

MATHS

BOOKS - CENGAGE PUBLICATION

DIFFERENT PRODUCTS OF VECTORS AND THEIR **GEOMETRICAL APPLICATIONS**

Illustration

1. Find the angle between the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$.

Watch Video Solution

2. If \vec{a} , \vec{b} , and \vec{c} are non-zero vectors such that \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , then find the geometrical relation between the vectors.

3. if
$$\vec{r}$$
. $\vec{i} = \vec{r}$. $\vec{j} = \vec{r}$. \vec{k} and $|\vec{r}| = 6$, then find vector \vec{r} .

- **4.** If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of \vec{a} , $\vec{b} + \vec{b}$, $\vec{c} + \vec{c}$, \vec{a} is
 - **Watch Video Solution**

- **5.** If \vec{a} , \vec{b} , and \vec{c} are mutually perpendicular vectors of equal magnitudes,
- then find the angle between vectors \vec{a} and \vec{a} + \vec{b} + \vec{c}
 - Watch Video Solution
- **6.** If $|\vec{a}| + |\vec{b}| = |\vec{c}|$ and $\vec{a} + \vec{b} = \vec{c}$, then find the angle between \vec{a} and \vec{b}
 - Watch Video Solution

7. If three unit vectors \vec{a} , \vec{b} and \vec{c} satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Then find the angle between \vec{b} and \vec{c} .

8. If θ is the angle between the unit vectors \vec{a} and \vec{b} , then prove that

$$\cos\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} + \vec{b}\right|$$

- **9.** find the projection of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$ on the vector $5\hat{i} 2\hat{j} + 4\hat{k}$
 - Watch Video Solution

10. If the scalar projection of vector $x\hat{i} - \hat{j} + \hat{k}$ on vector $4\hat{i} - 2\hat{j} + 5\hat{k}$ is $\frac{1}{3\sqrt{5}}$.

The find the value of x.

Watch Video Solution

11. If $\vec{a} = x\hat{i} + (x - 1)\hat{j} + \hat{k}$ and $\vec{b} = (x + 1)\hat{i} + \hat{j} + a\hat{k}$ make an acute angle

 $\forall x \in R$, then find the values of a

12. If \vec{a} . $\vec{i} = \vec{a}$. $(\hat{i} + \hat{j}) = \vec{a}$. $(\hat{i} + \hat{j} + \hat{k})$. Then find the unit vector \vec{a} .

13. Prove by vector method that cos(A + B) = cosAcosB - sinAsinB

14. In any triangle ABC, prove the projection formula $a = b\cos C + c\cos B$ using vector method.

15. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

16. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

17. If a + 2b + 3c = 4, then find the least value (to the nearest integer) of $a^2 + b^2 + c^2$

18. about to only mathematics

19. vectors \vec{a} , \vec{b} and \vec{c} are of the same length and when taken pair-wise they form equal angles. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ then find vector \vec{c} .

20. if \vec{a} , \vec{b} and \vec{c} are there mutually perpendicular unit vectors and \vec{a} ia a unit vector then find the value of $\left|2\vec{a} + \vec{b} + \vec{c}\right|^2$

21. A particle acted by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + 9\hat{j} - \hat{k}$ is displaced from point $\hat{i} + 2\hat{j} + 3\hat{k}$ to point $5\hat{i} + 4\hat{j} + \hat{k}$ find the total work done by the forces in SI units.

22. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitude show that \vec{a} + \vec{b} + \vec{c} is equally inclined to \vec{a} , \vec{b} and \vec{c}

23. If
$$\vec{a} = 4\hat{i} + 6\hat{j}$$
 and $\vec{b} = 3\hat{i} + 4\hat{k}$ find the projection vector \vec{a} to \vec{b} .

24. If
$$|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$$
 then find the value of $|\vec{a} - \vec{b}|$

25. If $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 0\hat{j} + \hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b} , (ii) that it is $\perp to\vec{b}$ and (iii) that $\vec{a} \cdot \vec{c} = 7$.

26. Let
$$\vec{a}$$
, \vec{b} , and \vec{c} are vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$, and $(\vec{a} + \vec{b})$ is perpendicular to \vec{c} , $(\vec{b} + \vec{c})$ is perpendicular to \vec{a} and $(\vec{c} + \vec{a})$ is perpendicular to \vec{b} . Then find the value of $|\vec{a} + \vec{b} + \vec{c}|$.

27. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the third pair is also perpendicular.

28. In isosceles triangles ABC, $\left| \vec{A}B \right| = \left| \vec{B}C \right| = 8$, a point E divides AB internally in the ratio 1:3, then find the angle between

29. An arc AC of a circle subtends a right angle at then the center O. the point B divides the arc in the ratio 1:2, If $\overrightarrow{O}A = a \& \overrightarrow{O}B = b$. then the vector $\overrightarrow{O}C$ in terms of a&b, is

30. Vector $\vec{O}A = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $4\hat{i} - \hat{j} - \hat{k}$.

Watch Video Solution

31. The foot of the perpendicular drawn from the origin to a plane is (1, 2, -3) Find the equation of the plane. or If O is the origin and the coordinates of P is (1, 2, -3), then find the equation of the plane passing through P and perpendicular to OP

32. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$.

the vectors \vec{a} and \vec{b} be 33. Let such that $\left| \vec{a} \right| = 3$ and $\left| \vec{b} \right| = \frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

34. Prove that
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$
.

Watch Video Solution

35. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$ Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and \vec{c} . \vec{d} = 15.

36. If A, BandC are the vetices of a triangle ABC, then prove sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Watch Video Solution

product of vectors , prove Using cross 37. that sin(A + B) = sinAcosB + cosAsinB.

38. Find a unit vector perpendicular to the plane determined by the points (1, -1, 2), (2, 0, -1) and (0, 2, 1)

39. If
$$\vec{a}$$
 and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix}$.

40. If
$$|\vec{a}| = 2$$
, then find the value of $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2$

41. $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b} .

42. \vec{A} , \vec{B} , \vec{C} and \vec{D} are any four points in the space, then prove that $|\vec{A}\vec{B} \times \vec{C}\vec{D} + \vec{B}\vec{C} \times \vec{A}\vec{D} + \vec{C}\vec{A} \times \vec{B}\vec{D}| = 4$ (area of $\vec{A}\vec{B}\vec{C}$).

43. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices A,B and C. respectively, of \triangle ABC. Prove that the perpendicualar distance of the vertex A from the base BC of the triangle ABC is $\frac{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right|}{\left|\vec{c} \times \vec{c} + \vec{c} \times \vec{c}\right|}$

44. Using vectors, find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5).

45. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

are

46. Find the area of a parallelogram whose diagonals $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$

47. Let \vec{a} , \vec{b} and \vec{c} be three verctors such that $\vec{a} \neq 0$, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$ and $|\vec{b} \times \vec{c}| = \sqrt{15}$ If $\vec{b} - 2\vec{c} = \lambda \vec{a}$, then find the value of λ

48. Find the moment about (1,-1,-1) of the force $3\hat{i} + 4\hat{j} - 5\hat{k}$ acting at (1,0,-2)

49. A rigid body is spinning about a fixed point (3,-2,-1) with an angular velocity of 4 rad/s, the axis of rotation being in the direction of (1,2,-2).

50. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, then show that $\vec{a} - \vec{d}$, is parallel to

Watch Video Solution

Find the velocity of the particle at point (4,1,1).

Watch Video Solution

 $\vec{b} - \vec{c}$

51. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ does not imply $\vec{b} = \vec{\cdot}$

52. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the position vectors of the vertices of a cyclic quadrilateral *ABCD*, prove that

$$\frac{\left|\vec{a}\times\vec{b}+\vec{b}\times\vec{d}+\vec{d}\times\vec{a}\right|}{\left(\vec{b}-\vec{a}\right).\left(\vec{d}-\vec{a}\right)}+\frac{\left|\vec{b}\times\vec{c}+\vec{c}\times\vec{d}+\vec{d}\times\vec{b}\right|}{\left(\vec{b}-\vec{c}\right).\left(\vec{d}-\vec{c}\right)}=0$$

53. The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b})$, $D(\vec{d})$ and $C(l\vec{b} + m\vec{d})$. Prove that the area of the quadrialateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$.

54. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$. Then find the value of $(2\vec{a} + 5\vec{b})$. $((3\vec{a} + \vec{b} + \vec{a} \times \vec{b}))$

Watch Video Solution

55. u and v are two non-collinear unit vectors such that $|\hat{u} \times \hat{v}| = \left| \frac{u - v}{2} \right|$.

Find the value of $|\hat{u} \times (\hat{u} \times \hat{v})|^2$

Watch Video Solution

56. In triangle ABC points D, EandF are taken on the sides BC, CAandAB,

 $\frac{BD}{DC} = \frac{CE}{FA} = \frac{AF}{FR} = n$ Prove such that respectively, that $\triangle DEF = \frac{n^2 - n + 1}{(n+1)^2} \triangle (ABC)$

Let A, B, C be points with position vectors

$$2\hat{i} - \hat{j} + \hat{k}$$
, $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$ respectively. Find the shortest distance

between point B and plane OAC

57.

58. Let $\vec{a} = x\hat{i} + 12\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 2x\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{k}$ If the ordered set

$$\begin{bmatrix} \vec{b} \vec{c} \vec{a} \end{bmatrix}$$
 is left handed, then find the values of x

59. If \vec{a} , \vec{b} , and \vec{c} are three non-coplanar vectors, then find the value of

$$\frac{\vec{a}.\left(\vec{b}\times\vec{c}\right)}{\vec{b}.\left(\vec{c}\times\vec{a}\right)} + \frac{\vec{b}.\left(\vec{c}\times\vec{a}\right)}{\vec{c}.\left(\vec{a}\times\vec{b}\right)} + \frac{\vec{c}.\left(\vec{b}\times\vec{a}\right)}{\vec{a}.\left(\vec{b}\times\vec{c}\right)}$$

60. If the vectors $2\hat{i} - 3\hat{j}$, $\hat{i} + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

61. The position vectors of the four angular points of a tetrahedron are $A(\hat{j} + 2\hat{k})$, $B(3\hat{i} + \hat{k})$, $C(4\hat{i} + 3\hat{j} + 6\hat{k})$ and $D(2\hat{i} + 3\hat{j} + 2\hat{k})$. Find the volume

62. Let \vec{a} , \vec{b} , \vec{c} be three unit vectors and \vec{a} . $\vec{b} = \vec{a}$. $\vec{c} = 0$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $\left| \left[\vec{a} \vec{b} \vec{c} \right] \right|$

64. Prove that
$$\begin{bmatrix} \vec{l} \vec{m} \vec{n} \end{bmatrix} \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{vmatrix} \vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c} \end{vmatrix}$$

Watch Video Solution

$$\begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$
Watch Video Solution

66. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i} + a\hat{j} + k$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum.

65. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\hat{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$, then find the value of

67. If \vec{u} , \vec{v} and \vec{w} are three non-coplanar vectors, then prove that

$$\left(\vec{u} + \vec{v} - \vec{w}\right) \cdot \left[\left[\left(\vec{u} - \vec{v}\right) \times \left(\vec{v} - \vec{w}\right)\right]\right] = \vec{u} \cdot \left(\vec{v} \times \vec{w}\right)$$

Watch Video Solution

68. If \vec{a} and \vec{b} are two vectors, such that $\left| \vec{a} \times \vec{b} \right| = 2$, then find the value of $\left[\vec{a} \vec{b} \ \vec{a} \times \vec{b} \right]$.

69. Find the altitude of a parallelopiped whose three coterminous edges are vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$, $\vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{C} = \hat{i} + \hat{j} + 3\hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallopiped.

70. If
$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 2$$
, then find the value of $\begin{bmatrix} (\vec{a} + 2\vec{b} - \vec{c})(\vec{a} - \vec{b})(\vec{a} - \vec{b} - \vec{c}) \end{bmatrix}$

71. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vector and $\vec{a} = \alpha (\vec{a} \times \vec{b}) + \beta (\vec{b} \times \vec{c}) + \gamma (\vec{c} \times \vec{a})$ and $[\vec{a}\vec{b}\vec{c}] = 1$, then $\alpha + \beta + \gamma = (A)$ $|\vec{a}|^2$ (B) - $|\vec{a}|^2$ (C) 0 (D) none of these

72. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vecotrs, then prove that $\left| \left(\vec{a} \cdot \vec{d} \right) \left(\vec{b} \times \vec{c} \right) + \left(\vec{b} \cdot \vec{d} \right) \left(\vec{c} \times \vec{a} \right) + \left(\vec{c} \cdot \vec{d} \right) \left(\vec{a} \times \vec{b} \right) \right|$ is independent of \vec{d} where \vec{d} is a unit vector.

73. Prove that vectors $\vec{u} = (al + a_1l_1)\hat{i} + (am + a_1m_1)\hat{j} + (an + a_1n_1)\hat{k}$

$$\vec{v} = (bl + b_1 l_1)\hat{i} + (bm + b_1 m_1)\hat{j} + (bn + b_1 n_1)\hat{k}$$

$$\vec{w} = \left(cl + c_1 l_1\right)\hat{i} + \left(cm + c_1 m_1\right)\hat{j} + \left(cn + c_1 n_1\right)\hat{k} \text{ are coplanar.}$$

74. Let G_1 , G_2 and G_3 be the centroids of the triangular faces OBC, OCA and OAB, respectively, of a tetrahedron OABC If V_1 denotes the volumes of the tetrahedron OABC and V_2 that of the parallelepiped with OG_1 , OG_2 and OG_3 as three concurrent edges, then prove that $AV_1 = 9V_2$

75. Prove that $\hat{i} \times (\vec{a} \times \vec{i}) + \hat{j} \times (\vec{a} \times \vec{j}) + \hat{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$

76. If $\hat{i} \times \left[\left(\vec{a} - \hat{j} \right) \times \hat{i} \right] + \hat{j} \times \left[\left(\vec{a} - \hat{k} \right) \times \hat{j} \right] + \hat{k} \times \left[\left(\vec{a} - \hat{i} \right) \times \hat{k} \right] = 0$, then find vector \vec{a} .

77. Let
$$\vec{a}$$
, \vec{b} , and \vec{c} be any three vectors, then prove that $[\vec{a} \times \vec{b}\vec{b} \times \vec{c}\vec{c} \times \vec{a}] = [\vec{a}\vec{b}\vec{c}]^2$

78. For any four vectors prove that

$$(\vec{b} \times \vec{c}) \cdot (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \cdot (\vec{b} \times \vec{d}) + (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$$

79. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a} \mid |(\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^2(\vec{b}.\vec{c})$

80. Find the vector of length 3 unit which is perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$.

81. Let \hat{a} , \hat{b} ,and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α , between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ . If $A(\hat{a}\cos\alpha,0),B(\hat{b}\cos\beta,0)$ and $C(\hat{c}\cos\gamma,0)$, then show that in triangle

ABC,
$$\frac{\left|\hat{a} \times \left(\hat{b} \times \hat{c}\right)\right|}{\sin A} = \frac{\left|\hat{b} \times \left(\hat{c} \times \hat{a}\right)\right|}{\sin B} = \frac{\left|\hat{c} \times \left(\hat{a} \times \hat{b}\right)\right|}{\sin C}$$

82. find the angle between the vectors $\vec{a}=3~\hat{i}$ +2 \hat{k} and

$$\vec{b} = 2\hat{i} - 2\hat{j} + 4\hat{k}$$

83. If \vec{b} is not perpendicular to \vec{c} , then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ and $\vec{r} \cdot \vec{c} = 0$.

84. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a} + k\vec{r} = \vec{b}$.

85. $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \ \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \ \vec{a} \neq \vec{0}, \ \vec{b} \neq \vec{0}, \ \vec{a} \neq \lambda \vec{b} \ \text{and} \ \vec{a} \quad \text{is} \quad \text{not}$ perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b} .

86. if vectors $3\hat{i} - 2\hat{j} + m\hat{k}$ and $-2\hat{i} + \hat{j} + 4\hat{k}$ are perpendicular to each other, find the value of m

Watch Video Solution

87. \vec{b} and \vec{c} are unit vectors. Then for any arbitrary vector

$$\vec{a}$$
, $\left(\left(\left(\vec{a} \times \vec{b}\right) + \left(\vec{a} \times \vec{c}\right)\right) \times \left(\vec{b} \times \vec{c}\right)\right) \vec{b}$ - \vec{c} is always equal to $|\vec{a}|$ b. $\frac{1}{2}|\vec{a}|$ c.

$$\frac{1}{3} |\vec{a}|$$
 d. none of these

If \vec{a} , \vec{b} and \vec{c} are non-coplanar unit vectors such that

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$$
, then the angle between \vec{a} and \vec{b} is a. $3\pi/4$ b. $\pi/4$ c.

$$\pi/2 d. \pi$$

$$\vec{R} + \frac{\left[\vec{R}\vec{\beta} \times (\vec{\beta} \times \vec{\alpha})\right] \vec{\alpha}}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}} + \frac{\left[\vec{R}\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta})\right] \vec{\beta}}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}} = \frac{\left[\vec{R}\vec{\alpha}\vec{\beta}\right] (\vec{\alpha} \times \vec{\beta})}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}}$$

- **90.** If \vec{a} , \vec{b} and \vec{c} are three non-zero non-coplanar vectors, then the value of $(\vec{a}.\vec{a})\vec{b} \times \vec{c} + (\vec{a}.\vec{b})\vec{c} \times \vec{a} + (\vec{a}.\vec{c})\vec{a} \times \vec{b}.$
 - Watch Video Solution

- **91.** Find a set of vectors reciprocal to the set $-\hat{i}+\hat{j}+\hat{k}$, $\hat{i}-\hat{j}+\hat{k}$, $\hat{i}+\hat{j}+\hat{k}$
 - **Watch Video Solution**

92. find the projection of
$$3\hat{i} - \hat{j} + 4\hat{k}$$

on
$$2\hat{i} + 3\hat{j} - 6\hat{k}$$

- **93.** Let \vec{a} , \vec{b} , and \vec{c} and \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vectors, then prove that $\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$.
 - Watch Video Solution

- **94.** \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r} . Is any arbitrary vector. Prove that $\begin{bmatrix} \vec{b} \vec{c} \vec{r} \end{bmatrix} \vec{a} + \begin{bmatrix} \vec{c} \vec{a} \vec{r} \end{bmatrix} \vec{b} + \begin{bmatrix} \vec{a} \vec{b} \vec{r} \end{bmatrix} \vec{c} = \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{r}$.
 - Watch Video Solution

 $3\hat{i} + 2\hat{j} - 6\hat{k}, 4\hat{i} - 3\hat{j} + \hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$

95.

96. If \vec{a} , \vec{b} , and \vec{c} are non-zero vectors such that \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , then find the geometrical relation between the vectors.

Find the angle between the following pairs of vectors

98. If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 3$, then the value of \vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} is

97. if \vec{r} . $\vec{i} = \vec{r}$. $\vec{j} = \vec{r}$. \vec{k} and $|\vec{r}| = 9$, then find vector \vec{r} .

99. If \vec{a} , \vec{b} , and \vec{c} are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors \vec{a} and \vec{a} + \vec{b} + \vec{c}

Watch Video Solution

100. If $\vec{a} + \vec{b} = \vec{c}$, and a + b = c then the angle between \vec{a} and \vec{b} is

Watch Video Solution

101. If three unit vectors \vec{a} , \vec{b} and \vec{c} satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Then find the angle between \vec{a} and \vec{c} .

102. If θ is the angle between the unit vectors \vec{a} and \vec{b} , then prove that

$$\sin\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} - \vec{b}\right|$$

103. find the projection of the vector $\hat{i} - 3\hat{j} - 7\hat{k}$ on the vector $7\hat{i} - \hat{j} - 8\hat{k}$

104. If the scalar projection of vector
$$x\hat{i} - \hat{j} + \hat{k}$$
 on vector $2\hat{i} - \hat{j} + 5\hat{k}$, is $\frac{1}{\sqrt{30}}$, then find the value of x

105. If
$$\vec{a} = x\hat{i} + (x-1)\hat{j} + \hat{k}$$
 and $\vec{b} = (x+1)\hat{i} + \hat{j} + a\hat{k}$ make an acute angle $\forall x \in R$, then find the values of a

106. If
$$\vec{a}$$
. $\vec{i} = \vec{a}$. $(\hat{i} + \hat{j}) = \vec{a}$. $(\hat{i} + \hat{j} + \hat{k})$. Then find the unit vector \vec{a} .

107. Prove by vector method that cos(A + B) = cosAcosB - sinAsinB

Watch Video Solution

using vector method.

109. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

108. In any triangle ABC, prove the projection formula $a = b\cos C + c\cos B$

110. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

111. If a + 2b + 3c = 4, then find the least value (to the nearest integer) of $a^2 + b^2 + c^2$

112. Definition of set

113. Vectors \vec{a} , \vec{b} and \vec{c} are of the same length and when taken pair-wise they form equal angles. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ then find vector \vec{c} .

Watch Video Solution

114. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angle with \vec{a} , \vec{b} and \vec{c} , then find the value of $|\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2$.

115. A particle acted by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + 9\hat{j} - \hat{k}$ is displaced from point $\hat{i} + 2\hat{j} + 3\hat{k}$ to point $5\hat{i} + 4\hat{j} + \hat{k}$ find the total work done by the forces in SI units.

116. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors of equal magnitude, show that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} . Also find the angle.

117. If
$$\vec{a} = 4\hat{i} + 6\hat{j}$$
 and $\vec{b} = 3\hat{i} + 4\hat{k}$ find the vector component of \vec{a} along \vec{b} .

118. If
$$|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$$
 then find the value of $|\vec{a} - \vec{b}|$

119. If
$$\vec{a} = -\hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = 2\hat{i} + 0\hat{j} + \hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b} , (ii) that it is \perp to \vec{b} and (iii) that $\vec{a} \cdot \vec{c} = 7$.

120. Let
$$\vec{a}$$
, \vec{b} , and \vec{c} are vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$, and $(\vec{a} + \vec{b})$ is perpendicular to \vec{c} , $(\vec{b} + \vec{c})$ is perpendicular to \vec{a} and $(\vec{c} + \vec{a})$ is perpendicular to \vec{b} . Then find the value of $|\vec{a} + \vec{b} + \vec{c}|$.

121. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the third pair is also perpendicular.

122. In isosceles triangles
$$ABC$$
, $|\vec{A}B| = |\vec{B}C| = 8$, a point E divides AB internally in the ratio 1:3, then find the angle between $\vec{C}E$ and $\vec{C}A$ (where $|\vec{C}A| = 12$)

123. An arc AC of a circle subtends a right angle at then the center O. the point B divides the arc in the ratio 1:2, If $\overrightarrow{OA} = a \& \overrightarrow{OB} = b$. then the vector OC in terms of a&b, is

Watch Video Solution

124. Vector $\vec{O}A = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is $4\hat{i} - \hat{j} - \hat{k}$

Watch Video Solution

125. The foot of the perpendicular drawn from the origin to a plane is (1, 2, -3) Find the equation of the plane. or If O is the origin and the coordinates of P is (1, 2, -3), then find the equation of the plane passing

through P and perpendicular to OP

126. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = 2\hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

127. Let the vectors
$$\vec{a}$$
 and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$, then, $\vec{a} \times \vec{b}$ is a unit vector, if the angel between \vec{a} and \vec{b} is?

128. Prove that $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$.

129. answer any one question : (ii)

$$\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both the vectors \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 18$

let

130. If A, B and C are the vetices of a triangle ABC, then prove sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

131. Using cross product of vectors , prove that sin(A + B) = sinAcosB + cosAsinB .

132. Find a unit vector perpendicular to the plane determined by the points (1, -1, 2), (2, 0, -1) and (0, 2, 1)

133. If
$$\vec{a}$$
 and \vec{b} are two vectors, then prove that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix}$.

134. If
$$|\vec{a}| = 2$$
, then find the value of $|\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2$.

135. $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, \vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b} .

136. A, B, CandD are any four points in the space, then prove that

$$|\vec{A}B \times \vec{C}D + \vec{B}C \times \vec{A}D + \vec{C}A \times \vec{B}D| = 4 \text{ (area of } ABC \text{)}.$$

137. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices A,B and C. respectively of \triangle ABC. Prove that the perpendicualar distance of the

vertex A from the base BC of the triangle ABC is
$$\frac{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right|}{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right|}$$

138. Using vectors, find the area of the triangle with vertices A (1, 1, 2), B (2,

- 3, 5) and C (1, 5, 5).
 - Watch Video Solution

139. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 5\hat{j} + 2\hat{k}$

140. Find the area of a parallelogram whose diagonals are
$$\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$$
 and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$

141. Let
$$\vec{a}$$
, \vec{b} and \vec{c} be three verctors such that $\vec{a} \neq 0$, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$ and $|\vec{b} \times \vec{c}| = \sqrt{15}$ If $\vec{b} - 2\vec{c} = \lambda \vec{a}$, then find the value of λ

142. Find the moment about (1,-1,-1) of the force $3\hat{i} + 4\hat{j} - 5\hat{k}$ acting at (1,0,-2)

143. A rigid body is spinning about a fixed point (3,-2,-1) with an angular velocity of 4 rad/s, the axis of rotation being in the direction of (1,2,-2). Find the velocity of the particle at point (4,1,1).

Watch Video Solution

144. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$, $\vec{a} \neq \vec{d}$, $\vec{b} \neq \vec{c}$ then show that $\vec{b} - \vec{c}$ is parallel to $\vec{a} - \vec{d}$

Watch Video Solution

145. Show by a numerical example and geometrically also that

$$\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$$
 does not imply $\vec{b} = \vec{\cdot}$

146. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the position vectors of the vertices of a cycle

quadrilateral that ABCD. prove

$$\frac{\left|\vec{a}\times\vec{b}+\vec{b}\times\vec{d}+\vec{d}\times\vec{a}\right|}{\left(\vec{b}-\vec{a}\right).\left(\vec{d}-\vec{a}\right)}+\frac{\left|\vec{b}\times\vec{c}+\vec{c}\times\vec{d}+\vec{d}\times\vec{b}\right|}{\left(\vec{b}-\vec{c}\right).\left(\vec{d}-\vec{c}\right)}=0$$

Watch Video Solution

147. The position vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b})$, $D(\vec{d})$ and $C(l\vec{b} + m\vec{d})$. Prove that the area of the quadrial ateral is $\frac{1}{2}(l+m)|\vec{b}\times\vec{d}|$

Watch Video Solution

148. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$. Then find the value of $(2\vec{a} + 5\vec{b})$. $((3\vec{a} + \vec{b} + \vec{a} \times \vec{b}))$

149. \hat{u} and \hat{v} are two non-collinear unit vectors such that

$$\left| \frac{\hat{u} + \hat{v}}{2} + \hat{u} \times \vec{v} \right| = 1$$
. Prove that $\left| \hat{u} \times \hat{v} \right| = \left| \frac{\hat{u} - \hat{v}}{2} \right|$

Watch Video Solution

150. In triangle ABC ,points D, EandF are taken on the sides

BC, CAandAB, respectively, such that $\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FR} = n$ Prove that

$$\triangle DEF = \frac{n^2 - n + 1}{(n+1)^2} \triangle (ABC)$$

Let A, B, C be points with position vectors 151. $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$ respectively. Find the shortest distance

between point B and plane OAC

152. Let $\vec{a} = x\hat{i} + 12\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 2x\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{k}$ If the ordered set

$$\begin{bmatrix} \vec{b} \vec{c} \vec{a} \end{bmatrix}$$
 is left handed, then find the values of \vec{x}

153. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, then find the value of

$$\frac{\vec{a}.\left(\vec{b}\times\vec{c}\right)}{\vec{b}.\left(\vec{c}\times\vec{a}\right)} + \frac{\vec{b}.\left(\vec{c}\times\vec{a}\right)}{\vec{c}.\left(\vec{a}\times\vec{b}\right)} + \frac{\vec{c}.\left(\vec{b}\times\vec{a}\right)}{\vec{a}.\left(\vec{b}\times\vec{c}\right)}$$

154. If the vectors $2\hat{i} - 3\hat{j}$, $\hat{i} + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{k}$ form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

155. The position vectors of the four angular points of a tetrahedron are

$$A(\hat{j}+2\hat{k})$$
, $B(3\hat{i}+\hat{k})$, $C(4\hat{i}+3\hat{j}+6\hat{k})$ and $D(2\hat{i}+3\hat{j}+2\hat{k})$. Find the volume of the tetrahedron $ABCD$

156. Let \vec{a} , \vec{b} , \vec{c} be three unit vectors and \vec{a} . $\vec{b} = \vec{a}$. $\vec{c} = 0$. If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $\left| \left[\vec{a} \vec{b} \vec{c} \right] \right|$

157. Prove that $\begin{bmatrix} \vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$

158. Prove that
$$[\vec{l} \, \vec{m} \, \vec{n}] [\vec{a} \, \vec{b} \, \vec{c}] = \begin{vmatrix} \vec{l} \, . \, \vec{a} & \vec{l} \, . \, \vec{b} & \vec{l} \, . \, \vec{c} \\ \vec{m} \, . \, \vec{a} & \vec{m} \, . \, \vec{b} & \vec{m} \, . \, \vec{c} \\ \vec{n} \, . \, \vec{a} & \vec{n} \, . \, \vec{b} & \vec{n} \, . \, \vec{c} \end{vmatrix}$$

Watch Video Solution

159. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\hat{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$, then find the value of

$$\begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

160. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i} + a\hat{j} + k$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum.

161. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that

$$(\vec{u} + \vec{v} - \vec{w}).[[(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})]] = \vec{u}.(\vec{v} \times \vec{w})$$

Watch Video Solution

- **162.** If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \times \vec{b}| = 2$, then find the value of $|\vec{a}\vec{b}|\vec{a} \times \vec{b}|$.
 - **Watch Video Solution**

163. Find the altitude of a parallelopiped whose three coterminous edges are vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$, $\vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{C} = \hat{i} + \hat{j} + 3\hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallopiped.

164. If $\left[\vec{a}\vec{b}\vec{c}\right] = 2$, then find the value of $\left[\left(\vec{a} + 2\vec{b} - \vec{c}\right)\left(\vec{a} - \vec{b}\right)\left(\vec{a} - \vec{b} - \vec{c}\right)\right]$

165. If
$$\vec{a}$$
, \vec{b} , \vec{c} are mutually perpendicular vector and $\vec{a} = \alpha (\vec{a} \times \vec{b}) + \beta (\vec{b} \times \vec{c}) + \gamma (\vec{c} \times \vec{a})$ and $[\vec{a}\vec{b}\vec{c}] = 1$, then $\alpha + \beta + \gamma = (A)$ $|\vec{a}|^2$ (B) - $|\vec{a}|^2$ (C) 0 (D) none of these

166. i. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors, prove that vectors $3\vec{a} - 7\vec{b} - 4\vec{c}$, $3\vec{a} - 2\vec{b} + \vec{c}$ and $\vec{a} + \vec{b} + 2\vec{c}$ are coplanar.

167. Prove that vectors

$$\vec{u} = (al + a_1 l_1)\hat{i} + (am + a_1 m_1)\hat{j} + (an + a_1 n_1)\hat{k}$$

$$\vec{v} = (bl + b_1 l_1)\hat{i} + (bm + b_1 m_1)\hat{j} + (bn + b_1 n_1)\hat{k}$$

 $\vec{w} = (cl + c_1 l_1)\hat{i} + (cm + c_1 m_1)\hat{j} + (cn + c_1 n_1)\hat{k}$ are coplannar.

168. Let G_1, G_2 and G_3 be the centroids of the triangular faces OBC, OCA and OAB, respectively, of a tetrahedron OABC If V_1 denotes the volumes of the tetrahedron $OABCandV_2$ that of the parallelepiped with OG_1 , OG_2 and OG_3 as three concurrent edges, then prove that $4V_1 = 9V_2$

170. If
$$\hat{i} \times \left[\left(\vec{a} - \hat{j} \right) \times \hat{i} \right] + \hat{j} \times \left[\left(\vec{a} - \hat{k} \right) \times \hat{j} \right] + \vec{k} \times \left[\left(\vec{a} - \vec{i} \right) \times \hat{k} \right] = 0$$
, then find vector \vec{a} .

171. Prove that:
$$\begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}^2$$

172.

$$(\vec{b} \times \vec{c}). (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}). (\vec{b} \times \vec{d}) + (\vec{a} \times \vec{b}). (\vec{c} \times \vec{d}) = 0$$

Prove

that:

173. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a} \mid (\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^2 (\vec{b} \cdot \vec{c})$.

174. Find the vector of length 3 unit which is perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$.

175. Let \hat{a} , \hat{b} ,and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α , between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ . If $A(\hat{a}\cos\alpha,0),B(\hat{b}\cos\beta,0)$ and $C(\hat{c}\cos\gamma,0)$, then show that in triangle

$$ABC, \ \frac{\left|\hat{a} \times \left(\hat{b} \times \hat{c}\right)\right|}{\sin A} = \frac{\left|\hat{b} \times \left(\hat{c} \times \hat{a}\right)\right|}{\sin B} = \frac{\left|\hat{c} \times \left(\hat{a} \times \hat{b}\right)\right|}{\sin C}$$

176. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove that $(\vec{a}.\vec{a})\vec{b} \times \vec{c} + (\vec{a}.\vec{b})\vec{c} \times \vec{a} + (\vec{a}.\vec{c})\vec{a} \times \vec{b} = [\vec{b}\vec{c}\vec{a}]\vec{a}$

177. If \vec{b} is not perpendicular to \vec{c} . Then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ and $\vec{r} \cdot \vec{c} = 0$

178. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a} + k\vec{r} = \vec{b}$.

179. $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \ \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \ \vec{a} \neq \vec{0}, \ \vec{b} \neq \vec{0}, \ \vec{a} \neq \lambda \vec{b} \ \text{and} \ \vec{a} \ \text{is} \ \text{not}$ perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b} .

180. If vector
$$\vec{x}$$
 satisfying $\vec{x} \times \vec{a} + (\vec{x}.\vec{b})\vec{c} = \vec{d}$ is given $\vec{x} = \lambda \vec{a} + \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a}.\vec{c})|\vec{a}|^2}$, then find the value of λ

181. If \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and a',b' and c' constitute

the reciprocal system of vectors, then prove that
$$i. \ \vec{r} = (\vec{r}. \ \vec{a}') \vec{a} + (\vec{r}. \ \vec{b}') \vec{b} + (\vec{r}. \ \vec{c}') \vec{c}$$
$$ii. \ \vec{r} = (\vec{r}. \ \vec{a}) \vec{a}' + (\vec{r}. \ \vec{b}) \vec{b}' + (\vec{r}. \ \vec{c}) \vec{c}'$$

$$\vec{a} imes \left(\vec{b} imes \vec{c} \right) = rac{\vec{b} + \vec{c}}{\sqrt{2}}, \, \vec{b} \, \, ext{and} \, \, \vec{c} \, \, \, ext{are non- parallel} \, \, , \, \, ext{then prove that the}$$

If \vec{a} , \vec{b} and \vec{c} are non -coplanar unit vectors such

that

angle between \vec{a} and \vec{b} is $3\pi/4$

Watch Video Solution

183. that Prove

184. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove

$$\vec{R} + \frac{\begin{bmatrix} \vec{R}\vec{\beta} \times (\vec{\beta} \times \vec{\alpha}) \end{bmatrix} \vec{\alpha}}{\begin{vmatrix} \vec{\alpha} \times \vec{\beta} \end{vmatrix}^2} + \frac{\begin{bmatrix} \vec{R}\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta}) \end{bmatrix} \vec{\beta}}{\begin{vmatrix} \vec{\alpha} \times \vec{\beta} \end{vmatrix}^2} = \frac{\begin{bmatrix} \vec{R}\vec{\alpha}\vec{\beta} \end{bmatrix} (\vec{\alpha} \times \vec{\beta})}{\begin{vmatrix} \vec{\alpha} \times \vec{\beta} \end{vmatrix}^2}$$

Watch Video Solution

185. Find a set of vectors reciprocal to the set $-\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + \hat{k}$

that $(\vec{a}.\vec{a})\vec{b} \times \vec{c} + (\vec{a}.\vec{b})\vec{c} \times \vec{a} + (\vec{a}.\vec{c})\vec{a} \times \vec{b} = [\vec{b}\vec{c}\vec{a}]\vec{a}$

186. Let \vec{a} , \vec{b} and \vec{c} be a set of non-coplanar vectors and \vec{a}' \vec{b}' and \vec{c}' be its reciprocal set.

prove that
$$\vec{a} = \frac{\vec{b}' \times \vec{c}'}{\left[\vec{a}' \, \vec{b}' \, \vec{c}'\right]}$$
, $\vec{b} = \frac{\vec{c}' \times \vec{a}'}{\left[\vec{a}' \, \vec{b}' \, \vec{c}'\right]}$ and $\vec{c} = \frac{\vec{a}' \times \vec{b}'}{\left[\vec{a}' \, \vec{b}' \, \vec{c}'\right]}$

Watch Video Solution

187. If \vec{a} , \vec{b} , \vec{c} and \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vectors, then prove

that
$$\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$

Watch Video Solution

188. If \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that

$$i. \ \vec{r} = (\vec{r}. \ \vec{a}')\vec{a} + (\vec{r}. \ \vec{b}')\vec{b} + (\vec{r}. \ \vec{c}')\vec{c}$$

ii.
$$\vec{r} = (\vec{r} \cdot \vec{a})\vec{a}' + (\vec{r} \cdot \vec{b})\vec{b}' + (\vec{r} \cdot \vec{c})\vec{c}'$$

Exercise 2.1

1. Find
$$|\vec{a}|$$
 and $|\vec{b}|$, if $(\vec{a} + \vec{b})$. $(\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$

2. Show that $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ is a perpendicular to $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$, for any two non-zero vectors \vec{a} and \vec{b} .

respectively then find $\angle ABC$

Watch Video Solution

3. If the vectors A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2),

5. If vectors
$$\hat{i} - 2x\hat{j} - 3y\hat{k}$$
 and $\hat{i} + 3x\hat{j} + 2y\hat{k}$ are orthogonal to each other, then find the locus of th point (x,y).

6. Let
$$\vec{a}$$
, \vec{b} and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 6$, the find the length of $\vec{a} + \vec{b} + \vec{c}$.

7. If
$$\vec{a} + \vec{b} + \vec{c} = 0$$
, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then find the angle between \vec{b} and \vec{c} .

- **8.** If the angle between unit vectors \vec{a} and $\vec{b}is120$ °. Then find the value of $|\vec{a} + \vec{b}|$.
 - Watch Video Solution

- **9.** Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = \hat{i} \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$, $|\vec{w} \cdot \hat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3
 - Watch Video Solution

10. A, B, C, D are any four points, prove that

$$\vec{A}\vec{B}\vec{C}D + \vec{B}\vec{C}\vec{A}D + \vec{C}\vec{A}\vec{B}D = 4(Area\ of\ \triangle\ ABC).$$

11. P(1, 0, -1), Q(2, 0, -3), R(-1, 2, 0) and S(3, -2, -1), then find the projection length of $\vec{P}Qon\vec{R}S$

12. If the vectors $3\vec{p} + \vec{q}$; $5p - 3\vec{q}$ and $2\vec{p} + \vec{q}$; $3\vec{p} - 2\vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors \vec{p} and \vec{q}

13. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A} + \vec{B})$

bisects the internal angle between \vec{A} and \vec{B} , then find the value of α

 \vec{c} and \vec{x}

- **14.** Let \vec{a} , \vec{b} and \vec{c} be unit vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{x}$, $\vec{a}\vec{x} = 1$, $\vec{b}\vec{x} = \frac{3}{2}$, $|\vec{x}| = 2$. Then find the angle between
- Watch Video Solution

- **15.** If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $\left| \vec{a} + \vec{b} \right| + \left| \vec{a} - \vec{b} \right|.$
 - Watch Video Solution

16. Constant forces $P_1 = \hat{i} + \hat{j} + \hat{k}$, $P_2 = -\hat{i} + 2\hat{j} - \hat{k}$ and $P_3 = -\hat{j} - \hat{k}$ act on a particle at a point \hat{A} Determine the work done when particle is displaced from position $\hat{A}(4\hat{i} - 3\hat{j} - 2\hat{k})$ to $\hat{B}(6\hat{i} + \hat{j} - 3\hat{k})$

17. Find
$$|\vec{a}|$$
 and $|\vec{b}|$, if $(\vec{a} + \vec{b})$. $(\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8|\vec{b}|$

18. If A, B, C, D are four distinct point in space such that AB is not perpendicular to CD and satisfies

$$\overrightarrow{AB}. \overrightarrow{CD} = k \left(\begin{vmatrix} \overrightarrow{AD} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{BC} \end{vmatrix}^2 - \begin{vmatrix} \overrightarrow{AC} \end{vmatrix}^2 - \begin{vmatrix} \overrightarrow{DD} \end{vmatrix}^2 \right), \text{ then find the value of } k$$

1. If $\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$, $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$ and $\vec{a} \times \vec{b} = \vec{0}$, then find (m, n)

2. Find $\vec{a} \cdot \vec{b}$ if $|\vec{a}| = 3$, $|\vec{b}| = 5$, and $|\vec{a} \times \vec{b}| = 12$

3. If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0$ where \vec{a} , \vec{b} and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a} + \vec{c} = k\vec{b}$.

4. If $\vec{a} = 2\vec{i} + 3\vec{j} - \vec{k}$, $\vec{b} = -\vec{i} + 2\vec{j} - 4\vec{k}$ and $\vec{c} = \vec{i} + \vec{j} + \vec{k}$, then find the value of $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$

form a right-handed system, then find \vec{c}

5. If the vectors
$$\vec{c}$$
, $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{b} = \hat{j}$ are such that \vec{a} , \vec{c} and \vec{b}

A. (a)
$$z\hat{i} - x\hat{k}$$

B. (b)
$$\vec{0}$$

C. (c)
$$y\hat{j}$$

D. (d)
$$-z\hat{i} + x\hat{k}$$

6. Given that $\vec{a}\vec{b}=\vec{a}\vec{c}$, $\vec{a}\times\vec{b}=\vec{a}\times\vec{c}$ and \vec{a} is not a zero vector. Show that

$$\vec{b} = \vec{c}$$

7. Show that $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2\vec{a} \times \vec{b}$ and given a geometrical interpretation of it.

- **8.** If \vec{x} and \vec{y} are unit vectors and $|\vec{z}| = \frac{2}{\sqrt{7}}$ such that $\vec{z} + (\vec{z} \times \vec{x}) = \vec{y}$
 - Watch Video Solution

then find the angle θ between \vec{x} and \vec{z}

- **9.** prove that $(\vec{a}.\hat{i})(\vec{a}\times\hat{i})+(\vec{a}.\hat{j})(\vec{a}\times\hat{j})+(\vec{a}.\hat{k})(\vec{a}\times\hat{k})=\vec{0}$
 - **Watch Video Solution**

10. Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $\lambda \vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$, then find the value of λ

Water video Solution

11. A particle has an angular speed of 3 rad/s and the axis of rotation passes through the points (1, 1, 2) and (1, 2, -2) Find the velocity of the particle at point P(3, 6, 4)

12. Let \vec{a} , \vec{b} and \vec{c} be unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} . It the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ then find \vec{a} .

13. If $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = 256$ and $|\vec{a}| = 4$, then $|\vec{b}|$ is equal to

14. Given $|\vec{a}| = |\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = \sqrt{3}$ if \vec{c} is a vector such that $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$ then find the value of $\vec{c} \cdot \vec{b}$.

15. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F} = 3\hat{i} + 2\hat{j} - 4\hat{k}$ is acting on point (1, -1, 2).

Exercise 2.3

1. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors \vec{a} , \vec{b} , \vec{c} then prove that

$$\left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right]$$

2. prove that if $\begin{bmatrix} \vec{l} \, \vec{m} \vec{n} \end{bmatrix}$ are three non-coplanar vectors, then

$$\begin{bmatrix} \vec{l} \, \vec{m} \, \vec{n} \, \end{bmatrix} \begin{pmatrix} \vec{a} \times \vec{b} \, \end{pmatrix} = \begin{bmatrix} \vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \end{bmatrix}$$

3. If the volume of a parallelepiped whose adjacent edges are $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + \alpha\hat{j} + 2\hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} + \alpha\hat{k}$ is 15, then find the value of α if $(\alpha > 0)$

- **4.** If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$ then find the vector \vec{c} such that
- $\vec{a} \cdot \vec{c} = 2$ and $\vec{a} \times \vec{c} = \vec{b}$.
 - Watch Video Solution

5. If \vec{x} . $\vec{a} = 0\vec{x}$. $\vec{b} = 0$ and \vec{x} . $\vec{c} = 0$ for some non zero vector \vec{x} then show

that
$$\left[\vec{a}\vec{b}\vec{c}\right] = 0$$

6. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ then find the vector \vec{c} such that $\vec{a} \cdot \vec{c} = 2$ and $\vec{a} \times \vec{c} = \vec{b}$.

7. If
$$\vec{a}$$
, \vec{b} , \vec{c} are three non-coplanar vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$, $\vec{c} \times \vec{a} = \vec{b}$, then the value of $|\vec{a}| + |\vec{b}| + |\vec{c}|$ is

8. If
$$\vec{a} = \vec{P} + \vec{q}$$
, $\vec{P} \times \vec{b} = \vec{0}$ and \vec{q} . $\vec{b} = 0$ then prove that
$$\frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b} \cdot \vec{b}} = \vec{q}$$

9. Prove that
$$(\vec{a}.(\vec{b}\times\hat{i}))\hat{i}+(\vec{a}.(\vec{b}\times\hat{j}))\hat{j}+(\vec{a}.(\vec{b}\times\hat{k}))\hat{k}=\vec{a}\times\vec{b}$$

Watch Video Solution

10. For any four vectors, \vec{a} , \vec{b} , \vec{c} and \vec{d} prove that

$$\vec{d} \cdot (\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d}))) = (\vec{b} \cdot \vec{d})[\vec{a} \vec{c} \vec{d}].$$

- **11.** If \vec{a} and \vec{b} be two non-collinear unit vector such $\vec{a} \times (\vec{a} \times \vec{b}) = \frac{1}{2}\vec{b}$, then find the angle between \vec{a} and \vec{b} .
 - Watch Video Solution

12. show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b} = \vec{0}$

- Let \vec{a} , \vec{b} and \vec{c} be the non zero that vectors such $(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$. if theta is the acute angle between the vectors \vec{b} and \vec{c} then $\sin\theta$ equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2\frac{\sqrt{2}}{3}$
 - Watch Video Solution

- **14.** If \vec{p} , \vec{q} , \vec{r} denote vector $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$, respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}$, \vec{b} is parallel $\vec{r} \times \vec{p}$, \vec{c} is parallel to $\vec{p} \times \vec{q}$.
 - Watch Video Solution

15. Let \vec{a} , \vec{b} , \vec{c} be non -coplanar vectors and let equations \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vector \vec{a} , \vec{b} , \vec{c} then prove that $\vec{a} \times \vec{a}' + \vec{b} \times \vec{b}' + \vec{c} \times \vec{c}'$ is a null vector.

16. Given unit vectors \hat{m} , \hat{n} and \hat{p} such that angel between \hat{m} and \hat{n} is α and angle between \hat{p} and $(\hat{m} \times \hat{n})$ is also α , then $[\hat{n}\hat{p}\hat{m}] =$

17. \vec{a} , \vec{b} , \vec{c} are threee unit vectors and every two are two inclined to each at an angle $\cos^{-1}(3/5)$. If $\vec{a} \times \vec{b} = p\vec{a} + q\vec{b} + r\vec{c}$, where p,q,r are scalars, then find the value of q.

18. Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that $ec{c}$ is a unit vector perpendicular to both

vectors, \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is \vec{b} and \vec{b} is \vec{c}_1 and \vec{c}_2 and \vec{c}_3 and \vec{c}_4 and \vec{c}_5 and \vec{c}_7 and \vec{c}_8 and $\vec{$

equal to

Watch Video Solution

Exercises

1. Show that

$$\begin{vmatrix} (a-x)^2 & (a-y)^2 & (a-z)^2 \\ (b-x)^2 & (b-y)^2 & (b-z)^2 \\ (c-x)^2 & (c-y)^2 & (c-z)^2 \end{vmatrix} = 2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)$$

2. If OABC is a tetrahedron where O is the origin and A, B, andC are the other three vertices with position vectors, \vec{a} , \vec{b} , $and\vec{c}$ respectively, then prove that the centre of the sphere circumscribing the tetrahedron is

given by position vector
$$\frac{a^2(\vec{b}\times\vec{c})+b^2(\vec{c}\times\vec{a})+c^2(\vec{a}\times\vec{b})}{2\left[\vec{a}\vec{b}\vec{c}\right]}.$$

Watch Video Solution

- **3.** Find the height of the regular pyramid with each edge measuring I cm. Also,
- if α is angle between any edge and face not containing that edge, then prove that $\cos \alpha = \frac{1}{\sqrt{3}}$
 - Watch Video Solution

4. In $\triangle ABC$, a point P is taken on AB such that AP/BP = 1/3 and point Q is taken on BC such that CQ/BQ = 3/1. If R is the point of intersection

of the lines *AQandCP*, using vector method, find the area of *ABC* if the area of *BRC* is 1 unit

5. Let O be an interior points of $\triangle ABC$ such that $\overrightarrow{OA} + 2\overrightarrow{OB} + 3\overrightarrow{OC} = \overrightarrow{0}$, then the ratio of $\triangle ABC$ to area of $\triangle AOC$ is

6. The lengths of two opposite edges of a tetrahedron of aandb; the shortest distane between these edgesis d, and the angel between them if θ Prove using vector4s that the volume of the tetrahedron is $\frac{abdisn\theta}{6}$.

7. Find the volume of a parallelopiped having three coterminus vectors of equal magnitude $|\vec{a}|$ and equal inclination θ with each other.

8. \vec{p} , \vec{q} , and \vec{r} are three mutually perpendicular vectors of the same magnitude. If vector \vec{x} satisfies the equation $\vec{p} \times ((\vec{x} - \vec{q}) \times \vec{p}) + \vec{q} \times ((\vec{x} - \vec{r}) \times \vec{q}) + \vec{r} \times ((\vec{x} - \vec{p}) \times \vec{r}) = 0$, then \vec{x} is given by $\frac{1}{2}(\vec{p} + \vec{q} - 2\vec{r})$ b. $\frac{1}{2}(\vec{p} + \vec{q} + \vec{r})$ c. $\frac{1}{3}(\vec{p} + \vec{q} + \vec{r})$ d. $\frac{1}{3}(2\vec{p} + \vec{q} - \vec{r})$

- **9.** Given the vectors \vec{A} , \vec{B} , $and\vec{C}$ form a triangle such that $\vec{A} = \vec{B} + \vec{C}$ find \vec{a} , \vec{b} , \vec{c} , and \vec{d} such that the area of the triangle is 56 where $\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}$ $\vec{B} = d\hat{i} + 3\hat{i} + 4\hat{k} \vec{C} = 3\hat{i} + \hat{i} 2\hat{k}$
 - Watch Video Solution

Determine the distance of point $A(\vec{a})$ from the line I in from

10. A line I is passing through the point \vec{b} and is parallel to vector \vec{c} .

$$\left| \vec{b} - \vec{a} + \frac{\left(\vec{a} - \vec{b} \right) \vec{c}}{\left| \vec{c} \right|^2} \vec{c} \right| \text{ or } \frac{\left| \left(\vec{b} - \vec{a} \right) \times \vec{c} \right|}{\left| \vec{c} \right|}$$

11. If
$$\vec{e}_1$$
, \vec{e}_2 , \vec{e}_3 and \vec{E}_1 , \vec{E}_2 , \vec{E}_3 are two sets of vectors such that

 $\vec{e}_i \vec{E}_j = 1$, if i = j and $\vec{e}_i \vec{E}_j = 0$ and if $i \neq j$, then prove that $\begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \end{bmatrix} \begin{bmatrix} \vec{E}_1 & \vec{E}_2 & \vec{E}_3 \end{bmatrix} = 1$.

12. In a quadrillateral ABCD, it is given that AB
$$\parallel$$
CD and the diagonals AC and BD are perpendiclar to each other . Show that AD . $BC = AB$. CD .

13. OABC is regular tetrahedron in which D is the circumcentre of OABand E is the midpoint of edge AC Prove that DE is equal to half the edge of tetrahedron.

Watch Video Solution

14. If A(
$$\vec{a}$$
). B(\vec{b}) and C(\vec{c}) are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point $P(\vec{P})$ in the plane of the \triangle ABC such that vector \vec{OP} is \bot to plane of trianglABC, show that $\vec{OP} = \frac{\left[\vec{a}\vec{b}\vec{c}\right]\left(\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}\right)}{4\Delta^2}$

Watch Video Solution

15. If \vec{a} , \vec{b} , \vec{c} are three given non-coplanar vectors and any arbitrary vector

$$\vec{r} \text{ in space, where } \Delta_1 = \begin{bmatrix} \vec{r}. \ \vec{a} & \vec{b}. \ \vec{a} & \vec{c}. \ \vec{a} \\ \vec{r}. \ \vec{b} & \vec{b}. \ \vec{b} & \vec{c}. \ \vec{b} \end{bmatrix}, \Delta_2 = \begin{bmatrix} \vec{a}. \ \vec{a} & \vec{r}. \ \vec{a} & \vec{c}. \ \vec{a} \\ \vec{a}. \ \vec{b} & \vec{r}. \ \vec{b} & \vec{c}. \ \vec{b} \end{bmatrix}$$

$$\Delta_{3} = \begin{vmatrix} \vec{a}. \ \vec{a} & \vec{b}. \ \vec{a} & \vec{r}. \ \vec{a} \\ \vec{a}. \ \vec{b} & \vec{b}. \ \vec{b} & \vec{r}. \ \vec{b} \end{vmatrix}, \Delta = \begin{vmatrix} \vec{a}. \ \vec{a} & \vec{b}. \ \vec{a} & \vec{c}. \ \vec{a} \\ \vec{a}. \ \vec{b} & \vec{b}. \ \vec{b} & \vec{c}. \ \vec{b} \end{vmatrix},$$
 then prove that
$$\vec{r} = \frac{\Delta_{1}}{\Delta} \vec{a} + \frac{\Delta_{2}}{\Delta} \vec{b} + \frac{\Delta_{3}}{\Delta} \vec{c}$$

Watch Video Solution

Exercises MCQ

1. Two vectors in space are equal only if they have equal component in a. a given direction b. two given directions c. three given

directions d. in any arbitrary direction

A. a given direction

B. two given directions

C. three given direction

D. in any arbitrary direaction

Answer: c

2. Let
$$\vec{a}$$
, \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between \vec{a} and \vec{b} is θ and $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{c}$. Then $\tan \theta$ is equal to

B.
$$\frac{2}{3}$$

C.
$$\frac{3}{5}$$
D. $\frac{3}{4}$

Answer: d

Watch Video Solution

3. \vec{a} , \vec{b} , and \vec{c} are three vectors of equal magnitude. The angle between each pair of vectors is $\pi/3$ such that $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{6}$. Then $|\vec{a}|$ is equal

to a.2 b. -1 c. 1 d. $\sqrt{6}/3$

B. - 1

C. 1

D. $\sqrt{6}/3$

Answer: c

Watch Video Solution

4. Let
$$\vec{p}$$
 and \vec{q} be any two orthogonal vectors of equal magnitude 4 each.

Let \vec{a} , \vec{b} , and \vec{c} be any three vectors of lengths $7\sqrt{15}$ and $2\sqrt{33}$, mutually

perpendicular to each other. Then find the distance of the vector $\begin{pmatrix} \vec{a} \ \vec{p} \end{pmatrix} \vec{p} + \begin{pmatrix} \vec{a} \ \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{a} \ \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \ \vec{p} \end{pmatrix} \vec{p} \begin{pmatrix} \vec{b} \ \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} (\vec{p} \times \vec{q}) + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} \times \vec{q} \end{pmatrix} \vec{q} + \begin{pmatrix} \vec{b} \ \vec{p} &$

$$\mathbf{A}.\,\vec{a}+\vec{b}+\vec{c}$$

from the origin.

$$\vec{b}$$
 +

B.
$$\frac{\vec{a}}{\left|\vec{a}\right|} + \frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{c}}{\left|\vec{c}\right|}$$

C.
$$\frac{\vec{a}}{|\vec{a}|^2} + \frac{\vec{b}}{|\vec{b}|^2} + \frac{\vec{c}}{|\vec{c}|^2}$$

D. $\left| \vec{a} \right| \vec{a} - \left| \vec{b} \right| \vec{b} + \left| \vec{c} \right| \vec{c}$

Answer: b

Watch Video Solution

5. Let $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{k}$, then the point of intersection of the lines

$$\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$$
 and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is a. (3, -1, 1) b. (3, 1, -1) c. (-3, 1, 1) d.

A.
$$\hat{i}$$
 - \hat{j} + \hat{k}

$$\mathsf{B.}\,3\hat{i}\,-\hat{j}+\hat{k}$$

$$\mathsf{C.}\,\,3\hat{i}+\hat{j}-\hat{k}$$

D.
$$\hat{i} - \hat{j} - \hat{k}$$

Answer: c

Watch Video Solution

6. If \vec{a} and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b} > 0$ and $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ then the angle between the vectors \vec{a} and \vec{b} is

Α. π

B. $7\pi/4$

 $C. \pi/4$

D. $3\pi/4$

Answer: d

Watch Video Solution

7. If \hat{a} , \hat{b} , and \hat{c} are three unit vectors, such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector and θ_1 , θ_2 and θ_3 are angles between the vectors \hat{a} , \hat{b} ; \hat{b} , \hat{c} and \hat{c} , \hat{a}

respectively, then among θ_1 , θ_2 and θ_3 . a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

- A. all are acute angles
- B. all are right angles
- C. at least one is obtuse angle
- D. none of these

Answer: c

- **8.** If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b} \vec{a} \times \vec{c}|$.
 - **A.** 1/2
 - B. 1
 - C. 2

D. none of these

Answer: b

Watch Video Solution

- 9. about to only mathematics
 - A. a plane containing the origian O and parallel to two non-collinear

vectors OP and OQ

- B. the surface of a sphere described on PQ as its diameter
- C. a line passing through points P and Q
- D. a set of lines parallel to line PQ

Answer: c

10. Two adjacent sides of a parallelogram
$$ABCD$$
 are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. Then the value of $|AC \times BD|$ is a. $20\sqrt{5}$ b. $22\sqrt{5}$ c. $24\sqrt{5}$ d. $26\sqrt{5}$

A.
$$20\sqrt{5}$$

B. $22\sqrt{5}$

D.
$$26\sqrt{5}$$

Answer: b

11. If
$$\hat{a}$$
, \hat{b} , and \hat{c} are three unit vectors inclined to each other at angle θ , then the maximum value of θ is $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{2\pi}{3}$ d. $\frac{5\pi}{6}$

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{2}$$

c.
$$\frac{2}{3}$$

D.
$$\frac{5}{5}$$

Answer: c

Watch Video Solution

12. Let the pairs a, b, and c, d each determine a plane. Then the planes

are parallel if $a.(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$ b. $(\vec{a} \times \vec{c}).(\vec{b} \times \vec{d}) = \vec{0}$ c.

$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0} d. (\vec{a} \times \vec{b}). (\vec{c} \times \vec{d}) = \vec{0}$$

A.
$$(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$$

B.
$$(\vec{a} \times \vec{c})$$
. $(\vec{b} \times \vec{d}) = \vec{0}$

$$C. \left(\vec{a} \times \vec{b} \right) \times \left(\vec{c} \times \vec{d} \right) = \vec{0}$$

D.
$$(\vec{a} \times \vec{c})$$
. $(\vec{c} \times \vec{d}) = \vec{0}$

Answer: c

13. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ where \vec{a}, \vec{b} and \vec{c} are non-coplanar, then

A.
$$\vec{r} \perp (\vec{c} \times \vec{a})$$

B.
$$\vec{r} \perp (\vec{a} \times \vec{b})$$

C.
$$\vec{r} \perp (\vec{b} \times \vec{c})$$

D.
$$\vec{r} = \vec{0}$$

Answer: d

Watch Video Solution

14. If \vec{a} satisfies $\vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k}$ then \vec{a} is equal to

A.
$$\lambda \hat{i} + (2\lambda - 1)\hat{j} + \lambda \hat{k}, \lambda \in R$$

B.
$$\lambda \hat{i} + (1 - 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$$

$$C. \lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R$$

D.
$$\lambda \hat{i} + (1 + 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$$

Watch Video Solution

15. Vectors $3\vec{a} - 5\vec{b}$ and $2\vec{a} + \vec{b}$ are mutually perpendicular. If $\vec{a} + 4\vec{b}$ and $\vec{b} - \vec{a}$ are also mutually perpendicular, then the cosine of the angle between \vec{a} and \vec{b} is a. $\frac{19}{5\sqrt{43}}$ b. $\frac{19}{3\sqrt{43}}$ c. $\frac{19}{2\sqrt{45}}$ d. $\frac{19}{6\sqrt{43}}$

- A. $\frac{19}{5\sqrt{43}}$
- B. $\frac{19}{3\sqrt{43}}$
- c. $\frac{19}{\sqrt{45}}$
- D. $\frac{19}{6\sqrt{43}}$

Answer: a

16. The unit vector orthogonal to vector $-\hat{i} + \hat{j} + 2\hat{k}$ and making equal

angles with the x and y-axis $a.\pm \frac{1}{3} \left(2\hat{i} + 2\hat{j} - \hat{k} \right)$ b. $\pm \frac{1}{3} \left(\hat{i} + \hat{j} - \hat{k} \right)$ c.

$$\pm \frac{1}{3} \left(2\hat{i} - 2\hat{j} - \hat{k} \right)$$
 d. none of these

$$A. \pm \frac{1}{3} \left(2\hat{i} + 2\hat{j} - \hat{k} \right)$$

B.
$$\frac{19}{5\sqrt{43}}$$

$$C. \pm \frac{1}{3} \left(\hat{i} + \hat{j} - \hat{k} \right)$$

D. none of these

Answer: a

Watch Video Solution

17. The value of x for which the angle between $\vec{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}and\vec{b} = 7\hat{i} - 2\hat{j} + \hat{k}$ is obtuse and the angle between b and the z-axis acute and less than $\pi/6$ is given by

A.
$$a < x < 1/2$$

B.
$$1/2 < x < 15$$

C.
$$x < 1/2$$
 or $x < 0$

D. none of these

Answer: b

Watch Video Solution

18. If vectors \vec{a} and \vec{b} are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the

perpendicular to
$$a$$
 is $\vec{a} \cdot \vec{b} + \frac{\vec{b} \times \vec{a}}{\left|\vec{a}\right|^2}$ b. $\frac{\vec{a}\vec{b}}{\left|\vec{b}\right|^2}$ c. $\vec{b} - \frac{\vec{b}\vec{a}}{\left|\vec{a}\right|^2}$ d. $\frac{\vec{a} \times \left(\vec{b} \times \vec{a}\right)}{\left|\vec{b}\right|^2}$

$$A. \vec{b} + \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$$

B.
$$\frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

$$C. \vec{b} - \frac{\vec{b}. \vec{a}}{|\vec{a}|^2} \vec{a}$$

D.
$$\frac{\vec{a} \times \left(\vec{b} \times \vec{a}\right)}{\left|\vec{b}\right|^2}$$

Answer: a

Watch Video Solution

- **19.** A parallelogram is constructed on $2\vec{a} + \vec{b}$ and $\vec{a} 4\vec{b}$, where $|\vec{a}| = 6$ and $|\vec{b}| = 8$, and \vec{a} and \vec{b} are anti-parallel. Then
- the length of the longer diagonal is 40 b. 64 c. 32 d. 48
 - A. 40
 - B. 64
 - C. 32
 - D. 48

Answer: c

20. Let $\vec{a}\vec{b}=0$, where \vec{a} and \vec{b} are unit vectors and the unit vector \vec{c} is

inclined at an angle θ to both \vec{a} and \vec{b} . If $\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a} \times \vec{b})$, $(m, n, p \in R)$, then $\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$ b. $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$ c.

$$0 \le \theta \le \frac{\pi}{4} d. \ 0 \le \theta \le \frac{3\pi}{4}$$

A.
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$
B. $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$

$$\mathsf{C.}\ 0 \leq \theta \leq \frac{\pi}{4}$$

$$\mathsf{D.}\,0 \leq \theta \leq \frac{3\pi}{4}$$

Answer: a

Watch Video Solution

21. If a and c are unit vectors and |b| = 4. The angel between a and c is $\cos^{-1}(1/4)$ and $a \times b = 2a \times c$ then, $b - 2c = \lambda a$. The value of λ is

- B. 1/4,3/4
- **C.** -3, 4
- D. -1/4, $\frac{3}{4}$

Answer: a

- **22.** Let the position vectors of the points PandQ be $4\hat{i} + \hat{j} + \lambda \hat{k} and 2\hat{i} \hat{j} + \lambda \hat{k}$, respectively. Vector $\hat{i} \hat{j} + 6\hat{k}$ is perpendicular to the plane containing the origin and the points PandQ. Then λ equals a -1/2 b. 1/2 c. 1 d. none of these
 - **A.** -1/2
 - **B.** 1/2
 - C. 1
 - D. none of these

Answer: a

Watch Video Solution

- **23.** A vector of magnitude $\sqrt{2}$ coplanar with the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\vec{c} = \hat{i} + \hat{j} + \hat{k}$, is a.- $\hat{j} + \hat{k}$ b. $\hat{i} \hat{k}$ c. $\hat{i} \hat{j}$ d. $\hat{i} \hat{j}$
 - A. $-\hat{j} + \hat{k}$
 - $\mathbf{B}.\,\hat{i}$ and \hat{k}
 - C. \hat{i} \hat{k}
 - D. hati- hatj`

Answer: a

24. Let P be a point interior to the acute triangle ABC If PA + PB + PC is a null vector, then w.r.t traingel ABC, point P is its a. centroid b. orthocentre c. incentre d. circumcentre

A. centroid

B. orthocentre

C. incentre

D. circumcentre

Answer: a

Watch Video Solution

25. G is the centroid of triangle ABC and A_1 and B_1 are the midpoints of sides AB and AC, respectively. If Δ_1 is the area of quadrilateral GA_1AB_1 and Δ is the area of triangle ABC, then $\frac{\Delta}{\Delta_1}$ is equal to

a.<u>-</u> 2

b. 3

d. none of these

- A. $\frac{3}{2}$
- B. 3
- c. $\frac{1}{3}$ D. none of these

Answer: b

26.

Watch Video Solution

26. Points
$$\vec{a}$$
, \vec{b} , \vec{c} , and \vec{d} are coplanar and $(s \in \alpha)\vec{a} + (2\sin 2\beta)\vec{b} + (3\sin 3\gamma)\vec{c} - \vec{d} = 0$. Then the least value of $\sin^2 \alpha + \sin^2 2\beta + \sin^2 3\gamma is \frac{1}{14}$ b. 14 c. 6 d. $1/\sqrt{6}$

and

D.
$$1/\sqrt{6}$$

Answer: a

Watch Video Solution

27. If \vec{a} and \vec{b} are any two vectors of magnitudes 1 and 2, respectively, and

$$(1 - 3\vec{a}.\vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47$$
, then the angel between \vec{a} and \vec{b}

is
$$\pi/3$$
 b. π - $\cos^{-1}(1/4)$ c. $\frac{2\pi}{3}$ d. $\cos^{-1}(1/4)$

A.
$$\pi/3$$

B.
$$\pi$$
 - $\cos^{-1}(1/4)$

C.
$$\frac{2\pi}{3}$$

D.
$$\cos^{-1}(1/4)$$

Answer: c

28. If \vec{a} and \vec{b} are any two vectors of magnitudes 2 and 3, respectively, such that $\left|2(\vec{a} \times \vec{b})\right| + \left|3(\vec{a} \cdot \vec{b})\right| = k$, then the maximum value of k is a. $\sqrt{13}$ b. $2\sqrt{13}$ c. $6\sqrt{13}$ d. $10\sqrt{13}$

A.
$$\sqrt{13}$$

B.
$$2\sqrt{13}$$

D.
$$10\sqrt{13}$$

C. $6\sqrt{13}$

Answer: c

Watch Video Solution

29. \vec{a} , \vec{b} and \vec{c} are unit vecrtors such that $|\vec{a} + \vec{b} + 3\vec{c}| = 4$ Angle between $ec{a}$ and $ec{b}$ is $heta_1$, between $ec{b}$ and $ec{c}$ is $heta_2$ and between $ec{a}$ and $ec{c}$ varies $[\pi/6, 2\pi/3]$. Then the maximum value of $\cos\theta_1 + 3\cos\theta_2$ is

B. B. 4

C. C. $2\sqrt{2}$

D. D. 6

Answer: b

Watch Video Solution

30. If the vector product of a constant vector $\vec{O}A$ with a variable vector $\vec{O}B$ in a fixed plane OAB be a constant vector, then the locus of B is a straight line perpendicular to $\vec{O}A$ b. a circle with centre O and radius equal to $|\vec{O}A|$ c. a straight line parallel to $\vec{O}A$ d. none of these

A. a straight line perpendicular to OA

B. a circle with centre O and radius equal to $\left|OA\right|$

C. a striaght line parallel to OA

D. none of these

Answer: c

Watch Video Solution

31. Let \vec{u} , \vec{v} and \vec{w} be such that $\left| \vec{u} \right| = 1$, $\left| \vec{v} \right| = 2$ and $\left| \vec{w} \right| = 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other, then $\left| \vec{u} - \vec{v} + \vec{w} \right|$ equals $2 \text{ b. } \sqrt{7} \text{ c. } \sqrt{14} \text{ d. } 14$

- A. 2
- B. $\sqrt{7}$
- $C.\sqrt{14}$
- D. 14

Answer: c

32. If \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and a',b' and c' constitute

the reciprocal system of vectors, then prove that

$$i. \ \vec{r} = (\vec{r}. \ \vec{a}') \vec{a} + (\vec{r}. \ \vec{b}') \vec{b} + (\vec{r}. \ \vec{c}') \vec{c}$$

ii.
$$\vec{r} = (\vec{r}.\vec{a})\vec{a}' + (\vec{r}.\vec{b})\vec{b}' + (\vec{r}.\vec{c})\vec{c}'$$

$$A. -\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$

B.
$$\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$

C.
$$\pi \cos^{-1} \left(\frac{19}{5\sqrt{43}} \right)$$
D. cannot of these

Answer: b

33. if
$$\vec{\alpha} \mid |\vec{\beta} \times \vec{\gamma}|$$
, then $(\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma})$ equals to $\vec{\alpha} \cdot |\vec{\alpha}|^2 (\vec{\beta} \cdot \vec{\gamma})$ b. $|\vec{\beta}|^2 (\vec{\gamma} \cdot \vec{\alpha}) \cdot |\vec{\gamma}|^2 (\vec{\alpha} \cdot \vec{\beta}) \cdot |\vec{\alpha}| |\vec{\beta}| |\vec{\gamma}|$

A.
$$\left|\vec{\alpha}\right|^2 \left(\vec{\beta}.\vec{\gamma}\right)$$

B.
$$\left| \vec{\beta} \right|^2 \left(\vec{\gamma} \cdot \vec{\alpha} \right)$$

C.
$$|\vec{\gamma}|^2 (\vec{\alpha}. \vec{\beta})$$

D.
$$\left| \vec{\alpha} \right| \left| \vec{\beta} \right| \left| \vec{\gamma} \right|$$

Answer: a

Watch Video Solution

position vectors of points A,B and 34. The C are $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + 5\hat{j} - \hat{k}$ and $2\hat{i} + 3\hat{j} + 5\hat{k}$, respectively the greatest angle of triangle ABC is

A. A. 120
$$^{\circ}$$

C. C.
$$\cos^{-1}(3/4)$$

D. D. none of these

Answer: b

Watch Video Solution

35. Given three vectors \vec{a} , \vec{b} , and \vec{c} two of which are non-collinear. Further if $(\vec{a} + \vec{b})$ is collinear with \vec{c} , $(\vec{b} + \vec{c})$ is collinear with \vec{a} , $|\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$ Find the value of \vec{a} . $\vec{b} + \vec{b}$. $\vec{c} + \vec{c}$. \vec{a} a. 3 b. -3 c. 0 d. cannot be evaluated

- A. 3
- **B**. -3
- C. 0
- D. cannot of these

Answer: b

36. If
$$\vec{a}$$
 and \vec{b} are unit vectors such that $(\vec{a} + \vec{b})$. $[(2\vec{a} + 3\vec{b}) \times (3\vec{a} - 2\vec{b})] = 0$, then angle between \vec{a} and \vec{b} is

D. indeterminate

Answer: d

 $\overrightarrow{AB} = p$, $\overrightarrow{thenABAC} + \overrightarrow{BCBA} + \overrightarrow{CACB}$ is equal to $2p^2$ b. $\frac{p^2}{2}$ c. p^2 d. none of these

37. If in a right-angled triangle ABC, the hypotenuse

A.
$$2p^2$$

B. $\frac{p^2}{2}$

D. none of these

Answer: c

38. Resolved part of vector
$$\vec{a}$$
 and along vector \vec{b} is \vec{a}_1 and that

prependicular to
$$\vec{b}$$
 is \vec{a}_2 then $\vec{a}_1 \times \vec{a}_2$ is equl to

A.
$$\frac{\left(\vec{a} \times \vec{b}\right) \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

$$\begin{vmatrix} \vec{b} \end{vmatrix}^2 \\ \frac{(\vec{a}.\vec{b})\vec{a}}{}$$

B.
$$\frac{\left(\vec{a}.\vec{b}\right)\vec{a}}{\left|\vec{a}\right|^{2}}$$
C.
$$\frac{\left(\vec{a}.\vec{b}\right)\left(\vec{b}\times\vec{a}\right)}{\left|\vec{b}\right|^{2}}$$

D.
$$\frac{\left|\vec{b}\right|^2}{\left|\vec{b} \times \vec{a}\right|}$$

Watch Video Solution

39. $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ A vector coplanar with \vec{b} and \vec{c}

whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2\hat{i} + 3\hat{j} - 3\hat{k}$ b. $-2\hat{i} - \hat{j} + 5\hat{k}$ c.

$$2\hat{i} + 3\hat{j} + 3\hat{k} d. 2\hat{i} + \hat{j} + 5\hat{k}$$

A.
$$2\hat{i} + 3\hat{j} - 3\hat{k}$$

B.
$$-2\hat{i} - \hat{j} + 5\hat{k}$$

C.
$$2\hat{i} + 3\hat{j} + 3\hat{k}$$

D.
$$2\hat{i} + \hat{j} + 5\hat{k}$$

Answer: b

40. If P is any arbitrary point on the circumcircle of the equilateral triangle of side length l units, then $|\vec{P}A|^2 + |\vec{P}B|^2 + |\vec{P}C|^2$ is always equal to $2l^2$ b. $2\sqrt{3}l^2$ c. l^2 d. $3l^2$

- A. $2l^2$
- B. $2\sqrt{3}l^2$
- C. l^2
- D. $3l^2$

Answer: a

Watch Video Solution

41. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r} + b\vec{s}|$ is minimum, then the value of $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2$ is equal to $2|\vec{r}|^2$ b. $|\vec{r}|^2/2$ c. $3|\vec{r}|^2$ d. $|r|^2$

A.
$$2|\vec{r}|^2$$

B.
$$|\vec{r}|^2/2$$

C.
$$3|\vec{r}|^2$$

D.
$$|\vec{r}|^2$$

Answer: d

Watch Video Solution

42. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ is $\frac{1}{\sqrt{2}} (\vec{a} + \vec{b} + \vec{a} \times \vec{b})$ b.

$$\frac{1}{2} \left(\vec{a} \times \vec{b} + \vec{a} + \vec{b} \right) \text{c.} \frac{1}{\sqrt{3}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right) \text{d.} \frac{1}{3} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

A.
$$\frac{1}{\sqrt{2}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

$$B. \frac{1}{2} \left(\vec{a} \times \vec{b} + \vec{a} + \vec{b} \right)$$

C.
$$\frac{1}{\sqrt{3}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

D.
$$\frac{1}{3} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

Answer: a

43. Given that
$$\vec{a}, \vec{b}, \vec{p}, \vec{q}$$
 are four vectors such that

$$\vec{a} + \vec{b} = \mu \vec{p}, \ \vec{b} \vec{q} = 0$$
 and $(\vec{b})^2 = 1$, where μ is a scalar. Then $|\vec{d} \vec{q} \vec{p} - (\vec{p} \vec{q}) \vec{d}|$

is equal to
$$2 \begin{vmatrix} \vec{p} & \vec{q} \\ \vec{p} & \vec{q} \end{vmatrix}$$
 b. $(1/2) \begin{vmatrix} \vec{p} & \vec{q} \\ \vec{p} & \vec{q} \end{vmatrix}$ c. $|\vec{p} \times \vec{q}|$ d. $|\vec{p} \vec{q}|$

$$A. 2 \left| \vec{p} \vec{q} \right|$$

B.
$$(1/2) | \vec{p} \cdot \vec{q} |$$

C.
$$\left| \vec{p} \times \vec{q} \right|$$

D.
$$|\vec{p}.\vec{q}|$$

Answer: d

44. The position vectors of the vertices A, BandC of a triangle are three unit vectors $\vec{a}, \vec{b}, and\vec{c}$, respectively. A vector \vec{d} is such that $\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c}$ and $\vec{d} = \lambda \left(\vec{b} + \vec{c} \right)$. Then triangle ABC is a acute angled b. obtuse angled c. right angled d. none of these

A. acute angled

B. obtuse angled

C. right angled

D. none of these

Answer: a

Watch Video Solution

45. If a is real constant A, B and C are variable angles and $\sqrt{a^2 - 4} \tan A + a \tan B + \sqrt{a^2 + 4} \tan C = 6a$, then the least value of $\tan^2 A + \tan^2 B + \tan^2 C$ is a. 6 b. 10 c. 12 d. 3

- A. 6
- B. 10
 - C. 12
- D. 3

Answer: d

Watch Video Solution

BandC have respective position vectors $\hat{i}and\hat{j}$ Let Δ be the area of the triangle and $\Delta \left[3/2, \sqrt{33}/2 \right]$. Then the range of values of λ corresponding to A is a.[- 8, 4] \cup [4, 8] b. [- 4, 4] c. [- 2, 2] d. [- 4, - 2] \cup [2, 4]

46. The vertex A triangle ABC is on the line $\vec{r} = \hat{i} + \hat{j} + \lambda \hat{k}$ and the vertices

- A. [-8, -4]cup[4,8]`
- B.[-4,4]
- C. [-2,2]

D. [- 4, - 2] U [2, 4]

Watch Video Solution

47. A non-zero vector \vec{a} is such that its projections along vectors

$$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$$
 and \hat{k} are equal, then unit vector along \vec{a} is a. $\frac{\sqrt{2}\hat{j}-\hat{k}}{\sqrt{3}}$ b.

$$\frac{\hat{j} - \sqrt{2}\hat{k}}{\sqrt{3}} \text{ c. } \frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}} \text{ d. } \frac{\hat{j} - \hat{k}}{\sqrt{2}}$$

A.
$$\frac{\sqrt{2}\hat{j} - \hat{k}}{\sqrt{3}}$$

$$\hat{j} - \sqrt{2}\hat{k}$$
3. $\frac{\hat{j}}{-}$

B.
$$\frac{\hat{j} - \sqrt{2}\hat{k}}{\sqrt{3}}$$
C.
$$\frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}}$$

D.
$$\frac{\hat{j} - \hat{k}}{\sqrt{2}}$$

Answer: a

48. Position vector \hat{k} is rotated about the origin by angle 135^0 in such a way that the plane made by it bisects the angle between \hat{i} and \hat{j} . Then its new position is

$$A. \pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$$

$$\mathsf{B.}\pm\frac{\hat{i}}{2}\pm\frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$$

$$\mathsf{C.}\,\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$$

D. none of these

Answer: d

Watch Video Solution

49. In a quadrilateral ABCD, $\vec{A}C$ is the bisector of $\vec{A}Band\vec{A}D$, angle between $\vec{A}Band\vec{A}D$ is $2\pi/3$, $15\left|\vec{A}C\right|=3\left|\vec{A}B\right|=5\left|\vec{A}D\right|$. Then the angle

between $\vec{B}Aand\vec{C}D$ is $(a)\cos^{-1}\left(\frac{\sqrt{14}}{7\sqrt{2}}\right)$ b. $\cos^{-1}\left(\frac{\sqrt{21}}{7\sqrt{3}}\right)$ c. $\cos^{-1}\left(\frac{2}{\sqrt{7}}\right)$ d. $\cos^{-1}\left(\frac{2\sqrt{7}}{14}\right)$

C.
$$\cos^{-1} \frac{2}{\sqrt{7}}$$
D. $\cos^{-1} \frac{2\sqrt{7}}{14}$

Answer: c

 $A. \cos^{-1} \frac{\sqrt{14}}{7\sqrt{2}}$

 $B.\cos^{-1}\frac{\sqrt{21}}{7\sqrt{3}}$

50. In fig. AB, DE and GF are parallel to each other and AD, BG and EF are parallel to each other. If CD: CE = CG: CB = 2:1, then the value of area (AEG): area (ABD) is equal to 7/2 b. 3 c. 4 d. 9/2

A. 7/2

C. 4

D.9/2

Answer: b

Watch Video Solution

51. Vector \vec{a} in the plane of $\vec{b} = 2\hat{i} + \hat{j}and\vec{c} = \hat{i} - \hat{j} + \hat{k}$ is such that it is equally inclined to $\vec{b}and\vec{d}$ where $\vec{d} = \hat{j} + 2\hat{k}$. The value of \vec{a} is $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{2}}$ b.

$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \text{ c. } \frac{2\hat{i} + \hat{j}}{\sqrt{5}} \text{ d. } \frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$

A.
$$\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$

B.
$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$

$$C. \frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$

D.
$$\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$$

- **52.** Let ABCD be a tetrahedron such that the edges AB, AC and AD are mutually perpendicular. Let the area of triangles ABC, ACD and ADB be
- 3, 4 and 5sq. units, respectively. Then the area of triangle BCD is

$$a.5\sqrt{2}$$

c.
$$\frac{\sqrt{5}}{2}$$

d.
$$\frac{5}{2}$$

A.
$$5\sqrt{2}$$

c.
$$\frac{\sqrt{5}}{2}$$

D.
$$\frac{5}{2}$$

53. Let
$$f(t) = [t]\hat{i} + (t - [t])\hat{j} + [t + 1]\hat{k}$$
, where[.] denotes the greatest integer

function. Then the vectors $f\left(\frac{5}{4}\right)$ and f(t), 0 < t < 1 are (a) parallel to each other (b) perpendicular (c) inclined at $\cos^{-1}2\left(\sqrt[4]{7\left(1-t^2\right)}\right)$ (d) inclined at

$$\cos^{-1}\left(\frac{8+t}{\sqrt{1+t^2}}\right);$$

A. parallel to each other

B. perpendicular to each other

C. inclined at
$$\frac{\cos^{-1}2}{\sqrt{7}(1-t^2)}$$

D. inclined at
$$\frac{\cos^{-1}(8+t)}{9\sqrt{1+t^2}}$$

Answer: d

54. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}).(\vec{a} \times \vec{c})$ is equal to a. $|\vec{a}|^2(\vec{b}.\vec{c})$

- b. $|\vec{b}|^2(\vec{a}.\vec{c})$ c. $|\vec{c}|^2(\vec{a}.\vec{b})$ d. none of these
 - A. $|\vec{a}|^2 (\vec{b}. \vec{c})$
 - B. $\left| \vec{b} \right|^2 \left(\vec{a} \cdot \vec{c} \right)$
 - C. $|\vec{c}|^2 (\vec{a}.\vec{b})$
 - D. none of these

Answer: a

Watch Video Solution

55. The three vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

A. 1/3

B. 4

C.
$$(3\sqrt{3})/4$$

D.
$$4\sqrt{3}$$

Answer: d

Watch Video Solution

56. If
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$
 is non-zero vector and
$$\left| (\vec{d} \cdot \vec{c}) (\vec{a} \times \vec{b}) + (\vec{d} \cdot \vec{a}) (\vec{b} \times \vec{c}) + (\vec{d} \cdot \vec{b}) (\vec{c} \times \vec{a}) \right| = 0, \text{ then}$$

$$\mathbf{a}.\left|\vec{a}\right| = \left|\vec{b}\right| = \left|\vec{c}\right|$$

b.
$$|\vec{a}| + |\vec{b}| + |\vec{c}| = |d|$$

c. \vec{a} , \vec{b} , and \vec{c} are coplanar

d. none of these

A.
$$\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$$

$$B. \left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| \vec{d} \right|$$

C.
$$\vec{a}$$
, \vec{b} and \vec{c} are coplanar

D. none of these

Answer: c

Watch Video Solution

57. If

$$\left| \vec{a} \right| = 2$$
 and $\left| \vec{b} \right| = 3$ and $\vec{a} \cdot \vec{b} = 0$, then $\left| \left(\vec{a} \times \left(\vec{a} \times \left(\vec{a} \times \left(\vec{a} \times \vec{b} \right) \right) \right) \right) \right|$

- A. $48\hat{b}$
- B. - $48\hat{b}$
- C. 48â
- D. -48â

Answer: a

Watch Video Solution

58. If the two diagonals of one its faces are $6\hat{i} + 6\hat{k}$ and $4\hat{j} + 2\hat{k}$ and of the edges not containing the given diagonals is $c = 4\hat{j} - 8\hat{k}$, then the volume

of a parallelepiped is a. 60 b. 80 c. 100 d. 120 A. 60 B. 80 C. 100 D. 120 Answer: d Watch Video Solution 59. The volume of a tetrahedron formed by the coterminous edges $\vec{a}, \vec{b}, and \vec{c}$ is 3. Then the volume of the parallelepiped formed by the coterminous edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is 6 b. 18 c. 36 d. 9 A. 6 B. 18 C. 36

Answer: c

Watch Video Solution

- **60.** If \vec{a} , \vec{b} , and \vec{c} are three mutually orthogonal unit vectors, then the triple product $\left[\vec{a} + \vec{b} + \vec{c}\vec{a} + \vec{b}\vec{b} + \vec{c}\right]$ equals: (a.) 0 (b.) 1 or -1 (c.) 6 (d.) 3
 - A. 0
 - B. 1 or -1
 - C. 1
 - D. 3

Answer: b

61. Vector \vec{c} is perpendicular to vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satisfies the condition $\vec{x} \cdot (\hat{i} + 2\hat{j} - 7\hat{k}) = 10$. Then vector \vec{c} is equal to a.(7, 5, 1) b. -7, -5, -1 c. 1, 1, -1 d. none of these

62. Given $\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j}$, $\vec{a} \perp \vec{b}$, $\vec{a} \cdot \vec{c} = 4$ then

C. 1,1,-1

Answer: a

Watch Video Solution

find the value of $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$.

A. A.
$$\left[\vec{a}\vec{b}\vec{c}\right]^2 = \left|\vec{a}\right|$$

$$B. B. \left[\vec{a} \vec{b} \vec{c} \right] = \left| \vec{a} \right|$$

$$\mathsf{C.}\,\mathsf{C.}\!\left[\vec{a}\,\vec{b}\,\vec{c}\,\right] = 0$$

D. D.
$$\left[\vec{a}\vec{b}\vec{c}\right] = \left|\vec{a}\right|^2$$

Answer: d

Watch Video Solution

63. Let
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and $\vec{b}is\pi/6$ then the value of

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 is

A. 0

B. 1

C.
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

D.
$$\frac{3}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

Answer: c

Watch Video Solution

64. Let \vec{r} , \vec{a} , \vec{b} and \vec{c} be four non-zero vectors such that

$$\vec{r} \cdot \vec{a} = 0$$
, $|\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}|$, $|\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$ then

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} =$$

A. |a||b||c|

 $\mathsf{B.-}|a||b||c|$

C. 0

D. none of these

Answer: c

65. If \vec{a} , \vec{b} and \vec{c} are such that $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 1$, $\vec{c} = \lambda (\vec{a} \times \vec{b})$, angle between \vec{c} and \vec{b} is $2\pi/3$, $\left|\vec{a}\right| = \sqrt{2}$, $\left|\vec{b}\right| = \sqrt{3}$ and $\left|\vec{c}\right| = \frac{1}{\sqrt{3}}$ then the angle between \vec{a}

A. (a)
$$\frac{\pi}{6}$$
B. (b) $\frac{\pi}{4}$

and \vec{b} is

C. (c)
$$\frac{\pi}{3}$$

D. (d) $\frac{\pi}{2}$

Answer: b

Watch Video Solution

66. If $4\vec{a} + 5\vec{b} + 9\vec{c} = 0$, then $(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$ is equal to a. vector perpendicular to the plane of a, b, c b. a scalar quantity c. $\vec{0}$ d. none of these

A. a vector perpendicular to the plane of \vec{a} , \vec{b} and \vec{c}

- B. a scalar quantity
- \vec{C} . $\vec{0}$
- D. none of these

Answer: c

- **67.** Value of $\left[\vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d}\right]$ is always equal to a. $\left(\vec{a}\vec{d}\right)\left[\vec{a}\vec{b}\vec{c}\right]$ b.
- $(\vec{a}\vec{c})[\vec{a}\vec{b}\vec{d}]$ c. $(\vec{a}\vec{b})[\vec{a}\vec{b}\vec{d}]$ d. none of these
 - $A. \left(\vec{a}. \vec{d}\right) \left[\vec{a}\vec{b}\vec{c}\right]$
 - B. `(veca.vecc)[veca vecb vecd]
 - $\mathsf{C.}\left(\vec{a}.\,\vec{b}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\right]$
 - D. none of these

Answer: a

Watch Video Solution

68. Let \vec{a} and \vec{b} be mutually perpendicular unit vectors. Then for any

$$\vec{r} = \left(\vec{r}\hat{a}\right)\hat{a} + \left(\vec{r}\hat{b}\right)\hat{b} + \left(\vec{r}\hat{a} \times \hat{b}\right)(\hat{a} \times \hat{b})$$

$$\vec{r} = \begin{pmatrix} \cdot \\ \vec{r} \hat{a} \end{pmatrix} - \begin{pmatrix} \cdot \\ \vec{r} \hat{b} \end{pmatrix} \hat{b} - \begin{pmatrix} \cdot \\ \vec{r} \hat{a} \times \hat{b} \end{pmatrix} (\hat{a} \times \hat{b})$$

$$\vec{r} = \begin{pmatrix} \cdot \\ \vec{r} \hat{a} \end{pmatrix} \hat{a} - \begin{pmatrix} \cdot \\ \vec{r} \hat{b} \end{pmatrix} \hat{b} + \begin{pmatrix} \cdot \\ \vec{r} \hat{a} \times \hat{b} \end{pmatrix} (\hat{a} \times \hat{b})$$
 none of these

A.
$$\vec{r} = (\vec{r}.\hat{a})\hat{a} + (\vec{r}.\hat{b})\hat{b} + (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$$

B.
$$\vec{r} = (\vec{r}.\hat{a}) - (\vec{r}.\hat{b})\hat{b} - (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$$

C.
$$\vec{r} = (\vec{r}.\hat{a})\hat{a} - (\vec{r}.\hat{b})\hat{b} - (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$$

D. none of these

Answer: a

69. Let
$$\vec{a}$$
 and \vec{b} be unit vectors that are perpendicular to each other. Then

$$\left[\vec{a} + \left(\vec{a} \times \vec{b}\right)\vec{b} + \left(\vec{a} \times \vec{b}\right)\vec{a} \times \vec{b}\right]$$
 will always be equal to 1 b. 0 c. -1 d. none of these

B. 0

C. - 1

D. none of these

Answer: a

- **70.** \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 1$, $|\vec{b}| = 4$ and \vec{a} . \vec{b} =2. If \vec{c} = $(2\vec{a} \times \vec{b})$ - $3\vec{b}$ then find angle between \vec{b} and \vec{c} .
 - **Watch Video Solution**

71. If \vec{b} and \vec{c} are unit vectors, then for any arbitary vector

$$\vec{a}$$
, $\left(\left(\left(\vec{a} \times \vec{b}\right) + \left(\vec{a} \times \vec{c}\right)\right) \times \left(\vec{b} \times \vec{c}\right)\right)$. $\left(\vec{b} - \vec{c}\right)$ is always equal to

Watch Video Solution

72. If $\vec{a} \cdot \vec{b} = \beta$ and $\vec{a} \times \vec{b} = \vec{c}$, then \vec{b} is

A.
$$\frac{\left(\beta \vec{a} - \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$$

B.
$$\frac{\left(\beta \vec{a} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$$

C.
$$\frac{\left(\beta\vec{c} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$$

D.
$$\frac{\left(\beta\vec{c} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$$

Answer: a

73. If $a(\vec{\alpha} \times \vec{\beta}) + b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = 0$ and at least one of a, b and c is nonzero, then vectors $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are a. parallel b. coplanar c. mutually perpendicular d. none of these

A. parallel

B. coplanar

C. mutually perpendicular

D. none of these

Answer: b

Watch Video Solution

74. If $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$, where \vec{a} , \vec{b} , and \vec{c} are nonzero vectors, then 1.

 \vec{a} , \vec{b} , and \vec{c} can be coplanar $2.\vec{a}$, \vec{b} , and \vec{c} must be coplanar $3.\vec{a}$, \vec{b} , and \vec{c}

cannot be coplanar 4.none of these

A. \vec{a} , \vec{b} and \vec{v} can be coplanar

B. \vec{a} , \vec{b} and \vec{c} must be coplanar

C. \vec{a} , \vec{b} and \vec{c} cannot be coplanar

D. none of these

Answer: c

Watch Video Solution

75. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2}$ for some non zero vector \vec{r} and \vec{a} , \vec{b} , \vec{c} are non coplanar, then the area of the triangle whose vertices are

 $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is

A.
$$\left| \left[\vec{a} \vec{b} \vec{c} \right] \right|$$

B. $|\vec{r}|$

C.
$$\left| \left[\vec{a}\vec{b}\vec{c} \right] \vec{r} \right|$$

D. none of these

Answer: c

$$3x^2 + 8xy + 2y^2 - 3 = 0$$
 at its point $P(1, 0)$ can be $6\hat{i} + 8\hat{j}$ b. $-8\hat{i} + 3\hat{j}$ c. $6\hat{i} - 8\hat{j}$ d. $8\hat{i} + 6\hat{j}$

A.
$$6\hat{i} + 8\hat{j}$$

$$B. -8\hat{i} + 3\hat{j}$$

C.
$$6\hat{i}$$
 - $8\hat{j}$

D.
$$8\hat{i} + 6\hat{j}$$

Answer: a

77. If
$$\vec{a}$$
 and \vec{b} are two unit vectors incline at angle $\pi/3$, then

$$\left\{\vec{a} \times \left(\vec{b} + \vec{a} \times \vec{b}\right)\right\}\vec{b}$$
 is equal to $\frac{-3}{4}$ b. $\frac{1}{4}$ c. $\frac{3}{4}$ d. $\frac{1}{2}$

- B. $\frac{1}{4}$
- D. $\frac{1}{2}$

Answer: a

Watch Video Solution

coplanar with
$$\vec{a}$$
 and \vec{b} vector $\vec{r} imes \vec{a}$ is equal to

78. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} non -

A.
$$\left[\vec{r}\vec{a}\vec{b}\right]\vec{b} - \left(\vec{r}.\vec{b}\right)\left(\vec{b}\times\vec{a}\right)$$

$$\mathsf{B.}\left[\vec{r}\vec{a}\vec{b}\right]\!\!\left(\vec{a}+\vec{b}\right)$$

$$\mathsf{C.}\left[\vec{r}\vec{a}\vec{b}\right]\vec{a}+\left(\vec{r}.\vec{a}\right)\vec{a}\times\vec{b}$$

D. none of these

Answer: a

79. If $\vec{a}, \vec{b}, \vec{c}$ are any three non-coplanar vectors then the equation

$$\left[\vec{b} \times \vec{c} \, \vec{c} \times \vec{a} \, \vec{a} \times \vec{b}\right] x^2 + \left[\vec{a} + \vec{b} \, \vec{b} + \vec{c} \, \vec{c} + \vec{a}\right] x + 1 + \left[\vec{b} - \vec{c} \, \vec{c} - \vec{a} \, \vec{a} - \vec{b}\right] = 0$$

has roots (A) real and distinct (B) real (C) equal (D) imaginary

A. real and distinct

B. real

C. equal

D. imaginary

Answer: c

Watch Video Solution

80. Solve the simultaneous vector equations for \vec{x} and $\vec{y}: \vec{x} + \vec{c} \times \vec{y} = \vec{a}$ and $\vec{y} + \vec{c} \times \vec{x} = \vec{b}$, $\vec{c} \neq 0$

A.
$$\vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c}.\vec{a})\vec{c}}{1 + \vec{c}.\vec{c}}$$

B.
$$\vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + (\vec{c} \cdot \vec{a})\vec{c}}{1 + \vec{c} \cdot \vec{c}}$$

$$C. \vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c}. \vec{b})\vec{c}}{1 + \vec{c}. \vec{c}}$$

D. none of these

Answer: b

View Text Solution

81. The condition for equations $\vec{r} \times \vec{a} = \vec{b}$ and $\vec{r} \times \vec{c} = \vec{d}$ to be consistent is

a.
$$\vec{b}\vec{c} = \vec{a}\vec{d}$$
 b. $\vec{a}\vec{b} = \vec{c}\vec{d}$ c. $\vec{b}\vec{c} + \vec{a}\vec{d} = 0$ d. $\vec{a}\vec{b} + \vec{c}\vec{d} = 0$

A.
$$\vec{b}$$
. $\vec{c} = \vec{a}$. \vec{d}

$$\mathbf{B}.\ \vec{a}.\ \vec{b} = \vec{c}.\ \vec{d}$$

C.
$$\vec{b}$$
. $\vec{c} + \vec{a}$. $\vec{d} = 0$

$$D. \vec{a}. \vec{b} + \vec{c}. \vec{d} = 0$$

Answer: c

Watch Video Solution

- **82.** If $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} 2\hat{j} + \hat{k}$ and $\vec{c} = -3\hat{i} + \hat{j} + 2\hat{k}$, then $\left[\vec{a}\vec{b}\vec{c}\right] = -3\hat{i} + \hat{j} + 2\hat{k}$

Watch Video Solution

- **83.** If $\vec{a} = 2\hat{i} + 3\hat{j} + 8\hat{k}$ is perpendicular to $\vec{b} = 4\hat{i} 4\hat{j} + \alpha\hat{k}$, then find the value of α
 - A. $-\frac{1}{2}$
 - B. $\frac{1}{2}$
 - C. 1
 - D. -1

Answer: a

84. Let
$$\vec{a}(x) = (\sin x)\hat{i} + (\cos x)\hat{j}$$
 and $\vec{b}(x) = (\cos 2x)\hat{i} + (\sin 2x)\hat{j}$ be two variable vectors $(x \in R)$. Then $\vec{a}(x)$ and $\vec{b}(x)$ are

A. collinear for unique value of x

B. perpendicular for infinte values of x.

C. zero vectors for unique value of x

D. none of these

Answer: b

85. For any vectors
$$\vec{a}$$
 and \vec{b} , $(\vec{a} \times \hat{i})$. $(\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j})$. $(\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k})$. $(\vec{b} \times \hat{k})$ is always equal to

A. A.
$$\vec{a}$$
. \vec{b}

B. B. $2\vec{a}$. \vec{b}

C. C. zero

D. D. none of these

Answer: b

Watch Video Solution

86. If \vec{a} , \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space,

$$(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) =$$
(A)

$$\left[\vec{a}\vec{b}\vec{c}\right] \text{(B) } 2\left[\vec{a}\vec{b}\vec{c}\right]\vec{r} \text{ (C) } 3\left[\vec{a}\vec{b}\vec{c}\right]\vec{r} \text{ (D) } 4\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$$

A.
$$\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$$

$$\mathsf{B.}\,2\Big[\vec{a}\vec{b}\vec{c}\,\Big]\vec{r}$$

C.
$$3\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$$

D. none of these

Watch Video Solution

87. If $\vec{P} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$. $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, where \vec{a} , \vec{b} and \vec{c} are

three non- coplanar vectors then the value of the expression

$$(\vec{a} + \vec{b} + \vec{c}).(\vec{p} + \vec{q} + \vec{r})$$
 is

- A. 3
- B. 2
- C. 1
- D. 0

Answer: a

88. $A(\vec{a}), B(\vec{b}), C(\vec{c})$ are the vertices of the triangle ABC and $R(\vec{r})$ is any point in the plane of triangle ABC , then \vec{r} . $\left(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right)$ is always equal to

B.
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

C. -
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

D. none of these

Answer: b

Watch Video Solution

$$\vec{a} \times (\vec{b} \times \vec{c})$$
, then the value of $[\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c}$ is equal to

89. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to

A.
$$\left[\vec{a}\vec{b}\vec{c}\right]\vec{c}$$

B.
$$\left[\vec{a}\vec{b}\vec{c}\right]\vec{b}$$

$$\vec{c}$$
. $\vec{0}$

D.
$$\left[\vec{a}\vec{b}\vec{c}\right]\vec{a}$$

Answer: c

Watch Video Solution

90. If V be the volume of a tetrahedron and V' be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and V = KV', thenK is equal to a. 9 b. 12 c. 27 d. 81

A. 9

B. 12

C. 27

D. 81

Answer: c

91.
$$\left[\left(\vec{a} \times \vec{b} \right) \times \left(\vec{b} \times \vec{c} \right) \left(\vec{b} \times \vec{c} \right) \times \left(\vec{c} \times \vec{a} \right) \left(\vec{c} \times \vec{a} \right) \times \left(\vec{a} \times \vec{b} \right) \right]$$
 is equal to

(where \vec{a} , \vec{b} and \vec{c} are nonzero non-coplanar vector) a. $\left[\vec{a}\vec{b}\vec{c}\right]^2$ b. $\left[\vec{a}\vec{b}\vec{c}\right]^3$ c.

$$\left[\vec{a}\vec{b}\vec{c}\right]^4$$
 d. $\left[\vec{a}\vec{b}\vec{c}\right]$

A.
$$\left[\vec{a}\vec{b}\vec{c}\right]^2$$

B.
$$\left[\vec{a}\vec{b}\vec{c}\right]^3$$

$$\mathsf{C.}\left[\vec{a}\vec{b}\vec{c}\right]^4$$

D.
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

Answer: c

92.

Watch Video Solution

$$\vec{r} = x_1 (\vec{a} \times \vec{b}) + x_2 (\vec{b} \times \vec{c}) + x_3 (\vec{c} \times \vec{a})$$
 and $4 [\vec{a}\vec{b}\vec{c}] = 1$ then $x_1 + x_2 + x_3$

If

is equal to

$$B. \frac{1}{4}\vec{r}. \left(\vec{a} + \vec{b} + \vec{c}\right)$$

A. $\frac{1}{2}\vec{r}$. $(\vec{a} + \vec{b} + \vec{c})$

C.
$$2\vec{r}$$
. $\left(\vec{a} + \vec{b} + \vec{c}\right)$
D. $4\vec{r}$. $\left(\vec{a} + \vec{b} + \vec{c}\right)$

Answer: d

Watch Video Solution

93. If $\vec{a} \perp \vec{b}$ then vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations

$$\vec{v} \cdot \vec{a} = 0$$
 and $\vec{v} \cdot \vec{b} = 1$ and $\left[\vec{v} \cdot \left(\vec{a} \times \vec{b} \right) \right] = 1$ is

A.
$$\frac{\vec{b}}{\left|\vec{b}\right|^2} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^2}$$

B.
$$\frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^2}$$
C. $\frac{\vec{b}}{\left|\vec{a} \times \vec{b}\right|^2}$

 $\left| \vec{b} \right| \quad \left| \vec{a} \times \vec{b} \right|$

Answer: a

Watch Video Solution

94. If $\vec{a}' = \hat{i} + \hat{j}$, $\vec{b}'\hat{i} - \hat{j} + 2\hat{k}and\vec{c}'2\hat{i} + \hat{j} - \hat{k}$, then the altitude of the parallelepiped formed by the vectors \vec{a} , $\vec{b}and\vec{c}$ having base formed by $\vec{b}and\vec{c}$ is (where \vec{a}' is reciprocal vector \vec{a} , et ·) 1 b. $3\sqrt{2}/2$ c. $1/\sqrt{6}$ d. $1/\sqrt{2}$

- A. 1
- B. $3\sqrt{2}/2$
- C. $1/\sqrt{6}$
- D. $1/\sqrt{2}$

Answer: d

95. If $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k}$, $\vec{c} = \hat{k} + \hat{i}$ then in the reciprocal system of vectors

 \vec{a} , \vec{b} , \vec{c} reciprocal \vec{a} of vector \vec{a} is

A.
$$\frac{\hat{i} + \hat{j} + \hat{k}}{2}$$

$$B. \frac{\hat{i} - \hat{j} + \hat{k}}{2}$$

$$\mathsf{C.}\,\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$$

D.
$$\frac{\hat{i} + \hat{j} - \hat{k}}{2}$$

Answer: d

Watch Video Solution

96. If unit vectors \vec{a} and \vec{b} are inclined at angle 2θ such that

$$\left| \vec{a} - \vec{b} \right| < 1$$
 and $0 \le \theta \le \pi$, then θ lies in interval a. $[0, \pi/6)$ b. $(5\pi/6, \pi]$ c.

$$[\pi/6, \pi/2]$$
 d. $[\pi/2, 5\pi/6]$

A.
$$[0, \pi/6)$$

B.
$$(5\pi/6, \pi]$$

C.
$$[\pi/6, \pi/2]$$

D.
$$(\pi/2, 5\pi/6]$$

Answer: a,b

Watch Video Solution

97.
$$\vec{a}$$
, \vec{b} and \vec{c} are non-collinear if $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c}$ and $(\vec{c} \cdot \vec{c}) \vec{a} = \vec{c}$ Then

if

a.
$$x = 1$$
 b. $x = -1$ c. $y = (4n + 1)\pi/2, n \in I$ d. $y = (2n + 1)\pi/2, n \in I$

A.
$$x = 1$$

B. x = -1

C.
$$y = (4n + 1)\frac{\pi}{2}, n \in I$$

$$D. y(2n+1)\frac{\pi}{2}, n \in I$$

Answer: a,c

98. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} . If $\alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$, then which of the following is incorrect?

A.
$$\alpha = \beta$$

B.
$$y^2 = 1 - 2\alpha^2$$

$$C. y^2 = -\cos 2\theta$$

$$D. \beta^2 = \frac{1 + \cos 2\theta}{2}$$

Answer: a,b,c,d

Watch Video Solution

99. If vectors \vec{a} and \vec{b} are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the

perpendicular to
$$a$$
 is a. \vec{b} + $\frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$ b. $\frac{\vec{a}\vec{b}}{|\vec{b}|^2}$ c. \vec{b} - $\frac{\vec{b}\vec{a}}{|\vec{a}|^2}$ d. $\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$

A.
$$\frac{\left(\vec{a}.\vec{b}\right)}{|\vec{a}|^2}\vec{a}-\vec{b}$$

B.
$$\frac{\left|\vec{a}\right|^{2}}{\left|\vec{a}\right|^{2}}\left\{\left|\vec{a}\right|^{2}\vec{b}-\left(\vec{a}.\vec{b}\right)\vec{a}\right\}$$

c.
$$\frac{\vec{a} \times (\vec{a} \times \vec{b})}{|\vec{a}|^2}$$

D.
$$\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$$

Answer: a.b.c

Watch Video Solution

100. If $\vec{a} \times (\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have a.

$$(\vec{a}.\vec{c})|\vec{b}|^2 = (\vec{a}.\vec{b})(\vec{b}.\vec{c})(\vec{c}.\vec{a}) \text{ b. } \vec{a}\vec{b} = 0 \text{ c. } \vec{a}\vec{c} = 0 \text{ d. } \vec{b}\vec{c} = 0$$

A.
$$(\vec{a}.\vec{b})|\vec{b}|^2 = (\vec{a}.\vec{b})(\vec{b}.\vec{c})$$

$$\mathsf{B.}\;\vec{a}.\;\vec{b}\,=\,0$$

C.
$$\vec{a}$$
. $\vec{c} = 0$

$$\mathsf{D}.\,\vec{b}.\,\vec{c}=0$$

Answer: a,c

Watch Video Solution

101. Let \vec{a} , \vec{b} , and \vec{c} be vectors forming right-hand traid. Let

$$\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}, and \vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \text{ If } x \in \mathbb{R}^+, \text{ then}$$

a. $x \left[\vec{a} \vec{b} \vec{c} \right] + \frac{\left[\vec{p} \vec{q} \vec{r} \right]}{x}$ has least value = 2. b. $x^4 \left[\vec{a} \vec{b} \vec{c} \right]^2 + \frac{\left[\vec{p} \vec{q} \vec{r} \right]}{x^2}$ has least value = $\left(\frac{3}{2}\right)^{2/3}$ c. $\left[\vec{p}\vec{q}\vec{r}\right] > 0$ d. none of these

A.
$$x \left[\vec{a} \vec{b} \vec{c} \right] + \frac{\left[\vec{p} \vec{q} \vec{r} \right]}{x}$$
 has least value 2

B.
$$x^2 \left[\vec{a} \vec{b} \vec{c} \right]^2 + \frac{\left[\vec{p} \vec{q} \vec{r} \right]}{x^2}$$
 has least value $\left(3/2^{2/3} \right)$
C. $\left[\vec{p} \vec{q} \vec{r} \right] > 0$

D. none of these

Answer: a.c

Watch Video Solution

102. $a_1, a_2, a_3 \in R - \{0\}$ and $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ " for all " x in R then

A. a) vectors $\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$ and $\vec{b}=4\hat{i}+2\hat{j}+\hat{k}$ are perpendicular to each other

B. b) vectors $\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2\hat{k}$ are parallel to each each other

C. c) if vector $\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $\left(a_1,a_2,a_3\right)=(1,-1,-2)$

D. d) if $2a_1 + 3a_2 + 6a_3 + 6a_3 = 26$, then $\left| \vec{a}\hat{i} + a_2\hat{j} + a_3\hat{k} \right| is 2\sqrt{6}$

Answer: a,b,c,d

103. If \vec{a} and \vec{b} are two vectors and angle between them is θ , then

$$\left| \vec{a} \times \vec{b} \right|^2 + \left(\vec{a} \vec{b} \right)^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 \qquad \left| \vec{a} \times \vec{b} \right| = \left(\vec{a} \vec{b} \right), \quad \text{if} \quad \theta = \pi/4$$

$$\vec{a} \times \vec{b} = \left(\vec{a}\vec{b}\right)\hat{n}$$
, (where \hat{n} is unit vector,) if $\theta = \pi/4$ ($\vec{a} \times \vec{b}$) $\vec{a} + \vec{b} = 0$

A.
$$|\vec{a} \times \vec{b}|^2 + (\vec{a}.\vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$$

B.
$$|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2$$
, if $\theta = \pi/4$

C.
$$\vec{a} \times \vec{b} = (\vec{a}. Vecb)\hat{n}$$
 (where \hat{n} is a normal unit vector) if $\theta f = \pi/4$

D.
$$(\vec{a} \times \vec{b})$$
. $(\vec{a} + \vec{b}) = 0$

Answer: a,b,c,d

104. Let \vec{a} and \vec{b} be two non-zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a}$ can be

A.
$$\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$$

$$B. 2\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$

C.
$$|\vec{a}|\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$

D.
$$|\vec{b}|\vec{b} - \frac{\vec{a} \times \vec{b}}{|\vec{b}|^2}$$

Answer: a,b,cd,

Watch Video Solution

105. If vector $\vec{b} = \left(\tan\alpha, -1, 2\sqrt{\sin\alpha/2}\right)$ and $\vec{c} = \left(\tan\alpha, \tan\alpha, -\frac{3}{\sqrt{\sin\alpha/2}}\right)$ are orthogonal and vector $\vec{a} = (1, 3, \sin2\alpha)$ makes an obtuse angle with the z-axis, then the value of α is

B.
$$\alpha = (4n + 1)\pi - \tan^{-1}2$$

A. $\alpha = (4n + 1)\pi + \tan^{-1}2$

C.
$$\alpha = (4n + 2)\pi + \tan^{-1}2$$

D.
$$\alpha = (4n + 2)\pi - \tan^{-1}2$$

Answer: b,d

106.

Watch Video Solution

 \vec{r}

be

а

unit

vector

satisfying

$$\vec{r} \times \vec{a} = \vec{b}$$
, where $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = \sqrt{2}$, then

Let

A.
$$\vec{r} = \frac{2}{3} \left(\vec{a} + \vec{a} \times \vec{b} \right)$$

$$B. \ \vec{r} = \frac{1}{3} \left(\vec{a} + \vec{a} \times \vec{b} \right)$$

C.
$$\vec{r} = \frac{2}{3} (\vec{a} - \vec{a} \times \vec{b})$$

D.
$$\vec{r} = \frac{1}{3} \left(-\vec{a} + \vec{a} \times \vec{b} \right)$$

Answer: b,d

107. If
$$\vec{a}$$
 and \vec{b} are unequal unit vectors such that $(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b}$ then angle θ between \vec{a} and \vec{b} is

B.
$$\pi/2$$

$$\mathsf{C}.\,\pi/4$$

D.
$$\pi$$

Answer: b,d

Watch Video Solution

108. If \vec{a} and \vec{b} are two unit vectors perpenicualar to each other and $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$, then which of the following is (are) true?

$$\mathbf{A.}\,\lambda_1=\vec{a}.\,\vec{c}$$

$$B. \lambda_2 = \left| \vec{b} \times \vec{c} \right|$$

$$C.\lambda_3 = ||(\vec{a} \times \vec{b}| \times \vec{c}|)$$

D.
$$\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$$

Answer: a,d

Watch Video Solution

A. a unit vector

B. in the plane of \vec{a} and \vec{b}

109. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$ is

C. equally inclined to \vec{a} and \vec{b}

D. perpendicular to $\vec{a} \times \vec{b}$

Answer: b,c,d

110. If \vec{a} and \vec{b} are non - zero vectors such that $|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$ then

$$A. \, 2\vec{a}. \, \vec{b} = \left| \vec{b} \right|^2$$

$$\mathbf{B}.\ \vec{a}.\ \vec{b} = \left|\vec{b}\right|^2$$

C. least value of
$$\vec{a}$$
. \vec{b} + $\frac{1}{\left|\vec{b}\right|^2 + 2}$ is $\sqrt{2}$

D. least value of
$$\vec{a} \cdot \vec{b} + \frac{1}{\left|\vec{b}\right|^2 + 2}$$
 is $\sqrt{2} - 1$

Answer: a,d

Watch Video Solution

111. Let $\vec{a}\vec{b}$ and \vec{c} be non-zero vectors and

$$\vec{V}_1 = \vec{a} \times (\vec{b} \times \vec{c})$$
 and $\vec{V}_2 = (\vec{a} \times \vec{b}) \times \vec{c}$.vectors \vec{V}_1 and \vec{V}_2 are equal .

Then

A. \vec{a} and \vec{b} ar orthogonal

B. \vec{a} and \vec{c} are collinear

C. \vec{b} and \vec{c} ar orthogonal

D. $\vec{b} = \lambda (\vec{a} \times \vec{c})$ when λ is a scalar

Answer: b,d

Watch Video Solution

112. Vectors \vec{A} and \vec{B} satisfying the vector equation

$$\vec{A} + \vec{B} = \vec{a}, \vec{A} \times \vec{B} = \vec{b}$$
 and \vec{A} . $\vec{a} = 1$. where \vec{a} and \vec{b} are given vectors, are

A. 1.
$$\vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) - \vec{a}}{a^2}$$

B. 2.
$$\vec{B} = \frac{(\vec{b} \times \vec{a}) + \vec{a}(a^2 - 1)}{a^2}$$

C. 3.
$$\vec{A} = \frac{(\vec{a} \times \vec{b}) + \vec{a}}{a^2}$$

D. 4.
$$\vec{B} = \frac{(\vec{b} \times \vec{a}) - \vec{a}(a^2 - 1)}{a^2}$$

Answer: b,c,

Watch Video Solution

113. A vector \vec{d} is equally inclined to three vectors $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \ \vec{b} = 2\hat{i} + \hat{j} and \vec{c} = 3\hat{j} - 2\hat{k}$ Let $\vec{x}, \ \vec{y}, and \ \vec{z}$ be three vectors in the plane of $\vec{a}, \ \vec{b}; \ \vec{b}, \ \vec{c}; \ \vec{c}, \ \vec{a}$, respectively. Then $\vec{a}.\vec{x}.\vec{d} = -1$ b. $\vec{y}.\vec{d} = 1$ c. $\vec{z}.\vec{d} = 0$ d. $\vec{r}.\vec{d} = 0$, where $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \delta \vec{z}$

A.
$$\vec{x}$$
. $\vec{d} = -1$

$$B. \vec{y}. \vec{d} = 1$$

D. vecr.vecd=0, " where " vecr=lambda vecx + mu vecy +deltavecz`

Answer: c.d

114. Vectors Perpendicular to $\hat{i} - \hat{j} - \hat{k}$ and in the plane $\hat{i} + \hat{j} + \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ are

A.
$$\hat{i} + \hat{k}$$

$$\mathsf{B.}\ 2\hat{i} + \hat{j} + \hat{k}$$

$$\mathsf{C.}\ 3\hat{i}\ +\ 2\hat{j}\ +\ \hat{k}$$

D.
$$-4\hat{i} - 2\hat{j} - 2\hat{k}$$

Answer: b,d

side $\vec{C}B$ can be a. $-\frac{3}{2}(\hat{i} - \sqrt{3}\hat{j})$ b. $\frac{3}{2}(\hat{i} - \sqrt{3}\hat{j})$ c. $-\frac{3}{2}(\hat{i} + \sqrt{3}\hat{j})$ d. $\frac{3}{2}(\hat{i} + \sqrt{3}\hat{j})$

115. If side \vec{AB} of an equilateral trangle \vec{ABC} lying in the x-y plane $3\hat{i}$, then

A.
$$-\frac{3}{2}(\hat{i}-\sqrt{3}\hat{j})$$

$$B. -\frac{3}{2} \left(\hat{i} - \sqrt{3} \hat{j} \right)$$

$$\mathsf{C.} - \frac{3}{2} \left(\hat{i} + \sqrt{3} \hat{j} \right)$$

D.
$$\frac{3}{2} \left(\hat{i} + \sqrt{3} \hat{j} \right)$$

Answer: b,d

Watch Video Solution

116. The angles of triangle, two of whose sides are represented by vectors

$$\sqrt{3}(\vec{a} \times \vec{b})$$
 and $\vec{b} - (\hat{a}\vec{b})\hat{a}$, where \vec{b} is a non zero vector and \hat{a} is unit vector

in the direction of \vec{a} , are

A.
$$\tan^{-1}(\sqrt{3})$$

B.
$$\tan^{-1}\left(1/\sqrt{3}\right)$$

C.
$$\cot^{-1}(0)$$

Answer: a,b,c

117. \vec{a} , \vec{b} , $and\vec{c}$ are unimodular and coplanar. A unit vector \vec{d} is perpendicular to then. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6}\hat{i} - \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$, and the angel between \vec{a} and \vec{b} is 30^0 , then \vec{c} is $(\hat{i} - 2\hat{j} + 2\hat{k})/3$ b. $(-\hat{i} + 2\hat{j} - 2\hat{k})/3$ c. $(2\hat{i} + 2\hat{j} - \hat{k})/3$ d. $(-2\hat{i} - 2\hat{j} + \hat{k})/3$

A.
$$(\hat{i} - 2\hat{i} + 2\hat{k})$$

A.
$$(\hat{i} - 2\hat{j} + 2\hat{k})/3$$

B.
$$(-\hat{i} + 2\hat{j} - 2\hat{k})/3$$

C. $(-\hat{i} + 2\hat{j} - \hat{k})/3$

D.
$$(-2\hat{i}-2\hat{j}+\hat{k})/3$$

Answer: a,b

Watch Video Solution

118. If $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$ then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$

A.
$$2(\vec{a} \times \vec{b})$$

B.
$$6(\vec{b} \times \vec{c})$$

$$C.3(\vec{c} \times \vec{a})$$

 \vec{D} . $\vec{0}$

Answer: c,d

Watch Video Solution

119. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$ and

 $\vec{v} = \vec{a} \times \vec{b}$, then $|\vec{v}|$ is

A.
$$|\vec{u}|$$

B. $\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{b} \right|$

C. $|\vec{u}| + |\vec{u}.\vec{a}|$

D. none of these

Answer: b.d

120. if
$$\vec{a} \times \vec{b} = \vec{c}$$
, $\vec{b} \times \vec{c} = \vec{a}$, where $\vec{c} \neq \vec{0}$ then (a) $|\vec{a}| = |\vec{c}|$ (b) $|\vec{a}| = |\vec{b}|$

(c)
$$|\vec{b}| = 1$$
 (d) $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$

A.
$$\left| \vec{a} \right| = \left| \vec{c} \right|$$

$$B. \left| \vec{a} \right| = \left| \vec{b} \right|$$

C.
$$\left| \vec{b} \right| = 1$$

D.
$$|\vec{a}| = \vec{b}| = |\vec{c}| = 1$$

Answer: a,c

Watch Video Solution

121. Let $\vec{a}, \, \vec{b}, \,$ and $\, \vec{c} \,$ be three non-coplanar vectors and $\, \vec{d} \,$ be a non-zero , $(\vec{a} + \vec{b} + \vec{c}).$ perpendicular to which

Now

 $\vec{d} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a})$. Then

A.
$$\frac{\vec{d}. (\vec{a} + \vec{c})}{\left[\vec{a} \vec{b} \vec{c} \right]} = 2$$

is

B.
$$\frac{\vec{d}. (\vec{a} + \vec{c})}{\left[\vec{a}\vec{b}\vec{c}\right]} = -2$$

C. minimum value of $x^2 + y^2 i s \pi^2 / 4$

D. minimum value of $x^2 + y^2 i s 5\pi^2 / 4$

Answer: b,d

Watch Video Solution

122. If \vec{a} , \vec{b} , and $\leftrightarrow c$ are three unit vectors such that

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{1}\vec{b}$$
, then $(\vec{b}and\vec{c}$ being non-parallel) angle between $\vec{a}and\vec{b}$

is $\pi/3$ b.a n g l eb e t w e e n \vec{a} and \vec{c} is $\pi/3$ c. a. angle between \vec{a} and \vec{b} is $\pi/2$ d.

a. angle between \vec{a} and \vec{c} is $\pi/2$

A. angle between \vec{a} and \vec{b} is $\pi/3$

B. angle between \vec{a} and \vec{c} is $\pi/3$

C. angle between \vec{a} and $bis\pi/2$

D. angle between \vec{a} and \vec{c} is $\pi/2$

Answer: b,c

Watch Video Solution

123. If in triangle ABC, $\overrightarrow{AB} = \frac{\overrightarrow{u}}{\left|\overrightarrow{u}\right|} - \frac{\overrightarrow{v}}{\left|\overrightarrow{v}\right|}$ and $\overrightarrow{AC} = \frac{2\overrightarrow{u}}{\left|\overrightarrow{u}\right|}$, where $\left|\overrightarrow{u}\right| \neq \left|\overrightarrow{v}\right|$, then $(a)1 + \cos 2A + \cos 2B + \cos 2C = 0$ (b) $\sin A = \cos C$ (c) projection of AC on BC is equal to BC (d) projection of AB on BC is equal to AB

A.
$$1 + \cos 2A + \cos 2B + \cos 2C = 0$$

$$B. \sin A = \cos C$$

C. projection of AC on BC is equal to BC

D. projection of AB on BC is equal to AB

Answer: a,b,c

124.
$$\left[\vec{a} \times \vec{b} \quad \vec{c} \times \vec{d} \quad \vec{e} \times \vec{f} \right]$$
 is equal to

A. A.
$$\left[\vec{a}\vec{b}\vec{d}\right]\left[\vec{c}\vec{e}\vec{f}\right] - \left[\vec{a}\vec{b}\vec{c}\right]\left[\vec{d}\vec{e}\vec{f}\right]$$

$$\text{B. B. } \left[\vec{a}\vec{b}\vec{e}\right] \left[\vec{f}\vec{c}\vec{d}\right] \text{-} \left[\vec{a}\vec{b}\vec{f}\right] \left[\vec{e}\vec{c}\vec{d}\right]$$

C. C.
$$\left[\vec{c}\vec{d}\vec{a}\right]\left[\vec{b}\vec{e}\vec{f}\right]$$
 - $\left[\vec{a}\vec{d}\vec{b}\right]\left[\vec{a}\vec{e}\vec{f}\right]$

D. D.
$$\left[\vec{a}\vec{c}\vec{e}\right]\left[\vec{b}\vec{d}\vec{f}\right]$$

Answer: a,b,c

125. The scalars l and m such that $l\vec{a}+m\vec{b}=\vec{c}$,where \vec{a} , \vec{b} and \vec{c} are given vectors, are equal to

A.
$$l = \frac{\left(\vec{c} \times \vec{b}\right).\left(\vec{a} \times \vec{b}\right)}{\left(\vec{a} \times \vec{b}\right)^2}$$

B.
$$l = \frac{\left(\vec{c} \times \vec{a}\right). \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)}$$

C.
$$m = \frac{(\vec{c} \times \vec{a}). (\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})^2}$$

D. $m = \frac{(\vec{c} \times \vec{a}). (\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$

Answer: a,c

Watch Video Solution

126. If
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$$
. $(\vec{a} \times \vec{d}) = 0$ then which of the following may be true?

A. A. \vec{a} , \vec{b} and \vec{d} are nenessarily coplanar

B. B. \vec{a} lies iin the plane of \vec{c} and \vec{d}

C. C. \vec{b} lies in the plane of \vec{a} and \vec{d}

D. D. \vec{c} lies in the plane of \vec{a} and \vec{d}

Answer: b,c,d

127. *A, B, CandD*

that

$$\vec{A}B = m(2\hat{i} - 6\hat{j} + 2\hat{k}), \vec{B}C = (\hat{i} - 2\hat{j}) and \vec{C}D = n(-6\hat{i} + 15\hat{j} - 3\hat{k})$$
 If CD intersects AB at some point E , then a. $m \ge 1/2$ b. $n \ge 1/3$ c. $m = n$ d. $m < n$

are

A.
$$m \ge 1/2$$

B.
$$n \ge 1/3$$

Answer: a,b

Watch Video Solution

128. If the vectors \vec{a} , \vec{b} , \vec{c} are non-coplanar and l,m,n are distinct real numbers, then $[(l\vec{a}+m\vec{b}+n\vec{c})\Big(l\vec{b}+m\vec{c}+n\vec{a}\Big)\Big(l\vec{c}+m\vec{a}+n\vec{b})]=0$, implies (A) lm+mn+nl=0 (B) l+m+n=0 (C) $l^2+m^2+n^2=0$

A.
$$1 + m + n = 0$$

B. roots of the equation $lx^2 + mx + n = 0$ are equal

C.
$$l^2 + m^2 + n^2 = 0$$

D.
$$l^3 + m^2 + n^3 = 3lmn$$

Answer: a,b,d

Watch Video Solution

129. Let
$$\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$$
, $\vec{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\vec{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ be three coplaar vectors with $a \neq b$, and $\vec{v} = \hat{i} + \hat{j} + \hat{k}$. Then \vec{v} is perpendicular to

$$\vec{\alpha}$$

 $\mathbf{B}.\,\vec{\boldsymbol{\beta}}$

 \vec{C} . $\vec{\gamma}$

D. none of these

Answer: a,b,c

130. If vectors
$$\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
, $\vec{B} = \hat{i} + \hat{j} + 5\hat{k}$ and \vec{C} form a left-handed system, then \vec{C} is a.11 \hat{i} - 6 \hat{j} - \hat{k} b.-11 \hat{i} + 6 \hat{j} + \hat{k} c. 11 \hat{i} - 6 \hat{j} + \hat{k} d. -11 \hat{i} + 6 \hat{j} - \hat{k}

If $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$, $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$ and $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$,

A.
$$11\hat{i} - 6\hat{j} - \hat{k}$$

B. -
$$11\hat{i}$$
 - $6\hat{j}$ - \hat{k}

D.
$$-11\hat{i} + 6\hat{i} - \hat{k}$$

C. $-11\hat{i} - 6\hat{i} + \hat{k}$

Answer: b,d

131.

Watch Video Solution

then $\vec{a} \times (\vec{b} \times \vec{c})$ is

A. A. parallel to $(y - z)\hat{i} + (z - x)\hat{j} + (x - y)\hat{k}$

B. B. orthogonal to $\hat{i} + \hat{j} + \hat{k}$

C. C. orthogonal to $(y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$

D. D. orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$

Answer: a,b,c,d

Watch Video Solution

132. If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ then

A. A.
$$(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$$

B. B.
$$\vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}$$

C. C.
$$\vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$$

D. D.
$$\vec{c} \times \vec{a} \times \vec{b} = \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$$

Answer: a,c,d

133. A vector (\vec{d}) is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$ let $\vec{x}, \vec{y}, \vec{z}$ be three in the plane of $\vec{a}, \vec{b}; \vec{b}, \vec{c}; \vec{c}, \vec{a}$ respectively, then

A.
$$\vec{z}$$
. $\vec{d} = 0$

$$\mathbf{B}.\,\vec{x}.\,\vec{d}=1$$

C.
$$\vec{y}$$
. $\vec{d} = 32$

D.
$$\vec{r}$$
. $\vec{d} = 0$, where $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \gamma \vec{z}$

Answer: a,d

Watch Video Solution

134. A parallelogram is constructed on the vectors $\vec{a} = 3\vec{\alpha} - \vec{\beta}$, $\vec{b} = \vec{\alpha} + 3\vec{\beta}$. If $|\vec{\alpha}| = |\vec{\beta}| = 2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$ then the length of a diagonal of the parallelogram is

A.
$$4\sqrt{5}$$

B.
$$4\sqrt{3}$$

C. $4\sqrt{7}$

D. none of these

Answer: b,c

Watch Video Solution

Reasoning type

1. Statement 1: Vector $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector of angel between $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = 8\hat{i} + \hat{j} - 4\hat{k}$ Statement 2: \vec{c} is equally inclined to \vec{a} and \vec{h}

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

Answer: b

- **2.** Statement 1: A component of vector $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$ in the direction perpendicular totehdirectin of vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}is\hat{i} \hat{j}$ Statement 2: A component of vector in the direction of $\vec{a} = \hat{i} + \hat{j} + \hat{k}is2\hat{i} + 2\hat{j} + 2\hat{k}$
 - A. Both the statements are true and statement 2 is the correct explanation for statement 1.
 - B. Both statements are true but statement 2 is not the correct explanation for statement 1.
 - C. Statement 1 is true and Statement 2 is false
 - D. Statement 1 is false and Statement 2 is true.

Watch Video Solution

3. Statement 1: Distance of point D(1,0,-1) from the plane of points A(

1,-2,0) , B (3, 1,2) and C(-1,1,-1) is
$$\frac{8}{\sqrt{229}}$$

Statement 2: volume of tetrahedron formed by the points A,B, C and D is

$$\frac{\sqrt{229}}{2}$$

- A. Both the statements are true and statement 2 is the correct explanation for statement 1.
- B. Both statements are true but statement 2 is not the correct explanation for statement 1.
- C. Statement 1 is true and Statement 2 is false
- D. Statement 1 is false and Statement 2 is true.

Answer: d

4. Let \vec{r} be a non - zero vector satisfying \vec{r} . $\vec{a}=\vec{r}$. $\vec{b}=\vec{r}$. $\vec{c}=0$ for given non-zero vectors \vec{a} , \vec{b} and \vec{c}

Statement 1:
$$\left[\vec{a} - \vec{b}\vec{b} - \vec{c}\vec{c} - \vec{a}\right] = 0$$

Statement 2:
$$\left[\vec{a}\vec{b}\vec{c}\right] = 0$$

A. A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. C. Statement 1 is true and Statement 2 is false

D. D. Statement 1 is false and Statement 2 is true.

Answer: b

5. Statement 1: If $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b}\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are three mutually perpendicular unit vectors then $a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$, $a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ and $a_3\hat{i} + b_3\hat{j} + c_3\hat{k}$ may be mutually perpendicular unit vectors.

Statement 2 : value of determinant and its transpose are the same.

A. A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. C. Statement 1 is true and Statement 2 is false

D. D. Statement 1 is false and Statement 2 is true.

Answer: a

6. Statement 1: $\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$, $\vec{B} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{C} = \hat{i} + 2\hat{j} + \hat{k}$ then

$$\left| \vec{A} \times \left(\vec{A} \times \left(\vec{A} \times \vec{B} \right) \right) \cdot \vec{C} \right| = 243$$

Statement 2: $|\vec{A} \times (\vec{A} \times (\vec{A} \times \vec{B})) \cdot \vec{C}| = |\vec{A}|^2 ||\vec{A}\vec{B}\vec{C}||$

A. A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. C. Statement 1 is true and Statement 2 is false

D. D. Statement 1 is false and Statement 2 is true.

Answer: d

Watch Video Solution

7. Statement 1: \vec{a} , \vec{b} , and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a vector such that \vec{a} , \vec{b} , \vec{c} and \vec{d} are non-coplanar. If

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

2:

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: b

8. Consider a vector \vec{c}

Prove that, $\vec{c} = (\hat{i}.\vec{c})\hat{i} + (\hat{j}.\vec{c})\hat{j} + (\hat{k}.\vec{c})\hat{k}$

Comprehension type

1. Let
$$\vec{u}$$
, \vec{v} and \vec{w} be three unit vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{a}$, $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}$, $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}$, \vec{a} . $\vec{u} = 3/2$, \vec{a} . $\vec{v} = 7/4$ and

Vector
$$\vec{w}$$
 is

A.
$$\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$$

B.
$$\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$$

C.
$$2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$$

D.
$$\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$$

Vector \vec{w} is

Answer: b

Watch Video Solution

 \vec{u} , \vec{v} and \vec{w}

be

 $\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$ and

three unit

vectors

such

that

B. (b)
$$\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$$

A. (a) $\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$

C. (c)
$$2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$$

D. (d) $\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$

Answer: c

Watch Video Solution

Let
$$\vec{u}$$
,

Let
$$\vec{u}$$
, \vec{v}

$$+\vec{v}+\vec{N}$$

$$\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$$
 and

ctor
$$\vec{w}$$

Vector
$$\vec{w}$$
 is

A. (a) $\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$

B. (b) $\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$

C. (c) $2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$

D. (a) $\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$

$$\vec{u}$$
, \vec{v} and \vec{w} be

three

unit

vectors

that

such

Answer: d

Watch Video Solution

4. Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$, find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} and \vec{c} .

Watch Video Solution

5. Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$, find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} and \vec{c} .

A.
$$\frac{1}{2} \left[\left(\vec{a} + \vec{c} \right) \times \vec{b} - \vec{b} - \vec{a} \right]$$

B.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{b} + \vec{b} + \vec{a} \right]$$

C.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{b} \right) \times \vec{c} + \vec{b} + \vec{a} \right]$$

D.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{a} + \vec{b} - \vec{a} \right]$$

Answer: c

Watch Video Solution

- **6.** Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$, find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} and \vec{c} .
 - A. $\frac{1}{2} \left[\left(\vec{a} \vec{c} \right) \times \vec{c} \vec{b} + \vec{a} \right]$
 - B. $\frac{1}{2} \left[\left(\vec{a} \vec{b} \right) \times \vec{c} + \vec{b} \vec{a} \right]$
 - $\mathsf{C.} \; \frac{1}{2} \left[\vec{c} \times \left(\vec{a} \vec{b} \right) + \vec{b} + \vec{a} \right]$

D. none of these

Answer: b

7. If $\vec{x} \times \vec{y} = \vec{a}$, $\vec{y} \times \vec{z} = \vec{b}$, \vec{x} . $\vec{b} = \gamma$, \vec{x} . $\vec{y} = 1$ and \vec{y} . $\vec{z} = 1$ then find x,y,z in terms of \vec{a} , \vec{b} and γ .

Watch Video Solution

8. If $\vec{x} \times \vec{y} = \vec{a}$, $\vec{y} \times \vec{z} = \vec{b}$, \vec{x} . $\vec{b} = \gamma$, \vec{x} . $\vec{y} = 1$ and \vec{y} . $\vec{z} = 1$ then find x,y,z in terms of \vec{a} , \vec{b} and γ .

A.
$$\frac{\vec{a} \times \vec{b}}{\gamma}$$

B.
$$\vec{a} + \frac{\vec{a} \times \vec{b}}{\gamma}$$

$$C. \vec{a} + \vec{b} + \frac{\vec{a} \times \vec{b}}{\gamma}$$

D. none of these

Answer: a

9. Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$, find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} and \vec{c} .

A.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} + \vec{b} \times \left(\vec{a} \times \vec{b}\right)\right]$$
B.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} + \vec{b} - \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$
C.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} + \vec{b} + \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

D. none of these

Answer: c

Watch Video Solution

10. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. then

$$(\vec{P} \times \vec{B}) \times \vec{B}$$
 is equal to

$$\vec{A} \cdot \vec{P}$$

$$\mathsf{B.} \, \text{-} \vec{P}$$

$$C. 2\vec{B}$$

$$\vec{\mathsf{D}}.\vec{A}$$

Answer: b

Watch Video Solution

11. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. then

 \vec{P} is equal to

A.
$$\frac{\vec{A}}{2} + \frac{\vec{A} \times \vec{B}}{2}$$

$$B. \frac{\vec{A}}{2} + \frac{\vec{B} \times \vec{A}}{2}$$

$$C. \frac{\vec{A} \times \vec{B}}{2} - \frac{\vec{A}}{2}$$

$$\vec{D} \cdot \vec{A} \times \vec{B}$$

Answer: b

Watch Video Solution

- **12.** Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} \vec{P}$. then which of the following statements is false ?
 - A. vectors \vec{P} , \vec{A} and $\vec{P} \times \vec{B}$ ar linearly dependent.
 - B. vectors \vec{P} , \vec{B} and $\vec{P} \times \vec{B}$ ar linearly independent
 - C. \vec{P} is orthogonal to \vec{B} and has length $\frac{1}{\sqrt{2}}$.
 - D. none of these

Answer: d

13. Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be

the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then

$$\vec{a}_2$$
 is equal to (A) $\frac{943}{49} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$ (B) $\frac{943}{49^2} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$ (C) $\frac{943}{49} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$ (D) $\frac{943}{49^2} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$

A.
$$\frac{943}{49} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$$

B.
$$\frac{943}{49^2} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$$

C. $\frac{943}{49} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$

D.
$$\frac{943}{49^2} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$$

Answer: b

Watch Video Solution

14. Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then \vec{a}_1 . \vec{b} is equal to (A) -41 (B) -41/7 (C) 41 (D)287

B. -41/7

C. 41

D. 287

Answer: a

Watch Video Solution

15. Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be

the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then

$$\vec{a}_2$$
 is equal to (A) $\frac{943}{49} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$ (B) $\frac{943}{49^2} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$ (C)

$$\frac{943}{49} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right) \text{(D)} \frac{943}{49^2} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$$

A. \vec{a} and $vcea_2$ are collinear

B. \vec{a}_1 and \vec{c} are collinear

C. $\vec{a}m\vec{a}_1$ and \vec{b} are coplanar

D. \vec{a} , \vec{a}_1 and a_2 are coplanar

Answer: c

Watch Video Solution

16. Consider a triangular pyramid ABCD the position vectors of whose agular points are A(3,0,1), B(-1,4,1), C(5,3,2) and D(0,-5,4) Let G be the point of intersection of the medians of the triangle BCD. The length — of the vector AG is

A. $\sqrt{17}$

B. $\sqrt{51}/3$

c. $3/\sqrt{6}$

D. $\sqrt{59}/4$

Answer: b

17. Consider a triangular pyramid ABCD the position vectors of whose agular points are A(3,0,1), B(-1,4,1), C(5,3,2) and D(0,-5,4) Let G be the point of intersection of the medians of the triangle BCD. The length — of the vector AG is

- A. 24
- B. $8\sqrt{6}$
- $C.4\sqrt{6}$
- D. none of these

Answer: c

Watch Video Solution

18. Consider a triangular pyramid ABCD the position vectors of whose agular points are A(3, 0, 1), B(-1, 4, 1), C(5, 3, 2) and D(0, -5, 4) Let G be

the point of intersection of the medians of the triangle BCD. The length

of the vector AG is

A.
$$14/\sqrt{6}$$

B.
$$2/\sqrt{6}$$

C.
$$3/\sqrt{6}$$

D. none of these

Answer: a

- 19. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (
- 1,2,3) and D (x,y,z) The distance between the parallel lines AB and CD is

A.
$$\sqrt{6}$$

B.
$$3\sqrt{6/5}$$

C.
$$2\sqrt{2}$$

Answer: c

Watch Video Solution

20. Vertices of a parallelogram taken in order are A(2,-1,4)B(1,0,-1)C(1,2,3) and D.

Distance of the point P (8, 2,-12) from the plane of the parallelogram is

A.
$$\frac{4\sqrt{6}}{2}$$

B.
$$\frac{32\sqrt{6}}{9}$$

$$c. \frac{16\sqrt{6}}{9}$$

D. none

Answer: b

21. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (

1,2,3) and D.

The distance between the parallel lines AB and CD is

- A. 14, 4,2
- B. 2,4,14
- C. 4,2,14
- D. 2,14,4

Answer: d

Watch Video Solution

22. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane

that such

$$\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$$

and

 $P_1 = \max \left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}, P_2 = \min \left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}.$ A tangenty line is

drawn to the curve $y = 8/x^2$ at point .A with abscissa 2. the drawn line

cuts the x-axis at a point B.

 p_2 is equal to

A. 9

B. $2\sqrt{2} - 1$

C. $6\sqrt{6} + 3$

D. 9 - $4\sqrt{2}$

Answer: d

Watch Video Solution

such that $\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$ and $P_1 = \max\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}$, $P_2 = \min\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}$. A tangenty line is drawn to the curve $y = 8/x^2$ at point .A with abscissa 2. the drawn line cuts the x-axis at a point B.

23. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane

 $p_1 + p_2$ is equal to

Answer: c

Watch Video Solution

24. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane such that $\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$ and

 $P_1 = \max\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}$, $P_2 = \min\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}$. A tangenty line is drawn to the curve $y = 8/x^2$ at point .A with abscissa 2. the drawn line cuts the x-axis at a point B.

Find r is equal to

B. 2

C. 3

D. 4

Answer: c

Watch Video Solution

25. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a} . The vector of the faces containing vertices A, B, C and A, B, D are \vec{b} and \vec{c} , respectively, i.e. $\overrightarrow{AB} \times \overrightarrow{AC}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$ vector \overrightarrow{AD} is

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$
B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

C.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

D. none of these

Answer: a

Watch Video Solution

diagonal of the praallelepiped passing through A and directed away from it is vector \vec{a} . The vector of the faces containing vertices A, B, C and

26. Ab, AC and AD are three adjacent edges of a parallelpiped. The

A, B, D are \vec{b} and \vec{c} , respectively , i.e. $\overrightarrow{AB} \times \overrightarrow{AC} = \vec{b}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{2}$ vector AB is

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$
B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

$$C. \frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

D. none of these

Answer: b

Watch Video Solution

diagonal of the praallelepiped passing through A and directed away from it is vector \vec{a} . The vector of the faces containing vertices A, B, C and

27. Ab, AC and AD are three adjacent edges of a parallelpiped. The

A, B, D are \vec{b} and \vec{c} , respectively , i.e. $\overrightarrow{AB} \times \overrightarrow{AC} = \vec{b}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{2}$ vector AC is

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$
B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

C.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$
D. none of these

Answer: c

Martrix - match type

- **2.** Find a unit vector in the direction of $\vec{a} = 3\hat{i} 2\hat{j} + 6\hat{k}$
 - Watch Video Solution

3. Find the value of
$$\lambda$$
 if the vectors \vec{a} and \vec{b} are perpendicular, where, \vec{a} =

$$2\hat{i} + \lambda \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$

4. Given two vectors
$$\vec{a} = -\hat{i} + \hat{j} + 2\hat{k}$$
 and $\vec{b} = -\hat{i} - 2\hat{j} - \hat{k}$ find $|\vec{a} \times \vec{b}|$

5. Given two vectors
$$\vec{a} = -\hat{i} + 3\hat{j} + \hat{k}$$
 and $\vec{b} = -3\hat{i} + \hat{j} + \hat{k}$ find $|\vec{a} \times \vec{b}|$

6. Show that the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$, $-2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\hat{i} - 3\hat{j} + 5\hat{k}$ are coplanar.

7. find
$$|\vec{x}|$$
, if for a unit vector \vec{a} , $(\vec{x} - \vec{a})(\vec{x} + \vec{a})$ =12

9. Find the projection of \vec{a} on \vec{b} if \vec{a} . \vec{b} =8 and \vec{b} = $2\hat{i}$ + $6\hat{j}$ + $3\hat{k}$

8. Write the value of p for which
$$\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$$
, $\vec{b} = \hat{i} + p\hat{j} + 3\hat{k}$ are parallel

value of x + y + z

Integer type

1. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest positive

integer in the range of $\frac{3\left|\vec{a}+\vec{b}\right|}{2}+2\left|\vec{a}-\vec{b}\right|$.

2. Let \vec{u} be a vector on rectangular coordinate system with sloping angle 60° Suppose that $|\vec{u} - \hat{i}|$ is geometric mean of $|\vec{u}|$ and $|\vec{u} - 2\hat{i}|$, where \hat{i} is

the unit vector along the x-axis. Then find the value of $(\sqrt{2} + 1) |\vec{u}|$

3. Find the absolute value of parameter t for which the area of the triangle whose vertices the A(-1, 1, 2); B(1, 2, 3) and C(5, 1, 1) is minimum.

Watch Video Solution

4. If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
; $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ and $\left[3\vec{a} + \vec{b} \ 3\vec{b} + \vec{c} \ 3\vec{c} + \vec{a}\right] = \lambda \left[\vec{a}\vec{b}\vec{c}\right]$, then find the value of $\frac{\lambda}{4}$.

5. Let $\vec{a} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = \alpha \hat{i} + 2\alpha \hat{j} - 2\hat{k}$, $and\vec{c} = 2\hat{i} - \alpha \hat{j} + \hat{k}$ Find the value of

$$6\alpha$$
, such that $\left\{ \left(\vec{a} \times \vec{b} \right) \times \left(\vec{b} \times \vec{c} \right) \right\} \times \left(\vec{c} \times \vec{a} \right) = 0$.

6. If
$$\vec{x}$$
, \vec{y} are two non-zero and non-collinear vectors satisfying
$$\left[(a-2)\alpha^2 + (b-3)\alpha + c \right] \vec{x} + \left[(a-2)\beta^2 + (b-3)\beta + c \right] \vec{y} + \left[(a-2)\gamma^2 + (b-3)\gamma + c \right] \vec{y}$$

are three distinct real numbers, then find the value of $\left(a^2+b^2+c^2-4\right)$

7. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$. Find the value of $[\vec{u} \ \vec{v} \ \vec{w}]$.

Watch Video Solution

8. Find the value of λ if the volume of a tetrahedron whose vertices are with position vectors $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$, $5\hat{i} - \hat{j} + \lambda\hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 cubic unit.

Watch Video Solution

9. Given that $\vec{u} = \hat{i} - 2\hat{j} + 3\hat{k}$,

$$\vec{v} = 2\hat{i} + \hat{j} + 4\hat{k},$$

 $\vec{w} = \hat{i} + 3\hat{j} + 3\hat{k}$ and $(\vec{u} \cdot \vec{R} - 15)\hat{i} + (\vec{v} \cdot \vec{R} - 30)\hat{j} + (\vec{w} \cdot \vec{R} - 20)\vec{k} = 0$. Then find the greatest integer less than or equal to $|\vec{R}|$.

10. Let a three dimensional vector \vec{V} satisfy the condition,

$$2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k}$$
 If $3|\vec{V}| = \sqrt{m}$. Then find the value of m

11. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$.

12. Let $\vec{O}A = \vec{a}$, $\hat{O}B = 10\vec{a} + 2\vec{b}$ and $\vec{O}C = \vec{b}$, where O, A and C are non-collinear points. Let p denotes the area of quadrilateral OACB, and let q denote the area of parallelogram with OA and OC as adjacent sides. If p = kq, then find k

13. Find the work done by the force $F = 3\hat{i} - \hat{j} - 2\hat{k}$ acrting on a particle such that the particle is displaced from point

$$A(-3, -4, 1) \rightarrow B(-1, -1, -2)$$

14. If \vec{a} and \vec{b} are vectors in space given by $\vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$ then find the value of $(2\vec{a} + \vec{b})$. $[(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$

15. Let $\vec{a} = -\hat{i} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = i + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$ then find the value of $\vec{r} \cdot \vec{b}$.

16. If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$,

then $\left| 2\vec{a} + 5\vec{b} + 5\vec{c} \right|$ is.

17. Let \vec{a} , \vec{b} , and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$ where p,q,r are scalars then the value of $\frac{p^2 + 2q^2 + r^2}{q^2}$ is

Subjective type

1. from a point O inside a triangle ABC, perpendiculars, OD, OE and OF are drawn to the sides, BC, CA and AB respectively, prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent.

2. about to only mathematics

Watch Video Solution

3. If c is a given non-zero scalar, and \vec{A} and \vec{B} are given non-zero vector such that $\vec{A} \perp \vec{B}$, then find vector \vec{X} which satisfies the equation

4. A, B, CandD are any four points in the space, then prove that

$$\left| \vec{A}B \times \vec{C}D + \vec{B}C \times \vec{A}D + \vec{C}A \times \vec{B}D \right| = 4 \text{ (area of } ABC \text{)}.$$

5. If vectors
$$\vec{a}$$
, \vec{b} and \vec{c} are coplanar, show that
$$\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \end{vmatrix} = \vec{0}$$
$$\begin{vmatrix} \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix}$$

6. Let $\vec{A} = 2\vec{i} + \vec{k}$, $\vec{B} = \vec{i} + \vec{j} + \vec{k}$ $\vec{C} = 4\hat{i} - 3\hat{j} + 7\hat{k}$ Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B} = \vec{C} \times \vec{B}$ and \vec{R} , $\vec{A} = 0$.

7. Determine the value of c so that for all real x, vectors $cx\hat{i} - 6\hat{j} - 3\hat{k}$ and $x\hat{i} + 2\hat{j} + 2cx\hat{k}$ make an obtuse angle with each other.

8. Prove that
$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c}) = -2 [\vec{b}\vec{c}\vec{d}]\vec{a}$$

9. \vec{a} , \vec{b} and \vec{c} are vectors of magnitudes 1, 1 and 2, respectively. If

10. Let \vec{a} , \vec{b} , and \vec{c} be non-coplanar unit vectors, equally inclined to one

 $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0}$, then acute angle between \vec{a} and \vec{c} is

another at an angle θ then $\begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} \end{bmatrix}$ in terms of θ is equal to :

that:

- Watch Video Solution

- View Text Solution

- Watch Video Solution
- If \vec{a} , \vec{b} , \vec{c} are vectors such that $\left| \vec{b} \right| = \left| \vec{c} \right|$ 11. $\left\{ \left(\vec{a} + \vec{b} \right) \times \left(\vec{a} + \vec{c} \right) \right\} \times \left(\vec{b} \times \vec{c} \right) \cdot \left(\vec{b} + \vec{c} \right) =$

12. For any two vectors
$$\vec{u}$$
 and \vec{v} prove that
$$\left(1 + \left|\vec{u}\right|^2\right) \left(1 + \left|\vec{v}\right|^2\right) = \left(1 - \vec{u} \cdot \vec{v}\right)^2 + \left|\vec{u} + \vec{v} + \left(\vec{u} \times \vec{v}\right)\right|^2$$

13. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w} + \vec{w} \times \vec{u} = \vec{v}$, then prove that $\left| \left(\vec{u} \times \vec{v} \right) \cdot \vec{w} \right| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v} .

14. Find 3-dimensional vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ satisfying $\vec{v}_1 \cdot \vec{v}_1 = 4, \vec{v}_1 \cdot \vec{v}_2 = -2, \vec{v}_1 \cdot \vec{v}_3 = 6,$

$$\vec{v}_2 \cdot \vec{v}_2 = 2, \vec{v}_2 \cdot \vec{v}_3 = -5, \vec{v}_3 \cdot \vec{v}_3 = 29$$

15. Let V be the volume of the parallelopiped formed by the vectors $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. If a_r, b_r and c_r , where r = 1, 2, 3, are non-negative real numbers and a_r

16. \vec{u} , \vec{v} and \vec{w} are three non-coplanar unit vectors and α , β and γ are the angles between \vec{u} and \vec{v} , \vec{v} and \vec{w} , and \vec{w} and \vec{u} , respectively, and \vec{x} , \vec{y} and \vec{z} are unit vectors along the bisectors of the angles α , β and γ , respectively.

Prove that
$$\left[\vec{x} \times \vec{y} \, \vec{y} \times \vec{z} \, \vec{z} \times \vec{x}\right] = \frac{1}{16} \left[\vec{u} \, \vec{v} \, \vec{w}\right]^2 \sec^2 \left(\frac{\alpha}{2}\right) \sec^2 \left(\frac{\beta}{2}\right) \sec^2 \left(\frac{\gamma}{2}\right)$$
.

17. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are distinct vectors such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$. Prove that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) \neq 0$

18. P_1 and P_2 are planes passing through origin L_1 and L_2 are two lines on P_1 and P_2 , respectively, such that their intersection is the origin. Show that there exist points A, B and C, whose permutation A', B' and C', respectively, can be chosen such that

ii)A' is on L_2 , B' on P_2 but not on L_2 and C' not on P_2

i) A is on L_1 , $BonP_1$ but not on L_1 and C not on P_1 ;

19. Find the differential equation representing the family of curves $y = ae^{bx+5}$ where a and b are arbitrary constants.

1. Let \vec{A} , \vec{B} and \vec{C} be vectors of legth , 3,4and 5 respectively. Let \vec{A} be perpendicular to $\vec{B} + \vec{C}$, \vec{B} to $\vec{C} + \vec{A}$ and \vec{C} to $\vec{A} + \vec{B}$ then the length of vector $\vec{A} + \vec{B} + \vec{C}$ is _____.

2. The unit vector perendicular to the plane determined by P (1,-1,2) ,C(3,-1,2) is

3. the area of the triangle whose vertices are A (1,-1,2), B (1,2,-1), C (3,-1, 2) is _____.

4. If \vec{A}, \vec{B} and \vec{C} are three non - coplanar vectors, then

$$\frac{\vec{A}.\vec{B} \times \vec{C}}{\vec{C} \times \vec{A}.\vec{B}} + \frac{\vec{B}.\vec{A} \times \vec{C}}{\vec{C}.\vec{A} \times \vec{B}} = \underline{\qquad}$$

5. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors the vector \vec{B} satisfying the equations $\vec{A}\times\vec{B}=\vec{C}$ and $\vec{A}.\vec{B}=3$ is

6. Let $\vec{b} = 4\hat{i} + 3\hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy- plane. All vectors in the sme plane having projections 1 and 2 along \vec{b} and \vec{c} , respectively, are given by _____

7. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are and , respectively.

8. A unit vector coplanar with $\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$ and perpendicular to $\vec{i} + \vec{j} + \vec{k}$ is

9. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors \vec{i} , \vec{i} + \vec{j} and thepane determined by the vectors \vec{i} - \vec{j} , \vec{i} + \vec{k} then angle between \vec{a} and \vec{i} - $2\vec{j}$ + $2\vec{k}$ is = (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

10. Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$,

where
$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Watch Video Solution

11. let \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2, respectively, if $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0}$, then the acute angle between \vec{a} and \vec{c} is

12. A, B C and D are four points in a plane with position vectors, \vec{a} , \vec{b} , \vec{c} and \vec{d} respectively, such that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$ then point D is the ____ of triangle ABC.

13. Let $\overrightarrow{OA} = \overrightarrow{a}$, $\widehat{OB} = 10\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{b}$, where O, A and C are non-collinear points. Let p denotes the area of quadrilateral OACB, and let q denote the area of parallelogram with OA and OC as adjacent sides. If

p = kq, then findk

14. If
$$\vec{a} = \hat{j} + \sqrt{3}k$$
, $\vec{b} = -\hat{j} + \sqrt{3}\hat{k}$ and $\vec{c} = 2\sqrt{3}\hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is

True and false

1. Let \vec{a} , \vec{b} and \vec{c} be unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} . It the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ then find \vec{a} .

2. If
$$\vec{x}$$
. $\vec{a} = 0\vec{x}$. $\vec{b} = 0$ and \vec{x} . $\vec{c} = 0$ for some non zero vector \vec{x} then show that $\left[\vec{a}\vec{b}\vec{c}\right] = 0$

3. for any three vectors,
$$\vec{a}$$
, \vec{b} and \vec{c} , $(\vec{a} - \vec{b})$. $(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) =$

single correct answer type

1. The scalar
$$\vec{A} \left(\left(\vec{B} + \vec{C} \right) \times \left(\vec{A} + \vec{B} + \vec{C} \right) \right)$$
 equals a.0 b. $\left[\vec{A} \vec{B} \vec{C} \right] + \left[\vec{B} \vec{C} \vec{A} \right]$ c. $\left[\vec{A} \vec{B} \vec{C} \right]$ d. none of these

$$\mathsf{B.}\left[\vec{A}\vec{B}\vec{C}\right] + \left[\vec{B}\vec{C}\vec{A}\right]$$

C.
$$\left[\vec{A}\vec{B}\vec{C} \right]$$

D. none of these

Answer: a

Watch Video Solution

2. For non-zero vectors \vec{a} , \vec{b} and \vec{c} , $\left| \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|$ holds if and only if

A. A.
$$\vec{a}$$
. $\vec{b} = 0$, \vec{b} . $\vec{c} = 0$

B. B.
$$\vec{b}$$
. $\vec{c} = 0$, \vec{c} , $\vec{a} = 0$

C. C.
$$\vec{c}$$
. $\vec{a} = 0$, \vec{a} , $\vec{b} = 0$

D. D.
$$\vec{a}$$
. $\vec{b} = \vec{b}$. $\vec{c} = \vec{c}$. $\vec{a} = 0$

Answer: d

3. The volume of he parallelepiped whose sides are given by

$$\vec{O}A = 2i - 2j$$
, $\vec{O}B = i + j - kand\vec{O}C = 3i - k$ is a. $\frac{4}{13}$ b. 4 c. $\frac{2}{7}$ d. 2

- A.4/13
- B. 4
- C.2/7
- D. 2

Answer: d

Watch Video Solution

4. Let \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and \vec{p} , \vec{q} and \vec{r} the vectors

defined by the relation $\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$. Then the

value of the expression $(\vec{a} + \vec{b})\vec{p} + (\vec{b} + \vec{c})\vec{q} + (\vec{c} + \vec{a})\vec{r}$ is 0 b. 1 c. 2 d. 3

Answer: d

5. Let
$$\vec{a} = \hat{i} - \hat{j}$$
, $\vec{b} = \hat{j} - \hat{k}$, $\vec{c} = \hat{k} - \hat{i}$. If \hat{d} is a unit vector such that

$$\vec{a} \cdot \hat{d} = 0 = \left[\vec{b} \vec{c} \vec{d} \right]$$
 then \hat{d} equals

A. A.
$$\pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$$

B. B.
$$\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$$

$$C. C. \pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$$

D. D.
$$\pm \hat{k}$$

Answer: a

Watch Video Solution

6. If \vec{a} , \vec{b} and \vec{c} are non-coplanar unit vectors such that

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$$
, then the angle between \vec{a} and \vec{b} is a. $3\pi/4$ b. $\pi/4$ c.

$$\pi/2$$
 d. π

A.
$$3\pi/4$$

$$B.\pi/4$$

$$C. \pi/2$$

D.
$$\pi$$

Answer: a

$$\left| \vec{u} \right| = 2$$
, $\left| \vec{v} \right| = 3$ and $\left| \vec{w} \right| = 5$ then $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$ is

Let \vec{u} , \vec{v} and \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = 0$ if

coplanar vectors,

non

then

7.

D. 19

Answer: b

Watch Video Solution

8.

If \vec{a} , \vec{b} and \vec{c} are three

 $(\vec{a} + \vec{b} + \vec{c})[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ is:

B.
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

C.
$$2\left[\vec{a}\vec{b}\vec{c}\right]$$

D. -
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

Answer: d

Watch Video Solution

9. \vec{p} , \vec{q} and \vec{r} are three mutually prependicular vectors of the same magnitude . If vector \vec{x} satisfies the equation $\vec{p} \times \left(\left(\vec{x} - \vec{q} \right) \times \vec{p} \right) + \vec{q} \times \left(\left(\vec{x} - \vec{r} \right) \times \vec{q} \right) + \vec{r} \times \left(\left(\vec{x} - \vec{p} \right) \times \vec{r} \right) = \vec{0}$ then \vec{x} is given by

A. A.
$$\frac{1}{2} (\vec{p} + \vec{q} - 2\vec{r})$$

$$B. B. \frac{1}{2} \left(\vec{p} + \vec{q} + \vec{r} \right)$$

C. C.
$$\frac{1}{3} (\vec{p} + \vec{q} + \vec{r})$$

D. D.
$$\frac{1}{3} (2\vec{p} + \vec{q} - \vec{r})$$

Answer: b

10. Let
$$\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$$
, and $\vec{b} = \hat{i} + \hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then

11. Let $\vec{a} = 2i + j + k$, $\vec{b} = i + 2j - k$ and \vec{a} unit vector \vec{c} be coplanar. If \vec{c} is

$$\left| \left(\vec{a} \times \vec{b} \right) \right| \times \vec{c} \left| \right|$$
 is equal to

Answer: b

pependicular to
$$ec{a}$$
 .Find $ec{c}$.

$$A. \frac{1}{\sqrt{2}}(-j+k)$$

$$B. \frac{1}{\sqrt{3}}(i-j-k)$$

C.
$$\frac{1}{\sqrt{5}}(i-2j)$$
D. $\frac{1}{\sqrt{3}}(i-j-k)$

Answer: a

Watch Video Solution

- 12. If the vectors \vec{a} , \vec{b} , and \vec{c} form the sides BC, CA and AB, respectively, of triangle ABC, then
 - A. \vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} = 0
 - B. $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$
 - C. \vec{a} . $\vec{b} = \vec{b}$. $\vec{c} = \vec{c}$. \vec{a}
 - D. $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$

Answer: b

13. Let vectors \vec{a} , \vec{b} , \vec{c} , and \vec{d} be such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0$. Let $P_1 and P_2$ be planes determined by the pair of vectors \vec{a} , \vec{b} , and \vec{c} , \vec{d} , respectively. Then the angle between $P_1 and P_2$ is $0 \text{ b.} \pi/4 \text{ c.} \pi/3 \text{ d.} \pi/2$

A. 0

B. $\pi/4$

C. $\pi/3$

D. $\pi/2$

Answer: a

Watch Video Solution

14. If \vec{a} , \vec{b} and \vec{c} are unit coplanar vectors, then the scalar triple product

$$[2\vec{a} - \vec{b}2\vec{b} - \vec{c}2\vec{c} - \vec{a}]$$
 is 0 b. 1 c. $-\sqrt{3}$ d. $\sqrt{3}$

A. 0

B. 1

$$C. -\sqrt{3}$$

D.
$$\sqrt{3}$$

Answer: a

Watch Video Solution

15. If \hat{a} , \hat{b} , and \hat{c} are unit vectors, then $\left|\hat{a} - \hat{b}\right|^2 + \left|\hat{b} - \hat{c}\right|^2 + \left|\hat{c} - \hat{a}\right|^2$ does not

exceed

B. 9

C. 8

D. 6

Answer: b

16. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are perpendicular to each other than the angle between \vec{a} and \vec{b} is

- A. 45 $^{\circ}$
- B. 60 $^{\circ}$
- C. $\cos^{-1}(1/3)$
- D. $\cos^{-1}(2/7)$

Answer: b

Watch Video Solution

17. Let $\vec{V}=2\hat{i}+\hat{j}-\hat{k}and\vec{W}=\hat{i}+3\hat{k}$ If \vec{U} is a unit vector, then the maximum value of the scalar triple product [UVW] is a.-1 b. $\sqrt{10}+\sqrt{6}$ c. $\sqrt{59}$ d. $\sqrt{60}$

- **A.** -1
- $B.\sqrt{10}+\sqrt{6}$
- C. $\sqrt{59}$

D.
$$\sqrt{60}$$

Watch Video Solution

18. Find the value of a so that the volume of the parallelepiped formed by vectors $\hat{i} + a\hat{j} + k$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum.

A. -3

B. 3

C. $1/\sqrt{3}$

D. $\sqrt{3}$

Answer: c

19. If
$$\vec{a} = (\hat{i} + \hat{j} + \hat{k})$$
, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then \vec{b} is

A.
$$\hat{i} - \hat{j} + \hat{k}$$

B.
$$2\hat{i} - \hat{k}$$

20. The unit vector which is orthogonal to the vector
$$3\hat{i} + 2\hat{j} + 6\hat{k}$$
 and is coplanar with vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ is $\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$ b. $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$ c. $\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$

d.
$$\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$$

A.
$$\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$$
B. $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$

c.
$$\frac{3\hat{i} - \hat{k}}{\sqrt{10}}$$

D. $\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$

21. If
$$\vec{a}$$
, \vec{b} and \vec{c} are three non-zero, non-coplanar vectors and

$$\vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}, \ \vec{b}_2 = \vec{b} + \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}, \ \vec{c}_1 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1,$$

$$\vec{c}_2 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{\left|\vec{a}\right|^2} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{\left|\vec{b}_1\right|^2} \vec{b}_1, \ \vec{c}_3 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{\left|\vec{c}\right|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{\left|\vec{c}\right|^2} \vec{b}_1,$$

$$\vec{c}_4 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^2} \vec{b}_1$$
, then the set of mutually orthogonal vectors is

A. (a)
$$\left(\vec{a}, \vec{b}_1, \vec{c}_3\right)$$

B. (b)
$$(\vec{a}, \vec{b}_1, \vec{c}_2)$$

C. (c)
$$(\vec{a}, \vec{b}_1, \vec{c}_1)$$

D. (d)
$$\left(\vec{a}, \vec{b}_2, \vec{c}_2\right)$$

Watch Video Solution

- **22.** Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ A vector in the plane of
- \vec{a} and \vec{b} whose projections on \vec{c} is $1/\sqrt{3}$ is
 - A. A. $4\hat{i} \hat{j} + 4\hat{k}$
 - B. B. $3\hat{i} + \hat{j} 3\hat{k}$
 - C. C. $2\hat{i} + \hat{j} 2\hat{k}$
 - D. D. $-4\hat{i} + \hat{j} 4\hat{k}$

Answer: a

23. Let two non-collinear unit vector \hat{a} a n d \hat{b} form an acute angle. A point P moves so that at any time t, the position vector OP(whereO is the origin) is given by $\hat{a}\cos t + \hat{b}\sin tWhenP$ is farthest from origin O, let M be the length of $OPand\hat{u}$ be the unit vector along OP. Then (a)

$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|} andM = \left(1 + \hat{a}\hat{b}\right)^{1/2} \quad \text{(b)} \quad \hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|} andM = \left(1 + \hat{a}^{\wedge}\right)^{1/2} \quad \text{(c)}$$

$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|} andM = \left(1 + 2\hat{a}\hat{b}\right)^{1/2} (d) \hat{u} = \frac{\hat{a} - \hat{b}}{\left|\hat{a} - \hat{b}\right|} andM = \left(1 + 2\hat{a}\hat{b}\right)^{1/2}$$

A.,
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $M = (1 + \hat{a}. \hat{b})^{1/2}$

B.,
$$\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$$
 and $M = (1 + \hat{a}. \hat{b})^{1/2}$

C.
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $M = (1 + 2\hat{a}. \hat{b})^{1/2}$

D.,
$$\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$$
 and $M = (1 + 2\hat{a}. \hat{b})^{1/2}$

Answer: a

24. If
$$\vec{a}$$
, \vec{b} , \vec{c} and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b})$. $(\vec{c} \times \vec{d}) = 1$ and \vec{a} . $\vec{c} = \frac{1}{2}$ then

- A. \vec{a} , \vec{b} and \vec{c} are non-coplanar
- B. \vec{b} , \vec{c} and \vec{d} are non-coplanar
- C. \vec{b} and \vec{d} are non-parallel
- D. \vec{a} and \vec{d} are parallel and \vec{b} and \vec{c} are parallel

Watch Video Solution

25. Two adjacent sides of a parallelogram ABCD are given by $\vec{A}B = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\vec{A}D = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD.

If AD' makes a right angle with the side AB, then the cosine of the angel

$$\alpha$$
 is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$

- A. $\frac{8}{9}$
- B. $\frac{\sqrt{17}}{9}$
- c. $\frac{1}{9}$
- D. $\frac{4\sqrt{5}}{9}$

Answer: b

Watch Video Solution

26. Let P, Q, R and S be the points on the plane with position vectors -2i - j, 4i, 3i + 3j and -3i + 2j, respectively. The quadrilateral PQRS must

be (a) Parallelogram, which is neither a rhombus nor a rectangle (b)

A. Parallelogram, which is neither a rhombus nor a rectangle

Square (c) Rectangle but not a square (d) Rhombus, but not a square

B. square

C. rectangle, but not a square

D. rhombus, but not a square.

Answer: a

Watch Video Solution

27. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ A vector in the plane of

 \vec{a} and \vec{b} whose projections on \vec{c} is $1/\sqrt{3}$ is

$$A. \hat{i} - 3\hat{j} + 3\hat{k}$$

$$\mathsf{B.-3}\hat{i}-3\hat{j}+\hat{k}$$

$$\mathsf{C.}\,\,3\hat{i}\,-\hat{j}\,+\,3\hat{k}$$

D.
$$\hat{i} + 3\hat{j} - 3\hat{k}$$

Answer: c

28. Let $\vec{P}R = 3\hat{i} + \hat{j} - 2\hat{k}and\vec{S}Q = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram PQRS, $and\vec{P}T = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the volume of the parallelepiped determine by the vectors $\vec{P}T$, $\vec{P}Q$ and $\vec{P}S$ is 5 b. 20 c. 10 d. 30

- **A.** 5
- B. 20
- C. 10
- D. 30

Answer: c

Watch Video Solution

Multiple correct answers type

1. Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and $\vec{b}is\pi/6$ then the value of

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 is

A. 0

C.
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_2^2 \right) \left(b_1^2 + b_2^2 + b_2^2 \right)$$

D.
$$\frac{3}{4} \left(a_1^2 + a_2^2 + a_2^2 \right) \left(b_1^2 + b_2^2 + b_2^2 \right) \left(c_1^2 + c_2^2 + c_2^2 \right)$$

Answer: c

Watch Video Solution

2. The number of vectors of unit length perpendicular to vectors

 $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite

B. two

C. three

D. infinite

Answer: b

Watch Video Solution

3.
$$\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$ A vector coplanar with \vec{b} and \vec{c} whose projectin on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is $2\hat{i} + 3\hat{j} - 3\hat{k}$ b. $-2\hat{i} - \hat{j} + 5\hat{k}$ c.

 $2\hat{i} + 3\hat{i} + 3\hat{k} d$. $2\hat{i} + \hat{i} + 5\hat{k}$

A.
$$2\hat{i} + 3\hat{j} - 3\hat{k}$$

$$\mathsf{B.}\,2\hat{i}+3\hat{j}+3\hat{k}$$

$$\mathbf{C.} - 2\hat{i} - \hat{j} + 5\hat{k}$$

$$D.\ 2\hat{i} + \hat{j} + 5\hat{k}$$

Answer: a,c

Watch Video Solution

- **4.** For three vectors \vec{u} , \vec{v} and \vec{w} which of the following expressions is not equal to any of the remaining three ? \vec{u} \vec{v} \times \vec{w} b. $(\vec{v} \times \vec{w})\vec{u}$ c. \vec{v} \vec{u} \times \vec{w} d. $(\vec{u} \times \vec{v})\vec{w}$
 - A. \vec{u} . $(\vec{v} \times \vec{w})$
 - B. $(\vec{v} \times \vec{w})$. \vec{u}
 - C. \vec{v} . $(\vec{u} \times \vec{w})$
 - D. $(\vec{u} \times \vec{v})$. \vec{w}

Answer: c

5. Which of the following expressions are meaningful? a.
$$\vec{u}$$
. $(\vec{v} \times \vec{w})$ b. \vec{u} . \vec{v} . \vec{w} c. $(\vec{u}\vec{v})$. \vec{w} d. \vec{u} × $(\vec{v}$. $\vec{w})$

A.
$$\vec{u}$$
. $(\vec{v} \times \vec{w})$

B.
$$(\vec{u}.\ \vec{v}).\ \vec{w}$$

C.
$$(\vec{u}. \vec{v})\vec{w}$$

D.
$$\vec{u} \times (\vec{v}. Vecw)$$

Answer: a,c

 $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$ and $\vec{v} = \vec{a} \times \vec{b}$. then $|\vec{v}|$ is

are

two

non

collinear

unit

vectors,

and

A.
$$|\vec{u}| + \vec{u} \cdot (\vec{a}x\vec{b})$$

 \vec{a} and \vec{b}

6.

$$B. |\vec{u}| + |\vec{u}. \vec{a}|$$

C.
$$\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{b} \right|$$

D.
$$|\vec{u}| + \vec{u} \cdot (\vec{a} + \vec{b})$$

Answer: a,c

Watch Video Solution

7. Find the modulus of the Vector $\frac{1}{3}(2\hat{i}-2\hat{j}+\hat{k})$ is

Watch Video Solution

Plane P_1 is parallel to vectors $2\hat{j} + 3\hat{k}and4\hat{j} - 3kandP_2$ is parallel to \hat{j} - \hat{k} and $3\hat{i}$ + $3\hat{j}$ Then the angle betweenvector \vec{A} and a given vector

8. Let \vec{A} be a vector parallel to the line of intersection of planes P_1 and P_2

 $2\hat{i} + \hat{j} - 2\hat{k}$ is $\pi/2$ b. $\pi/4$ c. $\pi/6$ d. $3\pi/4$

 $A. \pi/2$

 $B.\pi/4$

 $C. \pi/6$

Answer: b,d

Watch Video Solution

9. The vector(s) which is/are coplanar with vectors

$$\hat{i} + \hat{j} + 2\hat{k}$$
 and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$, is/are a.

$$\hat{j} - \hat{k}$$
 b. $-\hat{i} + \hat{j}$ c. $\hat{i} - \hat{j}$ d. $-\hat{j} + \hat{k}$

A.
$$\hat{j} - \hat{k}$$

B.
$$-\hat{i} + \hat{j}$$

C.
$$\hat{i} - \hat{j}$$

D.
$$-\hat{j} + \hat{k}$$

Answer: a,d

10. Let \vec{x} , \vec{y} and \vec{z} be three vector each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{n}{3}$. if vcea is a non - zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then

A.
$$\vec{b} = (\vec{b}. \vec{z})(\vec{z} - \vec{x})$$

$$B. \vec{a} = (\vec{a}. \vec{y})(\vec{y} - \vec{z})$$

$$C. \vec{a}. \vec{b} = -(\vec{a}. \vec{y})(\vec{b}. \vec{z})$$

D.
$$\vec{a} = (\vec{a} \cdot \vec{y})(\vec{z} - \vec{y})$$

Answer: a,b,c

11.

Watch Video Solution

Let

 ΔPQR

$$\vec{a}=QR, \vec{b}=RP \text{ and } \vec{c}=PQ \text{ if } \left|\vec{a}\right|=12, \left|\vec{b}\right|=4\sqrt{3} \text{ and } \vec{b}. \vec{c}=24, \text{ then}$$
 which of the following is (are) true ?

be

a

triangle

Let

A.
$$\frac{\left|\vec{c}\right|^2}{2} - \left|\vec{a}\right| = 12$$

B.
$$\frac{|\vec{c}|^2}{2} - |\vec{a}| = 30$$

$$C. \left| \vec{a} \times \vec{b} + \vec{c} \times \vec{a} \right| = 48\sqrt{3}$$

D.
$$\vec{a}$$
. $\vec{b} = -72$

Answer: a,c,d

