©゙doubtnut

MATHS

BOOKS - CENGAGE PUBLICATION

CONTINUITY AND DIFFERENTIABILITY

Single Correct Answer Type

1. If $f(x)=\left\{\left(\frac{\sin \left(2 x^{2}\right)}{a}+\cos \left(\frac{3 x}{b}\right)\right)^{a b / x^{2}}, x \neq 0 \& e^{3} a t x=0\right\}$ is continuous at $x=0 \forall b \in R$ then minimum value of a is $-1 / 8 \mathrm{~b} .-1 / 4$
c. $-1 / 2$ d. 0
A. $-1 / 8$
B. $-1 / 4$
C. $-1 / 2$
D. 0

Answer: B

- View Text Solution

2. Let $f: R \rightarrow R$ be any function. Also $g: R \rightarrow R$ is defined by $g(x)=|f(x)|$ for all x. Then g is
a. Onto if f is onto b . One-one if f is one-one c. Continuous if f is continuous d. None of these
A. onto if f is onto
B. one-one if f is one-one
C. continuous if f is continuous
D. None of these

Answer: C

3.

$f(x)=\left[\frac{1-\sin \pi x}{1+\cos 2 \pi x}, x<\frac{1}{2}\right.$ and $p, x=\frac{1}{2}$ and $\frac{\sqrt{2 x-1}}{\sqrt{4+\sqrt{2 x-1}-2}}$
.Determine the value of p, if possible, so that the function is continuous at $x=\frac{1}{2}$.
A. 1
B. $1 / 4$
C. 4
D. none of these

Answer: D

- Watch Video Solution

4. For which of the following functions $f(0)$ exists such that $f(x)$ is continuous at $f(x)=\frac{1}{(\log)_{e}|x|}$ b. $f(x)=\frac{1}{(\log)_{\mathrm{e}}|x|}$ c. $\mathrm{f}(\mathrm{x})=\mathrm{x} \operatorname{sinpi} / \mathrm{x} \mathrm{d}$. $f(x)=\frac{1}{1+2^{\cot x}}$
A. $f(x)=\frac{1}{\log _{e}|x|}$
B. $f(x)=\cos \left(\frac{|\sin x|}{x}\right)$
C. $f(x)=x \frac{\sin (\pi)}{x}$
D. $f(x)=(1)=\frac{1}{1+2^{\cot x}}$

Answer: C

- Watch Video Solution

5. Let $f(x)=x^{3}-x^{2}-3 x-1, g(x)=(x+1) a$ and $h(x)=\frac{f(x)}{g(x)}$ where h is a rational function such that
(i) It is continuous everywhere except when $x=-1$,
(ii) $\lim _{x \rightarrow-1} h(x)=\frac{1}{2}$.

The value of $h(1)$ is
A. $1 / 2$
B. $1 / 4$
C. $-1 / 2$
D. 1

Answer: C

- Watch Video Solution

6. If the function $f(x)=\frac{3 x^{2}+a x+a+3}{x^{2}+x-2}$ is continuous at $x=-2$, then the value of $f(-2)$ is
A. 0
B. -1
C. 1
D. 2

Answer: B

- View Text Solution

7. Let $f(x)=\left\{\begin{array}{ll}8^{\frac{1}{x}}, & x<0 \\ a[x], & a \in R-\{0\}, \quad x \geq 0\end{array}\right.$ (where [.] denotes the greatest integer function).

Then $f(x)$ is
A. continuous only at a finite number of points.
B. discontinuous at a finite number of points.
C. discontinuous at an infinite number of points.
D. discontinuous at $\mathrm{x}=0$.

Answer: C

- View Text Solution

8. Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2} \quad$ for all $\mathrm{x} \in \mathrm{R}$, and let $g(x)=\int\left(\frac{2(t-1)}{t+1}-\ln t\right) f(t) d t$ for $\mathrm{t} \in[1, \mathrm{x}]$ for all $\mathrm{x} \in(1, \infty)$. Which of the following is true ?
A. f is continuous at $x=\pi / 2$
B. f has an irremovable discontinuity at $x=\pi / 2$
C. f has a removable discontinuity at $x=\pi / 2$
D. none of these

Answer: B

- Watch Video Solution

9.

$$
f(x)=\left\{\sin \left(\frac{\pi}{2}\right)(x-[x]), x<55(b-1), x=5 \frac{a b^{2}\left|x^{2}-11 x+24\right|}{x-3}, x\right\rangle
$$ is continuous at $x=5, a, b \in R$ then ([.] denotes the greatest integer function) $a=\frac{25}{108}, b=\frac{6}{5}$ b. $a=\frac{6}{13}, b=\frac{17}{29}$ c. $a=\frac{1}{2}, b=\frac{25}{36}$ d. $a=\frac{23}{100}, b=\frac{6}{5}$

A. $a=\frac{25}{108}, b=\frac{6}{5}$
B. $a=\frac{6}{13}, b=\frac{17}{29}$
C. $a=\frac{1}{2}, b=\frac{25}{36}$
D. $a=(23),(100), b=\frac{6}{5}$

- Watch Video Solution

10. The function $f(x)$ is discontinuous only at $x=0$ such that $f^{2}(x)=1 \forall x \in R$. The total number of such functions is 2 b .3 c .6 d . none of these
A. 2
B. 3
C. 6
D. none of these

Answer: C

11. $f(x)=\left\{\left(x^{2}+e^{\frac{1}{2-x}}\right)^{-1} k, x=2, x \neq 2\right.$ is continuous from right at the point $x=2$, then k equals
a. 0
b. $1 / 4$
c. $-1 / 4$
d. none of these
A. 0
B. $1 \backslash 4$
C. $-1 / 4$
D. none of these

Answer: B

- Watch Video Solution

12. Let

$$
g(x)=f(f(x))
$$

where
$f(x)=\{1+x ; 0 \leq x \leq 2\}$ and $f(x)=\{3-x ; 2<x \leq 3\}$ then the
number of points of discontinuity of $g(x)$ in $[0,3]$ is:
A. 0
B. 1
C. 2
D. 3

Answer: C

- View Text Solution

13. If the function $f(x)=\frac{(128 a+a x)^{1 / 8}-2}{(32+b x)^{1 / 5}-2}$ is continuous at $x=0$, then the value of a / b is $\frac{3}{5} f(0)$ b. $2^{8 / 5} f(0)$ c. $\frac{64}{5} f(0)$ d. none of these
A. $\frac{3}{5} f(0)$
B. $2^{8 / 5} f(0)$
C. $\frac{64}{5} f(0)$
D. none of these

D Watch Video Solution

14. If $f(x)=\left\{\begin{array}{l}\frac{1-\cos \left(1-\frac{\cos x}{2}\right)}{2^{m} x^{n}} 1 x=0, x \neq 0 \text { is continous at } x=0\end{array}\right.$ then the value of $m+n$ is a. 2 b. 3 c. -3 d. 7
A. 2
B. 3
C. -3
D. 7

Answer: C

15. Let $f(x)=\left\{\begin{array}{ll}\frac{\alpha \cot x}{x}+\frac{\beta}{x^{2}} & 0<|x| \leq 1 \\ \frac{1}{3} & x=0\end{array}\right.$. If $f(x)$ is continuous at $x=0$ then the value of $\alpha^{2}+\beta^{2}$ is
A. 1
B. 2
C. 5
D. 9

Answer: B

- Watch Video Solution

16. Let $f(x)=\left\{\frac{2}{1+x^{2}}, \xi\right.$ srationalb, ξ srational has exactly two points of continuity then the value of b are $(0,3]$ b. $[0,1]$ c. $(0,2]$ d. φ
A. $(0,3]$
B. $[0,1]$
C. $(0,2]$
D. ϕ

Answer: C

- Watch Video Solution

17. If $f(x)$, $\begin{cases}\sin \left(\frac{a-x}{2}\right) \tan \left[\frac{\pi x}{2 a}\right] & \text { for } \quad x>a \\ \frac{\left[\cos \left(\frac{\pi x}{2 a}\right)\right]}{a-x} & \text { for } \quad x<a\end{cases}$
(where $[\mathrm{x}]$ is the greatest integer function of x) and a gt 0 , then
A. $f\left(a^{-}\right)<0$
B. f has a removable discontinuity at $\mathrm{x}=\mathrm{a}$
C. f has an irremovable discontinuity at $\mathrm{x}=\mathrm{a}$
D. $f\left(a^{+}\right)<0$

Answer: B

18. Let $f(x)=[\tan x[\cot x]], x\left[\frac{\pi}{12}, \frac{\pi}{12}\right]$, (where [.] denotes the greatest integer less than or equal to x). Then the number of points, where $f(x)$ is discontinuous is a. one b. zero c. three d. infinite
A. one
B. zero
C. three
D. infinite

Answer: C

- Watch Video Solution

19. Let $f:[a, b] \rightarrow R$ be any function which is such that $f(x)$ is rational for irrational x and that $f(x)$ is iirrational for rational x , then in $[\mathrm{a}, \mathrm{b}]$
A. f is discontinuous everywhere
B. f is discontinuous only at $x=0$ and discontinuous everywhere
C. f is continuous for all irrational x and discontinuous for rational x
D. f is continuous for rational x and discontinuous for irrational x

Answer: A

- View Text Solution

20. If $f(x)=[x](\sin k x)^{p}$ is continuous for real x , then (where [.] represents the greatest integer function)
A. $k \in[n \pi, n \in I], p>0$
B. $k \in\{2 n \pi, n \in I\}, p>0$
C. $k \in\{n \pi, n \in I\}, p \in R-\{0\}$
D. $k \in\{n \pi, n I, n \neq 0\}, p \in R-\{0\}$

Answer: A

- View Text Solution

21. Statement 1: Minimum number of points of discontinuity of the function $f(x)=(g(x)[2 x-1] \forall x \in(-3,-1)$, where [.] denotes the greatest integer function and $g(x)=a x^{3}=x^{2}+1$ is zero. Statement 2 : $f(x)$ can be continuous at a point of discontinuity, say $x=c_{1} o f[2 x-1]$ if $g\left(c_{1}\right)=0$. Statement 1 is True, Statement 2 is True, Statement 2 isa correct explanation for Statement 1 . Statement 1 is True, Statement 2 is True, Statement 2 is NOT a correct explanation for statement 1 . Statement 1 is True, Statement 2 is False Statement 1 is False, Statement 2 is True.
A. Statement 1 is True, Statement 2 is True, Statement 2 is a correct explaination for Statement 1.
B. Statement 1 is True, Statement 2 is True, Statement 2 is NOT a correct explanation for Statement 1/
C. Statement 1 is True, Statement 2 is False.
D. Statement 1 is False, Statement 2 is True.
22. Number of points of discontinuity of $f(x)=\left[\sin ^{-1} x\right]-[x]$ in its domain is equal to (where [.] denotes the greatest integer function) a. 0 b. 1 c. 2 d. 3
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

23. If $g(x)=(\lim)_{m} \rightarrow \frac{x^{m} f(x)+h(x)+3}{2 x^{m}+4 x+1}$ when $x \neq 1 \operatorname{and} g(1)=e^{3}$ such that $f(x), g(x) \operatorname{andh}(x)$ are continuous functions at $x=1$ then the value of $5 f(1)-2 h(1)$ is 7 b. 6 c. 9 d. 8
A. 7
B. 6
C. 9
D. 8

Answer: B

- Watch Video Solution

24. The number of points of discontinuity of $f x)=\left[2 x^{2}\right]-\{2 x 2\}^{2}$ (where [] denotes the greatest integer function and $\}$ is fractional part of $x)$ in the interval $(-2,2)$, is 1 b. 6 c. 2 d. 4
A. 1
B. 6
C. 2
D. 5

- Watch Video Solution

25. If $f(x)=\{(|x|-3$ when $x<1)$, and $(|x-2|+a$, when $x \geq 1)$ \& $g(x)=\{2-|x|$ when $x<2$ and $\operatorname{sgn}(x)-b$, when $x \geq 2$.
if $h(x)=f(x)+g(x)$ is discontinuous at exactly one point, then -
(a). $a=-3, b=0$
(b). $a=-3, b=-1$
(c) $a=2, b=1$
(d) $a=0, b=1$
A. $a=-3, b=0$
B. $a=0, b=1$
C. $a=2, b=1$
D. $a=-3, b=1$

Answer: D

26. The function $f(x)=\frac{x^{3}}{8}-s \in \pi x+4 \in[-4,4]$ does not take the value -4 b. 10 c. 18 d. 12
A. -4
B. 10
C. 18
D. 12

Answer: C

- Watch Video Solution

27. Let $f(x)$ be continuous functions $f: R \vec{R}$ satisfying $f(0)=1 \operatorname{and} f(2 x)-f(x)=x$. Then the value of $f(3)$ is 2 b. 3 c. 4 d. 5
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

28. about to only mathematics
A. $a=b=4$
B. $a=b=-4$
C. $a=4$ and $b=-4$
D. $a=-4$ and $b=4$

Answer: C

29. If $f(x)=\left\{\begin{array}{ll}{[x]+\sqrt{\{x\}},} & x<1 \\ \frac{1}{[x]+\{x\}^{2}}, & x \geq 1\end{array}\right.$, then
[where [.] and \{.\} represent the greatest integer and fractional part functions respectively]
A. $f(x)$ is continuous at $x=1$ but not differentiable
B. $f(x)$ is not continuous at $x=1$
C. $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$
D. $\lim _{x \rightarrow 1} f(x)$ does not exist

Answer: A

- View Text Solution

30. If is an even function such that $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$ has some fininte non-zero value, then
A. f is continuous and derivable at $x=0$
B. f is continuous but not differentiable at $x=0$
C. f may be discontinuous at $\mathrm{x}=0$
D. None of these

Answer: B

D Watch Video Solution

31. Let $f(x)$ be differentiable for real x such that
$f^{\prime}(x)>0 o n(-\infty,-4)$,

$$
f^{\prime}(x)<0 o n(-4,6),
$$

$f^{\prime}(x)>0 o n(6, \infty)$, If $g(x)=f(10-2 x)$, then the value of $g^{\prime}(2)$ is a.
1 b. 2 c. 0 d. 4
A. 1
B. 2
C. 0
D. 4

Answer: C

32.

$f(x)=x^{2}-\left|x^{2}-1\right|+2| | x|-1|+2|x|-7$ is non-differentiable is a.
ob. 1 c. 2 d. 3
A. 0
B. 1
C. 2
D. 3

Answer: A

- View Text Solution

33. If $f(x)=|x-1| .([x]=[-x])$, then (where [.] represents greatest integer function)
A. $f(a)$ is continuous and differentiable at $x=1$
B. $f(x)$ is discontinuous at $x=1$
C. $f(x)$ is continuous at $x=2$
D. $f(x)$ is continuous but non-differentiable at $x=1$

Answer: D

- View Text Solution

34. Number of point where function $f(x)$ defined as $f:[0,2 \pi] \rightarrow R, f(x)=\left\{\begin{array}{ll}3-\left|\cos x-\frac{1}{\sqrt{2}}\right|, & |\sin x|<\frac{1}{\sqrt{2}} \\ 2+\left|\cos x+\frac{1}{\sqrt{2}}\right|, & |\sin x| \geq \frac{1}{\sqrt{2}}\end{array}\right.$ is non
differentiable is
A. 2
B. 4
C. 6
D. 0

Answer: B

D Watch Video Solution

35. If $y=e^{x} \sin x$, then find $\frac{d y}{d x}$

- Watch Video Solution

36. If $y=\cos \left(\sin ^{-1} x\right)$, then find $\frac{d y}{d x}$

- Watch Video Solution

37. If $y=\sin a^{x}$, then find $\frac{d y}{d x}$

- Watch Video Solution

38. If $y=\frac{1}{1+\frac{1}{x}}$, then find $\frac{d y}{d x}$

Watch Video Solution

39. If $y=\cos \left(x^{3}\right)$, then find $\frac{d y}{d x}$

- Watch Video Solution

40. If $y=(1-x) \tan \left(\frac{x}{2}\right)$, then find $\frac{d y}{d x}$

- Watch Video Solution

Multiple Correct Answer Type

1. Which of the following functions is/are discontinuous at $x=1$?
$f(x)=\frac{1}{1+2^{\operatorname{tanx}}} \quad g(x)=(\lim)_{x>} \frac{1}{1+n \in s^{2}(\pi x)}$
$h(x)=2^{-2 \wedge}\left(\left(\left(\frac{1}{1-x}\right)\right)\right), x \neq 1 \operatorname{andh}(1)=1$
$\varphi(x)=\frac{x-1}{|x-1|+2(x-1)^{2}}, x=\operatorname{1and} \varphi(1)=1$
A. $f(x)=\frac{1}{1+2^{\tan x}}$
B. $g(x)=\lim _{n \rightarrow \infty} \frac{1}{1+n \sin ^{2}(\pi x)}$
C. $h(x)=2^{-2^{\left(\frac{1}{1-X}\right)}}, x \neq 1$ and $h(1)=1$
D. $\phi(x)=\frac{x-1}{|x-1|+2(x-1)^{2}}, x \neq 1$ and $\phi(1)=1$

Answer: A

- View Text Solution

2. f is a continous function in $[a, b]$; g is a continuous function in $[\mathrm{b}, \mathrm{c}]$. A function $h(x)$ is defined as $h(x)=f(x) f$ or $x \in[a, b), g(x) f$ or $x \in(b, c]$ if $\mathrm{f}(\mathrm{b})=\mathrm{g}(\mathrm{b})$ then
A. $\mathrm{h}(\mathrm{x})$ may or may not be continuous in $[\mathrm{a}, \mathrm{c}$]
B. $h\left(b^{+}\right)=g\left(b^{-}\right)$and $h\left(b^{-}\right)=f\left(b^{+}\right)$
C. $h\left(b^{-}\right)=g\left(b^{+}\right)$and $h\left(b^{+}\right)=f\left(b^{-}\right)$
D. $h(x)$ has a removable discontinuity at $x=b$

- Watch Video Solution

3. If the function $f(x)$ defined as $f(x)$ defined as $f(x)=\left\{3, x=0\left(1+\frac{a x+b x^{3}}{x^{2}}\right), x>0\right.$ is continuous at $x=0$, then $a=0$ b. $b=e^{3}$ c. $a=1$ d. $b=(\log)_{e} 3$
A. $a=0$
B. $b=e^{3}$
C. $a=1$
D. $b=\log _{e} 3$

Answer: A::D

$f(x)=\left\{3-\left[\cot ^{-1}\left(\frac{2 x^{3}-3}{x^{2}}\right)\right] f\right.$ or $x>0$ and $\left\{x^{2}\right\} \cos \left(e^{\frac{1}{x}}\right) f$ or $x<$ (where $\}$ and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does not hold good?
A. $f\left(0^{-}\right)=0$
B. $f\left(0^{+}\right)=3$
C. If $f(0)=0$, then $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$
D. Irremovable discontinuity of f at $x=0$

Answer: B::D

- View Text Solution

5. Let $f(x)=\left\{\begin{array}{ll}x\left[\frac{1}{x}\right]+x[x] & \text { if } \quad x \neq 0 \\ 0 & \text { if } \quad x=0\end{array}\right.$ (where $[\mathrm{x}]$ denotes the greatest integer function). Then the correct statement is/are
A. Limit exists for $x=-1$.
B. $f(x)$ has a removable discontinuity at $x=1$.
C. $f(x)$ has a non removable discontinuity at $x=2$.
D. $f(x)$ is discontinuous at all positive integers.

Answer: A::B::C::D

- Watch Video Solution

6. A function $f: R \vec{R}$ is defined as $f(x)=(\lim)_{n \rightarrow} \frac{a x^{2}+b x+c+e^{n x}}{1+\cdot e^{n x}}$ is continuous on then Point lies on the space Point represents the 2-dimensional Cartesian plane Locus of point $(a, c) \operatorname{and}(c, b)$ intersect at one point Point (a, b, c) lies on the plane in space
A. point (a, b, c) lies on line in space
B. point (a, b) represents the 2-dimensional Cartesian plane
C. Locus of point (a, c) and (c, b) intersect at one point
D. point (a, b, c) lies on the plane in space

Answer: A::B::C

- Watch Video Solution

7. If $y=\frac{1}{1+x^{3}}$, then find $\frac{d y}{d x}$

- Watch Video Solution

8. If $y=\sin \left(x^{2}-3 x\right)$, then find $\frac{d y}{d x}$

- Watch Video Solution

9. If $y=(x-2)^{\frac{2}{3}}$, then find $\frac{d y}{d x}$

Comprehension Type

1. If $y=(4 x+2)(x-1)$, then find $\frac{d y}{d x}$

- Watch Video Solution

2. If $y=(x-1) e^{x}$, then find $\frac{d y}{d x}$

- Watch Video Solution

Illustration

1. If $y=x e^{x}$, then find $\frac{d y}{d x}$

Watch Video Solution

2. If $y=\frac{1}{2 \sin x-1}$, then find $\frac{d y}{d x}$
3. If $y=\log \left(1+x^{2}\right)$, then find $\frac{d y}{d x}$

- Watch Video Solution

4. $x^{2}+\sqrt{3} \cdot f(x)+2 \sqrt{3}-3=0$, then the value of $f(\sqrt{3})$

- Watch Video Solution

5. If $y=\frac{x}{x+3}$, then find $\frac{d y}{d x}$

- Watch Video Solution

6. If $y=\sqrt{x+b x^{2}}$, then find $\frac{d y}{d x}$
7. If $y=\log (1+4 x)+x$, then find $\frac{d y}{d x}$

Watch Video Solution

8. If $y=\frac{1}{x^{4}+x^{2}+1}$, then find $\frac{d y}{d x}$

- Watch Video Solution

9. If $y=x \sin x$, then find $\frac{d y}{d x}$

- Watch Video Solution

10. If $f(x)=\log _{e}\left(x^{2}-4\right)$ then find $\frac{d f}{d x}$

- Watch Video Solution

11. If $y=\cos ^{-1}\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)$ then find $\frac{d y}{d x}$?
12. If $y=x^{2} \tan x$, then find $\frac{d y}{d x}$

- Watch Video Solution

13. Find $\frac{d y}{d x}$ if:- $x=-\sin t, y=\cos t$

- Watch Video Solution

14. Find $\frac{d y}{d x}$ if:- $x=\cos t, y=\tan t$

- Watch Video Solution

15. Find $\frac{d y}{d x}$ if:- $x=\sec t, y=\tan t$
16. Find $\frac{d y}{d x}$ if:- $x=2 t, y=t^{3}$

- Watch Video Solution

17. Find $\frac{d y}{d x}$ if:- $x=t, y=t^{2}+t$

- Watch Video Solution

18. Find $\frac{d y}{d x}$ if:- $x=\sin t, y=\cos t$

- Watch Video Solution

19. Find $\frac{d y}{d x}$ if:- $x=\sin t, y=\tan t$
20. Draw the graph and find the points of discontinuity $f(x)=[2 \cos x]$, $x \in[0,2 \pi]$. ([.] represents the greatest integer function.)

- Watch Video Solution

21. Draw the graph and discuss the continuity of $f(x)=[\sin x+\cos x], x \in[0,2 \pi]$, where [.] represents the greatest integer function.

- Watch Video Solution

22. If the function $f(x)=\left[\frac{(x-2)^{3}}{a}\right] \sin (x-2)+a \cos (x-2)$, [.] denotes the greatest integer function, is continuous in $[4,6]$, then find the values of a.

- Watch Video Solution

23. Discuss continuity of
(i) $f(x)=\operatorname{sgn}\left(x^{3}-x\right)(i i) f(x)=\operatorname{sgn}(2 \cos x-1)$
(iii) $f(x)=\operatorname{sgn}\left(x^{2}-2 x+3\right)$

- Watch Video Solution

24. If $f(x)=\operatorname{sgn}(2 \sin x+a)$ is continuous for all x, then find the possible values of a.

- Watch Video Solution

25. Discuss the continuity of $f(x)=|x| \operatorname{sgn}\left(x^{3}-x\right)$

- Watch Video Solution

26. if $f(x) \begin{cases}\operatorname{sgn}(x-2) \times\left[\log _{e} x\right] & 1 \leq x \leq 3 \\ \left\{x^{2}\right\} & 3<x \leq 3.5\end{cases}$
where [.] dentes inteatest function ans \{.\} repesents fractional part
function find the points where the continuity of $f(x)$ shoukd be checked, Hence find he points of discontinuity.

- Watch Video Solution

27. Discuss the continuity of $f(x)=(\lim)_{n \rightarrow \infty} \frac{x^{2 n}-1}{x^{2 n}+1}$

- Watch Video Solution

28. Find the values of a if $f(x)=(\lim)_{n} \vec{\infty} \frac{a x^{2 n}+2}{x^{2 n}+a+1}$ is continuous at $x=1$.

- Watch Video Solution

29. Let $\mathrm{f}(\mathrm{x})$ be given that $f(x)= \begin{cases}x & \text { if } \mathrm{x} \text { is rational } \\ 1-x & \text { if } \mathrm{x} \text { is irrational }\end{cases}$ The number of points at which $f(x)$ is continuous, is
30. If $f(x)=\frac{x+1}{x-1} \operatorname{andg}(x)=\frac{1}{x-2}$, then discuss the continuity of $f(x), g(x), \operatorname{andfog}(x)$.

Watch Video Solution

31. If $f(x)=\left\{\begin{array}{ll}x-2 & x \leq 0 \\ 4-x^{2} & x>0\end{array}\right.$, discusscont \in uityof $\mathrm{y}=\mathrm{f}(\mathrm{f}(\mathrm{x}))$

- Watch Video Solution

32. Show that the function $f(x)=(x-a)^{2}(x-b)^{2}+x$ takes the value $\frac{a+b}{2}$ for some value of $x \in[a, b]$.

Watch Video Solution

33. Using intermediate value theorem, prove that there exists a number x such that $x^{2005}+\frac{1}{1+\sin ^{2} x}=2005$.
34. Let $f(x)$ be a continuous function defined for $1 \leq x \leq 3$. If $f(x)$ takes rational values for all x and $f(2)=10$ then the value of $f(1.5)$ is:

- Watch Video Solution

35. Let $f:[0,1] \overrightarrow{0,1}$ be a continuous function. Then prove that $f(x)=x$ for at least one $0 \leq x \leq 1$.

- Watch Video Solution

36. Discuss the differentiability of $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{\sin x^{2}}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ at $\mathrm{x}=0$

- Watch Video Solution

37. $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$ then at $x=0$, value of $\mathrm{f}(\mathrm{x})$ is
38.

$f(x)=\left\{x, x \leq 1, x^{2}+b x+c, x>1^{\prime} \prime f \in d b\right.$ and c if functioniscont $x=1$ `

- Watch Video Solution

39. Find the values of a and b if
$f(x)=\left\{a+\sin ^{-1}(x+b), x \geq 1\right.$ and $x, x<1$ is differentiable at $x=1$.

- Watch Video Solution

40.

$f(x)=\left\{a x(x-1)+b, x<1 x-1,1 \leq x \leq 3 \cdot p x^{2}+q x+2, x>3\right.$
Find the values of the constants $a, b, \operatorname{pandq}$ so that all the following conditions are satisfied $f(x)$ is continuous for all $x \cdot f(1)$ does not exist. $f^{\prime}(x)$ is continuous at $x=3$

- Watch Video Solution

41. Discuss the differentiability of $f(x)=\sin |x|$

- Watch Video Solution

42. Test the continuity and differentiability of the function $f(x)=\left|\left(x+\frac{1}{2}\right)[x]\right|$ by drawing the graph of the function when $-2 \leq x<2$, where [.] represents the greatest integer function.

- Watch Video Solution

43. Discuss the differentiability of $f(x)=[\mathrm{x}]$ $+|1-x|, x \in(-1,3)$, where [.] represents greatest integer function.

- Watch Video Solution

44.

$f(x)=\left(x^{2}-1\right)\left|x^{2}-x-2\right|+\sin (|x|)$.

Watch Video Solution

45. | Discuss |
| :--- |
| the | differentiability

$f(x)=|x| \sin x+|x|-2 \operatorname{sgn}(x-2)+|x-3|$

- Watch Video Solution

46. Prove that function $f(x)=(\sin \pi x)(x-1)^{1 / 5}$ is continuous and differentiable at $\mathrm{x}=1$

Also show that $\mathrm{f}^{\prime}(\mathrm{x})$ is differentiable at $\mathrm{x}=1$.

- View Text Solution

1. Let $f: R \rightarrow R$ satisfying $|f(x)| \leq x^{2}, \forall x \in R$, then show that $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$.

- Watch Video Solution

2. If a function $f:[-2 a, 2 a] \rightarrow R$ is an odd function such that, $f(x)=f(2 a-x)$ for $x \in[a, 2 a]$ and the left-hand derivative at $x=a$ is 0 , then find the left-hand derivative at $x=-a$.

- Watch Video Solution

3. Let $\alpha \in R$. Prove that a function $f: R \rightarrow R$ is differentiable at α if and only if there is a function $g: R \rightarrow R$ which is continuous at α and satisfies $f(x)-f(\alpha)=g(x)(x-\alpha), \forall x \in R$.

- Watch Video Solution

1. A function $f(x)$ satisfies the following property: $f(x \dot{y})=f(x) f(y)$. Show that the function $f(x)$ is continuous for all values of x if it is continuous at $x=1$.

- Watch Video Solution

2. Find the value of $f(0)$ so that the function.
$f(x)=\frac{\sqrt{1+x}-1+x 3}{x}$ becomescont \in uousat $x=0$

- Watch Video Solution

3. The function $f: R \sim\{0\} \vec{R}$ given by $f(x)=\frac{1}{x}-\frac{2}{e^{2 x}-1}$ can be made continuous at $x=0$ by defining $f(0)$ as (1) $2(2)-1$ (3) $0(4) 1$

- Watch Video Solution

4. Let $f(x)=\frac{1-\tan x}{4 x-\pi}, x \neq \frac{\pi}{4}, x \in\left[0, \frac{\pi}{2}\right]$, If $f(x)$ is continuous in $\left[0, \frac{\pi}{4}\right]$, then find the value of $f\left(\frac{\pi}{4}\right)$.

- Watch Video Solution

5. If $f(x)=\left(\tan \left(\frac{\pi}{4}+(\log)_{e} x\right)\right)^{(\log)_{x} e}$ is to be made continuous at $x=1$, then what is the value of $f(1)$?

- Watch Video Solution

6.

If
the
function
$f(x)=\frac{x^{2}-(A+2) x+A}{x-2}, f$ or $x \neq 2 a n d f(2)=2$, is continuous at $x=2$, then find the value of A.

- Watch Video Solution

7. Let $f(x)=\left\{\begin{array}{ll}\{1+|\sin x|\}^{a /|\sin x|}, & -\pi / 6<x<0 \\ b, & x=0 \\ e^{\tan 2 x / \tan 3 x}, & 0<x<\pi / 6\end{array}\right.$ Determine a and b such that $f(x)$ is continuous at $x=0$

- Watch Video Solution

8. Which of the following functions is not continuous $\forall x \in R$?
A. $\sqrt{2 \sin x+3}$
B. $\frac{e^{x}+1}{e^{x}+3}$
C. $\left(\frac{2^{2 x}+1}{2^{3}+5}\right)^{5: 7}$
D. $\sqrt{\operatorname{sgn} x+1}$

Answer:

9. Let $f(x)=\left\{(1+3 x)^{\frac{1}{x}}, x \neq 0\right.$ and $e^{3}, x=0$. Discuss the continuity of $f(x)$ at $(a) x=0$, (b) $x=1$.

- Watch Video Solution

10. Discuss the continuity of
$f(x)=\left\{\frac{x^{4}-5 x^{2}+4}{\mid(x-1)(x-2)}, x \neq 1,26, x=112, x=2\right.$

(Watch Video Solution

Concept Application Exercise 42

1. Find the value of x in $[1,3]$ where the function $\left[x^{2}+1\right]$ ([.] represents the greatest integer function) is discontinuous.

- Watch Video Solution

2. Discuss the continuity of $f(x)=\left[\tan ^{-1} x\right]([$.$] represents the greatest$ integer function).

Watch Video Solution

3. Discuss the continuity of $f(x)=\left\{\cot ^{-1} x\right](\{$.$\} represents the$ fractional part function).

- Watch Video Solution

4. Discuss the continuity of $f(x)=(\log |x|) \operatorname{sgn}\left(x^{2}-1\right), x \neq 0$.

- Watch Video Solution

5. $\operatorname{Letf}(x)= \begin{cases}{[\sin \pi x]} & 0 \leq x \leq 1 \\ \operatorname{sgn}\left(x-\frac{5}{4}\right) \times\left\{x-\frac{2}{3}\right\} & 1 \leq x \leq 2\end{cases}$
when [.] denotes the greatest integer function and \{.\} represents the
fractional part function, At what points should the continuity be checked ? Hence, find the points of discontinuity .

- Watch Video Solution

6. Consider $f(x)=\lim _{x-\infty} \frac{x^{n}-\sin x^{n}}{x^{n}+\sin x^{n}}$ for $x>0, x \neq 1, f(1)=0$ then

- Watch Video Solution

7. Discuss the continuity of
$f(x) \in[0,2]$, wheref $(x)=(\lim)_{n \rightarrow \infty}\left(\sin \left(\pi \frac{x}{2}\right)\right)^{2 n}$

- Watch Video Solution

8. Find the value of a for which $f(x)=\left\{x^{2}, x \in Q x+a, x \notin Q\right.$ is not continuous at any x.

- Watch Video Solution

9. If $y=\frac{1}{t^{2}+t-2}$, wheret $=\frac{1}{x-1}$, then find the number of points where $f(x)$ is discontinuous.

- Watch Video Solution

10. Find the points of discontinuity of the function: $f(x)=\frac{1}{1-e^{\frac{x-1}{x-2}}}$

- Watch Video Solution

Concept Application Exercise 43

1. Prove that $f(x)=\frac{x^{3}}{4}-\sin \pi x+3$ takes the value of $\frac{7}{3}$ for $x \in[-2,2]$.

- Watch Video Solution

2. Leg f be continuous on the interval $[0,1]$ to R such that $f(0)=f(1)$. Prove that there exists a point c in $\left[\frac{0,1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.

- Watch Video Solution

3. Suppose f is a continuous map from R to R and $f(f(a))=a$ for some a. Show that there is some b such that $f(b)=b$.

- Watch Video Solution

Concept Application Exercise 44

1. If f is an even function such that $(\lim) \underset{h 0}{ } \frac{f(h)-f(0)}{h}$ has some finite non-zero value, then prove that $f(x)$ is not differentiable at $x=0$.

- Watch Video Solution

1. Discuss the continuity and differentiability of $f(x)=|x+1|+|x|+|x-1| \forall x \in R ;$ also draw the graph of $f(x)$

- Watch Video Solution

2. Find x where $f(x)=\max \{\sqrt{x(2-x)}, 2-x\}$ is non-differentiable.

- Watch Video Solution

3. Discuss the differentiability of
$f(x)=\operatorname{mim} .\{|x|,|x-2|, 2-|x-1|\}$.

- Watch Video Solution

4. Discuss the differentiability of function $f(x)=x-\left|x-x^{2}\right|$
5. Discuss the differentiability of $f(x)=\max \left\{\tan ^{-1} x, \cot ^{-1} x\right\}$.

- Watch Video Solution

6. Find the values of aandb if
$f(x)=\left\{a x^{2}+1, x \leq 1 x^{2}+a x+b, x>1 i s d \Leftrightarrow\right.$ erentiableatx $=1$

- Watch Video Solution

7. Discuss the differentiability of $f\left(x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right.$

- Watch Video Solution

8. Discuss the differentiability of $f(x)=\left|\left|x^{2}-4\right|-12\right|$.
9. If the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point of its domain, then the value of $f(0)$ (a) 2 (b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$
A. 2
B. 43468
C. 43499
D. $-\frac{1}{3}$

Answer: B

Watch Video Solution

2. if $f(x)= \begin{cases}\frac{8^{x}-4^{x}-2^{x}+1}{x^{2}} & x>0 \\ x^{2} & x \leq 0\end{cases}$
is continuous at $\mathrm{x}=0$, then the value of λ is
A. $4 \log _{e} 2$
B. $2 \log _{e} 2$
C. $\log _{e} 2$
D. none of these

Answer: C

- Watch Video Solution

3. Let $f(x)=\left\{\frac{x-4}{|x-4|}+a, x<4 a+b, \frac{x-4}{|x-4|}+b, x>4\right.$ Then $f(x)$ is continous at $x=4$ when $a=0, b=0 \quad$ b. $\quad a=1, b=1 \quad$ c. $a=-1, b=1$ d. $a=-1, b=-1$
A. $a=0, b=0$
B. $a=1, b=1$
C. $a=-1, b=1$
D. $a=1, b=-1$

(D) Watch Video Solution

4. Let $f(x) \lim _{x \rightarrow \infty} \frac{\log ,(2+x)-x^{2 x} \sin x}{1+x^{2 n}}$ then:
A. f is continuous at $x=1$
B. $\lim _{x \rightarrow 1^{+}} f(x)=\log 3$
C. $\lim _{x \rightarrow 1^{+}} f(x)=-\sin 1$
D. $\lim _{x \rightarrow 1^{-}} f(x)$ does not exist $x \rightarrow 1^{-}$

Answer: C

