びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE PUBLICATION

DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

Illustration

1. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

2. If \vec{a}, \vec{b}, and \vec{c} are non-zero vectors such that \vec{a}. $\vec{b}=\vec{a}$. \vec{c}, then find the geometrical relation between the vectors.
3. if \vec{r}. $\vec{i}=\vec{r} . \vec{j}=\vec{r} . \vec{k}$ and $|\vec{r}|=6$, then find vector \vec{r}.

- Watch Video Solution

4. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is

- Watch Video Solution

5. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \vec{a} and $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

6. If $|\vec{a}|+|\vec{b}|=|\vec{c}|$ and $\vec{a}+\vec{b}=\vec{c}$, then find the angle between \vec{a} and \vec{b}
7. If three unit vectors \vec{a}, \vec{b} and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Then find the angle between \vec{b} and \vec{c}.

- Watch Video Solution

8. If θ is the angle between the unit vectors \vec{a} and \vec{b}, then prove that
$\cos \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}+\vec{b}|$

- Watch Video Solution

9. find the projection of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$ on the vector $5 \hat{i}-2 \hat{j}+4 \hat{k}$

- Watch Video Solution

10. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k}$ on vector $4 \hat{i}-2 \hat{j}+5 \hat{k}$ is $\frac{1}{3 \sqrt{5}}$. The find the value of x.

- Watch Video Solution

11. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ make an acute angle $\forall x \in R$, then find the values of a

- Watch Video Solution

12. If $\vec{a} . \vec{i}=\vec{a} \cdot(\hat{i}+\hat{j})=\vec{a}$. $(\hat{i}+\hat{j}+\hat{k})$. Then find the unit vector \vec{a}.

- Watch Video Solution

13. Prove by vector method that $\cos (A+B)=\cos A \cos B-\sin A \sin B$
14. In any triangle $A B C$, prove the projection formula $a=b \cos C+c \cos B$ using vector method.

- Watch Video Solution

15. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

- Watch Video Solution

16. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

- Watch Video Solution

17. If $a+2 b+3 c=4$, then find the least value (to the nearest integer) of
$a^{2}+b^{2}+c^{2}$
18. about to only mathematics

- Watch Video Solution

19. vectors \vec{a}, \vec{b} and \vec{c} are of the same length and when take they form equal angles. If $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$ then find vector \vec{c}.

- Watch Video Solution

20. if \vec{a}, \vec{b} and \vec{c} are there mutually perpendicular unit vectors and \vec{a} ia a unit vector then find the value of $|2 \vec{a}+\vec{b}+\vec{c}|^{2}$

- Watch Video Solution

21. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{9} j-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$ find the total work done by the forces in SI units.

- Watch Video Solution

22. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitude show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}

- Watch Video Solution

23. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{i}+4 \hat{k}$ find the projection vector \vec{a} to \vec{b}.

- Watch Video Solution

24. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$ then find the value of $|\vec{a}-\vec{b}|$
25. If $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+0 \hat{j}+\hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b}, (ii) that it is \perp to \vec{b} and (iii) that $\vec{a} . \vec{c}=7$.

- Watch Video Solution

26. Let \vec{a}, \vec{b}, and \vec{c} are vectors such that
$|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendicular to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b} Then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

27. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.
28. In isosceles triangles $A B C,|\vec{A} B|=|\vec{B} C|=8$, a point E divides $A B$ internally in the ratio $1: 3$, then find the angle between \vec{C} Eand $\vec{C} A($ where $|\vec{C} A|=12)$

- Watch Video Solution

29. An arc $A C$ of a circle subtends a right angle at then the center O. the point B divides the arc in the ratio $1: 2$, If $\overrightarrow{O A}=a \& \vec{O} B=b$. then the vector $\vec{O} C$ in terms of $a \& b$, is

- Watch Video Solution

30. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is

$$
\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}
$$

31. The foot of the perpendicular drawn from the origin to a plane is $(1,2,-3)$ Find the equation of the plane. or If O is the origin and the coordinates of P is $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$

- Watch Video Solution

32. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

33. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

- Watch Video Solution

34. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.

- Watch Video Solution

35. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$ Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} . \vec{d}=15$.

- Watch Video Solution

36. If $A, B a n d C$ are the vetices of a triangle $A B C$, then prove sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

37. Using cross product of vectors , prove that $\sin (A+B)=\sin A \cos B+\cos A \sin B$.
38. Find a unit vector perpendicular to the plane determined by the points (1, - 1, 2), (2, 0, - 1) and ($0,2,1$)

- Watch Video Solution

39. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$.

- Watch Video Solution

40. If $|\vec{a}|=2$, then find the value of $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$

- Watch Video Solution

41. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of \vec{a} and \vec{b}.

- Watch Video Solution

42. $A, B, C a n d D$ are any four points in the space, then prove that
$|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C)$.

- Watch Video Solution

43. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, B and C. respectively, of $\triangle A B C$. Prove that the perpendicualar distance of the vertex A from the base $B C$ of the triangle $A B C$ is $\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{c}-\vec{b}|}$

- Watch Video Solution

44. Using vectors, find the area of the triangle with vertices $A(1,1,2), B(2$, $3,5)$ and $C(1,5,5)$.

Watch Video Solution

45. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

46. Find the area of a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

47. Let \vec{a}, \vec{b} and \vec{c} be three verctors such that $\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$ If $\vec{b}-2 \vec{c}=\lambda \vec{a}$, then find the value of λ

- Watch Video Solution

48. Find the moment about (1,-1,-1) of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at (1,0,-2)

- Watch Video Solution

49. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$.

Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

50. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$, then show that $\vec{a}-\vec{d}$, is parallel to $\vec{b}-\vec{c}$

- Watch Video Solution

51. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\overrightarrow{.}$

- Watch Video Solution

52. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the vertices of a cyclic quadrilateral

$$
A B C D,
$$

prove
that

$$
\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times \vec{a}|}{(\vec{b}-\vec{a}) \cdot(\vec{d}-\vec{a})}+\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d} \times \vec{b}|}{(\vec{b}-\vec{c}) \cdot(\vec{d}-\vec{c})}=0
$$

- Watch Video Solution

53. The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b}), D(\vec{d})$ andC $(\vec{l} \vec{b}+m \vec{d})$ Prove that the area of the quadral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$

- Watch Video Solution

54. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$. Then find the value of $(2 \vec{a}+5 \vec{b}) \cdot((3 \vec{a}+\vec{b}+\vec{a} \times \vec{b}))$

- Watch Video Solution

55. u and v are two non-collinear unit vectors such that $|\hat{u} \times \hat{v}|=\left|\frac{\hat{u}-\hat{v}}{2}\right|$. Find the value of $|\hat{u} \times(\hat{u} \times \hat{v})|^{2}$

- Watch Video Solution

56. In triangle $A B C$, points D, EandF are taken on the sides $B C, C A a n d A B$, respectively, such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n \quad$ Prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle(A B C)$

- Watch Video Solution

57. Let A, B, C be points with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Find the shortest distance between point B and plane $O A C$

- Watch Video Solution

58. Let $\vec{a}=x \hat{i}+12 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}+2 x \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{k}$ If the ordered set $[\vec{b} \vec{c} \vec{a}]$ is left handed, then find the values of x

- Watch Video Solution

59. If \vec{a}, \vec{b}, and \vec{c} are three non-coplanar vectors, then find the value of $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{\vec{b} \cdot(\vec{c} \times \vec{a})}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{\vec{c} \cdot(\vec{a} \times \vec{b})}+\frac{\vec{c} \cdot(\vec{b} \times \vec{a})}{\vec{a} \cdot(\vec{b} \times \vec{c})}$

- Watch Video Solution

60. If the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k} a n d 3 \hat{i}-\hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

- Watch Video Solution

61. The position vectors of the four angular points of a tetrahedron are
$A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k}) \operatorname{andD}(2 \hat{i}+3 \hat{j}+2 \hat{k})$ Find the volume of the tetrahedron $A B C D$

- Watch Video Solution

62. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors and $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $|[\vec{a} \vec{b} \vec{c}]|$

- Watch Video Solution

63. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$
64. Prove that $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$

D Watch Video Solution

65. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the value of
$\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

66. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.
67. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that $(\vec{u}+\vec{v}-\vec{w}) \cdot[[(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})]]=\vec{u} .(\vec{v} \times \vec{w})$

- Watch Video Solution

68. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$.

- Watch Video Solution

69. Find the altitude of a parallelopiped whose three coterminous edges are vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}, \vec{B}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{C}=\hat{i}+\hat{j}+3 \hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallopiped.

- Watch Video Solution

70. If $[\vec{a} \vec{b} \vec{c}]=2$, then find the value of $[(\vec{a}+2 \vec{b}-\vec{c})(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$

- Watch Video Solution

71. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vector and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$, then $\alpha+\beta+\gamma=(\mathrm{A})$ $|\vec{a}|^{2}$ (B) - $|\vec{a}|^{2}$ (C) 0 (D) none of these

- Watch Video Solution

72. If \vec{a}, \vec{b} and \vec{c} are non- coplanar vecotrs, then prove that $|(\vec{a} \cdot \vec{d})(\vec{b} \times \vec{c})+(\vec{b} . \vec{d})(\vec{c} \times \vec{a})+(\vec{c} \cdot \vec{d})(\vec{a} \times \vec{b})|$ is independent of \vec{d} where \vec{d} is a unit vector.

- Watch Video Solution

73. Prove that vectors $\vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k}$ $\vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k}$
$\vec{w}=\left(c l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}$ are coplanar.

- Watch Video Solution

74. Let G_{1}, G_{2} and G_{3} be the centroids of the triangular faces OBC, OCAandOAB, respectively, of a tetrahedron $O A B C$ If V_{1} denotes the volumes of the tetrahedron $O A B C a n d V_{2}$ that of the parallelepiped with $O G_{1}, O G_{2} a n d O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{2}$

- Watch Video Solution

75. Prove that $\hat{i} \times(\vec{a} \times \vec{i})+\hat{j} \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \vec{k})=2 \vec{a}$

- Watch Video Solution

76. If $\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\hat{k} \times[(\vec{a}-\hat{i}) \times \hat{k}]=0$, then find vector \vec{a}.

- Watch Video Solution

77. Let \vec{a}, \vec{b}, and \vec{c} be any three vectors, then prove that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}$ $]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

78. For any four vectors prove that
$(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0$

- Watch Video Solution

79. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a} \mid(\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})^{\prime}$

(D) Watch Video Solution

80. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}$.

- Watch Video Solution

81. Let \hat{a}, \hat{b},and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α, between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ. If $A(\hat{a} \cos \alpha, 0), B(\hat{b} \cos \beta, 0)$ and $C(\hat{c} \cos \gamma, 0)$, then show that in triangle
$A B C, \frac{|\hat{a} \times(\hat{b} \times \hat{c})|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}$

- Watch Video Solution

82. find the angle between the vectors $\vec{a}=3 \hat{i}+2 \hat{k}$ and

$$
\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}
$$

83. If \vec{b} is not perpendicular to \vec{c}, then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ and $\vec{r} . \vec{c}=0$.

- Watch Video Solution

84. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$.

- Watch Video Solution

85. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of \vec{a} and \vec{b}.

- Watch Video Solution

86. if vectors $3 \hat{i}-2 \hat{j}+m \hat{k}$ and $-2 \hat{i}+\hat{j}+4 \hat{k}$ are perpendicular to each other, find the value of m

- Watch Video Solution

87. \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector
$\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \vec{b}-\vec{c}$ is always equal to $|\vec{a}|$ b. $\frac{1}{2}|\vec{a}|$ c. $\frac{1}{3}|\vec{a}|$ d. none of these

- Watch Video Solution

88. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is $\mathrm{a} .3 \pi / 4 \mathrm{~b} . \pi / 4 \mathrm{c}$. $\pi / 2 \mathrm{~d} . \pi$

- Watch Video Solution

89.

$$
\frac{[\vec{R} \vec{\beta} \times(\vec{\beta} \times \vec{\alpha})] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \vec{\alpha} \times(\vec{\alpha} \times \vec{\beta})] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}
$$

- Watch Video Solution

90. If \vec{a}, \vec{b} and \vec{c} are three non-zero non-coplanar vectors, then the value of $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}$.

- Watch Video Solution

91. Find a set of vectors reciprocal to the set $-\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$
92. find the projection of $3 \hat{i}-\hat{j}+4 \hat{k}$ on $2 \hat{i}+3 \hat{j}-6 \hat{k}$

Watch Video Solution

93. Let \vec{a}, \vec{b}, and \vec{c} and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors, then prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{b} \vec{c}]}$.

- Watch Video Solution

94. \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r}. Is any arbitrary vector. Prove that $[\vec{b} \vec{c} \vec{r}] \vec{a}+[\vec{c} \vec{a} \vec{r}] \vec{b}+[\vec{a} \vec{b} \vec{r}] \vec{c}=[\vec{a} \vec{b} \vec{c}] \vec{r}$.

- Watch Video Solution

95. Find the angle between the following pairs of vectors $3 \hat{i}+2 \hat{j}-6 \hat{k}, 4 \hat{i}-3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

96. If \vec{a}, \vec{b}, and \vec{c} are non-zero vectors such that $\vec{a} \cdot \vec{b}=\vec{a}$. \vec{c}, then find the geometrical relation between the vectors.

- Watch Video Solution

97. if $\vec{r} . \vec{i}=\vec{r} . \vec{j}=\vec{r} . \vec{k}$ and $|\vec{r}|=9$, then find vector \vec{r}.

- Watch Video Solution

98. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=3$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is
99. If \vec{a}, \vec{b}, and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \vec{a} and $\vec{a}+\vec{b}+\vec{c}$

- Watch Video Solution

100. If $\vec{a}+\vec{b}=\vec{c}$, and $a+b=c$ then the angle between \vec{a} and \vec{b} is

- Watch Video Solution

101. If three unit vectors \vec{a}, \vec{b} and \vec{c} satisfy $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Then find the angle between \vec{a} and \vec{c}.

- Watch Video Solution

102. If θ is the angle between the unit vectors \vec{a} and \vec{b}, then prove that
$\sin \left(\frac{\theta}{2}\right)=\frac{1}{2}|\vec{a}-\vec{b}|$

- Watch Video Solution

103. find the projection of vector $\hat{i}-3 \hat{j}-7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}-8 \hat{k}$

- Watch Video Solution

104. If the scalar projection of vector $x \hat{i}-\hat{j}+\hat{k}$ on vector $2 \hat{i}-\hat{j}+5 \hat{k}$, is $\frac{1}{\sqrt{30}}$,then find the value of x

- Watch Video Solution

105. If $\vec{a}=x \hat{i}+(x-1) \hat{j}+\hat{k}$ and $\vec{b}=(x+1) \hat{i}+\hat{j}+a \hat{k}$ make an acute angle
$\forall x \in R$, then find the values of a
106. If $\vec{a} . \vec{i}=\vec{a} .(\hat{i}+\hat{j})=\vec{a} \cdot(\hat{i}+\hat{j}+\hat{k})$. Then find the unit vector \vec{a}.

Watch Video Solution

107. Prove by vector method that $\cos (A+B)=\cos A \cos B-\sin A \sin B$

- Watch Video Solution

108. In any triangle $A B C$, prove the projection formula $a=b \cos C+c \cos B$ using vector method.

- Watch Video Solution

109. Prove that an angle inscribed in a semi-circle is a right angle using vector method.
110. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

- Watch Video Solution

111. If $a+2 b+3 c=4$, then find the least value (to the nearest integer) of $a^{2}+b^{2}+c^{2}$

- Watch Video Solution

112. Definition of set

- Watch Video Solution

113. Vectors \vec{a}, \vec{b} and \vec{c} are of the same length and when taken pair-wise they form equal angles. If $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$ then find vector \vec{c}.

- Watch Video Solution

114. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angle with \vec{a}, \vec{b} and \vec{c}, then find the value of $|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}$.

- Watch Video Solution

115. A particle acted by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{9} j-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$ find the total work done by the forces in SI units.

- Watch Video Solution

116. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, show that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}. Also find the angle.

- Watch Video Solution

117. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{i}+4 \hat{k}$ find the vector component of \vec{a} along \vec{b}.

- Watch Video Solution

118. If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$ then find the value of $|\vec{a}-\vec{b}|$

- Watch Video Solution

119. If $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+0 \hat{j}+\hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b}, (ii) that it is \perp to \vec{b} and (iii) that $\vec{a} . \vec{c}=7$.

(D) Watch Video Solution

120. Let \vec{a}, \vec{b}, and \vec{c} are vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendicular to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b} Then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

121. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular , then the third pair is also perpendicular.

- Watch Video Solution

122. In isosceles triangles $A B C,|\vec{A} B|=|\vec{B} C|=8$, a point E divides $A B$ internally in the ratio $1: 3$, then find the angle between \vec{C} End $\vec{C} A($ where $|\vec{C} A|=12)$

(D) Watch Video Solution

123. An arc $A C$ of a circle subtends a right angle at then the center O. the point B divides the arc in the ratio $1: 2$, If $\vec{O} A=a \& \vec{O} B=b$. then the vector $\vec{O} C$ in terms of $a \& b$, is

- Watch Video Solution

124. Vector $\vec{O} A=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$.

- Watch Video Solution

125. The foot of the perpendicular drawn from the origin to a plane is
$(1,2,-3)$ Find the equation of the plane. or If O is the origin and the
coordinates of P is $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$

- Watch Video Solution

126. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=2 \hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

- Watch Video Solution

127. Let the vectors \vec{a} and \vec{b} be such that
$|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

- Watch Video Solution

128. Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$.
129. answer any one question : (ii) let
$\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both the vectors \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=18$

- Watch Video Solution

130. If $A, B a n d C$ are the vetices of a triangle $A B C$, then prove sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

- Watch Video Solution

131. Using cross product of vectors , prove that $\sin (A+B)=\sin A \cos B+\cos A \sin B$.

- Watch Video Solution

132. Find a unit vector perpendicular to the plane determined by the points (1, - 1,2$),(2,0,-1)$ and $(0,2,1)$

- Watch Video Solution

133. If \vec{a} and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}\end{array}\right|$.

- Watch Video Solution

134. If $|\vec{a}|=2$, then find the value of $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$

- Watch Video Solution

135. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of \vec{a} and \vec{b}.
136. $A, B, C a n d D$ are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4($ area of $A B C)$.

- Watch Video Solution

137. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, B and C. respectively of $\triangle A B C$. Prove that the perpendicualar distance of the $|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$ vertex A from the base $B C$ of the triangle $A B C$ is

$$
|\vec{c}-\vec{b}|
$$

- Watch Video Solution

138. Using vectors, find the area of the triangle with vertices $A(1,1,2), B(2$, $3,5)$ and $C(1,5,5)$.
139. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-5 \hat{j}+2 \hat{k}$

- Watch Video Solution

140. Find the area of a parallelogram whose diagonals are $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

141. Let \vec{a}, \vec{b} and \vec{c} be three verctors such that $\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$ If $\vec{b}-2 \vec{c}=\lambda \vec{a}$, then find the value of λ

- Watch Video Solution

142. Find the moment about $(1,-1,-1)$ of the force $3 \hat{i}+4 \hat{j}-5 \hat{k}$ acting at (1,0,-2)
143. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,2)$.

Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

144. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}, \vec{a} \neq \vec{d}, \vec{b} \neq \vec{c}$ then show that $\vec{b}-\vec{c}$ is parallel to $\vec{a}-\vec{d}$

- Watch Video Solution

145. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ does not imply $\vec{b}=\overrightarrow{.}$

- Watch Video Solution

146. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the vertices of a cycle quadrilateral
ABCD, prove that

$$
\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{d}+\vec{d} \times \vec{a}|}{(\vec{b}-\vec{a}) \cdot(\vec{d}-\vec{a})}+\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{d}+\vec{d} \times \vec{b}|}{(\vec{b}-\vec{c}) \cdot(\vec{d}-\vec{c})}=0
$$

Watch Video Solution

147. The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b}), D(\vec{d})$ and $C(\vec{l} \vec{b}+m \vec{d})$ Prove that the area of the quadrialateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$

- Watch Video Solution

148. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$. Then find the value of $(2 \vec{a}+5 \vec{b}) \cdot((3 \vec{a}+\vec{b}+\vec{a} \times \vec{b}))$

- Watch Video Solution

149. \hat{u} and \hat{v} are two non-collinear unit vectors such that $\left|\frac{\hat{u}+\hat{v}}{2}+\hat{u} \times \vec{v}\right|=1$. Prove that $|\hat{u} \times \hat{v}|=\left|\frac{\hat{u}-\hat{v}}{2}\right|$

- Watch Video Solution

150. In triangle $A B C$,points D, EandF are taken on the sides $B C, C A a n d A B$, respectively, such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n$. Prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle(A B C)$

- Watch Video Solution

151. Let A, B, C be points with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ respectively. Find the shortest distance between point B and plane $O A C$

- Watch Video Solution

152. Let $\vec{a}=x \hat{i}+12 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}+2 x \hat{j}+\hat{k} a n d \vec{c}=\hat{i}+\hat{k}$ If the ordered set $[\vec{b} \vec{c} \vec{a}]$ is left handed, then find the values of x

- Watch Video Solution

153. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then find the value of $\underline{\vec{a} \cdot(\vec{b} \times \vec{c})}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{}+\underline{\vec{c} \cdot(\vec{b} \times \vec{a})}$
$\vec{b} .(\vec{c} \times \vec{a})$
$\vec{c} .(\vec{a} \times \vec{b})$
$\vec{a} .(\vec{b} \times \vec{c})$

- Watch Video Solution

154. If the vectors $2 \hat{i}-3 \hat{j}, \hat{i}+\hat{j}-\hat{k}$ and $3 \hat{i}-\hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

- Watch Video Solution

155. The position vectors of the four angular points of a tetrahedron are $A(\hat{j}+2 \hat{k}), B(3 \hat{i}+\hat{k}), C(4 \hat{i}+3 \hat{j}+6 \hat{k}) \operatorname{andD}(2 \hat{i}+3 \hat{j}+2 \hat{k})$ Find the volume of the tetrahedron $A B C D$

- Watch Video Solution

156. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors and $\vec{a} \cdot \vec{b}=\vec{a} . \vec{c}=0$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $|[\vec{a} \vec{b} \vec{c}]|$

- Watch Video Solution

157. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

158. Prove that $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} . \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

159. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \hat{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then find the value of
$\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} . \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} . \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} . \vec{a} & \vec{c} . \vec{b} & \vec{c} . \vec{c}\end{array}\right|$

- Watch Video Solution

160. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.

- Watch Video Solution

161. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that $(\vec{u}+\vec{v}-\vec{w}) \cdot[[(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})]]=\vec{u} \cdot(\vec{v} \times \vec{w})$

Watch Video Solution

162. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \times \vec{b}|=2$, then find the value of $[\vec{a} \vec{b} \vec{a} \times \vec{b}]$.

- Watch Video Solution

163. Find the altitude of a parallelopiped whose three coterminous edges are vectors $\vec{A}=\hat{i}+\hat{j}+\hat{k}, \vec{B}=2 \hat{i}+4 \hat{j}-\hat{k}$ and $\vec{C}=\hat{i}+\hat{j}+3 \hat{k} w i t h \vec{A}$ and \vec{B} as the sides of the base of the parallopiped.

- Watch Video Solution

164. If $[\vec{a} \vec{b} \vec{c}]=2$, then find the value of $[(\vec{a}+2 \vec{b}-\vec{c})(\vec{a}-\vec{b})(\vec{a}-\vec{b}-\vec{c})]$

- Watch Video Solution

165. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vector and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$, then $\alpha+\beta+\gamma=(\mathrm{A})$ $|\vec{a}|^{2}$ (B) $-|\vec{a}|^{2}$ (C) 0 (D) none of these

- Watch Video Solution

166. i. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors, prove that vectors $3 \vec{a}-7 \vec{b}-4 \vec{c}, 3 \vec{a}-2 \vec{b}+\vec{c}$ and $\vec{a}+\vec{b}+2 \vec{c}$ are coplanar.

- Watch Video Solution

167. Prove that vectors

$$
\begin{aligned}
& \vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k} \\
& \vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k} \\
& \vec{w}=\left(c l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}
\end{aligned}
$$

are coplannar.

- Watch Video Solution

168. Let G_{1}, G_{2} and G_{3} be the centroids of the triangular faces $O B C, O C A a n d O A B$, respectively, of a tetrahedron $O A B C$ If V_{1} denotes the volumes of the tetrahedron $O A B C a n d V_{2}$ that of the parallelepiped with $O G_{1}, O G_{2} a n d O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{2}$

- Watch Video Solution

169. Prove that $\hat{i} \times(\vec{a} \times \vec{i})+\hat{j} \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \vec{k})=2 \vec{a}$
170. If $\hat{i} \times[(\vec{a}-\hat{j}) \times \hat{i}]+\hat{j} \times[(\vec{a}-\hat{k}) \times \hat{j}]+\vec{k} \times[(\vec{a}-\vec{i}) \times \hat{k}]=0$, then find vector \vec{a}.

- Watch Video Solution

171. Prove that: $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}$

- Watch Video Solution

$(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=0$

- Watch Video Solution

173. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a}|\mid(\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b}) .(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$ '

- Watch Video Solution

174. Find the vector of length 3 unit which is perpendicular to $\hat{i}+\hat{j}+\hat{k}$ and lies in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}$.

- Watch Video Solution

175. Let \hat{a}, \hat{b}, and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α, between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ. If $A(\hat{a} \cos \alpha, 0), B(\hat{b} \cos \beta, 0)$ and $C(\hat{c} \cos \gamma, 0)$, then show that in triangle
$A B C, \frac{|\hat{a} \times(\hat{b} \times \hat{c})|}{\sin A}=\frac{|\hat{b} \times(\hat{c} \times \hat{a})|}{\sin B}=\frac{|\hat{c} \times(\hat{a} \times \hat{b})|}{\sin C}$

- Watch Video Solution

176. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove that $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}=[\vec{b} \vec{c} \vec{a}] \vec{a}$

- Watch Video Solution

177. If \vec{b} is not perpendicular to \vec{c}. Then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ and $\vec{r} . \vec{c}=0$

- Watch Video Solution

178. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a}+k \vec{r}=\vec{b}$.

- Watch Video Solution

179. $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b}, then find \vec{r} in terms of \vec{a} and \vec{b}.

- Watch Video Solution

180. If vector \vec{x} satisfying $\vec{x} \times \vec{a}+(\vec{x} \cdot \vec{b}) \vec{c}=\vec{d}$ is given $\vec{x}=\lambda \vec{a}+\vec{a} \times \frac{\vec{a} \times(\vec{d} \times \vec{c})}{(\vec{a} \cdot \vec{c})|\vec{a}|^{2}}$, then find the value of λ

(Watch Video Solution

181. If \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and $\mathrm{a}^{\prime}, \mathrm{b}$ ' and c^{\prime} constitute the reciprocal system of vectors, then prove that
i. $\vec{r}=\left(\vec{r} \cdot \vec{a}^{\prime}\right) \vec{a}+\left(\vec{r} \cdot \vec{b}^{\prime}\right) \vec{b}+\left(\vec{r} \cdot \vec{c}^{\prime}\right) \vec{c}$
ii. $\vec{r}=(\vec{r} \cdot \vec{a}) \vec{a}^{\prime}+(\vec{r} \cdot \vec{b}) \vec{b}^{\prime}+(\vec{r} \cdot \vec{c}) \vec{c}^{\prime}$

- Watch Video Solution

182. If \vec{a}, \vec{b} and \vec{c} are non -coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}, \vec{b}$ and \vec{c} are non- parallel, then prove that the
angle between \vec{a} and \vec{b} is $3 \pi / 4$

- Watch Video Solution

183.

Prove
that

$$
\frac{[\vec{R} \vec{\beta} \times(\vec{\beta} \times \vec{\alpha})] \vec{\alpha}}{|\vec{\alpha} \times \vec{\beta}|^{2}}+\frac{[\vec{R} \vec{\alpha} \times(\vec{\alpha} \times \vec{\beta})] \vec{\beta}}{|\vec{\alpha} \times \vec{\beta}|^{2}}=\frac{[\vec{R} \vec{\alpha} \vec{\beta}](\vec{\alpha} \times \vec{\beta})}{|\vec{\alpha} \times \vec{\beta}|^{2}}
$$

- Watch Video Solution

184. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove that $(\vec{a} \cdot \vec{a}) \vec{b} \times \vec{c}+(\vec{a} \cdot \vec{b}) \vec{c} \times \vec{a}+(\vec{a} \cdot \vec{c}) \vec{a} \times \vec{b}=[\vec{b} \vec{c} \vec{a}] \vec{a}$

- Watch Video Solution

185. Find a set of vectors reciprocal to the set $-\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$
186. Let \vec{a}, \vec{b} and \vec{c} be a set of non- coplanar vectors and $\vec{a}^{\prime} \vec{b}^{\prime}$ and \vec{c}^{\prime} be its reciprocal set.
prove that $\vec{a}=\frac{\vec{b} \times \vec{c}^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}, \vec{b}=\frac{\vec{c}^{\prime} \times \vec{a}^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}$ and $\vec{c}=\frac{\vec{a}^{\prime} \times \vec{b}^{\prime}}{\left[\vec{a}^{\prime} \vec{b}^{\prime} \vec{c}^{\prime}\right]}$

- Watch Video Solution

187. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vectors, then prove that $\vec{a}^{\prime} \times \vec{b}^{\prime}+\vec{b}^{\prime} \times \vec{c}^{\prime}+\vec{c}^{\prime} \times \vec{a}^{\prime}=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

188. If \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and $\mathrm{a}^{\prime}, \mathrm{b}$ ' and c' constitute the reciprocal system of vectors, then prove that
i. $\vec{r}=\left(\vec{r} \cdot \vec{a}^{\prime}\right) \vec{a}+\left(\vec{r} \cdot \vec{b}^{\prime}\right) \vec{b}+\left(\vec{r} \cdot \vec{c}^{\prime}\right) \vec{c}$
ii. $\vec{r}=(\vec{r} \cdot \vec{a}) \vec{a}^{\prime}+(\vec{r} \cdot \vec{b}) \vec{b}^{\prime}+(\vec{r} \cdot \vec{c}) \vec{c}^{\prime}$

- Watch Video Solution

Exercise 2.1

1. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

2. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is a perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors $\vec{a} a n d \vec{b}$

- Watch Video Solution

3. If the vectors A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$, respectively then find $\angle A B C$

Watch Video Solution

4. If $|a|=3,|b|=4 a n d$ the angle between $a a n d b$ is 120°, then find the value of $|4 a+3 b|$

- Watch Video Solution

5. If vectors $\hat{i}-2 x \hat{j}-3 y \hat{k}$ and $\hat{i}+3 x \hat{j}+2 y \hat{k}$ are orthogonal to each other, then find the locus of th point (x, y).

- Watch Video Solution

6. Let \vec{a}, \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=6$, the find the length of $\vec{a}+\vec{b}+\vec{c}$.

Watch Video Solution

7. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{b} and \vec{c}.

- Watch Video Solution

8. If the angle between unit vectors \vec{a} and \vec{b} is 120°. Then find the value of $|\vec{a}+\vec{b}|$.

- Watch Video Solution

9. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \hat{n}=0$ and $\vec{v} \cdot \hat{n}=0,|\vec{w} \cdot \hat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3
10. A, B, C, D are any four points, prove that
$\vec{A} B \vec{C} D+\vec{B} C \vec{A} D+\vec{C} A \vec{B} D=4($ Area of $\triangle A B C)$.

- Watch Video Solution

11. $P(1,0,-1), Q(2,0,-3), R(-1,2,0) \operatorname{and} S(3,-2,-1)$, then find the projection length of \vec{P} Qon $\vec{R} S$

- Watch Video Solution

12. If the vectors $3 \vec{p}+\vec{q} ; 5 p-3 \vec{q}$ and $2 \vec{p}+\vec{q} ; 3 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors \vec{p} and \vec{q}

- Watch Video Solution

13. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A}+\vec{B})$ bisects the internal angle between \vec{A} and \vec{B}, then find the value of α

- Watch Video Solution

14. Let \vec{a}, \vec{b} and \vec{c} be unit vectors, such that $\vec{a}+\vec{b}+\vec{c}=\vec{x}, \vec{a} \vec{x}=1, \vec{b} \vec{x}=\frac{3}{2},|\vec{x}|=2$. Then find the angle between \vec{c} and \vec{x}

- Watch Video Solution

15. If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$.

- Watch Video Solution

16. Constant forces $P_{1}=\hat{i}+\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{k}$ and $P_{3}=-\hat{j}-\hat{k}$ act on a particle at a point A Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k})$ to $B(6 \hat{i}+\hat{j}-3 \hat{k})$

- Watch Video Solution

17. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

18. If A, B, C, D are four distinct point in space such that $A B$ is not perpendicular to $C D$ and satisfies
$\overrightarrow{A B . C D}=k\left(|\overrightarrow{A D}|^{2}+|\overrightarrow{B C}|^{2}-|\overrightarrow{A C}|^{2}-|\overrightarrow{B D}|^{2}\right)$, then find the value of k

- Watch Video Solution

1. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$, then find (m,n)

- Watch Video Solution

2. Find \vec{a}. \vec{b} if $|\vec{a}|=3,|\vec{b}|=5$, and $|\vec{a} \times \vec{b}|=12$

- Watch Video Solution

3. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$ where \vec{a}, \vec{b} and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a}+\vec{c}=k \vec{b}$.

- Watch Video Solution

4. If $\vec{a}=2 \vec{i}+3 \vec{j}-\vec{k}, \vec{b}=-\vec{i}+2 \vec{j}-4 \vec{k}$ and $\vec{c}=\vec{i}+\vec{j}+\vec{k}$, then find the value of $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$
5. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right-handed system, then find \vec{c}
A. (a) $z \hat{i}-x \hat{k}$
B. (b) $\overrightarrow{0}$
C. (c) $y \hat{j}$
D. (d) $-z \hat{i}+x \hat{k}$

- Watch Video Solution

6. Given that $\vec{a} \vec{b}=\vec{a} \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\vec{c}$
7. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2 \vec{a} \times \vec{b}$ and given a geometrical interpretation of it.

- Watch Video Solution

8. If \vec{x} and \vec{y} are unit vectors and $|\vec{z}|=\frac{2}{\sqrt{7}}$ such that $\vec{z}+(\vec{z} \times \vec{x})=\vec{y}$ then find the angle θ between \vec{x} and \vec{z}

- Watch Video Solution

9. prove that $(\vec{a} . \hat{i})(\vec{a} \times \hat{i})+(\vec{a} . \hat{j})(\vec{a} \times \hat{j})+(\vec{a} . \hat{k})(\vec{a} \times \hat{k})=\overrightarrow{0}$

- Watch Video Solution

10. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $\lambda \vec{b} \times \vec{a}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$, then find the value of λ
11. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2)$ and $(1,2,-2)$ Find the velocity of the particle at point $P(3,6,4)$

- Watch Video Solution

12. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a} . \vec{b}=0=\vec{a}$. \vec{c}. It the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ then find \vec{a}.

- Watch Video Solution

13. If $|\vec{a} \times \vec{b}|^{2}+(\vec{a} . \vec{b})^{2}=256$ and $|\vec{a}|=4$, then $|\vec{b}|$ is equal to

- Watch Video Solution

14. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$ if \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$ then find the value of $\vec{c} \cdot \vec{b}$.

- Watch Video Solution

15. Find the moment of \vec{F} about point $(2,-1,3)$, where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point ($1,-1,2$).

- Watch Video Solution

Exercise 2.3

1. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors $\vec{a}, \vec{b}, \vec{c}$ then prove that $[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{b}]=[\vec{d} \vec{c} \vec{a}]$

- Watch Video Solution

2. prove that if $[\vec{l} \vec{m} \vec{n}]$ are three non-coplanar vectors, then $[\vec{l} \vec{m} \vec{n}](\vec{a} \times \vec{b})=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n}\end{array}\right|$

- Watch Video Solution

3. If the volume of a parallelepiped whose adjacent edges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ is 15 , then find the value of α if $(\alpha>0)$

- Watch Video Solution

4. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find the vector \vec{c} such that $\vec{a} . \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$.
5. If $\vec{x} \cdot \vec{a}=0 \vec{x} . \vec{b}=0$ and $\vec{x} \cdot \vec{c}=0$ for some non zero vector \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$

D Watch Video Solution

6. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find the vector \vec{c} such that $\vec{a} \cdot \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$.

- Watch Video Solution

7. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then the value of $|\vec{a}|+|\vec{b}|+|\vec{c}|$ is

- Watch Video Solution

$$
\vec{b} \times(\vec{a} \times \vec{b})
$$

8. If $\vec{a}=\vec{P}+\vec{q}, \vec{P} \times \vec{b}=\overrightarrow{0}$ and $\vec{q} \cdot \vec{b}=0$ then prove that
$\vec{b} . \vec{b}$
9. Prove that $(\vec{a} .(\vec{b} \times \hat{i})) \hat{i}+(\vec{a} .(\vec{b} \times \hat{j})) \hat{j}+(\vec{a} \cdot(\vec{b} \times \hat{k})) \hat{k}=\vec{a} \times \vec{b}$

- Watch Video Solution

10. For any four vectors, $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that
$\vec{d} \cdot(\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d})))=(\vec{b} \cdot \vec{d})[\vec{a} \vec{c} \vec{d}]$.

- Watch Video Solution

11. If \vec{a} and \vec{b} be two non-collinear unit vector such that $\vec{a} \times(\vec{a} \times \vec{b})=\frac{1}{2} \vec{b}$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

12. show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b}=\overrightarrow{0}$

- Watch Video Solution

13. Let \vec{a}, \vec{b} and \vec{c} be the non zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$. if theta is the acute angle between the vectors
\vec{b} and \vec{c} then $\sin \theta$ equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2 \frac{\sqrt{2}}{3}$

- Watch Video Solution

14. If $\vec{p}, \vec{q}, \vec{r}$ denote vector $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$, respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}, \vec{b}$ is parallel $\vec{r} \times \vec{p}, \vec{c}$ is parallel to $\vec{p} \times \vec{q}$.

- Watch Video Solution

15. Let $\vec{a}, \vec{b}, \vec{c}$ be non -coplanar vectors and let equations $\vec{a}^{\prime}, \vec{b}^{\prime}, \vec{c}^{\prime}$ are reciprocal system of vector $\vec{a}, \vec{b}, \vec{c}$ then prove that $\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}^{\prime}+\vec{c} \times \vec{c}^{\prime}$ is a null vector.

- Watch Video Solution

16. Given unit vectors \hat{m}, \hat{n} and \hat{p} such that angel between \hat{m} and \hat{n} is α and angle between \hat{p} and $(\hat{m} \times \hat{n})$ is also α, then $[\hat{n} \hat{p} \hat{m}]=$

- Watch Video Solution

17. $\vec{a}, \vec{b}, \vec{c}$ are threee unit vectors and every two are two inclined to each at an angle $\cos ^{-1}(3 / 5)$. If $\vec{a} \times \vec{b}=p \vec{a}+q \vec{b}+r \vec{c}$, where p, q, r are scalars, then find the value of q.

- Watch Video Solution

18. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both
vectors, \vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\pi / 6$ then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ is equal to

- Watch Video Solution

Exercises

1. Show that

$$
\left|\begin{array}{lll}
(a-x)^{2} & (a-y)^{2} & (a-z)^{2} \\
(b-x)^{2} & (b-y)^{2} & (b-z)^{2} \\
(c-x)^{2} & (c-y)^{2} & (c-z)^{2}
\end{array}\right|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)
$$

- Watch Video Solution

2. If $O A B C$ is a tetrahedron where O is the origin and A, B, and C are the other three vertices with position vectors, \vec{a}, \vec{b}, and \vec{c} respectively, then prove that the centre of the sphere circumscribing the tetrahedron is

$$
a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})
$$

given by position vector

$$
2[\vec{a} \vec{b} \vec{c}]
$$

- Watch Video Solution

3. Find the height of the regular pyramid with each edge measuring Icm . Also,
if α is angle between any edge and face not containing that edge, then prove that $\cos \alpha=\frac{1}{\sqrt{3}}$

- Watch Video Solution

4. In $\triangle A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of intersection
of the lines AQandCP, using vector method, find the area of $A B C$ if the area of $B R C$ is 1 unit

- Watch Video Solution

5. Let O be an interior points of $\triangle A B C$ such that $O A+2 O B+3 O C=\overrightarrow{0}$, then the ratio of $\triangle A B C$ to area of $\triangle A O C$ is

- Watch Video Solution

6. The lengths of two opposite edges of a tetrahedron of aandb; the shortest distane between these edgesis d, and the angel between them if θ Prove using vector 4 s that the volume of the tetrahedron is $\frac{a b d i s n \theta}{6}$.

- Watch Video Solution

7. Find the volume of a parallelopiped having three coterminus vectors of equal magnitude $|\vec{a}|$ and equal inclination θ with each other.

(D) Watch Video Solution

8. \vec{p}, \vec{q}, and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p}) \times \vec{r})=0$, then \vec{x} is given by $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$ b. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$ c. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$ d. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

- Watch Video Solution

9. Given the vectors \vec{A}, \vec{B}, and \vec{C} form a triangle such that $\vec{A}=\vec{B}+\vec{C}$ find $a, b, c, a n d d$ such that the area of the triangle is 56 where $\vec{A}=a \hat{i}+b \hat{j}+c \hat{k}$ $\vec{B}=d \hat{i}+3 \hat{j}+4 \hat{k} \vec{C}=3 \hat{i}+\hat{j}-2 \hat{k}$

- Watch Video Solution

10. A line I is passing through the point \vec{b} and is parallel to vector \vec{c}. Determine the distance of point $A(\vec{a})$ from the line I in from
$\left|\vec{b}-\vec{a}+\frac{(\vec{a}-\vec{b}) \vec{c}}{|\vec{c}|^{2}} \vec{c}\right|$ or $\frac{|(\vec{b}-\vec{a}) \times \vec{c}|}{|\vec{c}|}$

Watch Video Solution

11. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ are two sets of vectors such that $\vec{e}_{i} \vec{E}_{j}=1$, if $i=j$ and $\vec{e}_{i} \vec{E}_{j}=0$ and if $i \neq j$, then prove that $\left[\begin{array}{lll}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3}\end{array}\right]\left[\begin{array}{lll}\vec{E}_{1} & \vec{E}_{2} & \vec{E}_{3}\end{array}\right]=1$.

- Watch Video Solution

12. In a quadrillateral $A B C D$, it is given that $A B \| C D$ and the diagonals $A C$ and $B D$ are perpendiclar to each other . Show that $A D . B C=A B . C D$.

- Watch Video Solution

13. $O A B C$ is regular tetrahedron in which D is the circumcentre of $O A B$ and E is the midpoint of edge $A C$ Prove that $D E$ is equal to half the edge of tetrahedron.

- Watch Video Solution

14. If $\mathrm{A}(\vec{a}) \cdot B(\vec{b})$ and $C(\vec{c})$ are three non-collinear point and origin does not lie in the plane of the points A, B and C , then for any point $P(\vec{P})$ in the plane of the $\triangle A B C$ such that vector $\overrightarrow{O P}$ is \perp to plane of triangIABC, show that $\overrightarrow{O P}=\frac{[\vec{a} \vec{b} \vec{c}](\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})}{4 \Delta^{2}}$

- Watch Video Solution

15. If $\vec{a}, \vec{b}, \vec{c}$ are three given non-coplanar vectors and any arbitrary vector
\vec{r} in space, where $\Delta_{1}=\left|\begin{array}{lll}\vec{r} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{r} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{r} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{r} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{r} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{a} \cdot \vec{c} & \vec{r} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|$
$\Delta_{3}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{r} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{r} \cdot \vec{b} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{r} \cdot \vec{c}\end{array}\right|, \Delta=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\ \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}\end{array}\right|$,
then prove that $\vec{r}=\frac{\Delta_{1}}{\Delta} \vec{a}+\frac{\Delta_{2}}{\Delta} \vec{b}+\frac{\Delta_{3}}{\Delta} \vec{c}$

- Watch Video Solution

Exercises MCQ

1. Two vectors in space are equal only if they have equal component in a. a
given direction
b. two given directions
c. three given
directions
d. in any arbitrary direction
A. a given direction
B. two given directions
C. three given direction
D. in any arbitrary direaction

Answer: c

Watch Video Solution

2. Let \vec{a}, \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3 , respectively, such that the angle between
\vec{a} and \vec{b} is θ and $\vec{a} \times(\vec{a} \times \vec{b})=\vec{c}$. Then $\tan \theta$ is equal to
A. 0
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$

Answer: d

- Watch Video Solution

3. \vec{a}, \vec{b}, and \vec{c} are three vectors of equal magnitude. The angle between each pair of vectors is $\pi / 3$ such that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$. Then $|\vec{a}|$ is equal
to a. 2 b. -1 c. 1 d. $\sqrt{6} / 3$
A. 2
B. -1
C. 1
D. $\sqrt{6} / 3$

Answer: c

- Watch Video Solution

4. Let \vec{p} and \vec{q} be any two orthogonal vectors of equal magnitude 4 each. Let \vec{a}, \vec{b}, and \vec{c} be any three vectors of lengths $7 \sqrt{15}$ and $2 \sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector

$$
(\vec{a} \vec{p}) \vec{p}+(\vec{a} \vec{q}) \vec{q}+(\vec{a} \vec{p} \times \vec{q})(\vec{p} \times \vec{q})+(\vec{b} \vec{p}) \vec{p}(\vec{b} \vec{q}) \vec{q}+(\vec{b} \vec{p} \times \vec{q})(\vec{p} \times \vec{q})+(
$$

from the origin.
A. $\vec{a}+\vec{b}+\vec{c}$
B. $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$
C. $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$
D. $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$

Answer: b

- Watch Video Solution

5. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$, then the point of intersection of the $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is a. $(3,-1,1)$ b. $(3,1,-1)$ c. $(-3,1,1) \mathrm{d}$. (-3,-1,-1)
A. $\hat{i}-\hat{j}+\hat{k}$
B. $3 \hat{i}-\hat{j}+\hat{k}$
C. $3 \hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}-\hat{j}-\hat{k}$

Answer: c

D Watch Video Solution

6. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b}>0$ and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ then the angle between the vectors \vec{a} and \vec{b} is
A. π
B. $7 \pi / 4$
C. $\pi / 4$
D. $3 \pi / 4$

Answer: d

- Watch Video Solution

7. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors, such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are angles between the vectors $\hat{a}, \hat{b} ; \hat{b}, \hat{c} a n d \hat{c}, \hat{a}$
respectively, then among θ_{1}, θ_{2} and θ_{3}. a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these
A. all are acute angles
B. all are right angles
C. at least one is obtuse angle
D. none of these

Answer: c

(Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} . \vec{b}=0=\vec{a} . \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$.
A. $1 / 2$
B. 1
C. 2
D. none of these

Answer: b

- Watch Video Solution

9. about to only mathematics
A. a plane containing the origian O and parallel to two non-collinear
vectors $O P$ and $O Q$
B. the surface of a sphere described on PQ as its diameter
C. a line passing through points P and Q
D. a set of lines parallel to line PQ

Answer: c

- Watch Video Solution

10. Two adjacent sides of a parallelogram $A B C D$ are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Then the value of $|A C \times B D|$ is a. $20 \sqrt{5}$ b. $22 \sqrt{5}$ c. $24 \sqrt{5}$ d. $26 \sqrt{5}$
A. $20 \sqrt{5}$
B. $22 \sqrt{5}$
C. $24 \sqrt{5}$
D. $26 \sqrt{5}$

Answer: b

- Watch Video Solution

11. If \hat{a}, \hat{b}, and \hat{c} are three unit vectors inclined to each other at angle θ, then the maximum value of θ is $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{2 \pi}{3}$ d. $\frac{5 \pi}{6}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{5}$

Answer: c

- Watch Video Solution

12. Let the pairs a, b, and c, d each determine a plane. Then the planes are parallel if a. $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0} \quad$ b. $\quad(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0} \quad$ c. $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$ d. $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$
A. $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0}$
B. $(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0}$
C. $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$
D. $(\vec{a} \times \vec{c}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$

Answer: c

- Watch Video Solution

13. If \vec{r}. $\vec{a}=\vec{r} \cdot \vec{b}=\vec{r} . \vec{c}=0$ where \vec{a}, \vec{b} and \vec{c} are non-coplanar, then
A. $\vec{r} \perp(\vec{c} \times \vec{a})$
B. $\vec{r} \perp(\vec{a} \times \vec{b})$
C. $\vec{r} \perp(\vec{b} \times \vec{c})$
D. $\vec{r}=\overrightarrow{0}$

Answer: d

- Watch Video Solution

14. If \vec{a} satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{a} is equal to
A. $\lambda \hat{i}+(2 \lambda-1) \hat{j}+\lambda \hat{k}, \lambda \in R$
B. $\lambda \hat{i}+(1-2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$
C. $\lambda \hat{i}+(2 \lambda+1) \hat{j}+\lambda \hat{k}, \lambda \in R$
D. $\lambda \hat{i}+(1+2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$

Answer: c

- Watch Video Solution

15. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and
$\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angle
between a and b is a. $\frac{19}{5 \sqrt{43}}$ b. $\frac{19}{3 \sqrt{43}}$ c. $\frac{19}{2 \sqrt{45}}$ d. $\frac{19}{6 \sqrt{43}}$
A. $\frac{19}{5 \sqrt{43}}$
B. $\frac{19}{3 \sqrt{43}}$
C. $\frac{19}{\sqrt{45}}$
D. $\frac{19}{6 \sqrt{43}}$

Answer: a

16. The unit vector orthogonal to vector $-\hat{i}+\hat{j}+2 \hat{k}$ and making equal angles with the x and y-axis a. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$ b. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$ C. $\pm \frac{1}{3}(2 \hat{i}-2 \hat{j}-\hat{k}) \mathrm{d}$. none of these
A. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
B. $\frac{19}{5 \sqrt{43}}$
C. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$
D. none of these

Answer: a

- Watch Video Solution

17. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between b and the z -axis acute and less than $\pi / 6$ is given by

$$
\text { A. } a<x<1 / 2
$$

B. $1 / 2<x<15$
C. $x<1 / 2$ or $x<0$
D. none of these

Answer: b

- Watch Video Solution

18. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is a. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
A. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
B. $\frac{\vec{a} . \vec{b}}{}$
$|\vec{b}|^{2}$
C. $\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}$
$\vec{a} \times(\vec{b} \times \vec{a})$
D.

$$
|\vec{b}|^{2}
$$

Answer: a

- Watch Video Solution

19. A parallelogram is constructed on $2 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$, and \vec{a} and \vec{b} are anti-parallel. Then the length of the longer diagonal is 40 b .64 c .32 d .48
A. 40
B. 64
C. 32
D. 48

Answer: c

20. Let $\vec{a} \vec{b}=0$, where $\vec{a} a n d \vec{b}$ are unit vectors and the unit vector \vec{c} is inclined at an angle θ to both $\vec{a} a n d \vec{b}$ If $\vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$, then $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$ b. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$ c. $0 \leq \theta \leq \frac{\pi}{4}$ d. $0 \leq \theta \leq \frac{3 \pi}{4}$
A. $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$
B. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
C. $0 \leq \theta \leq \frac{\pi}{4}$
D. $0 \leq \theta \leq \frac{3 \pi}{4}$

Answer: a

- Watch Video Solution

21. If a and c are unit vectors and $|b|=4$. The angel between aandc is $\cos ^{-1}(1 / 4) a n d a \times b=2 a \times c$ then, $b-2 c=\lambda a$ The value of λ is
A. 3,-4
B. 1/4,3/4
C. $-3,4$
D. $-1 / 4, \frac{3}{4}$

Answer: a

- Watch Video Solution

22. Let the position vectors of the points PandQ be $4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}$, respectively. Vector $\hat{i}-\hat{j}+6 \hat{k}$ is perpendicular to the plane containing the origin and the points PandQ. Then λ equals a $-1 / 2 \mathrm{~b} .1 / 2 \mathrm{c} .1 \mathrm{~d}$. none of these
A. $-1 / 2$
B. $1 / 2$
C. 1
D. none of these

Answer: a

Watch Video Solution
23. A vector of magnitude $\sqrt{2}$ coplanar with the vector $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}, \quad$ and perpendicular to the vector $\vec{c}=\hat{i}+\hat{j}+\hat{k}, \quad$ is a. $-\hat{j}+\hat{k} \mathrm{~b} . \hat{i}-\hat{k} \mathrm{c} . \hat{i}-\hat{j} \mathrm{~d} . \hat{i}-\hat{j}$
A. $-\hat{j}+\hat{k}$
B. \hat{i} and \hat{k}
C. $\hat{i}-\hat{k}$
D. hati- hatj'

Answer: a

Watch Video Solution
24. Let P be a point interior to the acute triangle $A B C$ If $P A+P B+P C$ is a null vector, then w.r.t traingel $A B C$, point P is its a. centroid b . orthocentre c. incentre d. circumcentre
A. centroid
B. orthocentre
C. incentre
D. circumcentre

Answer: a

- Watch Video Solution

25. G is the centroid of triangle $A B C$ and A_{1} and B_{1} are the midpoints of sides $A B$ and $A C$, respectively. If Δ_{1} is the area of quadrilateral $G A_{1} A B_{1}$ and Δ is the area of triangle $A B C$, then $\frac{\Delta}{\Delta_{1}}$ is equal to
a. $\frac{3}{2}$
b. 3
c. $\frac{1}{3}$
d. none of these
A. $\frac{3}{2}$
B. 3
C. $\frac{1}{3}$
D. none of these

Answer: b

Watch Video Solution

26. Points $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are coplanar and $(s \in \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=0$. Then the least value of $\sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3$ yis $\frac{1}{14}$ b. 14 c. 6 d. $1 / \sqrt{6}$
A. $1 / 14$
B. 14
C. 6
D. $1 / \sqrt{6}$

Answer: a

- Watch Video Solution

27. If $\vec{a} a n d \vec{b}$ are any two vectors of magnitudes 1 and 2 , respectively, and $(1-3 \vec{a} \cdot \vec{b})^{2}+|2 \vec{a}+\vec{b}+3(\vec{a} \times \vec{b})|^{2}=47$, then the angel between \vec{a} and \vec{b} is $\pi / 3 \mathrm{~b} \cdot \pi-\cos ^{-1}(1 / 4) \mathrm{c} \cdot \frac{2 \pi}{3} \mathrm{~d} \cdot \cos ^{-1}(1 / 4)$
A. $\pi / 3$
B. $\pi-\cos ^{-1}(1 / 4)$
C. $\frac{2 \pi}{3}$
D. $\cos ^{-1}(1 / 4)$

Answer: c

Watch Video Solution

28. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3 , respectively, such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \cdot \vec{b})|=k$, then the maximum value of k is a. $\sqrt{13}$ b. $2 \sqrt{13}$ c. $6 \sqrt{13}$ d. $10 \sqrt{13}$
A. $\sqrt{13}$
B. $2 \sqrt{13}$
C. $6 \sqrt{13}$
D. $10 \sqrt{13}$

Answer: c

- Watch Video Solution

29. \vec{a}, \vec{b} and \vec{c} are unit vecrtors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$ Angle between \vec{a} and \vec{b} is θ_{1}, between \vec{b} and \vec{c} is θ_{2} and between \vec{a} and \vec{c} varies $[\pi / 6,2 \pi / 3]$. Then the maximum value of $\cos \theta_{1}+3 \cos \theta_{2}$ is
A. A. 3
B. B. 4
C. C. $2 \sqrt{2}$
D. D. 6

Answer: b

- Watch Video Solution

30. If the vector product of a constant vector $\vec{O} A$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is a straight line perpendicular to $\overrightarrow{O A}$ b. a circle with centre O and radius equal to $|\vec{O} A|$ c. a straight line parallel to $\vec{O} A$ d. none of these
A. a straight line perpendicular to $O A$
B. a circle with centre O and radius equal to $|\overrightarrow{O A}|$
C. a striaght line parallel to $O A$
D. none of these

Answer: c

- Watch Video Solution

31. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $|\vec{u}-\vec{v}+\vec{w}|$ equals 2 b. $\sqrt{7}$ c. $\sqrt{14}$ d. 14
A. 2
B. $\sqrt{7}$
C. $\sqrt{14}$
D. 14

Answer: c

D Watch Video Solution

32. If \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and $\mathrm{a}^{\prime}, \mathrm{b}$ ' and c^{\prime} constitute the reciprocal system of vectors, then prove that
i. $\vec{r}=\left(\vec{r} \cdot \vec{a}^{\prime}\right) \vec{a}+\left(\vec{r} \cdot \vec{b}^{\prime}\right) \vec{b}+\left(\vec{r} \cdot \vec{c}^{\prime}\right) \vec{c}$
ii. $\vec{r}=(\vec{r} \cdot \vec{a}) \vec{a}^{\prime}+(\vec{r} \cdot \vec{b}) \vec{b}^{\prime}+(\vec{r} \cdot \vec{c}) \vec{c}^{\prime}$
A. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $\pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
D. cannot of these

Answer: b

- Watch Video Solution

33. if $\left.\vec{\alpha}|\mid(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \beta) \cdot(\vec{\alpha} \times \vec{\gamma})$ equals to a. $| \vec{\alpha}\right|^{2}(\vec{\beta} \cdot \vec{\gamma})$ b.
$|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$ c. $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$ d. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
A. $|\vec{\alpha}|^{2}(\vec{\beta} \cdot \vec{\gamma})$
B. $|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$
C. $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$
D. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$

Answer: a

- Watch Video Solution

34. The position vectors of points A, B and C are $\hat{i}+\hat{j}+\hat{k}, \hat{i}+5 \hat{j}-\hat{k}$ and $2 \hat{i}+3 \hat{j}+5 \hat{k}$, respectively the greatest angle of triangle $A B C$ is
A. A. 120°
B. B. 90°
C. C. $\cos ^{-1}(3 / 4)$
D. D. none of these

D Watch Video Solution

35. Given three vectors \vec{a}, \vec{b}, and \vec{c} two of which are non-collinear. Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with $\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$ Find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ a. $3 \mathrm{~b} .-3 \mathrm{c} .0 \mathrm{~d}$. cannot be evaluated
A. 3
B. -3
C. 0
D. cannot of these

Answer: b

- Watch Video Solution

36. If \vec{a} and \vec{b} are unit vectors such that $(\vec{a}+\vec{b}) \cdot[(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})]=0$, then angle between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. π
D. indeterminate

Answer: d

- Watch Video Solution

37. If in a right-angled triangle $A B C$, the hypotenuse
$A B=p$, then $\overrightarrow{A B A} \dot{C}+\vec{B} C \vec{B} A+\vec{C} A \vec{C} B$ is equal to $2 p^{2}$ b. $\frac{p^{2}}{2}$ c. p^{2} d. none of these
A. $2 p^{2}$
B. $\frac{p^{2}}{2}$
C. p^{2}
D. none of these

Answer: c

- Watch Video Solution

38. Resolved part of vector \vec{a} and along vector \vec{b} is \vec{a}_{1} and that prependicular to \vec{b} is \vec{a}_{2} then $\vec{a}_{1} \times \vec{a}_{2}$ is equal to
A. $\frac{(\vec{a} \times \vec{b}) \cdot \vec{b}}{|\vec{b}|^{2}}$
B. $\frac{(\vec{a} . \vec{b}) \vec{a}}{}$
$|\vec{a}|^{2}$
c. $\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{}$
$|\vec{b}|^{2}$
D. $\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{}$

$$
|\vec{b} \times \vec{a}|
$$

Answer: c

- Watch Video Solution

39. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ A vector coplanar with \vec{b} and \vec{c} whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $-2 \hat{i}-\hat{j}+5 \hat{k}$ c. $2 \hat{i}+3 \hat{j}+3 \hat{k}$ d. $2 \hat{i}+\hat{j}+5 \hat{k}$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $-2 \hat{i}-\hat{j}+5 \hat{k}$
C. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: b

- Watch Video Solution

40. If P is any arbitrary point on the circumcircle of the equilateral triangle of side length l units, then $|\vec{P} A|^{2}+|\vec{P} B|^{2}+|\vec{P} C|^{2}$ is always equal to $2 l^{2}$ b. $2 \sqrt{3} l^{2}$ c. l^{2} d. $3 l^{2}$
A. $2 l^{2}$
B. $2 \sqrt{3} l^{2}$
C. l^{2}
D. $3 l^{2}$

Answer: a

- Watch Video Solution

41. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to 2| $|\vec{r}|^{2}$ b. $|\vec{r}|^{2} / 2$ c. $3|\vec{r}|^{2}$ d. $|r|^{2}$
A. $2|\vec{r}|^{2}$
B. $|\vec{r}|^{2 / 2}$
C. $3|\vec{r}|^{2}$
D. $|\vec{r}|^{2}$

Answer: d

- Watch Video Solution

42. $\vec{a} a n d \vec{b}$ are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ b. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$ c. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$ d. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
A. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
B. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$
C. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
D. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

Answer: a

(D) Watch Video Solution

43. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that
$\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \vec{q}=\operatorname{Oand}(\vec{b})^{2}=1$, where μ is a scalar. Then $|(\vec{a} \vec{q}) \vec{p}-(\vec{p} \vec{q}) \vec{a}|$
is equal to $2|\vec{p} \vec{q}|$ b. (1/2) $|\vec{p} \vec{q}|$ c. $|\vec{p} \times \vec{q}|$ d. $|\vec{p} \vec{q}|$
A. $2|\vec{p} \vec{q}|$
B. $(1 / 2)|\vec{p} \cdot \vec{q}|$
C. $|\vec{p} \times \vec{q}|$
D. $|\vec{p} . \vec{q}|$

Answer: d

44. The position vectors of the vertices A, BandC of a triangle are three unit vectors \vec{a}, \vec{b}, and \vec{c}, respectively. A vector \vec{d} is such that $\vec{d} \cdot \vec{a}=\vec{d} \cdot \vec{b}=\vec{d} \cdot \vec{c}$ and $\vec{d}=\lambda(\vec{b}+\vec{c})$ Then triangle $A B C$ is a. acute angled b. obtuse angled c. right angled d. none of these
A. acute angled
B. obtuse angled
C. right angled
D. none of these

Answer: a

- Watch Video Solution

45. If a is real constant A, B and C are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan C=6 a$, then the least value of $\tan ^{2} A+\tan ^{2} B+\tan ^{2} C$ is a. 6 b. 10 c. 12 d. 3
A. 6
B. 10
C. 12
D. 3

Answer: d

- Watch Video Solution

46. The vertex A triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices

BandC have respective position vectors $\hat{i} a n d \hat{j}$ Let Δ be the area of the triangle and $\Delta[3 / 2, \sqrt{33} / 2]$. Then the range of values of λ corresponding to A is a. $[-8,4] \cup[4,8]$ b. $[-4,4]$ c. $[-2,2]$ d. $[-4,-2] \cup[2,4]$
A. $[-8,-4]$ cup $[4,8]^{`}$
B. $[-4,4]$
C. $[-2,2]$
D. $[-4,-2] \cup[2,4]$

Answer: c

- Watch Video Solution

47. A non-zero vector \vec{a} is such that its projections along vectors
$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal, then unit vector along \vec{a} is a. $\frac{\sqrt{2} \hat{j}-\hat{k}}{\sqrt{3}}$ b.
$\frac{\hat{j}-\sqrt{2} \hat{k}}{\sqrt{3}}$ c. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$ d. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$
$\sqrt{2} \hat{j}-\hat{k}$
A. $\frac{\sqrt{3}}{\sqrt{3}}$
$\hat{j}-\sqrt{2} \hat{k}$
B. $\frac{\sqrt{3}}{\sqrt{2}}$
C. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$
D. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

Answer: a

48. Position vector \hat{k} is rotated about the origin by angle 135° in such a way that the plane made by it bisects the angle between \hat{i} and \hat{j}. Then its new position is
A. $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$
B. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
C. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$
D. none of these

Answer: d

- Watch Video Solution

49. In a quadrilateral $A B C D, \vec{A} C$ is the bisector of $\vec{A} B a n d \vec{A} D$, angle between $\vec{A} B$ and $\vec{A} D$ is $2 \pi / 3,15|\vec{A} C|=3|\vec{A} B|=5|\vec{A} D|$ Then the angle
between $\vec{B} A a n d \vec{C} D$ is $(a) \cos ^{-1}\left(\frac{\sqrt{14}}{7 \sqrt{2}}\right)$
b. $\cos ^{-1}\left(\frac{\sqrt{21}}{7 \sqrt{3}}\right)$ c. $\cos ^{-1}\left(\frac{2}{\sqrt{7}}\right)$ d.
$\cos ^{-1}\left(\frac{2 \sqrt{7}}{14}\right)$
A. $\cos ^{-1} \frac{\sqrt{14}}{7 \sqrt{2}}$
B. $\cos ^{-1} \frac{\sqrt{21}}{7 \sqrt{3}}$
C. $\cos ^{-1} \frac{2}{\sqrt{7}}$
D. $\cos ^{-1} \frac{2 \sqrt{7}}{14}$

Answer: c

- Watch Video Solution

50. In fig. $A B, D E a n d G F$ are parallel to each other and $A D, B G a n d E F$ are parallel to each other. If $C D: C E=C G: C B=2: 1$, then the value of area (AEG): area (ABD) is equal to $7 / 2$ b. 3 c. 4 d. $9 / 2$
B. 3
C. 4
D. $9 / 2$

Answer: b

- Watch Video Solution

51. Vector \vec{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that it equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{j}+2 \hat{k}$ The value of \vec{a} is $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$ b. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ c. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$ d. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$
C. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
D. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

- Watch Video Solution

52. Let $A B C D$ be a tetrahedron such that the edges $A B, A C$ and $A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D$ and $A D B$ be 3,4 and 5 sq. units, respectively. Then the area of triangle $B C D$ is
a. $5 \sqrt{2}$
b. 5
c. $\frac{\sqrt{5}}{2}$
d. $\frac{5}{2}$
A. $5 \sqrt{2}$
B. 5
C. $\frac{\sqrt{5}}{2}$
D. $\frac{5}{2}$

Answer: a

Watch Video Solution

53. Let $f(t)=[t] \hat{i}+(t-[t]) \hat{j}+[t+1] \hat{k}$, where[.] denotes the greatest integer
function. Then the vectors $f\left(\frac{5}{4}\right) \operatorname{andf}(t), 0<t<1$ are(a) parallel to each other(b) perpendicular(c) inclined at $\cos ^{-1} 2\left(\sqrt{7\left(1-t^{2}\right)}\right)$ (d)inclined at $\cos ^{-1}\left(\frac{8+t}{\sqrt{1+t^{2}}}\right) ;$
A. parallel to each other
B. perpendicular to each other
C. inclined at $\xrightarrow{\cos ^{-1} 2}$

$$
\sqrt{7}\left(1-t^{2}\right)
$$

D. inclined at $\frac{\cos ^{-1}(8+t)}{9 \sqrt{1+t^{2}}}$

Answer: d

- Watch Video Solution

54. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to a. $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$ b. $|\vec{b}|^{2}(\vec{a} . \vec{c})$ c. $|\vec{c}|^{2}(\vec{a} \cdot \vec{b})$ d. none of these
A. $|\vec{a}|^{2}(\vec{b} . \vec{c})$
B. $|\vec{b}|^{2}(\vec{a} \cdot \vec{c})$
C. $|\vec{c}|^{2}(\vec{a} . \vec{b})$
D. none of these

Answer: a

- Watch Video Solution

55. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \qquad
A. $1 / 3$
B. 4
C. $(3 \sqrt{3}) / 4$
D. $4 \sqrt{3}$

Answer: d

- Watch Video Solution

56. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is non-zero vector and
$|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0$, then
a. $|\vec{a}|=|\vec{b}|=|\vec{c}|$
b. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|d|$
c. \vec{a}, \vec{b}, and \vec{c} are coplanar
d. none of these
A. $|\vec{a}|=|\vec{b}|=|\vec{c}|$
B. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$
C. \vec{a}, \vec{b} and \vec{c} are coplanar
D. none of these

Answer: c

- Watch Video Solution

57.

$|\vec{a}|=2$ and $|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=0$, then $|(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))))|$
A. $48 \hat{b}$
B. $-48 \hat{b}$
C. 48 â
D. $-48 \hat{a}$

Answer: a

Watch Video Solution

58. If the two diagonals of one its faces are $6 \hat{i}+6 \hat{k} a n d 4 \hat{j}+2 \hat{k}$ and of the edges not containing the given diagonals is $c=4 \hat{j}-8 \hat{k}$, then the volume
of a parallelepiped is a. 60 b .80 c .100 d .120
A. 60
B. 80
C. 100
D. 120

Answer: d

- Watch Video Solution

59. The volume of a tetrahedron formed by the coterminous edges \vec{a}, \vec{b}, and \vec{c} is 3 . Then the volume of the parallelepiped formed by the coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is 6 b .18 c .36 d .9
A. 6
B. 18
C. 36
D. 9

Answer: c

- Watch Video Solution

60. If \vec{a}, \vec{b}, and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals: (a.) 0 (b.) 1 or -1 (c.) 6 (d.) 3
A. 0
B. 1 or - 1
C. 1
D. 3

Answer: b
61. Vector \vec{c} is perpendicular to vectors $\vec{a}=(2,-3,1) \operatorname{and} \vec{b}=(1,-2,3)$ and satisfies the condition $\vec{x} \cdot(\hat{i}+2 \hat{j}-7 \hat{k})=10$. Then vector \vec{c} is equal to a. $(7,5,1)$ b. $-7,-5,-1$ c. $1,1,-1$ d. none of these
A. 7,5,1
B. $(-7,-5,-1)$
C. 1,1,-1
D. none of these

Answer: a

- Watch Video Solution

62. Given $\vec{a}=x \hat{i}+y \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}, \vec{a} \perp \vec{b}, \vec{a} . \vec{c}=4$ then find the value of $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$.
A. A. $[\vec{a} \vec{b} \vec{c}]^{2}=|\vec{a}|$
B. B. $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|$
C. C. $[\vec{a} \vec{b} \vec{c}]=0$
D. D. $[\vec{a} \vec{b} \vec{c}]=|\vec{a}|^{2}$

Answer: d

- Watch Video Solution

63. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is t/6 then the value of

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \text { is }
$$

A. 0
B. 1
C. $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
D. $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$

Answer: c

- Watch Video Solution

64. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four non-zero vectors such that $\vec{r} \cdot \vec{a}=0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|,|\vec{r} \times \vec{c}|=|\vec{r}||\vec{c}|$ then
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=$
A. $|a||b||c|$
B. $-|a||b||c|$
C. 0
D. none of these

Answer: c

65. If \vec{a}, \vec{b} and \vec{c} are such that $[\vec{a} \vec{b} \vec{c}]=1, \vec{c}=\lambda(\vec{a} \times \vec{b})$, angle between \vec{c} and \vec{b} is $2 \pi / 3,|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3}$ and $|\vec{c}|=\frac{1}{\sqrt{3}}$ then the angle between \vec{a} and \vec{b} is
A. (a) $\frac{\pi}{6}$
B. (b) $\frac{\pi}{4}$
C. (c) $\frac{\pi}{3}$
D. (d) $\frac{\pi}{2}$

Answer: b

- Watch Video Solution

66. If $4 \vec{a}+5 \vec{b}+9 \vec{c}=0$, then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$ is equal to a. vector perpendicular to the plane of $a, b, c b$. a scalar quantity $c . \overrightarrow{0} \mathrm{~d}$. none of these
A. a vector perpendicular to the plane of \vec{a}, \vec{b} and \vec{c}
B. a scalar quantity
C. $\overrightarrow{0}$
D. none of these

Answer: c

- Watch Video Solution

67. Value of $[\vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d}]$ is always equal to a. $(\vec{a} \vec{d})[\vec{a} \vec{b} \vec{c}] \mathrm{b}$. $\left(\begin{array}{c}\vec{a} \vec{c}\end{array}\right)[\vec{a} \vec{b} \vec{d}]$ c. $\left(\begin{array}{c}\vec{a} \vec{b}\end{array}\right)[\vec{a} \vec{b} \vec{d}]$ d. none of these
A. $(\vec{a} . \vec{d})[\vec{a} \vec{b} \vec{c}]$
B. `(veca.vecc)[veca verb recd]
C. $(\vec{a} . \vec{b})[\vec{a} \vec{b} \vec{d}]$
D. none of these

D Watch Video Solution

68. Let $\vec{a} a n d \vec{b}$ be mutually perpendicular unit vectors. Then for any
arbitrary \vec{r},

$$
\vec{r}=(\stackrel{\rightharpoonup}{r} \hat{a}) \hat{a}+(\stackrel{\rightharpoonup}{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})
$$

$\vec{r}=(\vec{r} \dot{a})-(\vec{r} \hat{b}) \hat{b}-(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$
$\vec{r}=(\vec{r} \hat{a}) \hat{a}-(\vec{r} \hat{b}) \hat{b}+(\vec{r} \hat{a} \times \hat{b})(\hat{a} \times \hat{b})$ none of these
A. $\vec{r}=(\vec{r} \cdot \hat{a}) \hat{a}+(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
B. $\vec{r}=(\vec{r} \cdot \hat{a})-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
C. $\vec{r}=(\vec{r} . \hat{a}) \hat{a}-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$
D. none of these

Answer: a

69. Let $\vec{a} a n d \vec{b}$ be unit vectors that are perpendicular to each other. Then $[\vec{a}+(\vec{a} \times \vec{b}) \vec{b}+(\vec{a} \times \vec{b}) \vec{a} \times \vec{b}]$ will always be equal to 1 b. 0 c. -1 d. none of these
A. 1
B. 0
C. -1
D. none of these

Answer: a

- Watch Video Solution

70. \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=1,|\vec{b}|=4$ and \vec{a}. $\vec{b}=2$. If $\vec{c}=$ $(2 \vec{a} \times \vec{b})-3 \vec{b}$ then find angle between \vec{b} and \vec{c}.
71. If \vec{b} and \vec{c} are unit vectors, then for any arbitary vector $\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \cdot(\vec{b}-\vec{c})$ is always equal to

Watch Video Solution

72. If $\vec{a} \cdot \vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is
A. $\frac{(\beta \vec{a}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
B. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
C. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
D. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$

$$
|\vec{a}|^{2}
$$

Answer: a

73. If $a(\vec{\alpha} \times \vec{\beta})+b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=0$ and at least one of a, bandc is nonzero, then vectors $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these
A. parallel
B. coplanar
C. mutually perpendicular
D. none of these

Answer: b

- Watch Video Solution

74. If $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b}, and \vec{c} are nonzero vectors, then 1 . \vec{a}, \vec{b}, and \vec{c} can be coplanar 2. \vec{a}, \vec{b}, and \vec{c} must be coplanar $3 . \vec{a}, \vec{b}$, and \vec{c} cannot be coplanar 4.none of these
A. \vec{a}, \vec{b} and \vec{v} can be coplanar
B. \vec{a}, \vec{b} and \vec{c} must be coplanar
C. \vec{a}, \vec{b} and \vec{c} cannot be coplanar
D. none of these

Answer: c

- Watch Video Solution

75. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is
A. $|[\vec{a} \vec{b} \vec{c}]|$
B. $|\vec{r}|$
C. $|[\vec{a} \vec{b} \vec{c}] \vec{r}|$
D. none of these
76. A vector of magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be $6 \hat{i}+8 \hat{j}$ b. $-8 \hat{i}+3 \hat{j}$ c. $6 \hat{i}-8 \hat{j}$ d. $8 \hat{i}+6 \hat{j}$
A. $6 \hat{i}+8 \hat{j}$
B. $-8 \hat{i}+3 \hat{j}$
C. $6 \hat{i}-8 \hat{j}$
D. $8 \hat{i}+6 \hat{j}$

Answer: a

- Watch Video Solution

77. If $\vec{a} a n d \vec{b}$ are two unit vectors incline at angle $\pi / 3$, then
$\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \vec{b}$ is equal to $\frac{-3}{4}$ b. $\frac{1}{4}$ c. $\frac{3}{4}$ d. $\frac{1}{2}$
A. $\frac{-3}{4}$
B. $\frac{1}{4}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: a

- Watch Video Solution

78. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} non coplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to
A. $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$
B. $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$
C. $[\vec{r} \vec{a} \vec{b}] \vec{a}+(\vec{r} . \vec{a}) \vec{a} \times \vec{b}$
D. none of these

Watch Video Solution

79. If $\vec{a}, \vec{b}, \vec{c}$ are any three non- coplanar vectors then the equation
$[\vec{b} \times \vec{c} \vec{c} \times \vec{a} \vec{a} \times \vec{b}]^{2}+[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}] x+1+[\vec{b}-\vec{c} \vec{c}-\vec{a} \vec{a}-\vec{b}]=0$ has roots (A) real and distinct (B) real (C) equal (D) imaginary
A. real and distinct
B. real
C. equal
D. imaginary

Answer: c

- Watch Video Solution

80. Solve the simultaneous vector equations for
\vec{x} and $\vec{y}: \vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}, \vec{c} \neq 0$
A. $\vec{x}=\frac{\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
B. $\vec{x}=\frac{\vec{c} \times \vec{b}+\vec{b}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
C. $\vec{y}=\frac{1+\vec{c} \cdot \vec{c}}{1+\vec{c}}$
D. none of these

Answer: b

- View Text Solution

81. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is
a. $\vec{b} \vec{c}=\vec{a} \vec{d}$ b. $\vec{a} \vec{b}=\vec{c} \vec{d}$ c. $\vec{b} \vec{c}+\vec{a} \vec{d}=0$ d. $\vec{a} \vec{b}+\vec{c} \vec{d}=0$
A. $\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{d}$
B. $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{d}$
C. $\vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{d}=0$
D. $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d}=0$

Answer: c

D Watch Video Solution

82. If $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k}$, then $[\vec{a} \vec{b} \vec{c}]=$

- Watch Video Solution

83. If $\vec{a}=2 \hat{i}+3 \hat{j}+8 \hat{k}$ is perpendicular to $\vec{b}=4 \hat{i}-4 \hat{j}+\alpha \hat{k}$, then find the value of α
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. 1
D. -1

Answer: a

84. Let $\vec{a}(x)=(\sin x) \hat{i}+(\cos x) \hat{j}$ and $\vec{b}(x)=(\cos 2 x) \hat{i}+(\sin 2 x) \hat{j}$ be two variable vectors $(x \in R)$. Then $\vec{a}(x)$ and $\vec{b}(x)$ are
A. collinear for unique value of x
B. perpendicular for infinte values of x .
C. zero vectors for unique value of x
D. none of these

Answer: b

- Watch Video Solution

85.

For
any
vectors
\vec{a} and $\vec{b},(\vec{a} \times \hat{i}) \cdot(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\vec{b} \times \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})$ is always equal to
A. A. $\vec{a} . \vec{b}$
B. B. $2 \vec{a} . \vec{b}$
C. C. zero
D. D. none of these

Answer: b

- Watch Video Solution

86. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r} \times \vec{b})=$
$[\vec{a} \vec{b} \vec{c}]$ (B) $2[\vec{a} \vec{b} \vec{c}] \vec{r}$ (C) $3[\vec{a} \vec{b} \vec{c}] \vec{r}$ (D) $4[\vec{a} \vec{b} \vec{c}] \vec{r}$
A. $[\vec{a} \vec{b} \vec{c}] \vec{r}$
B. $2[\vec{a} \vec{b} \vec{c}] \vec{r}$
C. $3[\vec{a} \vec{b} \vec{c}] \vec{r}$
D. none of these

D Watch Video Solution

 $[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}]$
three non- coplanar vectors then the value of the expression $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r})$ is
A. 3
B. 2
C. 1
D. 0

Answer: a

88. $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are the vertices of the triangle ABC and $R(\vec{r})$ is any point in the plane of triangle $A B C$, then $\vec{r} .(\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})$ is always equal to
A. zero
B. $[\vec{a} \vec{b} \vec{c}]$
C. $-[\vec{a} \vec{b} \vec{c}]$
D. none of these

Answer: b

- Watch Video Solution

89. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to
A. $[\vec{a} \vec{b} \vec{c}] \vec{c}$
B. $[\vec{a} \vec{b} \vec{c}] \vec{b}$
C. $\overrightarrow{0}$
D. $[\vec{a} \vec{b} \vec{c}] \vec{a}$

Answer: c

- Watch Video Solution

90. If V be the volume of a tetrahedron and V^{\top} be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and $V=K V^{\prime}$, then K is equal to a. 9 b .12 c .27 d .81
A. 9
B. 12
C. 27
D. 81

Answer: c

91. $[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to (where \vec{a}, \vec{b} and \vec{c} are nonzero non-coplanar vector) a. $[\vec{a} \vec{b} \vec{c}]^{2}$ b. $[\vec{a} \vec{b} \vec{c}]^{3}$ c. $[\vec{a} \vec{b} \vec{c}]^{4}$ d. $[\vec{a} \vec{b} \vec{c}]$
A. $[\vec{a} \vec{b} \vec{c}]^{2}$
B. $[\vec{a} \vec{b} \vec{c}]^{3}$
C. $[\vec{a} \vec{b} \vec{c}]^{4}$
D. $[\vec{a} \vec{b} \vec{c}]$

Answer: c

- Watch Video Solution

92.

$\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{c})+x_{3}(\vec{c} \times \vec{a})$ and $4[\vec{a} \vec{b} \vec{c}]=1$ then $x_{1}+x_{2}+x_{3}$ is equal to
A. $\frac{1}{2} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
B. $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
C. $2 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
D. $4 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$

Answer: d

- Watch Video Solution

93. If $\vec{a} \perp \vec{b}$ then vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations
$\vec{v} \cdot \vec{a}=0$ and $\vec{v} \cdot \vec{b}=1$ and $[\vec{v} \cdot(\vec{a} \times \vec{b})]=1$ is
A. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
B. $\frac{\vec{b}}{}+\frac{\vec{a} \times \vec{b}}{}$
$|\vec{b}| \quad|\vec{a} \times \vec{b}|^{2}$
C. $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
D. none of these

- Watch Video Solution

94. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \vec{b}^{\prime} \hat{i}-\hat{j}+2 \hat{k} a n d \vec{c}^{\prime} 2 \hat{i}+\hat{j}-\hat{k}$, then the altitude of the parallelepiped formed by the vectors \vec{a}, \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}^{\prime} is reciprocal vector \vec{a}, et •) 1 b. $3 \sqrt{2} / 2$ c. $1 / \sqrt{6} \mathrm{~d} .1 / \sqrt{2}$
A. 1
B. $3 \sqrt{2} / 2$
C. $1 / \sqrt{6}$
D. $1 / \sqrt{2}$

Answer: d

- Watch Video Solution

95. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$ then in the reciprocal system of vectors
$\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a} of vector \vec{a} is
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{2}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{2}$
C. $\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$
D. $\frac{\hat{i}+\hat{j}-\hat{k}}{2}$

Answer: d

- Watch Video Solution

96. If unit vectors \vec{a} and \vec{b} are inclined at angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in interval a. $[0, \pi / 6)$ b. $(5 \pi / 6, \pi]$ c. [$\pi / 6, \pi / 2]$ d. $[\pi / 2,5 \pi / 6]$
A. $[0, \pi / 6)$
B. $(5 \pi / 6, \pi]$
C. $[\pi / 6, \pi / 2]$
D. $(\pi / 2,5 \pi / 6]$

Answer: a,b

- Watch Video Solution

97.

\vec{a}, \vec{b} and \vec{c}
are
non-collinear
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a}=\vec{c}$ Then
a. $x=1$ b. $x=-1 \mathrm{c} . y=(4 n+1) \pi / 2, n \in I$ d. $y=(2 n+1) \pi / 2, n \in I$
A. $x=1$
B. $x=-1$
C. $y=(4 n+1) \frac{\pi}{2}, n \in I$
D. $y(2 n+1) \frac{\pi}{2}, n \in I$

Answer: a,c

(Watch Video Solution

98. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b}. If $\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$, then which of the following is incorrect?
A. $\alpha=\beta$
B. $\gamma^{2}=1-2 \alpha^{2}$
C. $y^{2}=-\cos 2 \theta$
D. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

Answer: a,b,c,d

- Watch Video Solution

99. If vectors $\vec{a} a n d \vec{b}$ are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the
perpendicular to a is a. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$ b. $\frac{\vec{a} \vec{b}}{|\vec{b}|^{2}}$ c. $\vec{b}-\frac{\vec{b} \vec{a}}{|\vec{a}|^{2}}$ d. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
A. $\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}} \vec{a}-\vec{b}$
B. $\frac{1}{|\vec{a}|^{2}}\left\{|\vec{a}|^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}\right\}$
C. $\frac{\vec{a} \times(\vec{a} \times \vec{b})}{|\vec{a}|^{2}}$
D. $\vec{a} \times(\vec{b} \times \vec{a})$
$|\vec{b}|^{2}$

Answer: a,b,c

- Watch Video Solution

100. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a.

$$
(\vec{a} \cdot \vec{c})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{a}) \text { b. } \vec{a} \vec{b}=0 \text { c. } \vec{a} \vec{c}=0 \text { d. } \vec{b} \vec{c}=0
$$

$$
\text { A. }(\vec{a} \cdot \vec{b})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})
$$

B. $\vec{a} \cdot \vec{b}=0$
C. $\vec{a} \cdot \vec{c}=0$
D. $\vec{b} \cdot \vec{c}=0$

Answer: ac

- Watch Video Solution

101. Let \vec{a}, \vec{b}, and \vec{c} be vectors forming right-hand traid. Let $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$, and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$, If $x \in R^{+}$, then
a. $x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ has least value $=2$. b. $x^{4}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $=\left(\frac{3}{2}\right)^{2 / 3}$ c. $[\vec{p} \vec{q} \vec{r}]>0 \mathrm{~d}$. none of these
A. $x[\vec{a} \vec{b} \vec{c}]+\frac{[\vec{p} \vec{q} \vec{r}]}{x}$ has least value 2
B. $x^{2}[\vec{a} \vec{b} \vec{c}]^{2}+\frac{[\vec{p} \vec{q} \vec{r}]}{x^{2}}$ has least value $\left(3 / 2^{2 / 3}\right)$
C. $[\vec{p} \vec{q} \vec{r}]>0$
D. none of these

Answer: a,c

- Watch Video Solution

102. $a_{1}, a_{2}, a_{3} \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ " for all " x in R then
A. a) vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are perpendicular to each other
B. b) vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each each other
C. c) if vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
D. d) if $2 a_{1}+3 a_{2}+6 a_{3}+6 a_{3}=26$, then $\left|\vec{a} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right|$ is $2 \sqrt{6}$
103. If $\vec{a} a n d \vec{b}$ are two vectors and angle between them is θ, then
$|\vec{a} \times \vec{b}|^{2}+(\vec{a} \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$

$$
|\vec{a} \times \vec{b}|=(\vec{a} \vec{b}) \text {, if } \quad \theta=\pi / 4
$$

$\vec{a} \times \vec{b}=(\vec{a} \vec{b}) \hat{n}$, (wheren̂ is unit vector,) if $\theta=\pi / 4(\vec{a} \times \vec{b}) \vec{a}+\vec{b}=0$
A. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
B. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}$, if $\theta=\pi / 4$
C. $\vec{a} \times \vec{b}=(\vec{a}$. Vecb $) \hat{n}$ (where \hat{n} is a normal unit vector) if $\quad \theta f=\pi / 4$
D. $(\vec{a} \times \vec{b}) \cdot(\vec{a}+\vec{b})=0$

Answer: a,b,c,d

104. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
A. $\vec{b}-\frac{\vec{a} \times \vec{b}}{}$ $|\vec{b}|^{2}$
B. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{}$
$|\vec{b}|^{2}$
C. $|\vec{a}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
D. $|\vec{b}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

Answer: a,b,cd,

D Watch Video Solution

105. If vector $\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2})$ and $\vec{c}=\left(\tan \alpha, \tan \alpha,-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the $z-$ axis, then the value of α is
A. $\alpha=(4 n+1) \pi+\tan ^{-1} 2$
B. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
C. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$
D. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

Answer: b,d

- Watch Video Solution

106. Let \vec{r} be a unit vector satisfying
$\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$, then
A. $\vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
B. $\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})$
C. $\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})$
D. $\vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$
107. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$ then angle θ between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. $\pi / 4$
D. π

Answer: b,d

- Watch Video Solution

108. If \vec{a} and \vec{b} are two unit vectors perpenicualar to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$, then which of the following is (are) true ?

$$
\text { A. } \lambda_{1}=\vec{a} \cdot \vec{c}
$$

B. $\lambda_{2}=|\vec{b} \times \vec{c}|$
C. $\lambda_{3}=\mid(\vec{a} \times \vec{b}|\times \vec{c}|$
D. $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$

Answer: a,d

- Watch Video Solution

109. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is
A. a unit vector
B. in the plane of \vec{a} and \vec{b}
C. equally inclined to \vec{a} and \vec{b}
D. perpendicular to $\vec{a} \times \vec{b}$

Answer: b,c,d

110. If \vec{a} and \vec{b} are non-zero vectors such that $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$ then
A. $2 \vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
B. $\vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
C. least value of $\vec{a} . \vec{b}+\frac{1}{|\vec{b}|^{2}+2}$ is $\sqrt{2}$
D. least value of $\vec{a} \cdot \vec{b}+\frac{1}{|\vec{b}|^{2}+2}$ is $\sqrt{2}-1$

Answer: a,d

- Watch Video Solution

111. Let $\vec{a} \vec{b}$ and \vec{c} be non- zero vectors aned $\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c})$ and $\vec{V}_{2}=(\vec{a} \times \vec{b}) \times \vec{c}$.vectors \vec{V}_{1} and \vec{V}_{2} are equal. Then
A. \vec{a} and \vec{b} ar orthogonal
B. \vec{a} and \vec{c} are collinear
C. \vec{b} and \vec{c} ar orthogonal
D. $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar

Answer: b,d

- Watch Video Solution

112. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$. where \vec{a} and \vec{b} are given vectors, are
A. 1. $\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$
B. 2. $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
C. 3. $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
D. 4. $\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$

- Watch Video Solution

113. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ Let \vec{x}, \vec{y}, and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$, respectively. Then a. $\vec{x} . \vec{d}=-1 \mathrm{~b} . \vec{y} \cdot \vec{d}=1 \mathrm{c}$.
$\vec{z} \cdot \vec{d}=0$ d. $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$
A. $\vec{x} \cdot \vec{d}=-1$
B. $\vec{y} \cdot \vec{d}=1$
C. vecz.vecd=0`
D. vecr.vecd=0, " where " vecr=lambda vecx + mu vecy +deltavecz

Answer: c.d

- Watch Video Solution

114. Vectors Perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ are
A. $\hat{i}+\hat{k}$
B. $2 \hat{i}+\hat{j}+\hat{k}$
C. $3 \hat{i}+2 \hat{j}+\hat{k}$
D. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$

Answer: bed

- Watch Video Solution

115. If side $\vec{A} B$ of an equilateral tangle $A B C$ lying in the $x-y$ plane $3 \hat{i}$, then side $\vec{C} B$ can be a. $-\frac{3}{2}(\hat{i}-\sqrt{3 \hat{j}})$ b. $\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$ c. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$ d. $\frac{3}{2}(\hat{i}+\sqrt{3 \hat{j}})$
A. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
B. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
C. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$
D. $\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$

Answer: b,d

- Watch Video Solution

116. The angles of triangle, two of whose sides are represented by vectors
$\sqrt{3}(\vec{a} \times \vec{b})$ and $\vec{b}-(\hat{a} \vec{b}) \hat{a}$, where \vec{b} is a non zero vector and \hat{a} is unit vector in the direction of \vec{a}, are
A. $\tan ^{-1}(\sqrt{3})$
B. $\tan ^{-1}(1 / \sqrt{3})$
C. $\cot ^{-1}(0)$
D. $\operatorname{tant}^{\wedge}(-1)(1)^{`}$

Answer: a,b,c

117. \vec{a}, \vec{b}, and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicular to then. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angel between \vec{a} and \vec{b} is 30^{0}, thenc is $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3 \mathrm{~b} .(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3 \mathrm{c}$. $(2 \hat{i}+2 \hat{j}-\hat{k}) / 3$ d. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$
A. $(\hat{i}-2 \hat{j}+2 \hat{k}) / 3$
B. $(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3$
C. $(-\hat{i}+2 \hat{j}-\hat{k}) / 3$
D. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$

Answer: a,b

- Watch Video Solution

118. If $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$ then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$
A. $2(\vec{a} \times \vec{b})$
B. $6(\vec{b} \times \vec{c})$
C. $3(\vec{c} \times \vec{a})$
D. $\overrightarrow{0}$

Answer: c,d

- Watch Video Solution

119. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} . \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is
A. $|\vec{u}|$
B. $|\vec{u}|+|\vec{u} . \vec{b}|$
C. $|\vec{u}|+|\vec{u} . \vec{a}|$
D. none of these

Answer: b,d

- Watch Video Solution

120. if $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, where $\vec{c} \neq \overrightarrow{0}$ then (a) $|\vec{a}|=|\vec{c}|$ (b) $|\vec{a}|=|\vec{b}|$
(c) $|\vec{b}|=1$ (d) $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
A. $|\vec{a}|=|\vec{c}|$
B. $|\vec{a}|=|\vec{b}|$
C. $|\vec{b}|=1$
D. $|\vec{a}|=\vec{b}|=|\vec{c}|=1$

Answer: ac

- Watch Video Solution

121. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar vectors and \vec{d} be a non -zero, which is perpendicular to $(\vec{a}+\vec{b}+\vec{c})$. Now
$\vec{d}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times \vec{a})$. Then
A. $\frac{\vec{d} \cdot(\vec{a}+\vec{c})}{}=2$
$[\vec{a} \vec{b} \vec{c}]$
B. $\frac{\vec{d} \cdot(\vec{a}+\vec{c})}{=-2}$
$[\vec{a} \vec{b} \vec{c}]$
C. minimum value of $x^{2}+y^{2} i s \pi^{2} / 4$
D. minimum value of $x^{2}+y^{2} i s 5 \pi^{2} / 4$

Answer: b,d

- Watch Video Solution

122. If \vec{a}, \vec{b}, and $\leftrightarrow c$ are three unit vecrtors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{1} \vec{b}$, then (\vec{b} and \vec{c} being non-parallel) angle between \vec{a} and \vec{b} is $\pi / 3$ b.anglebetweenaland $\vec{c} \mathrm{i} \pi / 3 \mathrm{c}$. a. angle between $\vec{a} a n d \vec{b}$ is $\pi / 2 \mathrm{~d}$.
a. angle between \vec{a} and \vec{c} is $\pi / 2$
A. angle between \vec{a} and $\vec{b} i s \pi / 3$
B. angle between \vec{a} and $\vec{c} i s \pi / 3$
C. angle between \vec{a} and $\vec{b} i s \pi / 2$
D. angle between \vec{a} and $\vec{c} i s \pi / 2$

- Watch Video Solution

123. If in triangle $A B C, \overrightarrow{A B}=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}$ and $\overrightarrow{A C}=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then $(a) 1+\cos 2 A+\cos 2 B+\cos 2 C=0(b) \sin A=\cos C(c)$ projection of $A C$ on $B C$ is equal to $B C$ (d) projection of $A B$ on $B C$ is equal to $A B$
A. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
B. $\sin A=\cos C$
C. projection of $A C$ on $B C$ is equal to $B C$
D. projection of $A B$ on $B C$ is equal to $A B$

Answer: a,b,c

124. $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{c} \times \vec{d} & \vec{e} \times \vec{f}\end{array}\right]$ is equal to
A. A. $[\vec{a} \vec{b} \vec{d}][\vec{c} \vec{e} \vec{f}]-[\vec{a} \vec{b} \vec{c}][\vec{d} \vec{e} \vec{f}]$
B. В. $[\vec{a} \vec{b} \vec{e}][\vec{f} \vec{c} \vec{d}]-[\vec{a} \vec{b} \vec{f}][\vec{e} \vec{c} \vec{d}]$
C. C. $[\vec{c} \vec{d} \vec{a}][\vec{b} \vec{e} \vec{f}]-[\vec{a} \vec{d} \vec{b}][\vec{a} \vec{e} \vec{f}]$
D. D. $[\vec{a} \vec{c} \vec{e}][\vec{b} \vec{d} \vec{f}]$

Answer: a,b,c

- Watch Video Solution

125. The scalars l and m such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to
A. $I=\frac{(\vec{c} \times \vec{b}) \cdot(\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^{2}}$
B. $I=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$

$$
(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})
$$

C. $m=$

$$
(\vec{b} \times \vec{a})^{2}
$$

D. $m=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$

Answer: ac

D Watch Video Solution

126. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \cdot(\vec{a} \times \vec{d})=0$ then which of the following may be true?
A. A. \vec{a}, \vec{b} and \vec{d} are nenessarily coplanar
B. B. \vec{a} lies in the plane of \vec{c} and \vec{d}
C. C. \vec{b} lies in the plane of \vec{a} and \vec{d}
D. D. \vec{c} lies in the plane of \vec{a} and \vec{d}

Answer: b,c,d

127. $A, B, C a n d D$ are four points such that
$\vec{A} B=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{B} C=(\hat{i}-2 \hat{j})$ and $\overrightarrow{C D} D=n(-6 \hat{i}+15 \hat{j}-3 \hat{k}) \quad$ If $\quad C D$ intersects $A B$ at some point E, then a. $m \geq 1 / 2$ b. $n \geq 1 / 3$ c. $m=n$ d. $m<n$
A. $m \geq 1 / 2$
B. $n \geq 1 / 3$
C. $m=n$
D. $m<n$

Answer: a,b

- Watch Video Solution

128. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar and $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are distinct real numbers, then $[(l \vec{a}+m \vec{b}+n \vec{c})(l \vec{b}+m \vec{c}+n \vec{a})(l \vec{c}+m \vec{a}+n \vec{b})]=0$, implies
(A) $l m+m n+n l=0$
(B) $l+m+n=0$
(C) $l^{2}+m^{2}+n^{2}=0$
A. $l+m+n=0$
B. roots of the equation $l x^{2}+m x+n=0$ are equal
C. $l^{2}+m^{2}+n^{2}=0$
D. $l^{3}+m^{2}+n^{3}=3 l m n$

Answer: a,b,d

D Watch Video Solution

129. Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplnar vectors with $a \neq b$, and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. $\vec{\alpha}$
B. $\vec{\beta}$
C. $\vec{\gamma}$
D. none of these

Answer: a,b,c

- Watch Video Solution

130. If vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k}$ and \vec{C} form a left-handed system, then \vec{C} is a. $11 \hat{i}-6 \hat{j}-\hat{k}$ b. $-11 \hat{i}+6 \hat{j}+\hat{k}$ c. $11 \hat{i}-6 \hat{j}+\hat{k}$ d. $-11 \hat{i}+6 \hat{j}-\hat{k}$
A. $11 \hat{i}-6 \hat{j}-\hat{k}$
B. $-11 \hat{i}-6 \hat{j}-\hat{k}$
C. $-11 \hat{i}-6 \hat{j}+\hat{k}$
D. $-11 \hat{i}+6 \hat{j}-\hat{k}$

Answer: b,d

- Watch Video Solution

131. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}$ and $\vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
A. A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. D. orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$

Answer: a,b,c,d

- Watch Video Solution

132. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$ then
A. A. $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0}$
B. B. $\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$
C. C. $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
D. D. $\vec{c} \times \vec{a} \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$

Answer: a,c,d

133. A vector (\vec{d}) is equally inclined to three vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$ let $\vec{x}, \vec{y}, \vec{z}$ be three in the plane of $\vec{a}, \vec{b} ; \vec{b}, \vec{c} ; \vec{c}, \vec{a}$ respectively, then
A. $\vec{z} \cdot \vec{d}=0$
B. $\vec{x} \cdot \vec{d}=1$
C. $\vec{y} \cdot \vec{d}=32$
D. $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\gamma \vec{z}$

Answer: a,d

- Watch Video Solution

134. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta} . I f|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta} i s \frac{\pi}{3}$ then the length of a diagonal of the parallelogram is
A. $4 \sqrt{5}$
B. $4 \sqrt{3}$
C. $4 \sqrt{7}$
D. none of these

Answer: b,c

- Watch Video Solution

Reasoning type

1. Statement 1: Vector $\vec{c}=-5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angel between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k} a n d \vec{b}=8 \hat{i}+\hat{j}-4 \hat{k} \quad$ Statement $2: \quad \vec{c} \quad$ is equally inclined to $\vec{a} a n d \vec{b}$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

2. Statement 1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular totehdirectin of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$ Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s 2 \hat{i}+2 \hat{j}+2 \hat{k}$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: c

D Watch Video Solution

3. Statement 1: Distance of point $D(1,0,-1)$ from the plane of points $A($ $1,-2,0), B(3,1,2)$ and $C(-1,1,-1)$ is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points A, B, C and D is $\sqrt{229}$

2
A. Both the statements are true and statement 2 is the correct
explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: d

4. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for given non- zero vectors \vec{a}, \vec{b} and \vec{c}

Statement 1: $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$
Statement 2: $[\vec{a} \vec{b} \vec{c}]=0$
A. A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. C. Statement 1 is true and Statement 2 is false
D. D. Statement 1 is false and Statement 2 is true.

Answer: b
5. Statement 1: If $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are three mutually perpendicular unit vectors then $a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}$ and $a_{3} \hat{i}+b_{3} \hat{j}+c_{3} \hat{k}$ may be mutually perpendicular unit vectors.

Statement 2 : value of determinant and its transpose are the same.
A. A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. C. Statement 1 is true and Statement 2 is false
D. D. Statement 1 is false and Statement 2 is true.

Answer: a

- Watch Video Solution

6. Statement $1: \vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{C}=\hat{i}+2 \hat{j}+\hat{k}$ then
$|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=243$
Statement 2: $|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=|\vec{A}|^{2}|[\vec{A} \vec{B} \vec{C}]|$
A. A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. C. Statement 1 is true and Statement 2 is false
D. D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

7. Statement $1: \vec{a}, \vec{b}$, and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c} a n d \vec{d}$ are non-coplanar. If

$$
\begin{aligned}
& {[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}]=1 \text {, thend }=\vec{a}+\vec{b}+\vec{c} \text {. Statement }} \\
& {[\vec{d} \vec{b} \vec{c}]=[\vec{d} \vec{a} \vec{b}]=[\vec{d} \vec{c} \vec{a}] \text {; then } \vec{d} \text { equally inclined to } \vec{a}, \vec{b} \text { and } \vec{c} .}
\end{aligned}
$$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

8. Consider a vector \vec{c}

Prove that, $\vec{c}=(\hat{i} \cdot \vec{c}) \hat{i}+(\hat{j} \cdot \vec{c}) \hat{j}+(\hat{k} \cdot \vec{c}) \hat{k}$

1. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and Vector \vec{w} is
A. $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

Answer: b

- Watch Video Solution

2. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and
A. (a) $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. (b) $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. (c) $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. (d) $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

Answer: c

- Watch Video Solution

3. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=3 / 2, \vec{a} \cdot \vec{v}=7 / 4$ and Vector \vec{w} is
A. (a) $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. (b) $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. (c) $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. (a) $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

- Watch Video Solution

4. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$, find $\vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

5. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$, find $\vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.
A. $\frac{1}{2}[(\vec{a}+\vec{c}) \times \vec{b}-\vec{b}-\vec{a}]$
B. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{b}+\vec{b}+\vec{a}]$
C. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+\vec{b}+\vec{a}]$
D. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{a}+\vec{b}-\vec{a}]$

Answer: c

- Watch Video Solution

6. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$, find $\vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.
A. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{c}-\vec{b}+\vec{a}]$
B. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+\vec{b}-\vec{a}]$
C. $\frac{1}{2}[\vec{c} \times(\vec{a}-\vec{b})+\vec{b}+\vec{a}]$
D. none of these

Answer: b

- Watch Video Solution

7. If $\vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} . \vec{b}=\gamma, \vec{x} . \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find x, y, z in terms of \vec{a}, \vec{b} and γ.

- Watch Video Solution

8. If $\vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} . \vec{b}=\gamma, \vec{x} . \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find x, y, z in terms of \vec{a}, \vec{b} and γ.
A. $\frac{\vec{a} \times \vec{b}}{\gamma}$
B. $\vec{a}+\frac{\vec{a} \times \vec{b}}{\gamma}$
C. $\vec{a}+\vec{b}+\frac{\vec{a} \times \vec{b}}{\gamma}$
D. none of these

Answer: a

9. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b}$ and $\vec{x} \times \vec{y}=\vec{c}$, find $\vec{x}, \vec{y}, \vec{z}$ in terms of \vec{a}, \vec{b} and \vec{c}.
A. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b} \times(\vec{a} \times \vec{b})]$
B. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
C. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}+\vec{a} \times(\vec{a} \times \vec{b})]$
D. none of these

Answer: c

- Watch Video Solution

10. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then $(\vec{P} \times \vec{B}) \times \vec{B}$ is equal to
A. \vec{P}
B. $-\vec{P}$
C. $2 \vec{B}$
D. \vec{A}

Answer: b

- Watch Video Solution

11. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then \vec{P} is equal to
A. $\frac{\vec{A}}{2}+\frac{\vec{A} \times \vec{B}}{2}$
B. $\frac{\vec{A}}{2}+\frac{\vec{B} \times \vec{A}}{2}$
C. $\frac{\vec{A} \times \vec{B}}{2}-\frac{\vec{A}}{2}$
D. $\vec{A} \times \vec{B}$

- Watch Video Solution

12. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then which of the following statements is false ?
A. vectors \vec{P}, \vec{A} and $\vec{P} \times \vec{B}$ ar linearly dependent.
B. vectors \vec{P}, \vec{B} and $\vec{P} \times \vec{B}$ ar linearly independent
C. \vec{P} is orthogonal to \vec{B} and has length $\frac{1}{\sqrt{2}}$.
D. none of these

Answer: d

- Watch Video Solution

13. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then
\vec{a}_{2} is equal to
$\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
(A) $\frac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
(B) $\frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
$\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$ (D) $\frac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
A. $\frac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
B. $\frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
c. $\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
D. $\frac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

Answer: b

- Watch Video Solution

14. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then $\vec{a}_{1} \cdot \vec{b}$ is equal to (A) -41 (B) $-41 / 7$ (C) 41 (D) 287
A. -41
B. $-41 / 7$
C. 41
D. 287

Answer: a

D Watch Video Solution

15. Let $\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}. Then \vec{a}_{2} is equal to (A) $\frac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k}) \quad$ (B) $\frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$ $\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$ (D) $\frac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
A. \vec{a} and $v c e a_{2}$ are collinear
B. \vec{a}_{1} and \vec{c} are collinear
C. $\vec{a} m \vec{a}_{1}$ and \vec{b} are coplanar
D. \vec{a}, \vec{a}_{1} and a_{2} are coplanar

Answer: c

- Watch Video Solution

16. Consider a triangular pyramid ABCD the position vectors of whose agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle BCD. The length
of the vector $A G$ is
A. $\sqrt{17}$
B. $\sqrt{51} / 3$
C. $3 / \sqrt{6}$
D. $\sqrt{59} / 4$

Answer: b
17. Consider a triangular pyramid $A B C D$ the position vectors of whose agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle BCD. The length
of the vector $A G$ is
A. 24
B. $8 \sqrt{6}$
C. $4 \sqrt{6}$
D. none of these

Answer: c

- Watch Video Solution

18. Consider a triangular pyramid $A B C D$ the position vectors of whose agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be
the point of intersection of the medians of the triangle $B C D$. The length of the vector $A G$ is
A. $14 / \sqrt{6}$
B. $2 / \sqrt{6}$
C. $3 / \sqrt{6}$
D. none of these

Answer: a

- Watch Video Solution

19. Vertices of a parallelogram taken in order are $A,(2,-1,4), B(1,0,-1), C($ $1,2,3$) and $D(x, y, z)$ The distance between the parallel lines $A B$ and $C D$ is
A. $\sqrt{6}$
B. $3 \sqrt{6 / 5}$
C. $2 \sqrt{2}$
D. 3

Answer: c

- Watch Video Solution

20. Vertices of a parallelogram taken in order are $A(2,-1,4) B(1,0,-1) C(1,2,3)$ and D.

Distance of the point $P(8,2,-12)$ from the plane of the parallelogram is
A. $\frac{4 \sqrt{6}}{9}$
$32 \sqrt{6}$
B. 9
C. $\frac{16 \sqrt{6}}{9}$
D. none

Answer: b

21. Vertices of a parallelogram taken in order are $A,(2,-1,4), B(1,0,-1), C($ $1,2,3$) and D.

The distance between the parallel lines $A B$ and $C D$ is
A. $14,4,2$
B. $2,4,14$
C. $4,2,14$
D. 2,14,4

Answer: d

- Watch Video Solution

22. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane such $\begin{gathered}\text { that }(10 \hat{j}-8 \hat{i}-\vec{r})=40 \\ P_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, P_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\} . \text { A tangenty line is }\end{gathered}$ drawn to the curve $y=8 / x^{2}$ at point .A with abscissa 2. the drawn line

cuts the x-axis at a point B.

p_{2} is equal to
A. 9
B. $2 \sqrt{2}-1$
C. $6 \sqrt{6}+3$
D. $9-4 \sqrt{2}$

Answer: d

- Watch Video Solution

23. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane

$$
\begin{gathered}
\text { that } \quad \vec{r} \cdot(10 \hat{j}-8 \hat{i}-\vec{r})=40 \\
P_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, P_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\} \text { and }
\end{gathered}
$$ drawn to the curve $y=8 / x^{2}$ at point.A with abscissa 2 . the drawn line cuts the x-axis at a point B.

$p_{1}+p_{2}$ is equal to
A. 2
B. 10
C. 18
D. 5

Answer: c

- Watch Video Solution

24. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane such that $\vec{r} .(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad$ and $P_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, P_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. A tangenty line is drawn to the curve $y=8 / x^{2}$ at point.A with abscissa 2. the drawn line cuts the x-axis at a point B.

Find r is equal to
A. 1
B. 2
C. 3
D. 4

Answer: c

D Watch Video Solution

25. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c}, respectively, i.e. $A B \times A C$ and $A D \times A B=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$ vector $A D$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: a

- Watch Video Solution

26. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c}, respectively, i.e. $\overrightarrow{A B} \times \overrightarrow{A C}=\vec{b}$ and $\overrightarrow{A D} \times \overrightarrow{A B}=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector $\vec{a} i s \frac{|\vec{a}|}{3}$
vector $A B$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: b

- Watch Video Solution

27. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c}, respectively, i.e. $\overrightarrow{A B} \times \overrightarrow{A C}=\vec{b}$ and $\overrightarrow{A D} \times \overrightarrow{A B}=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector $\vec{a} i s \frac{|\vec{a}|}{3}$ vector $A C$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: c

- Watch Video Solution

Martrix - match type
1.
.

- View Text Solution

2. Find a unit vector in the direction of $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$

- Watch Video Solution

3. Find the value of λ if the vectors \vec{a} and \vec{b} are perpendicular. where, $\vec{a}=$ $2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$

- Watch Video Solution

4. Given two vectors $\vec{a}=-\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{j}-\hat{k}$
find $|\vec{a} \times \vec{b}|$

- Watch Video Solution

5. Given two vectors $\vec{a}=-\hat{i}+3 \hat{j}+\hat{k}$ and $\vec{b}=-3 \hat{i}+\hat{j}+\hat{k}$ find $|\vec{a} \times \vec{b}|$

- Watch Video Solution

6. Show that the vectors $\hat{i}-2 \hat{j}+3 \hat{k},-2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\hat{i}-3 \hat{j}+5 \hat{k}$ are coplanar.

- Watch Video Solution

7. find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a})(\vec{x}+\vec{a})=12$

- Watch Video Solution

8. Write the value of p for which $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}, \vec{b}=\hat{i}+p \hat{j}+3 \hat{k}$ are parallel

- Watch Video Solution

9. Find the projection of \vec{a} on \vec{b} if $\vec{a} . \vec{b}=8$ and $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$

- Watch Video Solution

10. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vecots then find the value of $x+y+z$

Integer type

1. If $\vec{a} a n d \vec{b}$ are any two unit vectors, then find the greatest positive
integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$.

- Watch Video Solution

2. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60° Suppose that $|\vec{u}-\hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $(\sqrt{2}+1)|\vec{u}|$

- Watch Video Solution

3. Find the absolute value of parameter t for which the area of the triangle whose vertices the $A(-1,1,2) ; B(1,2,3)$ and $C(5,1,1)$ is minimum.
4. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k} ; \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, . \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k} \quad$ and $[3 \vec{a}+\vec{b} 3 \vec{b}+\vec{c} 3 \vec{c}+\vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]$, then find the value of $\frac{\lambda}{4}$.

- Watch Video Solution

5. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k}$, and $\vec{c}=2 \hat{i}-\alpha \hat{j}+\hat{k}$ Find thevalue of 6α, such that $\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=0$.

- Watch Video Solution

6. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}+\left[(a-2) \gamma^{2}+(b-3) \gamma+c\right.$ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$

- Watch Video Solution

7. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$. Find the value of $[\vec{u} \vec{v} \vec{w}]$.

- Watch Video Solution

8. Find the value of λ if the volume of a tetrahedron whose vertices are with position vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k}$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic unit.

- Watch Video Solution

9. Given that $\vec{u}=\hat{i}-2 \hat{j}+3 \hat{k}$,
$\vec{v}=2 \hat{i}+\hat{j}+4 \hat{k}$,
$\vec{w}=\hat{i}+3 \hat{j}+3 \hat{k}$ and $(\vec{u} \cdot \vec{R}-15) \hat{i}+(\vec{v} \cdot \vec{R}-30) \hat{j}+(\vec{w} \cdot \vec{R}-20) \vec{k}=0$. Then find the greatest integer less than or equal to $|\vec{R}|$.

- Watch Video Solution

10. Let a three dimensional vector \vec{V} satisfy the condition, $2 \vec{V}+\vec{V} \times(\hat{i}+2 \hat{j})=2 \hat{i}+\hat{k}$ If $3|\vec{V}|=\sqrt{m}$ Then find the value of m

(Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} . \vec{b}=0=\vec{a} . \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$.

- Watch Video Solution

12. Let $\vec{O} A=\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, Aand C are noncollinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with OAandOC as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

13. Find the work done by the force $F=3 \hat{i}-\hat{j}-2 \hat{k}$ acrting on a particle such that the particle is displaced from point $A(-3,-4,1) \rightarrow B(-1,-1,-2)$

- Watch Video Solution

14. If \vec{a} and \vec{b} are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$ then find the value of $(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$

- Watch Video Solution

15. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=i+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} . \vec{a}=0$ then find the value of $\vec{r} . \vec{b}$.

- Watch Video Solution

16. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$, then $|2 \vec{a}+5 \vec{b}+5 \vec{c}|$ is.

- Watch Video Solution

17. Let \vec{a}, \vec{b}, and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are scalars then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is

- Watch Video Solution

Subjective type

1. from a point O inside a triangle $A B C$, perpendiculars, $O D, O E$ and $O F$ are drawn to the sides, $B C, C A$ and $A B$ respectively, prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent.
2. about to only mathematics

- Watch Video Solution

3. If c is a given non-zero scalar, and \vec{A} and \vec{B} are given non-zero vector such that $\vec{A} \perp \vec{B}$, then find vector \vec{X} which satisfies the equation
$\vec{A} \cdot \vec{X}=c$ and $\vec{A} \times \vec{X}=\vec{B}$

- Watch Video Solution

4. $A, B, C a n d D$ are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$).

- Watch Video Solution

5. If vectors \vec{a}, \vec{b} and \vec{c} are coplanar, show that $\left|\begin{array}{lll}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=\overrightarrow{0}$

D Watch Video Solution

6. Let $\vec{A}=2 \vec{i}+\vec{k}, \vec{B}=\vec{i}+\vec{j}+\vec{k} \quad \vec{C}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} . \vec{A}=0$.

- Watch Video Solution

7. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

8.

$$
(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b} \times \vec{c})=-2[\vec{b} \vec{c} \vec{d}] \vec{a}
$$

- Watch Video Solution

9. \vec{a}, \vec{b} and \vec{c} are vectors of magnitudes 1,1 and 2 , respectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, then acute angle between \vec{a} and \vec{c} is

- View Text Solution

10. Let \vec{a}, \vec{b}, and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ then $[\vec{a} \vec{b} \vec{c}]$ in terms of θ is equal to :

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $|\vec{b}|=|\vec{c}|$ then $\{(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})\} \times(\vec{b} \times \vec{c}) \cdot(\vec{b}+\vec{c})=$

(D) Watch Video Solution

12. For any two vectors \vec{u} and \vec{v} prove that $\left(1+|\vec{u}|^{2}\right)\left(1+|\vec{v}|^{2}\right)=(1-\vec{u} \cdot \vec{v})^{2}+|\vec{u}+\vec{v}+(\vec{u} \times \vec{v})|^{2}$

- Watch Video Solution

13. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

14. Find 3-dimensional vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \quad$ satisfying $\vec{v}_{1} \cdot \vec{v}_{1}=4, \vec{v}_{1} \cdot \vec{v}_{2}=-2, \vec{v}_{1} \cdot \vec{v}_{3}=6$, $\vec{v}_{2} \cdot \vec{v}_{2}=2, \vec{v}_{2} \cdot \vec{v}_{3}=-5, \vec{v}_{3} \cdot \vec{v}_{3}=29$
15. Let V be the volume of the parallelopiped formed by the vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. If a_{r}, b_{r} and c_{r}, where $r=1,2,3$, are non-negative real numbers and 3
$\sum_{r=1}\left(a_{r}+b_{r}+c_{r}\right)=3 L$ show that $V \leq L^{3}$

- Watch Video Solution

16. \vec{u}, \vec{v} and \vec{w} are three non-coplanar unit vecrtors and α, β and γ are the angles between \vec{u} and \vec{v}, \vec{v} and \vec{w}, and \vec{w} and \vec{u}, respectively, and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles $\alpha, \beta a n d \gamma$, respectively.

Prove that $[\vec{x} \times \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x}]=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \sec ^{2}\left(\frac{\alpha}{2}\right) \sec ^{2}\left(\frac{\beta}{2}\right) \sec ^{2}\left(\frac{\gamma}{2}\right)$.

- Watch Video Solution

17. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$. Prove that $(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c}) \neq 0$

- Watch Video Solution

18. P_{1} and P_{2} are planes passing through origin L_{1} and L_{2} are two lines on P_{1} and P_{2}, respectively, such that their intersection is the origin. Show that there exist points A, B and C, whose permutation A^{\prime}, B^{\prime} andC', respectively, can be chosen such that
i) A is on L_{1}, BonP $_{1}$ but not on L_{1} and C not on P_{1};
ii) A^{\prime} is on L_{2}, B^{\prime} on P_{2} but not on L_{2} and C^{\prime} not on P_{2}

- Watch Video Solution

19. Find the differential equation representing the family of curves $y=a e^{b x+5}$ where a and b are arbitrary constants.

(Watch Video Solution

1. Let \vec{A}, \vec{B} and \vec{C} be vectors of legth, 3,4and 5 respectively. Let \vec{A} be perpendicular to $\vec{B}+\vec{C}, \vec{B}$ to $\vec{C}+\vec{A}$ and \vec{C} to $\vec{A}+\vec{B}$ then the length of vector $\vec{A}+\vec{B}+\vec{C}$ is \qquad .

- Watch Video Solution

2. The unit vector perendicular to the plane determined by $P(1,-1,2)$, $\mathrm{C}(3,-1,2)$ is \qquad .

- Watch Video Solution

3. the area of the triangle whose vertices are $\mathrm{A}(1,-1,2), \mathrm{B}(1,2,-1), \mathrm{C}(3,-1$,
2) is \qquad .

- Watch Video Solution

4. If \vec{A}, \vec{B} and \vec{C} are three non - coplanar vectors, then
$\vec{A} \cdot \vec{B} \times \vec{C}$ $\vec{B} \cdot \vec{A} \times \vec{C}$
$\vec{C} \times \vec{A} \cdot \vec{B} \quad \vec{C} \cdot \vec{A} \times \vec{B}$
\qquad

- Watch Video Solution

5. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors the vector \vec{B} satisfying the equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$ is \qquad .

- Watch Video Solution

6. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy - plane. All vectors in the sme plane having projections 1 and 2 along \vec{b} and \vec{c}, respectively, are given by \qquad

- Watch Video Solution

7. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are \qquad and \qquad , respectively.

- Watch Video Solution

8. A unit vector coplanar with $\vec{i}+\vec{j}+2 \vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ and perpendicular to $\vec{i}+\vec{j}+\vec{k}$ is \qquad

- Watch Video Solution

9. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\vec{i}, \vec{i}+\vec{j}$ and thepane determined by the vectors $\vec{i}-\vec{j}, \vec{i}+\vec{k}$ then angle between \vec{a} and $\vec{i}-2 \vec{j}+2 \vec{k}$ is $=$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

- Watch Video Solution

10. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

11. let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 , respectively, if $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, then the acute angle between \vec{a} and \vec{c} is \qquad

- Watch Video Solution

12. A, B C and D are four points in a plane with position vectors, $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively, such that $(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0$ then point D is the ___ of triangle $A B C$.

- Watch Video Solution

13. Let $\vec{O} A=\vec{a}, \hat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where , AandC are noncollinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with $O A a n d O C$ as adjacent sides. If $p=k q$, then find k

- Watch Video Solution

14. If $\vec{a}=\hat{j}+\sqrt{3} k, \vec{b}=-\hat{j}+\sqrt{3} \hat{k}$ and $\vec{c}=2 \sqrt{3} \hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is

- Watch Video Solution

True and false

1. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a}$. \vec{c}. It the angle between \vec{b} and $\vec{c} i s \frac{\pi}{6}$ then find \vec{a}.
2. If $\vec{x} \cdot \vec{a}=0 \vec{x} . \vec{b}=0$ and $\vec{x} \cdot \vec{c}=0$ for some non zeror \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

3. for any three vectors, \vec{a}, \vec{b} and $\vec{c},(\vec{a}-\vec{b}) \cdot(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})=$

(Watch Video Solution

single correct answer type

1. The scalar $\vec{A}((\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C}))$ equals
a. 0 b. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$ c. $[\vec{A} \vec{B} \vec{C}]$ d. none of these
A. 0
B. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
C. $[\vec{A} \vec{B} \vec{C}]$
D. none of these

Answer: a

- Watch Video Solution

2. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if
A. A. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$
B. B. $\vec{b} \cdot \vec{c}=0, \vec{c}, \vec{a}=0$
C. C. $\vec{c} . \vec{a}=0, \vec{a}, \vec{b}=0$
D. D. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

Answer: d
3. The volume of he parallelepiped whose sides are given by $\vec{O} A=2 i-2 j, \vec{O} B=i+j-k a n d \vec{O} C=3 i-k$ is a. $\frac{4}{13}$ b. 4 c. $\frac{2}{7}$ d. 2
A. $4 / 13$
B. 4
C. 2/7
D. 2

Answer: d

- Watch Video Solution

4. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p}, $\vec{q} a n d \vec{r}$ the vectors
defined by the relation $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{c}]}$ Then the $[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}] \quad[\vec{a} \vec{b} \vec{c}]$
value of the expression $(\vec{a}+\vec{b}) \vec{p}+(\vec{b}+\vec{c}) \vec{q}+(\vec{c}+\vec{a}) \vec{r}$ is 0 b .1 c .2 d .3
A. 0
B. 1
C. 2
D. 3

Answer: d

- Watch Video Solution

5. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. If \hat{d} is a unit vector such that $\vec{a} \cdot \hat{d}=0=[\vec{b} \vec{c} \vec{d}]$ then \hat{d} equals
A. A. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$
B. В. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$
C. C. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. D. $\pm \hat{k}$

Answer: a

D Watch Video Solution

6. If \vec{a}, \vec{b} and \vec{c} are non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is a. $3 \pi / 4 \mathrm{~b} . \pi / 4 \mathrm{c}$. $\pi / 2 \mathrm{~d} . \pi$
A. $3 \pi / 4$
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: a

- Watch Video Solution

7. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$ if $|\vec{u}|=2,|\vec{v}|=3$ and $|\vec{w}|=5$ then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$ is
A. 47
B. -19
C. 0
D. 19

Answer: b

- Watch Video Solution

8. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c})[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ is :
A. 0
B. $[\vec{a} \vec{b} \vec{c}]$
C. $2[\vec{a} \vec{b} \vec{c}]$
D. $-[\vec{a} \vec{b} \vec{c}]$

Answer: d

- Watch Video Solution

9. \vec{p}, \vec{q} and \vec{r} are three mutually prependicular vectors of the same magnitude . If vector \vec{x} satisfies the equation $\vec{p} \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p}) \times \vec{r})=\overrightarrow{0}$ then \vec{x} is given by
A. A. $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
B. B. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. C. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
D. D. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

Answer: b

10. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} . \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. A. $2 / 3$
B. B. $3 / 2$
C. C. 2
D. D. 3

Answer: b

- Watch Video Solution

11. Let $\vec{a}=2 i+j+k, \vec{b}=i+2 j-k$ and a unit vector \vec{c} be coplanar. If \vec{c} is pependicular to \vec{a}. Find \vec{c}.
A. $\frac{1}{\sqrt{2}}(-j+k)$
B. $\frac{1}{\sqrt{3}}(i-j-k)$
C. $\frac{1}{\sqrt{5}}(i-2 j)$
D. $\frac{1}{\sqrt{3}}(i-j-k)$

Answer: a

- Watch Video Solution

12. If the vectors \vec{a}, \vec{b}, and \vec{c} form the sides $B C$, CAand $A B$, respectively, of triangle $A B C$, then
A. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
C. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
D. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$

Answer: b

- Watch Video Solution

13. Let vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=0$. Let $P_{1} a n d P_{2}$ be planes determined by the pair of vectors \vec{a}, \vec{b}, and \vec{c}, \vec{d}, respectively. Then the angle between P_{1} andP P_{2} is $0 \mathrm{~b} . \pi / 4 \mathrm{c} . \pi / 3 \mathrm{~d} . \pi / 2$
A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: a

- Watch Video Solution

14. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product $[2 \vec{a}-\vec{b} 2 \vec{b}-\vec{c} 2 \vec{c}-\vec{a}]$ is 0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$
A. 0
B. 1
C. $-\sqrt{3}$
D. $\sqrt{3}$

Answer: a

- Watch Video Solution

15. If \hat{a}, \hat{b}, and \hat{c} are unit vectors, then $|\hat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\hat{c}-\hat{a}|^{2}$ does not exceed
A. 4
B. 9
C. 8
D. 6

Answer: b

16. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is
A. 45°
B. 60°
C. $\cos ^{-1}(1 / 3)$
D. $\cos ^{-1}(2 / 7)$

Answer: b

- Watch Video Solution

17. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product $[U V W]$ is a.- 1 b. $\sqrt{10}+\sqrt{6} c . \sqrt{59}$ d. $\sqrt{60}$
A. -1
B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: c

- Watch Video Solution

18. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i}+a \hat{j}+k, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.
A. -3
B. 3
C. $1 / \sqrt{3}$
D. $\sqrt{3}$

Answer: c

- Watch Video Solution

19. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \vec{b} is
A. $\hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{k}$
c. \hat{i}
D. $2 \hat{i}$

Answer: c

- Watch Video Solution

20. The unit vector which is orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$ b. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
d. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{i}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

Answer: c

- Watch Video Solution

21. If \vec{a}, \vec{b} and \vec{c} are three nonzero, non- coplanar vectors and
$\vec{b}_{1}=\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{b}_{2}=\vec{b}+\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{c}_{1}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b} \cdot}{\mid \vec{c}} \vec{c}^{2} \vec{b}_{1}$,
$\vec{c}_{2}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}-\frac{\vec{b} \vec{c}}{\left|\vec{b}_{1}\right|^{2}} \vec{b}_{1}, \vec{c}_{3}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a}+\frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}$,
$\vec{c}_{4}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a}=\frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1}$, then the set of mutually orthogonal vectors is
A. (a) $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$
B. (b) $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{2}\right)$
C. (c) $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$
D. (d) $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$

Answer: c

- Watch Video Solution

22. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k} \mathrm{~A}$ vector in the plane of \vec{a} and \vec{b} whose projections on \vec{c} is $1 / \sqrt{3}$ is
A. A. $4 \hat{i}-\hat{j}+4 \hat{k}$
B. $B .3 \hat{i}+\hat{j}-3 \hat{k}$
C. C. $2 \hat{i}+\hat{j}-2 \hat{k}$
D. D. $-4 \hat{i}+\hat{j}-4 \hat{k}$

Answer: a

23. Let two non-collinear unit vector \hat{a} a $\mathrm{n} \mathrm{d} \hat{b}$ form an acute angle. A point P moves so that at any time t, the position vector $O P$ (where O is the origin) is given by âcost $+\hat{b} \sin t W h e n P$ is farthest from origin O, let M be the length of OPandû be the unit vector along $O P$ Then (a)
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{andM}=(1+\hat{a} \hat{b})^{1 / 2}$ (b) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ andM $=\left(1+\hat{a}^{\wedge}\right)^{1 / 2}$
$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|} \operatorname{andM}=(1+2 \hat{a} \hat{b})^{1 / 2}$ (d) $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|} \operatorname{andM}=(1+2 \hat{a} \hat{b})^{1 / 2}$
A.,$\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+\hat{a} . \hat{b})^{1 / 2}$
B. , $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+\hat{a} . \hat{b})^{1 / 2}$
C. $\hat{u}=\frac{\hat{a}+\hat{b}}{|\hat{a}+\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{1 / 2}$
D. $\hat{u}=\frac{\hat{a}-\hat{b}}{|\hat{a}-\hat{b}|}$ and $M=(1+2 \hat{a} . \hat{b})^{1 / 2}$

Answer: a

24. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$ then
A. \vec{a}, \vec{b} and \vec{c} are non- coplanar
B. \vec{b}, \vec{c} and \vec{d} are non-coplanar
C. \vec{b} and \vec{d} are non- parallel
D. \vec{a} and \vec{d} are parallel and \vec{b} and \vec{c} are parallel

Answer: c

- Watch Video Solution

25. Two adjacent sides of a parallelogram $A B C D$ are given by
$\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$ The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$

If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: b

- Watch Video Solution

26. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 i+2 j$, respectively. The quadrilateral PQRS must be (a) Parallelogram, which is neither a rhombus nor a rectangle (b)

Square (c) Rectangle but not a square (d) Rhombus, but not a square
A. Parallelogram, which is neither a rhombus nor a rectangle
B. square
C. rectangle, but not a square
D. rhombus, but not a square.

Answer: a

- Watch Video Solution

27. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k} \mathrm{~A}$ vector in the plane of \vec{a} and \vec{b} whose projections on \vec{c} is $1 / \sqrt{3}$ is
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}+\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$

Answer: c

28. Let $\vec{P} R=3 \hat{i}+\hat{j}-2 \hat{k} a n d \vec{S} Q=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS, and $\vec{P} T=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelepiped determine by the vectors $\vec{P} T, \vec{P} Q$ and $\vec{P} S$ is 5 b. 20 c. 10 d. 30
A. 5
B. 20
C. 10
D. 30

Answer: c

- Watch Video Solution

Multiple correct answers type

1. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both
\vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} ist/6 then the value of $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ is
A. 0
B. 1
C. $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)$
D. $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)\left(c_{1}^{2}+c_{2}^{2}+c_{2}^{2}\right)$

Answer: c

- Watch Video Solution

2. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0) a n d \vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite
A. one
B. two
C. three
D. infinite

Answer: b

- Watch Video Solution

3. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ A vector coplanar with \vec{b} and \vec{c} whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2 \hat{i}+3 \hat{j}-3 \hat{k}$ b. $-2 \hat{i}-\hat{j}+5 \hat{k}$ c.
$2 \hat{i}+3 \hat{j}+3 \hat{k} \mathrm{~d} .2 \hat{i}+\hat{j}+5 \hat{k}$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $-2 \hat{i}-\hat{j}+5 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: a,c

D Watch Video Solution

4. For three vectors $\vec{u}, \vec{v} a n d \vec{w}$ which of the following expressions is not equal to any of the remaining three ? $\vec{u} \vec{v} \times \vec{w} \mathrm{~b} .(\vec{v} \times \vec{w}) \vec{u}$ c. $\vec{v} \vec{u} \times \vec{w} \mathrm{~d}$. $(\vec{u} \times \vec{v}) \vec{w}$
A. $\vec{u} .(\vec{v} \times \vec{w})$
B. $(\vec{v} \times \vec{w}) \cdot \vec{u}$
C. $\vec{v} \cdot(\vec{u} \times \vec{w})$
D. $(\vec{u} \times \vec{v}) \cdot \vec{w}$

Answer: c

D Watch Video Solution

5. Which of the following expressions are meaningful? a. $\vec{u} \cdot(\vec{v} \times \vec{w})$ b. $\vec{u} \cdot \vec{v} \cdot \vec{w} \mathrm{c} \cdot(\vec{u} \vec{v}) \cdot \vec{w} \mathrm{~d} \cdot \vec{u} \times(\vec{v} \cdot \vec{w})$
A. $\vec{u} .(\vec{v} \times \vec{w})$
B. $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
C. $(\vec{u} \cdot \vec{v}) \vec{w}$
D. $\vec{u} \times(\vec{v} . V e c w)$

Answer: a,c

- Watch Video Solution

6. \vec{a} and \vec{b} are two non - collinear unit vectors, and $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$. then $|\vec{v}|$ is
A. $|\vec{u}|+\vec{u} .(\vec{a} \times \vec{b})$
B. $|\vec{u}|+|\vec{u} . \vec{a}|$
C. $|\vec{u}|+|\vec{u} \cdot \vec{b}|$
D. $|\vec{u}|+\vec{u} \cdot(\vec{a}+\vec{b})$

Answer: a,c

- Watch Video Solution

7. Find the modulus of the Vector $\frac{1}{3}(2 \hat{i}-2 \hat{j}+\hat{k})$ is

- Watch Video Solution

8. Let \vec{A} be a vector parallel to the line of intersection of planes $P_{1} a n d P_{2}$ Plane P_{1} is parallel to vectors $2 \hat{j}+3 \hat{k} a n d 4 \hat{j}-3 k a n d P_{2}$ is parallel to $\hat{j}-\hat{k} a n d 3 \hat{i}+3 \dot{j}$ Then the angle betweenvector \vec{A} and a given vector $2 \hat{i}+\hat{j}-2 \hat{k}$ is $\pi / 2$ b. $\pi / 4$ c. $\pi / 6$ d. $3 \pi / 4$
A. $\pi / 2$
B. $\pi / 4$
C. $\pi / 6$
D. $3 \pi / 4$

Answer: b,d

- Watch Video Solution

9. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is/are a. $\hat{j}-\hat{k}$ b. $-\hat{i}+\hat{j}$ c. $\hat{i}-\hat{j}$ d. $-\hat{j}+\hat{k}$
A. $\hat{j}-\hat{k}$
B. $-\hat{i}+\hat{j}$
C. $\hat{i}-\hat{j}$
D. $-\hat{j}+\hat{k}$

Answer: a,d

- Watch Video Solution

10. Let \vec{x}, \vec{y} and \vec{z} be three vector each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. if vcea is a non - zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
A. $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
B. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
C. $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
D. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

Answer: a,b,c

- Watch Video Solution

11.

Let
$\triangle P Q R$
be
a triangle
Let
$\vec{a}=Q R, \vec{b}=R P$ and $\vec{c}=P Q$ if $|\vec{a}|=12,|\vec{b}|=4 \sqrt{3}$ and $\vec{b} . \vec{c}=24$, then which of the following is (are) true ?
A. $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=12$
B. $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=30$
C. $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
D. $\vec{a} \cdot \vec{b}=-72$

Answer: a,c,d

- Watch Video Solution

