

MATHS

BOOKS - CENGAGE PUBLICATION

COORDINATE SYSTEM

Single Correct Answer Type

1. The maximum value of

$$y = \sqrt{{{{\left({x - 3}
ight)}^2} + {{\left({{x^2} - 2}
ight)}^2}}} - \sqrt {{x^2} - {{\left({{x^2} - 1}
ight)}^2}}$$

is

B. $\sqrt{10}$

 $\mathsf{C.}\,2\sqrt{5}$

D. none of these

Answer: B

Watch Video Solution

2. Number of values of α such that the points $(\alpha,6),(-5,0)$ and (5,0) form an isosceles triangle is

- A. 4
- B. 5
- C. 6
- D. 7

Answer: B

Watch Video Solution

3. The number of triangles which are obtuse and which have the points (8,9),(8,16) and

(20,25). Then find the orthocenter of triangle ABC.

Watch Video Solution

A. $\sqrt{33} - \sqrt{11}$ sq. units

B. $\sqrt{11} + \sqrt{33}$ sq. units

4. If m_1, m_2 be the roots of the equation $x^2+(\sqrt{3}+2)x+\sqrt{3}-1=0$, then the area of the triangle formed by the lines $y=m_1x,y=m_2x$ and y=2 is

C. $2\sqrt{33}$ sq. units

D. 121 sq. units

Answer: B

Watch Video Solution

5. A triangle ABC vertices A(5,1),B(-1,-7) and C(1,4). Respectively. L be the line mirror passing through C and parallel to AB. A light ray emanating from point A goes along the direction of the internal bisector of angle A,

which meets the mirror and BC at E and D, respectively. then the sum of the areas of ΔACE and ΔABC is

- A. 17 sq. units
- B. 18 sq. units
- C. $\frac{50}{3}$ sq. units
- D. 20 sq. units

Answer: C

Watch Video Solution

6. In a three-dimensional coordinate system, P,Q,andR are images of a point A(a,b,c) in the x-y,y-zandz-x planes, respectively. If G is the centroid of triangle PQR, then area of triangle AOG is (O is the origin) a. O b. $a^2+b^2+c^2$ c. $\frac{2}{3}\left(a^2+b^2+c^2\right)$ d. none of these

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

- 7. If A(5,2), B(10,12) and P(x,y) is such that $\frac{AP}{PB}=\frac{3}{2}$, then then internal bisector of $\angle APB$ always passes through (a) (20,32) (b) (8,8) (c) (8,-8) (d) (-8,-8)
 - A.(20,32)
 - B. (8, 8)
 - C. (8, -8)

D.
$$(-8, -8)$$

Answer: B

Watch Video Solution

8. Let ABC is be a fixed triangle and P be veriable point in the plane of triangle ABC. Suppose a,b,c are lengths of sides BC,CA,AB opposite to angles A,B,C, respectively. If $a(PA)^2 + b(PB)^2 + c(PC)^2$ is minimum, then point P with respect to ΔABC is

A. centroid

B. circumcentre

C. orthocenter

D. incentre

Answer: D

Watch Video Solution

9. The incentre of a triangle with vertices

 $(7,1),(\,-1,5)$ and $\left(3+2\sqrt{3},3+4\sqrt{3}
ight)$ is

A. $\left(3 + \frac{2}{\sqrt{3}}, 3 + \frac{4}{\sqrt{3}}\right)$

B. $\left(1+rac{2}{3\sqrt{3}},1+rac{4}{3\sqrt{3}}
ight)$

C.(7,1)

Answer: A

10.

D. None of these

$$P(\cos \alpha, \sin \alpha), Q(\cos \beta, \sin \beta), R(\cos \gamma, \sin \gamma)$$

are vertices of triangle whose orthocenter is $(0,0) \qquad \text{then} \qquad \text{the} \qquad \text{value} \qquad \text{of}$ $\cos(\alpha-\beta)+\cos(\beta-\gamma)+\cos(\gamma-\alpha) \text{ is}$

A. A.
$$-3/2$$

B. B.
$$-1/2$$

C. C.
$$\frac{1}{2}$$

D. D.
$$3/2$$

Answer: A

Watch Video Solution

11. Three vertices of a triangle ABC are A(2,1), B(7,1) and C(3,4). Images of this triangle are taken in x-axis, y-axis and the line y=x. If G_1, G_2 and G_3 are the centroids of the three image triangles then area of triangle $G_1G_2G_3$ is equal to

A. 10 sq. units

B. 20 sq. units

C. 25sq. Units

D. 30 sq. units

Answer: B

Watch Video Solution

12. A and B are fixed points such that AB=2a.

The vertex C of ΔABC such that $\cot A + \cot B$ =constant. Then locus of C is

- A. straight line perpendicular to AB
- B. straight line parallel to AB
- C. circle
- D. none of these

Answer: B

Watch Video Solution

- 13. Two vertices of a triangle are (1, 3) and (4,
- 7). The orthocentre lies on the line x+y=3.

The locus of the third vertex is

A.
$$x^2 - 2xy + 2y^2 - 3x - 4y + 36 = 0$$

B.
$$2x^2 - 4xy + 3y^2 - 4x - y + 42 = 0$$

C.
$$3x^2 + xy - 4y^2 - 2x + 24y - 40 = 0$$

D.
$$x^2 - 4xy + 3y^2 - 2x - y + 40 = 0$$

Answer: C

Watch Video Solution

14. Let P be the point (-3,0) and Q be a moving point (0,3t). Let PQ be trisected at R so that R is nearer to Q. RN is drawn perpendicular to PQ meeting the x-axis at N. The locus of the mid-point of RN is

A.
$$(x+3)^2 - 3y = 0$$

B.
$$(y+3)^2 - 3x = 0$$

C.
$$x^2 - y = 1$$

D.
$$y^2 - x = 1$$

Answer: D

Watch Video Solution

15. Given $\frac{x}{a} + \frac{y}{b} = 1$ and ax + by = 1 are two variable lines, 'a' and 'b' being the parameters connected by the relation $a^2 + b^2 = ab$. The locus of the point of intersection has the equation

A.
$$x^2 + y^2 + xy - 1 = 0$$

B.
$$x^2 + y^2 - xy + 1 = 0$$

C.
$$x^2 + y^2 + xy + 1 = 0$$

D.
$$x^2 + y^2 - xy - 1 = 0$$

Answer: A

Watch Video Solution

16. The extremities of a diagonal of a rectangle are (0.0) and (4, 4). The locus of the extremities of the other diagonal is equal to

A.
$$x^2 + y^2 - 4x - 4y = 0$$

B.
$$x^2 + y^2 + 4x + 4y - 4 = 0$$

C.
$$x^2 + y^2 + 4x + 4y + 4 = 0$$

D.
$$x^2 + y^2 - 4x - 4y - 4 = 0$$

Answer: A

Watch Video Solution

17. In triangle ABC, the equation of the right bisectors of the sides AB and AC are x+y=0 and

y-x=0. respectively.

If $A\equiv (5,7)$ the find the equation of side BC.

A.
$$y = -5x$$

$$\mathsf{B.}\, y = x$$

$$\mathsf{C.}\,x=\,-\,5y$$

$$\mathsf{D.}\,x=\,-\,y$$

Answer: C

Watch Video Solution

satisfying the equation $(a^2-1)m^2-(2a-3)m+a=0 \ \text{given the}$ slope of a line parallel to the y-axis is $\frac{3}{2}$ (b) 0 (c) 1 (d) ± 1

A.
$$\frac{3}{2}$$

B. 0

C. 1

D. ± 1

Answer: D

19. If the lines y=3x+1 and 2y=x+3 are equally inclined to the line $y=mx+4, \left(\frac{1}{2} < m < 3\right)$ then find the values m

A.
$$\dfrac{1+3\sqrt{2}}{7}$$
B. $\dfrac{1-3\sqrt{2}}{7}$

c.
$$rac{1\pm3\sqrt{2}}{7}$$

D.
$$\frac{1 \pm 5\sqrt{2}}{7}$$

Answer: D

Watch Video Solution

20. Let G be the centroid of triangle ABC and the circumcircle of triangle AGC touches the side AB at A

If AC = 1, then the length of the median of triangle ABC through the vertex A is equal to

A. 2

B. 3

C. 4

D. 5

Answer: C

Watch Video Solution

21. The number of rational points on the line joining $(\sqrt{5},3)$ and $(3,\sqrt{3})$ is

A. 0

B. 1

C. 2

D. infinite

Answer: A

Watch Video Solution

22. The Cartesian coordinates of point having polar coordinates $\left(-2,\frac{2\pi}{3}\right)$ will be

A. $(1, \sqrt{3})$

B. $(\sqrt{3}, 1)$

C.
$$(1, -\sqrt{3})$$

D.
$$(-1, \sqrt{3})$$

Answer: C

Watch Video Solution

23. The line passing through $\left(-1, \frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3}\sin(heta) + 2\cos(heta) = rac{4}{\pi}$ is

A.
$$2=\sqrt{3}r\cos\theta-2r\sin\theta$$

B.
$$5 = -2\sqrt{3}r\sin\theta + 4r\cos\theta$$

C.
$$2 = \sqrt{3}r\cos\theta + 2r\cos\theta$$

D.
$$5=2\sqrt{3}r\sin\theta+4r\cos\theta$$

Answer: A

Watch Video Solution

24. If origin is shifted to (-2,3) then transformed equation of curve

A.
$$x^2 - 4x + 2y + 4 = 0$$

 $x^2 + 2y - 3 = 0$ w.r.t. to (0,0) is

B. $x^2 - 4x - 2y - 5 = 0$

C. $x^2 + 4x + 2y - 5 = 0$

D. None of these

Answer: C

Watch Video Solution

Comprehension Type

1. $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$ are three vertices of a triangle ABC, lx+my+n=0 is

an equation of line L. If L intersects the sides BC,CA and AB of a triangle ABC at P,Q,R respectively, then $\frac{BP}{PC} imes \frac{CQ}{QA} imes \frac{AR}{RB}$ is equal to

$$A. - 1$$

$$\mathsf{B.}-\frac{1}{2}$$

c.
$$\frac{1}{2}$$

D. 1

Answer: A

Watch Video Solution

2. $A(x_1,y_1), B(x_2,y_2), C(x_3,y_3)$ are three vertices of a triangle ABC. lx+my+n=0 is an equation of the line L.

If P divides BC in the ratio 2:1 and Q divides CA in the ratio 1:3 then R divides AB in the ratio (P,Q,R are the points as in problem 1)

A. 2:3 internally

B. 2:3 externally

C. 3:2 internally

D. 3:2 externally

Answer: D

Watch Video Solution

3. Let $A(0,\beta), B(-2,0)$ and C(1,1) be the vertices of a triangle. Then

Angle A of the triangle ABC will be obtuse if eta lies in

A.
$$(-1, 2)$$

$$\mathsf{B.}\left(2,\,\frac{5}{2}\right)$$

$$\mathsf{C.}\left(-1,\frac{2}{3}\right) \cup \left(\frac{2}{3},2\right)$$

D. none of these

Answer: C

Watch Video Solution

4. Let $A(0,\beta), B(-2,0)$ and C(1,1) be the vertices of a triangle. Then

All the values of eta for which angle A of triangle

ABC is largest lie in the interval

A. (-2, 1)

B. $\left(-2, \frac{2}{3}\right) \cup \left(\frac{2}{3}, 1\right)$

 $\mathsf{C.}\left(\,-\,2,\,\frac{2}{3}\,\right)\cup\left(\frac{2}{3},\,\sqrt{6}\right)$

Watch Video Solution

D. none of these

Answer: C

1. Coordinates of points on curve
$$5x^2-6xy+5y^2-4=0$$
 which are nearest

to origin are

A.
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$

$$\mathsf{B.}\left(\,-\,\frac{1}{2},\frac{1}{2}\,\right)$$

$$\mathsf{C.}\left(\,-\,\frac{1}{2},\;-\,\frac{1}{2}\,\right)$$

D.
$$\left(\frac{1}{2}, -\frac{1}{2}\right)$$

Answer: B::D

Watch Video Solution

2. Under rotation of axes through
$$\theta$$
 ,

$$x\cos lpha + y\sin lpha = P$$
 changes to

$$X\coseta+Y\sineta=P$$
 then . (a)

$$\cos eta = \cos (lpha - heta)$$
 (b) $\cos lpha = \cos (eta - heta)$ (c)

$$\sin eta = \sin (lpha - heta)$$
 (d) $\sin lpha = \sin (eta - heta)$

A.
$$\cos eta = \cos(lpha - heta)$$

B.
$$\cos \alpha = \cos(\beta - \theta)$$

$$\mathsf{C}.\sin\beta = \sin(\alpha - \theta)$$

$$\mathsf{D.}\sin\alpha=\sin(\beta-\theta)$$

Answer: A::C

