\right|=\left|\frac{z_{1}+z_{2}}{2}+u\right|+\left|\frac{z_{1}+z_{2}}{2}-u\right|$
3. If a is a complex number such that $|a|=1$, then find the value of a, so that equation $a z^{2}+z+1=0$ has one purely imaginary root.

- Watch Video Solution

4. Let z, z_{0} be two complex numbers. It is given that $|z|=1$ and the numbers $z, z_{0}, z_{-}^{-}(0), 1$ and 0 are represented in an Argand diagram by the points $\mathrm{P}, P_{0}, \mathrm{Q}, \mathrm{A}$ and the origin, respectively. Show that $\triangle P O P_{0}$ and $\triangle A O Q$ are congruent. Hence, or otherwise, prove that

$$
\left|z-z_{0}\right|=\left|z z_{0}-1\right|=\left|z z_{0}^{-}-1\right| .
$$

5. Let a, b and c be any three nonzero complex number. If $|z|=1$ and ' z ' satisfies the equation $a z^{2}+b z+c=0$, prove that $a . \bar{a}=c . \bar{c}$ and $|\mathbf{a}||\mathrm{b}|=\sqrt{a c(\bar{b})^{2}}$

- Watch Video Solution

6. Let x_{1}, x_{2} are the roots of the quadratic equation $x^{2}+a x+b=0$, where a, b, are complex numbers and y_{1}, y_{2} are the roots of the quadratic equation $y^{2}+|a| y y+|b|=0$. If $\left|x_{1}\right|=\left|x_{2}\right|=1$, then prove that $\left|y_{1}\right|=\left|y_{2}\right|=1$
7. If $\alpha=(z-i) /(z+i)$ show that, when z lies above the real axis, α will lie within the unit circle which has centre at the origin. Find the locus of α as z travels on the real axis form $-\infty$ to $+\infty$

- Watch Video Solution

8. If $|z| \leq 1,|w| \leq 1$, then show that
$|z-w|^{2} \leq(|z|-|w|)^{2}+(\arg z-\arg w)^{2}$

D Watch Video Solution

9. Prove that the distance of the roots of the equation
$\left|\sin \theta_{1}\right| z^{3}+\left|\sin \theta_{2}\right| z^{2}+\left|\sin \theta_{3}\right| z+\left|\sin \theta_{4}\right|=|3|$ from $z=0$ is
greater than $2 / 3$.

- Watch Video Solution

10. If $|z-(4+3 i)|=1$, then find the complex number z for each of the following cases:
(i) $|z|$ is least
(ii) $|z|$ is greatest
(iii) $\arg (z)$ is least
(iv) $\arg (z)$ is greatest

D View Text Solution

11. If a ,b,c, and u,v,w are complex numbers representing the vertices of two triangle such that they are similar,
then prove that $\frac{a-c}{a-b}=\frac{u-w}{u-v}$

D View Text Solution

12. Let z_{1} and z_{2} be the roots of the equation $z^{2}+p z+q=0$, where the coefficients p and q may be complex numbers. Let A and B represent z_{1} and z_{2} in the complex plane, respectively. If
$\angle A O B=\theta \neq 0$ and $O A=O B$, where O is the origin, prove that $p^{2}=4 q \cos ^{2}(\theta / 2)$

D View Text Solution

13. The altitude form the vertices A, B and C of the triangle $A B C$ meet its circumcircle at D, E and F, respectively . The complex number representing the points D, E, and F are z_{1}, z_{2} and z_{3}, respectively. If $\left(z_{3}-z_{1}\right) /\left(z_{2}-z_{1}\right)$ is purely real, then show that triangle $A B C$ is right-angled at A.

- Watch Video Solution

14. Let A, B, C, D be four concyclic points in order in which $A D: A B=C D: C B$ If A, B, C are repreented by complex numbers a, b, c representively, find the complex number associated with point D
15. If $n \geq 3$ and $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-1}$ are
the n,nth roots of unity, then find value of $\sum \sum 1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}-1 \alpha_{\mathrm{i}} \alpha_{\mathrm{j}}$

- Watch Video Solution

Exercise 31

1. Is the following computation correct? If not give the
correct computation: $\left[\sqrt{(-2)} \frac{\cdot}{\sqrt{(-3)}}\right]=\sqrt{(-2)-3}=\sqrt{6}$
2. Find the value of $\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}-1$
$(1+i)^{6}+(1-i)^{6}$
A. -2
B. 0
C. 2
D. -1

Answer: A

D Watch Video Solution

3. If $(a+b)+i(a-b)=2-3 i$ find a and b
4. Express the following complex number in $a+i b$ form:

3-2i
(2-i)

- Watch Video Solution

Exercise 32

1. प्रश्न 11 से 13 तक कि सम्मिश्र संख्याओं में प्रत्येक का गुणात्मक प्रतिलोम

ज्ञात कीजिए।

4-3i

- View Text Solution

2. Express the following complex number in $a+i b$ form: $\frac{i}{1-i}$

- Watch Video Solution

3. Express the following complex number in $a+i b$ form:
$\frac{i}{1+i}$

- Watch Video Solution

4. Express the following complex number in $a+i b$ form:
$(1-i)^{3}$
5. If ω is the complex cube root of unity, then find $\left(1-\omega+\omega^{2}\right)^{3}$.

(D) Watch Video Solution

6. Express the following complex number in $a+i b$ form:
$(1-i)^{2}$

D Watch Video Solution

7. Find the real numbers x and y, if $(x-i y) i$ is the conjugate of $5-3 i$
8. If z_{1}, z_{2}, z_{3} are three nonzero complex numbers such that $z_{3}=(1-\lambda) z_{1}+\lambda z_{2}$ where $\lambda \in R-\{0\}$, then prove that points corresponding to $z_{1}, z_{2} a n d z_{3}$ are collinear .

- Watch Video Solution

9. Find the square root of $16+30 i$

D Watch Video Solution

Exercise 33

1. Find the square root of $7+24 i$
2. Find the square root of i

- Watch Video Solution

3. Find the square root of $1+2 \sqrt{6} i$

- Watch Video Solution

4. Find the square root of $8+6 i$

- Watch Video Solution

5. If ω is the complex cube root of unity, then find $\omega^{99}+\omega^{100}+\omega^{101}$

- Watch Video Solution

6. Simplify: $\frac{i+i^{2}+i^{3}+i^{4}}{1+i}$

- Watch Video Solution

7. Find the square root of $3+4 i$

- Watch Video Solution

1. if α and β are imaginary cube root of unity then prove $(\alpha)^{4}+(\beta)^{4}+(\alpha)^{-1} \cdot(\beta)^{-1}=0$

- View Text Solution

2. If ω is a complex cube roots of unity, then find the value of the $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right) . .$. to $2 n$ factors.

- View Text Solution

3. Write the complex number in a + ib form using cube
roots of unity: $\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{1000}$
4. If z is a complex number, then find the minimum value of $|z|+|z-1|+|2 z-3|$

D Watch Video Solution

5. Find the common roots of
$x^{12}-1=0$ and $x^{4}+x^{2}+1=0$

D View Text Solution

6. If α, β and γ are the roots of $X^{3}-3 X^{2}+3 X+7+0$, find the value of $\frac{\alpha=1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}$.
7. Prove that $t^{2}+3 t+3$ is a factor of $(t+1)^{n+1}+(t+2)^{2 n-1}$ for all intergral values of $n \in N$.

D Watch Video Solution

Exercise 35

1. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then (a)
$p^{2}=q(q-2)$ (b) $p^{2}=q(q+2)(\mathrm{c}) p^{2} q^{2}=2 q$ (d) none of these`

- Watch Video Solution

2. Find the modulus and argument of the following
complex number: $\frac{1+i}{1-i}$

- Watch Video Solution

3. If $\frac{3 \pi}{2}<\alpha<2 \pi$ then the modulus argument of $(1+\cos 2 \alpha)+i \sin 2 \alpha$

- Watch Video Solution

4. Find the principal argument of the complex number
$\frac{\sin (6 \pi)}{5}+i\left(1+\frac{\cos (6 \pi)}{5}\right)$.
5. If $z=r e^{i \theta}$, then prove that $\left|e^{i z}\right|=e^{-r s \int h \eta .}$

D Watch Video Solution

6. Find the complex number z satisfying $\operatorname{Re}\left(z^{2}\right)=0,|z|=\sqrt{3 .}$

D Watch Video Solution

7. If $|z-i \operatorname{Re}(z)|=|z-\operatorname{Im}(z)|$, then prove that z, lies on the bisectors of the quadrants.
8. Find the locus of the points representing the complex number z for which $|z+5|^{2}=|z-5|^{2}=10$.

D Watch Video Solution

9. Solve that equation $z^{2}+|z|=0$, where z is a complex number.

- Watch Video Solution

10. Let $z=x+i y$ be a complex number, where xandy are real numbers. Let $A a n d B$ be the sets defined by
$A=\{z:|z| \leq 2\}$ andB $=\{z:(1-i) z+(1+i) z \geq 4\}$. Find the area of region $A \cup B$
11. Real part of $\left(e^{e}\right)^{l \theta}$ is

- Watch Video Solution

12. Prove that $z=i^{i}$, wherei $=\sqrt{-1}$, is purely real.

- Watch Video Solution

1. For $z_{1}=6 \sqrt{(1-i) /(1+i \sqrt{3})}, z_{2}=6 \sqrt{(1-i) /(\sqrt{3}+i)}$,
$z_{3}=6 \sqrt{(1+i) /(\sqrt{3}-i)}$, prove that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$

- Watch Video Solution

2. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then (a)
$p^{2}=q(q-2)$ (b) $p^{2}=q(q+2)(\mathrm{c}) p^{2} q^{2}=2 q$ (d) none of these

- Watch Video Solution

3. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex
numbers then $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)=$

- Watch Video Solution

4. Find the modulus, argument and the principal agrument of the complex number $(\tan 1-i)^{2}$

- Watch Video Solution

5. If $(1+i)(1+2 i)(1+3 i) 1+m)=(x+i y)$, then show that $2 \times 5 \times 10 \times \times\left(1+n^{2}\right)=x^{2}+y^{2}$

- Watch Video Solution

6. If $a+i b=\frac{(x+i)^{2}}{2 x+1}$, prove that $a^{2}+b^{2}=\frac{(x+i)^{2}}{(2 x+1)^{2}}$
7. Let z be a complex number satisfying the equation
$\left(z^{3}+3\right)^{2}=-16$, then find the value of $|z|$

- Watch Video Solution

8. If θ is real and z_{1}, z_{2} are connected by $z 12+z 22+2 z_{1} z_{2} \cos \theta=0$, then prove that the triangle formed by vertices $O, z_{1} a n d z_{2}$ is isosceles.

- Watch Video Solution

9. If $\left|z_{1}-z_{0}\right|=z_{2}-z_{1}=\frac{\pi}{2}$, then find z_{0}.

- Watch Video Solution

10. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then (a) $p^{2}=q(q-2)$ (b) $p^{2}=q(q+2)$ (c) $p^{2} q^{2}=2 q$ (d) none of these

- Watch Video Solution

Exercise 37

1. Simplify the following and express in the form (a+ib):
$(5+7 i) i^{4}$
2. Simplify the following and express in the form (a+ib): $(6-5 i)(2+3 i)$

D Watch Video Solution

3. Simplify the following and express in the form (a+ib):
$(7+i) i^{3}$

D Watch Video Solution

4. Simplify the following and express in the form (a+ib):
$7 i(3-4 i)$
5. Simplify the following and express in the form (a+ib):
$(9-5 i)(1+i)$

- Watch Video Solution

6. Simplify the following and express in the form (a+ib):
$(5 i+4) 8 i$

- Watch Video Solution

1. Simplify the following and express in the form (a+ib): $\left(1-2 i+7 i^{2}\right) i$

- Watch Video Solution

2. Simplify the following and express in the form (a+ib):
$(1-2 i)(1+i)$

- Watch Video Solution

3. Simplify the following and express in the form (a+ib):
$24+\sqrt{-24}$
4. Simplify the following and express in the form (a+ib): 2-
$\sqrt{-9}+\sqrt{-49}$

- Watch Video Solution

5. Simplify the following and express in the form (a+ib): 5-
$\sqrt{-125}$

- Watch Video Solution

6. Simplify the following and express in the form (a+ib):
$7+\sqrt{-8}$
7. Simplify the following and express in the form (a+ib): $5+\sqrt{-64}$

- Watch Video Solution

8. Evaluate : $3 \sqrt{-49}-8 \sqrt{-9}$

- Watch Video Solution

9. Evaluate : $5 \sqrt{-25}+2 \sqrt{-625}$

- Watch Video Solution

10. Evaluate : $3 \sqrt{-81}-\sqrt{-9}$

- Watch Video Solution

11. Evaluate : $3 \sqrt{-16}-9 \sqrt{-9}$

- Watch Video Solution

Exercise 39

1. Evaluate $: 8 \sqrt{-8}-2 \sqrt{-1}$
2. Evaluate : $5 \sqrt{-9}+2 \sqrt{-4}$

- Watch Video Solution

3. Evaluate : $\sqrt{-18}+3 \sqrt{-16}$

- Watch Video Solution

4. If ω is the complex cube root of unity, then find ω^{-97}

- Watch Video Solution

5. Evaluate : $3 \sqrt{-12}+2 \sqrt{-9}$
6. Evaluate : $3 \sqrt{-4}+2 \sqrt{-9}$

D Watch Video Solution

7. Evaluate $: \sqrt{-25}+3 \sqrt{-4}$

D Watch Video Solution

8. Evaluate $: \sqrt{-25}+\sqrt{-24}$

D Watch Video Solution

1. If ω is the complex cube root of unity, then find $\frac{1}{\omega^{77}}$

- Watch Video Solution

2. If ω is the complex cube root of unity, then find
$\omega^{22}+\frac{1}{\omega^{22}}$

- Watch Video Solution

3. If ω is the complex cube root of unity, then find $\frac{1}{\omega^{405}}$

- Watch Video Solution

4. If ω is the complex cube root of unity, then find ω^{-73}

- Watch Video Solution

5. If ω is the complex cube root of unity, then find ω^{-303}

- Watch Video Solution

6. If ω is the complex cube root of unity, then find
$\omega+\frac{1}{\omega}+\frac{1}{\omega^{2}}$

- Watch Video Solution

7. If ω is the complex cube root of unity, then find $\omega+\frac{1}{\omega}$

- Watch Video Solution

8. If $a-5 b+3 a i=7-3 i$, then find a and b.

- Watch Video Solution

9. If $7 a-b+5 a i=7+5 i$, then find a and b.

- Watch Video Solution

10. If $2 b+(a-b) i=2+3 i$, then find a and b. .

- Watch Video Solution

1. If $a+(b+2 a) i=1-4 i$, then find a and b.

- Watch Video Solution

2. If $a-b+2 a i=3+6 i$, then find a and b.

- Watch Video Solution

3. Simplify: $\left(4 i^{9}-3 i^{9}\right)$

- Watch Video Solution

4. Simplify: $\left(4 i^{8}-3 i^{9}+3\right)$

- Watch Video Solution

5. Simplify: $\left(i^{9}+i^{19}+i^{8}\right)$

- Watch Video Solution

6. Simplify: $\left(i^{50}+i^{51}+i^{49}\right)$

- Watch Video Solution

1. Simplify: $\left(i^{30}+i^{20}+i^{4}\right)$

- Watch Video Solution

2. Simplify: $\left(i^{29}+i^{39}+i^{49}\right)$

D Watch Video Solution

3. Find the amplitude of the complex number $z=6$.

- Watch Video Solution

4. Find the amplitude of the complex number $z=-i$.
5. Find the amplitude of the complex number $z=7+7 i$.

D Watch Video Solution

6. Find the amplitude of the complex number $z=2 \sqrt{3}+6 i$

- Watch Video Solution

7. Find the amplitude of the complex number $z=3+\sqrt{3} i$.

- Watch Video Solution

8. Find the amplitude of the complex number $z=-3-3 i$.

- Watch Video Solution

9. Find the amplitude of the complex number $z=7$.

- Watch Video Solution

10. Find the amplitude of the complex number $z=5$.

- Watch Video Solution

11. Find the amplitude of the complex number $z=3 i$.
12. Find the amplitude of the complex number $z=a-i b$.

- Watch Video Solution

13. Find the amplitude of the complex number $z=\sqrt{3} i$.

- Watch Video Solution

14. Find the amplitude of the complex number $z=2 i$.

- Watch Video Solution

15. Find the amplitude of the complex number $z=\sqrt{3}+i$.

- Watch Video Solution

16. Find the amplitude of the complex number $z=1+i$.

- Watch Video Solution

17. Find the amplitude of the complex number $z=1+i \sqrt{3}$
18. Find the conjugate of the complex number $\sqrt{-1}$

- Watch Video Solution

19. Find the conjugate of the complex number $5+2 \sqrt{-1}$

- Watch Video Solution

20. Find the conjugate of the complex number $3-\sqrt{-1}$

- Watch Video Solution

21. Find the modulus of the complex number $z=13-5 i$
22. Find the modulus of the complex number $\mathrm{z}=8+6 \mathrm{i}$

- Watch Video Solution

23. Find the modulus of the complex number $\mathrm{z}=11-\mathrm{i}$

- Watch Video Solution

24. Find the modulus of the complex number $\mathrm{z}=7 \mathrm{i}$

- Watch Video Solution

25. Find the modulus of the complex number $\mathrm{z}=8+\mathrm{i}$

- Watch Video Solution

26. Find the modulus of the complex number $\mathrm{z}=5+2 \mathrm{i}$

- Watch Video Solution

27. Find the modulus of the complex number $\mathrm{z}=4-\mathrm{i}$

- Watch Video Solution

28. Find the modulus of the complex number $\mathrm{z}=9-2 \mathrm{i}$
29. Find the modulus of the complex number $\mathrm{z}=5+\mathrm{i}$ `

- Watch Video Solution

30. Evaluate : i^{341}

- Watch Video Solution

31. Evaluate : i^{503}
32. Find the modulus of the complex number $z=3+7 i$

D Watch Video Solution

33. Find the modulus of the complex number $z=4+3 i$

D Watch Video Solution

34. Evaluate : i^{50}

-
 Watch Video Solution

35. Evaluate : i^{97}
36. Evaluate : i^{43}

- Watch Video Solution

37. Evaluate : i^{13}

(D) Watch Video Solution

38. Evaluate : i^{29}

- Watch Video Solution

39. Evaluate : i^{-23}

D Watch Video Solution

40. Evaluate : i^{-22}

D Watch Video Solution
41. Evaluate : i^{28}

Watch Video Solution
42. Evaluate : i^{-78}
43. Evaluate $: i^{-47}$

- Watch Video Solution

44. Evaluate $: i^{-35}$

- Watch Video Solution

45. Evaluate : i^{-52}

- Watch Video Solution

46. Evaluate : i^{-66}

- Watch Video Solution

47. Find the modulus of the complex number
$z=\cos \theta+i \sin \theta$

- Watch Video Solution

48. If $z=(i)^{(i)}{ }^{i}$ where $i=\sqrt{-1}$, then $|z|$ is equal to a. 1 b .
$e^{-\pi / 2}$ c. $e^{-\pi} \mathrm{d}$. none of these

- Watch Video Solution

49. If $z=i \log (2-\sqrt{3})$, then $\cos z=$

- Watch Video Solution

50. Evaluate : i^{45}

- Watch Video Solution

51. Evaluate : i^{30}

D Watch Video Solution
52. Evaluate : i^{-41}
53. Evaluate : i^{31}

D Watch Video Solution

54. Find the modulus of the complex number $z=2+3 i$

- Watch Video Solution

55. Find the modulus of the complex number $z=1+i$

- Watch Video Solution

56. Let C_{1} and C_{2} are concentric circles of radius 1 and $\frac{8}{3}$ respectively having centre at $(3,0)$ on the argand plane. If the complex number Z satisfies the inequality
$\log _{\frac{1}{3}}\left(\frac{|z-3|^{2}+2}{11|z-3|-2}\right)>1$, then (a) z lies outside C_{1} but inside $C_{2}(b) z$ line inside of both C_{1} and $C_{2}(c) z$ line outside both C_{1} and $C_{2}(\mathrm{~d})$ none of these
A. z lies outside C_{1} but inside C_{2}
B. z line inside of both C_{1} and C_{2}
C. z line outside both C_{1} and C_{2}
D. none of these
57. If $z_{1}=3+2 i, z_{2}=2-i$, then find $\bar{z}_{1} \cdot \bar{z}_{2}$

D Watch Video Solution

58. If $z_{1}=3+i, z_{2}=1-3 i$, then find $\bar{z}_{1} \cdot \bar{z}_{2}$

- Watch Video Solution

59. If $z_{1}=1-3 i, z_{2}=1+i$, then find $\bar{z}_{1} \cdot \bar{z}_{2}$

- Watch Video Solution

60. If $z_{1}=1-i, z_{2}=2+i$, then find $\bar{z}_{1} \cdot \bar{z}_{2}$

- Watch Video Solution

61. Find the conjugate of the complex number $z=13-i$

D Watch Video Solution

62. Find the conjugate of the complex number
$z=11+13 i$

- Watch Video Solution

63. Find the conjugate of the complex number
$z=\sqrt{7}-\sqrt{5} i$

D Watch Video Solution

64. Find the conjugate of the complex number $z=5+7 i$

D Watch Video Solution

65. Find the conjugate of the complex number $z=\sqrt{6}+7 i$
66. Find the conjugate of the complex number $z=\sqrt{5}-3 i$

- Watch Video Solution

67. Find the conjugate of the complex number $z=\sqrt{5}-2 i$

- Watch Video Solution

68. If $\left|z_{1}\right|+\left|z_{2}\right|=1$ and $z_{1}+z_{2}+z_{3}=0$ then the area of the triangle whose vertices are z_{1}, z_{2}, z_{3} is $3 \sqrt{3} / 4 \mathrm{~b} . \sqrt{3} / 4$
c. 1 d. 2
A. $3 \sqrt{3 / 4}$
B. $\sqrt{3 / 4}$
C. 1
D. 2

Answer: A

- Watch Video Solution

69. Let zand ω be two complex numbers such that
$|z| \leq 1,|\omega| \leq 1$ and $|z-i \omega|=|z-i \omega|=2$, thenz equals 1 or i
b. i or $-i \mathrm{c} .1$ or $-1 \mathrm{~d} . i$ or -1
A. $\frac{2}{3}$
$\sqrt{5}$
B. $\frac{}{3}$
C. $\frac{3}{2}$
D. $\frac{2 \sqrt{5}}{3}$

Answer: C

- Watch Video Solution

70. Let $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct complex numbers satisfying $|z|=1$ and $4 z_{3}=3\left(z_{1}+z_{2}\right)$, then $\left|z_{1}-z_{2}\right|$ is equal to
A. 1 or i
B. i or $-i$
C. 1 or i
D. i or -1

- Watch Video Solution

71. $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct complex numbers representing the vertices of a quadrilateral $A B C D$ taken in order.
$z_{1}-z_{4}=z_{2}-z_{3}$ and $\arg \left[\left(z_{4}-z_{1}\right) /\left(z_{2}-z_{1}\right)\right]=\pi / 2$, the quadrilateral is
A. rectangle
B. rhombus
C. square
D. trapezium

Answer: A

- Watch Video Solution

72. If $k+\left|k+z^{2}\right|=|z|^{2}\left(k \in R^{-}\right)$, then possible argument of z is
A. 0
B. π
C. $\pi / 2$
D. none of these

Answer: C

73. If z_{1}, z_{2}, z_{3} are the vertices of an equilational triangle ABC such that $\left|z_{1}-i\right|=\left|z_{2}-i\right|=\left|z_{3}-i\right|$, then $\left|z_{1}+z_{2}+z_{3}\right|$ equals to
A. $3 \sqrt{3}$
B. $\sqrt{3}$
C. 3
D. $\frac{1}{3 \sqrt{3}}$

Answer: C

74. If $z=6-i$, then find $z-\bar{z}$

D Watch Video Solution

75. If $z=6+i$, then find $z+\bar{z}$

- Watch Video Solution

76. If $z=5-3 i$, then find $z-\bar{z}$

Watch Video Solution
77. If $z=5-3 i$, then find $z+\bar{z}$
78. about to only mathematics

> A. $\frac{\pi}{3}$
> B. $\frac{\pi}{4}$
> C. $\frac{\pi}{6}$
> D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

79. $z_{1} a n d z_{2}$ lie on a circle with center at the origin. The point of intersection z_{3} of he tangents at $z_{1} a n d z_{2}$ is given

$$
\text { by } \frac{1}{2}\left(z_{1}+(z)_{2}\right) \text { b. } \frac{2 z_{1} z_{2}}{z_{1}+z_{2}} \text { c. } \frac{1}{2}\left(\frac{1}{z_{1}}+\frac{1}{z_{2}}\right) \text { d. } \frac{z_{1}+z_{2}}{(z)_{1}(z)_{2}}
$$

A. $\frac{1}{2}\left(\bar{z}_{1}+\bar{z}_{2}\right)$
B. $\frac{2 z_{1} z_{2}}{z_{1}+z_{2}}$
C.
D.

Answer: B

- Watch Video Solution

80. If $\arg \left(\frac{z_{1}-\frac{z}{|z|}}{\frac{z}{|z|}}\right)=\frac{\pi}{2}$ and $\left|\frac{z}{|z|}-z_{1}\right|=3$, then $\left|z_{1}\right|$
equals to a. $\sqrt{3}$ b. $2 \sqrt{2}$ c. $\sqrt{10}$ d. $\sqrt{26}$
A. $\sqrt{26}$
B. $\sqrt{10}$
C. $\sqrt{3}$
D. $2 \sqrt{2}$

Answer: B
81. about to only mathematics

$$
\begin{aligned}
& \text { A. } \frac{1}{2}\left|z_{1}-z_{2}\right|^{2} \\
& \text { B. } \frac{1}{2}\left|z_{1}-z_{2}\right|^{r} \\
& \text { C. } \frac{1}{2}\left|z_{1}-z_{2}\right|^{2} r^{2} \\
& \text { D. } \frac{1}{2}\left|z_{1}-z_{2}\right|^{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

82. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then (a)

$$
p^{2}=q(q-2) \text { (b) } p^{2}=q(q+2)(\mathrm{c}) p^{2} q^{2}=2 q \text { (d) none of }
$$

these
A. $\pi+8$
B. $\pi+4$
C. $2 \pi+4$
D. $\pi+6$

Answer: A

- Watch Video Solution

83. about to only mathematics
A. $e^{i \theta}$
B. $e^{-i \theta}$
C. $\omega, \bar{\omega}$
D. $\omega+\bar{\omega}$

Answer: D

- Watch Video Solution

84. If pandq are distinct prime numbers, then the number of distinct imaginary numbers which are pth as well as qth roots of unity are. $\min (p, q)$ b. $\min (p, q)$ c. 1 d. zero
A. $\min (p, q)$
B. $\max (\mathrm{p}, \mathrm{q})$
C. 1
D. zero

- Watch Video Solution

85. Given z is a complex number with modulus 1 . Then the
equation $[(1+i a) /(1-i a)]^{4}=z$ has all roots real and distinct two real and two imaginary three roots two imaginary one root real and three imaginary
A. all roots real and distinct
B. two real and tw imaginary
C. three roots real and one imaginary
D. one root real and three imaginary

Answer: A

- Watch Video Solution

86. The value of Z satisfying the equation

$$
\log z+\log z^{2}++\log z^{n}=0 i s
$$

A. $\cos \cdot \frac{4 m \pi}{n(n+1)}+i \sin . \frac{4 m \pi}{n(n+1)}, m=0,1,2, \ldots$
B. $\cos \frac{4 m \pi}{n(n+1)}-i \sin \frac{4 m \pi}{n(n+1)}, m=0,1,2, \ldots$
C. $\sin . \frac{4 m \pi}{n}+i \cos \frac{4 m \pi}{n}, m=0,1,2, \ldots$
D. 0

Answer: A
87. If $n \in N>1$, then the sum of real part of roots of
$z^{n}=(z+1)^{n}$ is equal to

$$
\begin{aligned}
& \text { A. } \frac{n}{2} \\
& \text { B. } \frac{(n-1)}{2} \\
& \text { C. }-\frac{n}{2} \\
& \text { D. } \frac{(1-n)}{2}
\end{aligned}
$$

Answer: D

88. Which of the following represents a points in an

Argand pane, equidistant from the roots of the equation
$(z+1)^{4}=16 z^{4}$? $(0,0)$ b. $\left(-\frac{1}{3}, 0\right)$ c. $\left(\frac{1}{3}, 0\right)$ d. $\left(0, \frac{2}{\sqrt{5}}\right)$
A. $(0,0)$
B. $\left(-\frac{1}{3}, 0\right)$
C. $\left(\frac{1}{3}, 0\right)$
D. $\left(0, \frac{2}{\sqrt{5}}\right)$

Answer: C

89. Let a be a complex number such that
$|a|<1$ and $_{1}, z_{2}, z_{3}, \ldots$ be the vertices of a polygon such
that $z_{k}=1+a+a^{2}+\ldots+a^{k-1}$ for all $k=1,2,3$, Then z_{1}, z_{2}
lie within the circle (a) $\left|z-\frac{1}{1-a}\right|=\frac{1}{|a-1|}$
$\left|z+\frac{1}{a+1}\right|=\frac{1}{|a+1|}$
(c) $\quad\left|z-\frac{1}{1-a}\right|=|a-1|$
$\left|z+\frac{1}{a+1}\right|=|a+1|$
A. $\left|z-\frac{1}{1-a}\right|=\frac{1}{|a-1|}$
B. $\left|z+\frac{1}{a+1}\right|=\frac{1}{|a+1|}$
C. $\left|z-\frac{1}{1-a}\right|=|a-1|$
D. $\left|z+\frac{1}{1-a}\right|=|a-1|$

Answer: A

- Watch Video Solution

90. Let $z=x+i y$ be a complex number where xandy are integers. Then, the area of the rectangle whose vertices are the roots of the equation $z z^{3}+z z^{3}=350$ is 48 (b) 32
(c) 40 (d) 80
A. 48
B. 32
C. 40
D. 80

Answer: A

- Watch Video Solution

91. Let z be a complex number such that the imaginary part of z is nonzero and $a=z 2+z+1$ is real. Then a cannot take the value (A) -1 (B) 13 (C) 12 (D) 34
A. -1
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: D
92. Let complex numbers α and $\frac{1}{\alpha}$ lies on circle $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ and $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=4 r^{2}$ respectively. If $z_{0}=x_{0}+i y_{0}$ satisfies the equation $2\left|z_{0}\right|^{2}=r^{2}+2$ then $|\alpha|$ is equal to
A. $1 / \sqrt{2}$
B. 1/2
C. $1 / \sqrt{7}$
D. $1 / 3$

Answer: C

Multiple Correct Answers Type

1. If $z=\omega, \omega^{2}$ where ω is a non-real complex cube root of unity, are two vertices of an equilateral triangle in the

Argand plane, then the third vertex may be represented by $z=1$ b. $z=0 \mathrm{c} . \mathrm{z}=-2 \mathrm{~d} . \mathrm{z}=-1$
A. $z=1$
B. $z=0$
C. $z=-2$
D. $z=-1$

Answer: A::C

2. If $\operatorname{amp}\left(z_{1} z_{2}\right)=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=1$, then $z_{1}+z_{2}=0$ b.
$z_{1} z_{2}=1 \mathrm{c} . z_{1}=z_{2}$ d. none of these
A. $z_{1}+z_{2}=0$
B. $z_{1} z_{2}=1$
C. $z_{1}=\bar{z}_{2}$
D. none of these

Answer: B::C

- Watch Video Solution

3. If $\sec \alpha$ and α are the roots of $x^{2}-p x+q=0$, then (a)
$p^{2}=q(q-2)$
(b) $p^{2}=q(q+2)$
(c) $p^{2} q^{2}=2 q$
(d) none of
these
A. $-\frac{\pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. $-\frac{3 \pi}{4}$

Answer: A::B::C::D

D Watch Video Solution

4. Values $(s)(-i)^{1 / 3}$ is/are $\frac{\sqrt{3}-i}{2}$ b. $\frac{\sqrt{3}+i}{2}$ c. $\frac{-\sqrt{3}-i}{2} d$.
$-\sqrt{3}+i$
2

$$
\begin{aligned}
& \text { A. } s \frac{\sqrt{3}-i}{2} \\
& \text { B. } \frac{\sqrt{3}+i}{2} \\
& \text { C. } \frac{-\sqrt{3}-i}{2} \\
& \text { D. } \frac{-\sqrt{3}+i}{2}
\end{aligned}
$$

Answer: A::C

- Watch Video Solution

5. If $a^{3}+b^{3}+6 a b c=8 c^{3} \& \omega$ is a cube root of unity then:
(a) a, b, c are in A.P. (b) a, b, c, are in H.P.
$a+b \omega-2 c \omega^{2}=0(\mathrm{~d}) a+b \omega^{2}-2 c \omega=0$
A. a, c, b are in A.P
B. a, c, b are in H.P
C. $a+b \omega-2 c \omega^{2}=0$
D. $a+b \omega^{2}-2 c \omega=0$

Answer: A::C::D

- Watch Video Solution

6. Let z_{1} and z_{2} be two non -zero complex number such
that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|=\left|z_{2}\right|$. Then $\frac{z_{1}}{z_{2}}$ can be equal to (ω is imaginary cube root of unity).
A. $1+\omega$
B. $1+\omega^{2}$
C. ω
D. ω^{2}

Answer: C::D

D Watch Video Solution

7. If $p=a+b \omega+c \omega^{2}, \quad q=b+c \omega+a \omega^{2}$, and $r=c+a \omega+b \omega^{2}$, where $a, b, c \neq 0$ and ω is the complex cube root of unity, then (a) $p+q+r=a+b+c$
$p^{2}+z^{2}+r^{2}=a^{2}+b^{2}+c^{2}$
$p^{2}+z^{2}+r^{2}=-2(p q+q r+r p)(\mathrm{d})$ none of these
A. If p, q, r lie on the circle $|z|=2$, the trinagle formed by these point is equilateral.
B. $p^{2}+q^{2}+r^{2}=a^{2}+b^{2}+c^{2}$
C. $p^{2}+q^{2}+r^{2}=2(p q+q r+r p)$
D. none of these

Answer: A::C

D Watch Video Solution

8. Find the square root of the complex number $z=2 i$.

D Watch Video Solution

9. Find the square root of the complex number $z=8 i$.
10. Evaluate: $1+i^{100}+i^{101}$

D Watch Video Solution

11. Evaluate: $1+i^{24}+i^{25}$

- Watch Video Solution

12. If $z=4+3 i$, then find $z-\bar{z}$

- Watch Video Solution

13. Evaluate: $1+i^{49}+i^{50}$

D Watch Video Solution

14. If $z=4-3 i$, then find $z-\bar{z}$

- Watch Video Solution

15. If $z_{1}=1+2 i, z_{2}=-i$, then find $\bar{z}_{1}+\bar{z}_{2}$

D Watch Video Solution

16. If $z_{1}=1-i, z_{2}=1+i$, then find $\bar{z}_{1}+\bar{z}_{2}$
17. If $\mathrm{z}=1+\mathrm{i}$, then find $z \bar{z}$

- Watch Video Solution

18. If $z=1-i$, then find $z \bar{z}$

- Watch Video Solution

19. If $z=2-i$, then find $z \bar{z}$

- Watch Video Solution

20. If $\mathrm{z}=2+\mathrm{i}$, then find $z \overline{\mathrm{Z}}$

D Watch Video Solution
21. If $z=2-\sqrt{3} i$, then find $z \bar{z}$

D Watch Video Solution

22. If $z=2+\sqrt{3} i$, then find $z \bar{z}$

- Watch Video Solution

23. If $z=3+\sqrt{7} i$, then find $z \bar{z}$
24. If $z=3-\sqrt{7} i$, then find $z \bar{z}$

- Watch Video Solution
$=$.

25. If $z=5-3 i$, then find z

D Watch Video Solution

26. Evaluate : i^{555}

- Watch Video Solution

$$
=.
$$

27. If $z=2+7 i$, then find z

- Watch Video Solution

28. If $z=2-7 i$, then find z

- Watch Video Solution

$$
=\text {. }
$$

29. If $z=5+3 i$, then find z

- Watch Video Solution

30. If $\mathrm{z}=2+\sqrt{3} i$, then find z

(Watch Video Solution

$$
=.
$$

31. If $z=2-\sqrt{3} i$, then find z

- Watch Video Solution

32. Evaluate: $i^{2}+i^{3}$

D Watch Video Solution

33. Evaluate: $i^{3}+i^{12}$
34. Evaluate: $i^{4}+i^{13}$

D Watch Video Solution

35. Evaluate: $i^{18}+i^{20}$

Watch Video Solution
36. Evaluate: $i^{9}+i^{19}$

D Watch Video Solution
37. Evaluate: $1+i^{32}+i^{3}$
38. Evaluate: $1+i^{15}+i^{16}$

D Watch Video Solution

39. Evaluate: $1+i^{99}+i^{100}$

- Watch Video Solution

40. Express the following complex number in polar form
$\left(r e^{i} \theta\right): 3 \sqrt{3}+3 i$
(D) Watch Video Solution
41. Express the following complex number in polar form $\left(r e^{i} \theta\right): 1+\sqrt{3} i$

- Watch Video Solution

42. Express the following complex number in polar form $\left(r e^{i} \theta\right):(1-i)^{2}$

- Watch Video Solution

43. If ω is the complex cube root of unity, then find
$(1+\omega)\left(1+\omega^{2}\right)$
44. If ω is the complex cube root of unity, then find
$(1-\omega)\left(1-\omega^{2}\right)$

D Watch Video Solution

45. If ω is the complex cube root of unity, then find $\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)$

D Watch Video Solution

46. If ω is the complex cube root of unity, then find $\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)$
47. If ω is the complex cube root of unity, then find $(1-\omega)\left(1-\omega^{5}\right)$

- Watch Video Solution

48. If ω is the complex cube root of unity, then find
$(1+\omega)\left(1+\omega^{5}\right)$

D Watch Video Solution

49. If ω is the complex cube root of unity, then find $\left(1-\omega-\omega^{2}\right)^{3}$

Linked Comprehension Type

1. If ω is the complex cube root of unity, then find $\left(1-\omega+\omega^{2}\right)^{4}$

D Watch Video Solution

2. If ω is the complex cube root of unity, then find $\left(1+\omega-\omega^{2}\right)^{3}$
3. If ω is the complex cube root of unity, then find $\left(1-3 \omega+\omega^{2}\right)^{3}$

(D) Watch Video Solution

4. If ω is the complex cube root of unity, then find $\left(2+\omega+\omega^{2}\right)^{3}$

- Watch Video Solution

5. If ω is the complex cube root of unity, then find $\left(2-\omega+2 \omega^{2}\right)^{4}$
6. If ω is the complex cube root of unity, then find $\left(2+3 \omega+3 \omega^{2}\right)^{2}$

- Watch Video Solution

7. If ω is the complex cube root of unity, then find $\left(1-2 \omega+\omega^{2}\right)^{5}$

- Watch Video Solution

8. If ω is the complex cube root of unity, then find
$\left(2+\omega+\omega^{2}\right)^{5}$
9. If ω is the complex cube root of unity, then find $\left(1-3 \omega+\omega^{2}\right)^{5}$

D Watch Video Solution

10. If $z=\sqrt{23}+\sqrt{5} i$, then find $z \bar{z}$

- Watch Video Solution

11. If $z=\sqrt{11}+\sqrt{7} i$, then find $z \bar{z}$
12. If $z=\sqrt{12}-\sqrt{7} i$, then find $z \bar{z}$

- Watch Video Solution

13. If $z=\sqrt{13}-\sqrt{11 i}$, then find $z \bar{z}$

- Watch Video Solution

14. If $z=\sqrt{7}-\sqrt{5} i$, then find $z \bar{z}$

- Watch Video Solution

15. If $z=\sqrt{3}-\sqrt{2} i$, then find $z \bar{z}$

- Watch Video Solution

16. Express the following complex number in polar form $\left(r e^{i} \theta\right): 2+2 i$

- Watch Video Solution

17. Express the following complex number in polar form $\left(r e^{i} \theta\right): 2$
18. Express the following complex number in polar form $\left(r e^{i} \theta\right): 10$

- Watch Video Solution

19. Express the following complex number in polar form
$\left(r e^{i} \theta\right):-\frac{\sqrt{3}}{2}-i \frac{1}{2}$

- Watch Video Solution

20. Express the following complex number in polar form
$\left(r e^{i} \theta\right):-\sqrt{6}-\sqrt{2} i$
21. Express the following complex number in polar form $\left(r e^{i} \theta\right): 1-i+i^{2}-i^{3}$

- Watch Video Solution

22. Express the following complex number in polar form
$\left(r e^{i} \theta\right):-3 i$

- Watch Video Solution

23. Consider the equation $a z+b \bar{z}+c=0$, where $a, b, c \in$
z
If $|a| \neq|b|$, then z represents
A. circle
B. straight line
C. one point
D. ellispe

Answer: C

- View Text Solution

24. Consider the equation $a z+b \bar{z}+c=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in$

Z

If $|a|=|b|$ and $\bar{a} c \neq b \bar{c}$, then z has
A. infnite solutions
B. no solutions
C. finite solutions
D. cannot say anything

Answer: B

- View Text Solution

25. Consider the equation $a z+b \bar{z}+c=0$, where $a, b, c \in$

Z

If $|a| \neq|b|$, then z represents
A. an ellipse
B. a circle
C. a point
D. a straight line

Answer: D

D View Text Solution

26. Express the following complex number in polar form
$\left(r e^{i} \theta\right): 2+2 \sqrt{3} i$

D Watch Video Solution

27. Express the following complex number in polar form
$\left(r e^{i} \theta\right):(2-3 i)^{2}$

- Watch Video Solution

28. Express the following complex number in polar form $\left(r e^{i} \theta\right): i^{3}$

- Watch Video Solution

29. Express the following complex number in polar form $\left(r e^{i} \theta\right): i^{2}$

- Watch Video Solution

30. Express the following complex number in polar form

$$
\left(r e^{i} \theta\right):(2+i)^{2}
$$

- Watch Video Solution

31. Express the following complex number in polar form $\left(r e^{i} \theta\right):-6-4 i$

- Watch Video Solution

32. Express the following complex number in polar form $\left(r e^{i} \theta\right):-6+8 i$
33. Express the following complex number in polar form $\left(r e^{i} \theta\right): 3+4 i$

- Watch Video Solution

34. Express the following complex number in polar form $\left(r e^{i} \theta\right):-5-5 i$

D Watch Video Solution

35. Let

$$
S=S_{1} \cap S_{2} \cap S_{3}, \quad \text { where }
$$

$s_{1}=\{z \in C:|z|<4\}, S_{2}=\left\{z \in C: \ln \left[\frac{z-1+\sqrt{3} i}{1-\sqrt{31}}\right]>0\right\}$ and
$S_{3}=\{z \in C: \operatorname{Rez}>0\}$ Area of $S=$
A. $\frac{10 \pi}{3}$
B. $\frac{20 \pi}{3}$
C. $\frac{16 \pi}{3}$
D. $\frac{32 \pi}{3}$

Answer: B

- Watch Video Solution

36. If ω is the complex cube root of unity, then find $\omega^{2}+\omega^{3}+\omega^{4}$.

Matrix Match Type

1. Express the following complex number in polar form $\left(r e^{i} \theta\right): 1+i \sqrt{3}$

- Watch Video Solution

2. Express the following complex number in polar form $\left(r e^{i} \theta\right): 1+i$
3. Express the following complex number in polar form
$\left(r e^{i} \theta\right):\left(-\frac{1}{2}\right)-i\left(\frac{\sqrt{3}}{2}\right)$

- Watch Video Solution

4. Express the following complex number in polar form $\left(r e^{i} \theta\right):-3 i$

D Watch Video Solution

5. Express the following complex number in polar form $\left(r e^{i} \theta\right): 9 i$
6. Express the following complex number in polar form $\left(r e^{i} \theta\right): 5$

D Watch Video Solution

7. Find the complex number $z=e^{-i}\left(\frac{\pi}{4}\right)$ in the form $x+i y$.

D Watch Video Solution

8. Find the complex number $z=e^{-i(2 \pi)}$ in the form $x+i y$.
9. Find the complex number $z=e^{i(\pi)}$ in the form $\mathrm{x}+\mathrm{iy}$.

- Watch Video Solution

Numerical Value Types

1. Write the following in $z=a+i b$ form: $z=\frac{1}{3-2 i}$

- Watch Video Solution

2. Write the following in $z=a+i b$ form: $z=\frac{e+\text { if }}{c+i d}$

- Watch Video Solution

3. Write the following in $z=a+i b$ form: $z=\frac{1}{2-2 \sqrt{3} i}$

- Watch Video Solution

4. Write the following in $z=a+i b$ form: $z=\frac{1}{c+i d}$

- Watch Video Solution

5. Write the following in $z=a+i b$ form: $z=\frac{1}{5+i}$

- Watch Video Solution

6. Write the following in $z=a+i b$ form: $z=\frac{1}{6+8 i}$

D Watch Video Solution

7. Write the following in $z=a+i b$ form: $z=\frac{1}{3+4 i}$

- Watch Video Solution

8. Write the following in $z=a+i b$ form: $z=\sqrt{2} e^{i \frac{7 \pi}{2}}$

- Watch Video Solution

9. Write the following in $z=a+i b$ form: $z=\sqrt{3} e^{i \frac{7 \pi}{6}}$

-
 Watch Video Solution

10. Write the following in $z=a+i b$ form: $z=\sqrt{2} e^{i \frac{9 \pi}{4}}$

- Watch Video Solution

11. Write the following in $z=a+i b$ form: $z=\frac{e^{-i a}}{e^{-i b}}$

- Watch Video Solution

12. Write the following in $z=a+i b$ form: $z=\frac{e^{i a}}{e^{i b}}$

- Watch Video Solution

13. Write the following in $z=a+i b$ form: $z=e^{a+i \theta}$
14. If $|z+2-i|=5$ and maxium value of $|3 z+9-7 i|$ is M, then the value of M is \qquad .

- Watch Video Solution

15. Write the following in $z=a+i b$ form: $z=e^{-i \theta}$

- Watch Video Solution

16. Write the following in $z=a+i b$ form: $z=\sqrt{2} e^{i \frac{5 \pi}{4}}$
17. Write the following in $z=a+i b$ form: $z=\sqrt{2} e^{i 3 \frac{\pi}{4}}$

D Watch Video Solution

18. Write the following in $z=a+i b$ form: $z=\sqrt{2} e^{-i \frac{\pi}{4}}$

D Watch Video Solution

19. Write the following in $z=a+i b$ form: $z=\sqrt{2} e^{-i \frac{\pi}{4}}$

D Watch Video Solution

20. Write the following in $z=a+i b$ form: $z=\sqrt{2} e^{i \frac{\pi}{4}}$

- Watch Video Solution

21. Write the following in $z=a+i b$ form: $z=5 e^{i \frac{\pi}{6}}$

- Watch Video Solution

22. Write the following in $z=a+i b$ form: $z=5 e^{i \frac{\pi}{3}}$

- Watch Video Solution

23. Write the following in $z=a+i b$ form: $z=5 e^{i \frac{\pi}{4}}$
24. Write the following in $z=a+i b$ form: $z=5 e^{i \frac{\pi}{2}}$

D Watch Video Solution

25. Write the following in $z=a+i b$ form: $z=5 e^{i \pi}$

(D) Watch Video Solution

26. Let $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ be lying on the curve $|z-3-4 i|=5$, where $\left|z_{1}\right|$ is maximum. Now, $A\left(z_{1}\right)$ is rotated about the origin in anticlockwise direction through 90° reaching at $P\left(z_{0}\right)$. If A, B and P are collinear then the value of $\left(\left|z_{0}-z_{1}\right| \cdot\left|z_{0}-z_{2}\right|\right)$ is \qquad
27. If z_{1}, z_{2}, z_{3} are three points lying on the circle $|z|=2$ then the minimum value of the expression $\left|z_{1}+z_{2}\right|^{2}+\left|z_{2}+z_{3}\right|^{2}+\left|z_{3}+z_{1}\right|^{2}=$

D Watch Video Solution

28.

Minimum
value
of
$\left|z_{1}+1\right|+\left|z_{2}+1\right|+\left|z_{1} z_{2}+1\right|$ if $\left[z_{1} \mid=1\right.$ and $\left|z_{2}\right|=1$ is \qquad .

- Watch Video Solution

29. If $\left|z_{1}\right|=2$ and $(1-i) z_{2}+(1+i) \bar{z}_{2}=8 \sqrt{2}$, then the minimum value of $\left|z_{1}-z_{2}\right|$ is \qquad .

- Watch Video Solution

30. Given that $1+2|z|^{2}=\left|z^{2}+1\right|^{2}+2|z+1|^{2}$, then the value of $|z(z+1)|$ is \qquad

- Watch Video Solution

31. Find the complex number $z=e^{i \frac{\pi}{2}}$ in the form $\mathrm{x}+\mathrm{iy}$.

- Watch Video Solution

32. Find the complex number $z=e^{i \frac{\pi}{3}}$ in the form $x+i y$.

- Watch Video Solution

33. Find the complex number $z=e^{i \frac{4 \pi}{3}}$ in the form $x+i y$.

- Watch Video Solution

Archives Single Correct Answer Type

1. If $\left|z-\frac{4}{Z}\right|=2$, then the maximum value of $|Z|$ is equal to
(1) $\sqrt{3}+1$ (2) $\sqrt{5}+1$ (3) $2(4) 2+\sqrt{2}$
A. $\sqrt{3}+1$
B. $\sqrt{5}+1$
C. 2
D. $2+\sqrt{2}$

Answer: B

- Watch Video Solution

2. If z_{1} lies on $|z|=1$ and z_{2} lies on $|z|=2$ then
A. ∞
B. 0
C. 1
D. 2

Answer: C

- Watch Video Solution

3. Let α and β be real and z be a complex number. If
$z^{2}+a z+\beta=0$ has two distinct roots on the line $\operatorname{Re}(z)=1$, then it is necessary that
A. $\beta \in(1, \infty)$
B. $\beta \in(0,1)$
C. $\beta \in(-1,0)$
D. $|\beta|=1$

Answer: A
4. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{3}=A+B \omega$
.Then (A, B) equals to ?

D Watch Video Solution

5. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis
A. either on the real axis or on a circle passing thorugh the origin.
B. on a circle with centre at the origin.
C. either on the real axis or an a circle not possing through the origin .
D. on the imaginary axis .

Answer: A

D Watch Video Solution

6. If z is a complex number of unit modulus and argument
q , then $\arg \left(\frac{1+z}{1+\bar{z}}\right)$ equal (1) $\frac{\pi}{2}-\theta(2) \theta(3) \pi-\theta(4)-\theta$
A. $-\theta$
B. $\frac{\pi}{2}-\theta$
C. θ
D. $\pi-\theta$

Answer: C

- Watch Video Solution

7. If z is a complex number such that $|z| \geq 2$, then the minimum value of $\left|z+\frac{1}{2}\right|$ (1) is equal to $\frac{5}{2}$ (2) lies in the interval $(1,2)(3)$ is strictly greater than $\frac{5}{2}(4)$ is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$
B. lies in the interval $(1,2)$
C. is strictly gerater than $\frac{5}{2}$
D. is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$

Answer: B

- Watch Video Solution

$z_{1}-2 z_{2}$
8. If z_{1} and z_{2} are two complex numbers such that $\frac{-}{-}$

$$
2-z_{1} z_{2}
$$

is unimodular whereas z_{1} is not unimodular then $\left|z_{1}\right|=$
A. Straight line parallel to x-axis
B. sraight line parallel to y-axis
C. circle of radius 2
D. circle of radius $\sqrt{2}$

Answer: C

- Watch Video Solution

9. A value of for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ purely imaginary, is : (1)
$\frac{\pi}{3}(2) \frac{\pi}{6}(3) \sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)(4) \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
A. $\frac{\pi}{6}$
B. $\sin ^{-1}\left(\frac{\operatorname{Sqrt}(3)}{4}\right)$
C. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right.$
D. $\frac{\pi}{3}$

Answer: C

- Watch Video Solution

10. Let ω be a complex number such that $2 \omega+1=z$ where $z=\sqrt{-3 .}$ If $\left|1111-\omega^{2}-1 \omega^{2} 1 \omega^{2} \omega^{7}\right|=3 k$, then k is equal to : - 1 (2) $1(3)-z(4) z$
A. 1
B. z
C. $-Z$
D. -1

Answer: B

- Watch Video Solution

11. If $\alpha, \beta \in C$ are distinct roots of the equation $x^{2}+1=0$ then $\alpha^{101}+\beta^{107}$ is equal to
A. 2
B. -1
C. 0
D. 1

(D) Watch Video Solution

Multiple Correct Answer Type

1. Let z_{1} and z_{2} be two distinct complex numbers and
$z=(1-t) z_{1}+t z_{2}$, for some real number t with $0<t<1$ and $i=\sqrt{-1}$. If $\arg (w)$ denotes the principal argument of a non-zero compolex number w, then
A. $\left|z-z_{1}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|$
B. $\left(z-z_{1}\right)=\left(z-z_{2}\right)$
C. $\left|\begin{array}{cc}z-z_{1} & \bar{z}-\bar{z}_{1} \\ z_{2}-z_{1} & \bar{z}_{2}-\bar{z}_{1}\end{array}\right|=0$
D. $\arg \left(z-z_{1}\right)=\arg \left(z_{2}-z_{1}\right)$

D Watch Video Solution

2. about to only mathematics
A. $\pi / 2$
B. $\pi / 6$
C. $2 \pi / 3$
D. $5 \pi / 6$

Answer: C::D

3. Let $a, b \in R$ and $a^{2}+b^{2} \neq 0$.

Suppose $S=\left\{z \in C: z=\frac{1}{a+i b t}, t \in R, t \neq 0\right\}$, where $i=\sqrt{-1}$. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $\mathrm{z} \in S$, then (x, y) lies on
A. the circle with radius $\frac{1}{2 a}$ and centre $\left(\frac{1}{2 a}, 0\right)$ for

$$
a>0 b e \neq 0
$$

B. the circle with radius $-\frac{1}{2 a}$ and centre

$$
\left(-\frac{1}{2}, 0\right) a<0, b \neq 0
$$

C. the axis for $a \neq 0, b=0$
D. the y-axis for $a=0, b \neq 0$

Answer: A::C::D
4. Let a, b, xandy be real numbers such that $a-b=1$ and $y \neq 0$. If the complex number $z=x+i y$ satisfies $\operatorname{Im}\left(\frac{a z+b}{z+1}\right)=y$, then which of the following is (are) possible value9s) of x ? $\mid-1-\sqrt{1-y^{2}}$ (b) $1+\sqrt{1+y^{2}}$
$-1+\sqrt{1-y^{2}}(\mathrm{~d})-1-\sqrt{1+y^{2}}$
A. $-1-\sqrt{1-y^{2}}$
B. $1+\sqrt{1+y^{2}}$
C. $1-\sqrt{1+y^{2}}$
D. $-1+\sqrt{1-y^{2}}$

Answer: A::D
5. For a non-zero complex number z, let $\arg (z)$ denote the principal argument with $-\pi<\arg (z) \leq \pi$ Then, which of the following statement(s) is (are) FALSE?
$\arg (-1,-i)=\frac{\pi}{4}$, where $i=\sqrt{-1}$ (b) The function $f: R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all $t \in R$, is continuous at all points of \mathbb{R}, where $i=\sqrt{-1}$ (c) For any two non-zero complex numbers z_{1} and z_{2}, $\arg \left(\frac{z_{1}}{z_{2}}\right)-\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ is an integer multiple of 2π
(d) For any three given distinct complex numbers z_{1}, z_{2} and z_{3}, the locus of the point z satisfying the condition $\arg \left(\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}\right)=\pi$, lies on a straight line
A. $\arg (-1-i)=\frac{\pi}{4}$, where $i=\sqrt{-1}$
B. The functionf: $R \rightarrow(-\pi, \pi]$, defined by
$f(t)=\arg (-1+i t)$ for all $t \in R$, is continous at all
points of R , where $i=\sqrt{-1}$
C. For any tow non-zero complex number z_{1} and
$z_{2}, \arg \left(\frac{z_{1}}{z_{2}}-\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \quad\right.$ is an integer multiple of 2π
D. For any three given distinct complex numbers
z_{1}, z_{2} and z_{3} the locus of the point z satisfying the
condition $\left(\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}\right)=\pi$, lies on a
strainght line.

Answer: A::B::D

- Watch Video Solution

6. Let s, t, r be non-zero complex numbers and L be the set of solutions $z=x+i y(x, y \in \mathbb{R}, i=\sqrt{-1})$ of the equation $s z+t z+r=0$, where $z=x$ - iy. Then, which of the following statement(s) is (are) TRUE? If L has exactly one element, then $|s| \neq|t|$ (b) If $|s|=|t|$, then L has infinitely many elements (c) The number of elements in $\ln n\{z:|z-1+i|=5\}$ is at most 2 (d) If L has more than one element, then L has infinitely many elements
A. If L has exactly one element, then $|s| \neq|t|$
B. If $|s|=|t|$ then L has infinitely many elements
C. The number of elements in $L \cap\{z:|z-1+i|=5\}$ is
at most 2
D. If L has most than one elements, then L has infinitely many elements.

Answer: A::C::D

- Watch Video Solution

